《点到直线的距离》教案
5.3《点到直线的距离》(教案)人教版四年级上册数学

5.3《点到直线的距离》(教案)人教版四年级上册数学当我站在讲台前,面对着一群充满好奇和求知欲望的学生,我深感责任重大。
今天我要教授的是人教版四年级上册数学的《点到直线的距离》这一章节。
一、教学内容我将从教材的第五章第三节开始,这一节主要讲述了点到直线的距离的定义,以及如何求解点到直线的距离。
我会通过具体的例题和练习,让学生理解和掌握这一概念。
二、教学目标通过本节课的学习,我希望学生们能够理解点到直线的距离的概念,掌握求解点到直线的距离的方法,并能够运用这一知识解决实际问题。
三、教学难点与重点本节课的重点是点到直线的距离的定义和求解方法,难点是如何理解和运用这一概念解决实际问题。
四、教具与学具准备为了更好地讲解这一章节,我准备了一些实物模型和图示,以及一些练习题,让学生们能够更好地理解和掌握知识点。
五、教学过程我会通过一个实际问题引入本节课的主题,让学生们思考和讨论如何求解这个问题。
然后,我会给出点到直线的距离的定义,并讲解如何求解点到直线的距离。
接着,我会通过一些例题和练习,让学生们理解和掌握这一概念。
我会布置一些作业,让学生们巩固和运用所学知识。
六、板书设计我会在黑板上写出点到直线的距离的定义和求解方法,以及一些关键的步骤和公式,方便学生们理解和记忆。
七、作业设计我会设计一些有关点到直线的距离的练习题,让学生们能够通过实际操作,巩固和运用所学知识。
八、课后反思及拓展延伸在课后,我会反思本节课的教学效果,看看学生们是否掌握了点到直线的距离的概念和求解方法。
同时,我也会给学生提供一些拓展延伸的材料,让他们能够更好地理解和运用这一知识。
重点和难点解析在上述教案中,有几个关键的细节是我需要特别关注的,因为它们对于学生的理解和掌握至关重要。
一、教学内容的选择与呈现在选择教学内容时,我选择了点到直线的距离这一概念,因为它不仅是几何学的一个基础概念,也是学生进一步学习几何证明和解决实际问题的关键。
我通过具体的例题和练习来呈现这一概念,这样学生能够更加直观地理解和掌握。
数学教案:点到直线的距离

示范教案错误!教学分析点到直线的距离的公式的推导方法很多,可探究的题材非常丰富.除了本节课探究方法外,还有应用三角函数、应用向量等方法.因此“课程标准"对本节教学内容的要求是:“探索并掌握点到直线的距离公式,会求两条平行线间的距离”.希望通过本节课的教学,能让学生在公式的探索过程中深刻地领悟到蕴涵其中的重要的数学思想和方法,学会利用数形结合思想、化归思想和分类方法,由浅入深、由特殊到一般地研究数学问题,培养学生的发散思维.三维目标1.让学生掌握点到直线的距离公式,并会求两条平行线间的距离,培养转化的数学思想.2.引导学生构思距离公式的推导方案,培养学生观察、分析、转化、探索问题的能力,鼓励创新.重点难点教学重点:点到直线距离公式的推导和应用.教学难点:对距离公式推导方法的感悟与数学模型的建立.课时安排1课时错误!导入新课设计1。
点P(0,5)到x轴的距离是多少?更进一步,在平面直角坐标系中,如果已知某点P的坐标为(x0,y0),直线l的方程是Ax+By+C=0,怎样由点的坐标和直线的方程直接求点P到直线l 的距离呢?教师引出课题.设计2.我们知道点与直线的位置关系有两种:点在直线上和点不在直线上,当点不在直线上时,怎样求出该点到直线的距离呢?教师引出课题.推进新课错误!错误!(1)设坐标平面上(如下图),有点P(x1,y1)和直线l:Ax+By+C =0(A2+B2≠0).作直线m通过点P(x1,y1),并且与直线l垂直,设垂足为P0(x0,y0).求证:①B(x0-x1)-A(y0-y1)=0;②C=-Ax0-By0。
(2)试求出(x1-x0)2+(y-y0)2.(3)写出点P到直线l的距离d的计算公式.(4)写出求点P(x1,y1)到直线Ax+By+C=0的距离的计算步骤.讨论结果:(1)证明:①设直线m的方程为Bx-Ay+D=0,∵P(x1,y1)在m上,∴Bx1-Ay1+D=0,∴D=Ay1-Bx1,∴直线m的方程为Bx-Ay+(Ay1-Bx1)=0,即B(x-x1)-A(y-y1)=0。
点到直线的距离 教案全套

点到直线的距离教案全套教学目标1、结合具体情境,理解"两点间所有连线中线段最短",知道两点间距离和点到直线的距离。
2、在对两点间的距离和点到直线的距离知识的探究过程中,培养观察、想象、动手操作的能力,发展初步的空间观念。
3、在解决实际的问题过程中,体验数学与日常生活的密切联系,提高学习兴趣,学会与他人合作共同解决问题。
4、激发学生探究学习的积极性和主动性。
教学重点与难点理解"两点间所有连线中线段最短",知道两点间距离和点到直线的距离。
教具三角尺、直尺教学过程一、专项训练1画一条长3cm的线段。
2、过A点画已知直线的平行线和垂线。
二、交流展示同学们,修路时遇河要怎样?架桥时如果遇到大山怎么办?(出示课件)学生观察情境图,说一说自己的意见。
得出结论,可以修隧道。
1、画一画:教师出示课件师:我们先确定两个点代表大山两侧的甲乙两地,怎样从甲地到达乙地?有没有更近的路线?自己动手画一画,看能发现什么?(组织学生进行小组讨论,给学生充足的要论的时间)2、让学生展开交流,使他们各抒己见,充分发表自己的意见和见解。
师:通过观察思考,你能得出什么结论?学生独立思考后画出几条不同的线,通过观察、测量得出结论。
教师出示课件,让学生检验自己的结论是否正确。
3、学生通过操作感知:两点之间线段最短。
(板书)4、小游戏:(投影出示课件)教师让四个同学站在同一水平线上(两个同学之间要间隔一段距离),抢板凳,板凳与其中的一个同学正对着,根据他们站的位置,谁最有可能抢到板凳?(先让学生们猜一猜,教师统计一下结果,然后让四个学生去做,其它同学认真观察,看结果究竟如何)师:这样公平吗?为什么?(教师请同学们说明原因)再让四个同学按照开始时的情形站好,让两个同学分别测量四个同学所站的位置到板凳的长度,教师把学生测量的数据记在黑板上。
让学生观察数据,分析游戏的结果,得出结论。
师:请同学们把刚才游戏的模拟图画出来,并测量每个同学到板凳的距离,分别记下来。
点到直线的距离教案公开课

点到直线的距离教案公开课一、教学目标:1. 让学生理解点到直线距离的概念,掌握点到直线距离的计算方法。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力,培养学生的团队合作精神。
二、教学重点与难点:1. 教学重点:点到直线的距离概念、计算方法及应用。
2. 教学难点:点到直线的距离公式的推导及灵活运用。
三、教学准备:1. 教师准备:点到直线距离的相关案例、图片、PPT等教学资源。
2. 学生准备:笔记本、尺子、三角板等学习工具。
四、教学过程:1. 导入:通过展示生活中的实例,如垂线段最短等问题,引导学生思考点到直线的距离。
2. 新课讲解:介绍点到直线距离的概念,讲解点到直线距离的计算方法,并通过PPT展示相关案例。
3. 课堂互动:学生分组讨论,运用点到直线距离公式解决实际问题,教师巡回指导。
4. 练习巩固:布置针对性的练习题,让学生独立完成,巩固所学知识。
5. 课堂小结:总结本节课所学内容,强调点到直线距离的概念及计算方法。
五、课后作业:1. 请学生运用点到直线距离的知识,解决生活中的一些实际问题。
2. 完成课后练习题,巩固所学知识。
3. 准备下一节课的相关内容。
六、教学拓展:1. 讲解点到直线距离在实际应用中的例子,如建筑设计、工程测量等领域。
2. 引导学生思考如何利用点到直线距离解决更复杂的问题,如两条平行线间的距离。
七、课堂练习:1. 请学生独立完成PPT上的练习题,巩固点到直线距离的计算方法。
2. 教师选取部分学生的作业进行点评,讲解解题思路和技巧。
八、总结与反思:1. 让学生回顾本节课所学内容,总结点到直线距离的计算方法及应用。
2. 鼓励学生提出问题,培养学生的质疑精神。
九、课后作业布置:1. 请学生运用点到直线距离的知识,解决生活中的实际问题。
2. 完成课后练习题,巩固所学知识。
3. 预习下一节课的相关内容。
十、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
《点到直线的距离》(教案)

《点到直线的距离》(教案)教学目标:1、学习直线和点的基本概念,并能对其进行简单的区分和操作。
2、学习什么是点到直线的距离,掌握用不同方法求点到直线的距离。
3、能够在实际问题中运用所学知识,解决相关问题。
教学重点:1、点和直线的概念,及其区分;2、点到直线的距离的定义,及其求法。
教学难点:1、点到直线的距离的求法;2、两种方法的运用能力的提高。
教学方法:情景教学法。
教学资源:黑板、白板、笔、纸教学过程:一、导入新课1、分发习题册,并让学生先自学第十一章的内容。
2、提问:“在课堂上,你们了解过直线和点吗?”由此扩展对点和直线的概念和区分。
二、学习点到直线的距离1、引导学生思考,如何求点到直线的距离?2、讲解点到直线的距离的定义,即“点到直线距离是从该点引一条垂线到直线上,垂线的长度就是点到直线的距离”。
3、讲解两种方法如何求出点到直线的距离,并带着学生通过案例进行实际运用,进行验证。
4、补充例题,让学生通过自己的计算和思考来解题,并让学生相互交流。
5、公开课进行示范教学。
三、练习1、就教室内的物体进行距离计算,如教室门口离桌子的距离。
2、让学生阅读小问题,通过图像求解答案。
四、课外拓展1、出示各种图形,让学生独立计算各种情况下的到直线的距离。
2、让学生去实验室或其他地方,进行实地考察、测量点到直线的距离。
五、总结1、总结点到直线的距离的求法,并列举案例。
2、解释什么是求点到直线的距离,如何通过数学方法进行计算。
六、作业布置1、课堂上布置练习题,分组进行解决。
2、预习下一课的内容。
七、教学评价1、教师定期对学生进行小测验,以检查学生对本课题的掌握程度。
2、教师跟踪观察在课外拓展的实验中,学生是否有很好的理解和应用课堂所学知识。
3、收集学生的答题作业,从中发现问题并进行针对性教学。
八、教学反思1、教师观察到很多学生在学习过程中对于点和直线的区分还不是很明确,需要更好的引导和讲解。
2、在课堂规划中,需要考虑更具体和实用的案例,以便让学生真正地理解并运用所学知识。
点到直线的距离教案

点到直线的距离教案一、教学目标1. 知识与技能:(1)理解点到直线的距离的定义;(2)学会使用点到直线的距离公式;(3)能够运用点到直线的距离解决实际问题。
2. 过程与方法:(1)通过实例直观感受点到直线的距离;(2)探讨点到直线的距离的求法;(3)运用点到直线的距离解决几何问题。
3. 情感态度与价值观:(1)培养学生的空间想象能力;(2)培养学生解决问题的能力;(3)培养学生对数学的兴趣。
二、教学重点与难点1. 教学重点:(1)点到直线的距离的定义;(2)点到直线的距离公式的应用。
2. 教学难点:(1)点到直线的距离的直观理解;(2)运用点到直线的距离解决实际问题。
三、教学准备1. 教师准备:(1)点到直线的距离的相关知识;(2)实例和练习题。
2. 学生准备:(1)掌握直线、点的基本概念;(2)了解坐标系的基本知识。
四、教学过程1. 导入新课:(1)利用实例引入点到直线的距离的概念;(2)引导学生探讨点到直线的距离的求法。
2. 新课讲解:(1)讲解点到直线的距离的定义;(2)推导点到直线的距离公式;(3)通过图形直观展示点到直线的距离。
3. 课堂练习:(1)让学生运用点到直线的距离公式解决问题;(2)引导学生探讨点到直线的距离在实际问题中的应用。
五、课后作业1. 巩固知识点:(1)复习点到直线的距离的定义和公式;(2)总结点到直线的距离的求法。
2. 提高拓展:(1)运用点到直线的距离解决几何问题;(2)探索点到直线的距离在实际生活中的应用。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及对知识点的理解程度。
2. 课后作业评价:检查学生作业的完成情况,巩固知识点和提高拓展部分的完成质量。
3. 实践应用评价:通过课后实践项目,评估学生将所学知识点应用于实际问题的能力。
七、教学反思在课后,教师应反思教学过程中的优点和不足,例如:1. 教学方法是否有效,学生是否积极参与;2. 教学内容的难易程度是否适合学生;3. 是否有充分的实例和练习题帮助学生理解知识点;4. 教学过程中是否有需要改进的地方。
四年级上册数学教案 点到直线的距离示范教学方案 人教版

四年级上册数学教案:点到直线的距离示范教学方案一、教学目标1. 知识与技能:使学生掌握点到直线距离的含义,能够运用点到直线距离公式进行计算。
2. 过程与方法:通过观察、实践、讨论等教学活动,培养学生动手操作、观察、分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生合作交流、积极参与的学习态度。
二、教学重点与难点1. 教学重点:点到直线距离的含义,点到直线距离公式的应用。
2. 教学难点:点到直线距离公式的推导,以及在实际问题中的应用。
三、教学准备1. 教学工具:直尺、圆规、量角器等。
2. 教学素材:课件、练习题等。
四、教学过程1. 导入新课通过复习点到直线垂线段的性质,引导学生思考:点到直线的距离在实际生活中的应用,如测量、设计等。
从而引出本节课的主题——点到直线的距离。
2. 探究新知(1)点到直线距离的含义通过观察、实践,让学生了解点到直线距离的含义,即从直线外一点到这条直线的垂线段的长度。
(2)点到直线距离公式的推导利用直尺、圆规、量角器等工具,引导学生进行实践操作,发现并证明点到直线距离公式:设直线方程为 Ax By C = 0,点 P(x0, y0) 到直线的距离公式为:d = |Ax0 By0 C| / √(A^2 B^2)(3)点到直线距离公式的应用通过实例演示,让学生学会运用点到直线距离公式解决实际问题,如求点到直线的距离、判断点是否在直线上等。
3. 巩固练习设计不同难度的练习题,让学生独立完成,巩固所学知识。
同时,教师巡回指导,解答学生疑问。
4. 课堂小结通过提问、讨论等方式,让学生回顾本节课所学内容,总结点到直线距离的含义、公式及应用。
5. 课后作业布置适量课后作业,让学生进一步巩固所学知识,提高解决问题的能力。
五、教学反思本节课结束后,教师应认真反思教学过程中的优点和不足,针对学生的掌握情况,调整教学策略,以提高教学质量。
同时,关注学生的学习兴趣和需求,不断丰富教学手段,激发学生的学习积极性。
点到直线距离教案

点到直线距离教案一、教案背景和目标在几何学中,直线是重要的基本概念之一。
对于点到直线的距离,我们可以通过一些方法来进行计算和求解。
本教案旨在帮助学生理解并能够应用这些方法来计算点到直线的距离。
目标:1. 学习并理解点到直线的距离的概念;2. 掌握不同方法(公式)计算点到直线的距离;3. 能够应用所学知识,解决相关问题。
二、教学重点和难点重点:1. 点到直线距离的概念;2. 不同方法(公式)计算点到直线距离的原理;3. 实际问题的应用。
难点:1. 点到直线距离的概念理解;2. 不同方法(公式)的应用选择;3. 问题解决的灵活性。
三、教学准备1. 教学投影仪或黑板;2. 教学素材:直线、点、尺子、纸张等。
四、教学过程与活动安排活动1:引入概念(10分钟)1. 教师出示一条直线和一个点的示意图,引导学生思考点到直线的距离是什么意思;2. 学生互相讨论,教师和学生一起探讨,最终得出点到直线距离的定义;3. 教师简要总结并引入本课的学习目标。
活动2:点到直线距离的计算方法(30分钟)1. 教师分别介绍点到直线距离的三种计算方法:几何法、向量法、坐标法;2. 教师通过示意图和具体计算过程,详细讲解每种方法的原理和步骤;3. 学生理解每种方法的计算过程,并进行示范演练;4. 学生分组进行练习,教师巡视指导。
活动3:点到直线距离的应用(40分钟)1. 教师提供一些实际问题,要求学生利用所学知识解决;2. 学生个体或小组合作解答问题,教师进行及时指导;3. 学生展示解决过程和答案,讨论交流;4. 教师进行总结和评价。
五、教学评估和反馈1. 教师观察和记录学生在活动过程中的表现和参与度;2. 组织小测验或作业,检查学生对于点到直线距离的理解掌握情况;3. 针对学生的问题和困难,进行个别辅导;4. 回顾课堂教学,总结重点知识,巩固学生所学内容。
六、拓展延伸活动1. 学生自主探索其他计算点到直线距离的方法;2. 拓展应用:讨论点到平面的距离计算方法;3. 邀请学校附近的应用数学专家来进行相关讲座或实践活动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
P
O A B C
C
B
A
板山坪镇中2011年秋期七年级数学上册导学案 编号:47
编制: 袁 涛 审核领导: 使用: 班 【学习内容】 点到直线的距离--垂线段 【学习目标】
1、理解垂线的概念;
2、会用三角尺或量角器过一点画一条直线的垂线,了解垂线的一些性质;
3、理解垂线段及点到直线的距离等概念,并会运用它们解决实际问题。
4、感知数学与生活的密切联系,体验数学活动充满着探索与创造。
体会转化的数学思想,培养思考与表达的条理性,感受数学的严谨性以及数学结论的确定性。
【学习重点】
垂直的概念以及两个性质;过一点画一条已知直线的垂线。
【学习难点】
理解垂线段及点到直线的距离等概念,及如何借助其性质在生活中的运 【学习过程】
请看中国跳水队员和国外跳水队员入水前的精彩图片。
我们用直线a 表示水平线,用另一条直线b 表示运动员入水时人体所在的直线。
如图(3),直线a 与直线b 的位置关系就是我们今天要学习的内容——垂线。
【自学指导】(一)
自学教材160页课文内容,回答下列问题,并独立完成检测(一)内容。
(时间8分钟)
如何表示两直线互相垂直?交点叫做什么? 【自学检测】(一)
1、垂直的表示方法:如右图,记作“( )⊥( ),垂足为( )”
2、完成161页“试一试”。
通过操作发现:
在同一平面内, 。
【自学指导】(二)
自学教材161页内容,仿照例题独立完成检测(二)。
(10分钟) 【自学检测】(二)
1、如图,连接直线l 外一点P 与直线l 上各点O ,
A,B,C ,……,其中l PO ⊥(我们称PO 为点P 到直线
l 的垂线段)。
比较线段PO 、PA 、PB 、P C ……的长短, l 这些线段中,哪一条最短?
2、 则下列结论:垂足为如图,,,,90D BC AD BAC ⊥︒=∠
(1)AB 与AC 互相垂直;
(2)AD 与AC 互相垂直;
(3)点C 到AB 的垂线段是线段AB ; (4)点A 到BC 的距离是线段AD;
(5)线段AB 的长度是点B 到AC 的距离; (6)线段AB 是点B 到AC 的距离。
其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个
图3
图2
图1
中国选手
外国选手
外国选手
a
b
a
b
a
b
D C
B
A
32
1
B
O
F
E
D
C
B
A
C
B
A
A
P C
【当堂训练】
1、过点P作线段AB的垂线;(2)过点P作射线CD的垂线。
2、练习:如右图,直线AB、CD相交于点O
①当∠1=∠2时,AB与CD一定垂直吗?为什么?
②当∠1=∠3时,AB与CD一定垂直吗?为什么?
③当∠1+∠3=180°时,AB与CD一定垂直吗?为什么?
3、要把水渠中的水引到水池C,在渠岸AB的什么地方开沟,才能使沟最短?画出图来,并说明根据什么道理?
3 .在下图中,量出(1)村庄A与货场B的距离;(2)货场B到铁道的距离。
4、如图,直线AB,CD相交于点O,
的度数。
和
求
AOC
BOE
DOF
AB
OF
CD
OE
∠
∠
︒
=
∠
⊥
⊥,
65
,
,
5、为钝角。
中,
如图,已知BAC
ABC∠
∆
的距离是多少?
到
)点
(
的垂线;
点画
)过
(
的垂线段;
到
)画出点
(
AC
B
BC
A
AB
C
3
2
1
【课堂小结】
本节你学会了什么?能与大家讲讲吗?请你试一试吧!
【教后反思】
1。