y=sinx的图象

合集下载

6.1_正弦函数和余弦函数的图像与性质

6.1_正弦函数和余弦函数的图像与性质

6.1 正弦函数和余弦函数的图像与性质1.y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx , x ∈[0,2π]的图像中,五个关键点是(0,1) (2π,0) (π,-1) (23π,0) (2π,1)3.定义域:正弦函数、余弦函数的定义域都是实数集R[或(-∞,+∞)],分别记作: y =sin x ,x ∈R y =cos x ,x ∈R4.值域正弦函数、余弦函数的值域都是[-1,1].其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时,取得最大值1. ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1. 而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1.②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.5.周期性一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.1︒周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界; 2︒“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0))3︒T 往往是多值的(如y=sinx 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期)正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π.6.奇偶性y =sin x 为奇函数,y =cos x 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称7.单调性 正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.例1 求下列函数的周期:(1)y =3cos x ,x ∈R ;(2)y =sin2x ,x ∈R ;(3)y =2sin(21x -6π),x ∈R .一般地,函数y =A sin(ωx +ϕ),x ∈R 及函数y =A cos(ωx +ϕ),x ∈R (其中A 、ω、ϕ为常数,且A ≠0,ω>0)的周期T =ωπ2.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期,如对于上述例子:(1)T =2π,(2)T =22π=π,(3)T =2π÷21=4π 例2不通过求值,指出下列各式大于0还是小于0.(1)sin(-18π)-sin(-10π); (2)cos(-523π)-cos(-417π).例3 求函数y =2cos 1cos 3++x x 的值域.例4.f (x )=sin x 图象的对称轴是 .例5.(1)函数y =sin(x +4π)在什么区间上是增函数?(2)函数y =3sin(3π-2x )在什么区间是减函数?【当堂训练】1.函数y =cos 2(x -12π)+sin 2(x +12π)-1是( )A.奇函数而不是偶函数B.偶函数而不是奇函数C.奇函数且是偶函数D.非奇非偶函数2.函数y =sin (2x +25π)图象的一条对称轴方程是( )A.x =-2πB.x =-4πC.x =8πD.x =45π3.设条件甲为“y =A sin(ωx +φ)是偶函数”,条件乙为“φ=23π”,则甲是乙的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件4.函数y =sin 4x +cos 4x 的最小正周期为 .5.函数y =sin2x tan x 的值域为 .6.函数y =x -sin x ,x ∈[0,π]的最大值为( ) A.0 B. 2π-1 C.π D. 2243-π7.求函数y =2sin 22x +4sin2x cos2x +3cos 22x 的最小正周期.8.求函数f (x )=sin 6x +cos 6x 的最小正周期,并求f (x )的最大值和最小值.9.已知f (x )=xx x x cos sin 1cos sin 1+-,问x 在[0,π]上取什么值时,f (x )取到最大值和最小值.10.给出下列命题:①y =sin x 在第一象限是增函数; ②α是锐角,则y =sin(α+4π)的值域是[-1,1]; ③y =sin |x |的周期是2π; ④y =sin2x -cos2x 的最小值是-1;其中正确的命题的序号是 .11.求下列函数的单调递增区间:①y =cos(2x +6π); ②y =3sin(3π-2π)12.求函数y =-|sin(x +4π)|的单调区间.13.函数y =sin(2x +25π)的图象的一条对称轴方程是( ) A.x =-2π B.x =-4π C.x =8π D.x =45π【家庭作业】1.在下列区间中函数y =sin(x +4π)的单调增区间是( ) A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π] 2.若函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,试求a 的值. .]4,3[sin 2)( .3的取值范围上递增,求在是正数,函数已知例ωππωω-=x x f4.求下列函数的定义域、值域:(1); (2) ; (3) .5.求下列函数的最大值,并求出最大值时 的集合:(1) , ; (2) , ; (3)(4) .6.要使下列各式有意义应满足什么条件?(1); (2) .37.函数,的简图是()8.函数的最大值和最小值分别为()A.2,-2 B.4,0 C.2,0 D.4,-4 9.函数的最小值是()A.B.-2 C. D.10.如果与同时有意义,则的取值范围应为()A. B. C.D.或11.与都是增函数的区间是()A., B.,C., D.,12.函数的定义域________,值域________,时的集合为_________.13.求证:(1)的周期为;(2)的周期为;(3)的周期为.参考答案:例1解:(1)∵y =cos x 的周期是2π∴只有x 增到x +2π时,函数值才重复出现.∴y =3cos x ,x ∈R 的周期是2π.(2)令Z =2x ,那么x ∈R 必须并且只需Z ∈R ,且函数y =sin Z ,Z ∈R 的周期是2π.即Z +2π=2x +2π=2(x +π).只有当x 至少增加到x +π,函数值才能重复出现.∴y =sin2x 的周期是π.(3)令Z =21x -6π,那么x ∈R 必须并且只需Z ∈R ,且函数y =2sin Z ,Z ∈R 的周期是2π,由于Z +2π=(21x -6π)+2π=21 (x +4π)-6π,所以只有自变量x 至少要增加到x +4π,函数值才能重复取得,即T =4π是能使等式2sin [21 (x +T)-6π]=2sin(21x -6π)成立的最小正数.从而y =2sin(21x -6π),x ∈R 的周期是4π. 从上述可看出,这些函数的周期仅与自变量x 的系数有关.例2解:(1)∵-2π<-10π<-18π<2π. 且函数y =sin x ,x ∈[-2π,2π]是增函数. ∴sin(-10π)<sin(-18π) 即sin(-18π)-sin(-10π)>0 (2)cos(-523π)=cos 523π=cos 53π cos(-417π)=cos 417π=cos 4π ∵0<4π<53π<π 且函数y =cos x ,x ∈[0,π]是减函数∴cos53π<cos 4π 即cos 53π-cos 4π<0 ∴cos(-523π)-cos(-417π)<0 例3解:由已知:cos x =⇒--y y 312|y y --312|=|cos x |≤1⇒(yy --312)2≤1⇒3y 2+2y -8≤0 ∴-2≤y ≤34∴y max =34,y min =-2 例4解:由图象可知:对称轴方程是:x =k π+2π(k ∈Z ) 例5解:(1)函数y =sin x 在下列区间上是增函数:2k π-2π<x <2k π+2π (k ∈Z ) ∴函数y =sin(x +4π)为增函数,当且仅当2k π-2π<x +4π<2k π+2π 即2k π-3π<x <2k π+4π(k ∈Z )为所求. (2)∵y =3sin(3π-2x )=-3sin(2x -3π) 由2k π-2π≤2x -3π≤2k π+2π 得k π-12π≤x ≤k π+125π (k ∈Z )为所求. 或:令u =3π-2x ,则u 是x 的减函数 又∵y =sin u在[2k π-2π,2k π+2π](k ∈Z )上为增函数, ∴原函数y =3sin(3π-2x )在区间[2k π-2π,2k π+2π]上递减. 设2k π-2π≤3π-2x ≤2k π+2π 解得k π-12π≤x ≤k π+125π(k ∈Z ) ∴原函数y =3sin(3π-2x )在[k π-12π,k π+125π](k ∈Z )上单调递减. 【当堂训练】 1.A 2.A 3.B 4.2π 5.[0,2) 6.C 7. 2π 8.T=2π 函数最大值为1 函数最小值为41. 9.x =4π时,f (x )取到最小值31; x =43π时,f (x )取到最大值3. 10.分析:①y =sin x 是周期函数,自变量x 的取值可周期性出现,如反例:令x 1=4π,x 2=6π+2π,此时x 1<x 2 而sin 3π>sin(6π+2π)∴①错误;②当α为锐角时,4π<α+4π<2π+4π 由图象可知22<sin(α+4π)≤1 ∴②错误;③∵y =sin |x |(x ∈R )是偶函数.其图象是关于y 轴对称,可看出它不是周期函数.∴③错误;④y =sin 2x -cos 2x =-cos2x ,最小值为-1∴④正确.答案:④11. 解:①设u=2x +6π,则y =cos u当2k π-π≤u≤2k π时y =cos u 随u 的增大而增大 又∵u=2x +6π随x ∈R 增大而增大 ∴y =cos(2x +6π)当2k π-π≤2x +6π≤2k π(k ∈Ζ) 即k π-127π≤x ≤k π-12π时,y 随x 增大而增大 ∴y =cos(2x +6π)的单调递增区间为: [k π-127π,k π-12π](k ∈Z ) ②设u=3π-2π,则y =3sin u 当2k π+2π≤u≤2k π+23π时,y =3sin u随x 增大在减小, 又∵u=3π-2x 随x ∈R 增大在减小 ∴y =3sin(3π-2x )当2k π+2π≤3π-2x ≤2k π+23π 即-4k π-37π≤x ≤-4k π-3π时,y 随x 增大而增大 ∴y =3sin(3π-2x )的单调递增区间为 [4k π-37π,4k π-3π](k ∈Z )12. 解:利用“五点法”可得该函数的图象为:显然,该函数的周期为π在[k π-4π,k π+4π](k ∈Z )上为单调递减函数;在[k π+4π,k π+43π](k ∈Z )上为单调递增函数. 13. 方法一:运用性质1′,y =sin(2x +25π)的所有对称轴方程为x k =2πk -π(k ∈Z ),令k =-1,得x -1=-2π,对于B 、C 、D 都无整数k 对应. 故选A.方法二:运用性质2′,y =sin(2x +25π)=cos2x ,它的对称轴方程为x k =2πk (k ∈Z ),令k =-1,得x -1=-2π,对于B 、C 、D 都无整数k 对应,故选A. 【家庭作业】 1.分析:函数y =sin(x +4π)是一个复合函数即y =sin [ϕ(x )],ϕ (x )=x +4π,欲求y =sin(x +4π)的单调增区间,因ϕ (x )=x +4π在实数集上恒递增,故应求使y 随ϕ (x )递增而递增的区间.方法一:∵ϕ (x )=x +4π在实数集上恒递增,又y =sin x 在[2k π-2π,2k π+2π](k ∈Z )上是递增的,故令2k π-2π≤x +4π≤2k π+2π ∴2k π-43π≤x ≤2k π+4π ∴y =sin(x +4π)的递增区间是[2k π-43π,2k π+4π] 取k =-1、0、1,分别得[-411π,47π]、[-43π,4π]、[45π,49π], 对照选择支,可知应选B像这类题型,上述解法属常规解法,而运用y =A sin(ωx +ϕ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,如本题倘若运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.方法二:函数y =sin(x +4π)的对称轴方程是: x k =k π+2π-4π=k π+4π (k ∈Z ),对照选择支,分别取k =-1、0、1,得一个递增或递减区间分别是[-43π,4π]或[4π,45π],对照选择支思考即知应选B. 注:一般运用正、余弦函数的对称轴方程求其单调区间,可先运用对称轴方程求其一个单调区间,然后在两端分别加上周期的整数倍即得.2. 解:显然a ≠0,如若不然,x =-8π就是函数y =sin2x 的一条对称轴,这是不可能的. 当a ≠0时,y =sin2x +a cos2x =)2cos(1)2sin 112cos 1(12222θ-+=++++x a x a x a aa其中cos θ=2211sin ,1aaa +=+θ即tan θ=a1cos sin =θθ 函数y =21a +cos(2x -θ)的图象的对称轴方程的通式为2x k =k π+θ(k ∈Z )∴x k =22πθk +,令x k =-⇒8π22πθk +=-8π∴θ=-k π-4π∴tan θ=tan(-k π-4π)=-1.即a1=-1,∴a =-1为所求. 3. 解:由题设得)(2222Z k k x k ∈+≤≤-ππωππ.230.42,32.2222,0⎪⎩⎪⎨⎧≤<≥-≤-∴+≤≤-∴>ωπωππωπωπωπωπωπω解得k x k故ω的取值范围为].23,0(4. 解:(1) ,(2)由 ()又∵ ,∴∴定义域为 (),值域为. (3)由 (),又由∴∴定义域为(),值域为 .指出:求值域应注意用到 或 有界性的条件.5.解:(1)当,即()时,取得最大值∴函数的最大值为2,取最大值时的集合为.(2)当时,即()时,取得最大值.∴函数的最大值为1,取最大值时的集合为.(3)若,,此时函数为常数函数.若时,∴时,即()时,函数取最大值,∴时函数的最大值为,取最大值时的集合为.(4)若,则当时,函数取得最大值.若,则,此时函数为常数函数.若,当时,函数取得最大值.∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.思考:此例若改为求最小值,结果如何?6.解:(1)由,∴当时,式子有意义.(2)由,即∴当时,式子有意义.7.B 8.B 9.A 10.C 11.D12.;;13.分析:依据周期函数定义证明.证明:(1)∴的周期为.(2)∴的周期为.(3)∴的周期为.。

正弦余弦函数的图象

正弦余弦函数的图象
陈经纶中学
高一备课组
复习
y r=1 α O M P(x,y)
y=sinα= MP (正弦线 正弦线) 正弦线
x
y=cosα=OM (余弦线 余弦线) 余弦线
正弦函数、 正弦函数、余弦函数
y=sinα y=sin x
一般地,我们用x表示自变量,即x表示角的大小, 表示自变量, 表示角的大小, 一般地,我们用 表示自变量 表示角的大小 表示函数值, 用y表示函数值,这样,我们就定义了任意角的 表示函数值 这样, 正弦函数y=sinx,其定义域为 正弦函数 ,其定义域为R.
上移1 上移1个单位
横坐标不变, 横坐标不变, 纵坐标伸长 为原来的2 为原来的2倍
沿x轴翻折
四、小结 小结
正弦、 正弦、余弦函数的图象
几何法 五点作图法(作图常用此法) 五点作图法(作图常用此法)
1. 正弦曲线、余弦曲线 正弦曲线、
2.注意与诱导公式、三角函数线等知识的联系 注意与诱导公式、 注意与诱导公式

-1 -2
3π 2



x
练习( ) 练习(2) 画y=-cosx,x∈[0, 2π]的简图 , ∈ π 的简图 解:按五个关键点列表 π 3π π 2π x 0 2 2 cosx -cosx
y 1
1 -1
0 0
-1 1
0 0
1 -1
y=-cosx x∈ 2 ] [0, π

o
-1

π

2
π
y=cosx x∈ [0, 2π ]
y 1
π
2
y=cosx,x∈[0, 2π] , ∈ π
π
2

o -1

函数y=sinx与y=cosx的图像【优质PPT】

函数y=sinx与y=cosx的图像【优质PPT】

x0
π π3 π 2 π
2
2
c o 1s 0 x - 1 0 1
- co - 1 s 0x 1 0- 1
y ycos,x[0,2π]
1
O
π π 3π2π x
2
2
-1
ycos,xx[0,2π]
小结
体会推导新知识时的数形结合思想; 理解解决类三角函数图像的整体思想; 对比理解正弦函数和余弦函数的异同。
谢谢!
人教版 高中数学必修4 三角函数 第10课时
畅想网络
Imagination Network
感谢观看!
文章内容来源于网络,如有侵权请联系我们删除。
-2
-
y 1 yco,s x x R
o
2
3
x
-1
例1:画出y=1+sinx ,
π
x0
sinx
2
x∈[0,2]的简图
π
3π 2

0
1
0
-1 0
1sinx
1
2
1
01
2 y . y1sinx x[,0,2π
1.
.
.
o
π
.

-1
2
2
2
x
ys i nxx[,0 , 2 π ]
课堂练习:画出y=- cosx , x∈[0,2 ]的简图
正弦函数、余弦函数的图像
引入: sina ,coas,tana 的几何意义是什么?
复习:三角函数线
作出 135 o 的三角函数线: y
135 o P
Mo
A(1,0) x
T
135°角的 正弦线为 MP; 余弦线为 OM; 正切线为 AT。

正余弦函数的图象

正余弦函数的图象

. . . . . . 2 5 π 7 4 3 5 11 2 x X
. . . 3 6
63 23 6
五点法作函数y=cosx,x[0,2] 的简图
x
0
cosx 1
2
0
-1
3 2
2
0
1
Y
1.
.
O
π.
π
.3π 2π X
-1
2
.
2
例题: 画出下列函数的简图:
(1)y=1+sinx, x[0,2 ];
(2)y=-cosx, x [0,2 ]

0
2 5 ●



x
6 32 3 6



-1
3.五点法作函数y=sinx,x[0,2] 的 简图
x
0
sinx 0
2
1
0
3 2
2
-1
0
. 1 Y
.
O
π
.
π 3π
.
2πX
2
-1
2.
4、余弦函数y=cosx, x R 图像
y cosx, x [0,2]
.y Y 1.
O0
6
-1
. . π
32
1
0
-1
用五点法作出简图
y 1
. y cosx , x [0,2π]
O
-1 .
π .
2
π
.3 π
2
2π x
.
y cosx , x [0,2π]
小结:
1.由单位圆中正弦线画出正弦函数图象;
2.正弦函数与余弦函数图象的关系;

正弦函数的图像(第1课时)(课件)高一数学(沪教版2020必修第二册)

正弦函数的图像(第1课时)(课件)高一数学(沪教版2020必修第二册)

课本练习
练习7.1(1) 1.作出函数y=sinx,x∈[-π,π]的大致图像. 2.作出函数y= -sinx,x∈[0,2π]的大致图像,并 分别写出使得y>0和y<0的 x的取值范围. 3.在同一平面直角坐标系中作出y=sinx和y=sinx+2 的大致图像,并说明它们之间的关系.
随堂检测
从图7-1-2可知,(0,0)、(π2,1)、(π,0)、 (3π2,-1)和 (2π,0)是函数y=sinx,x∈[0, 2π]图像的五个关键点.我们描出这五个点,并用光滑的曲 线将它们连接起来,就得到函数y= sinx,x∈[0,2π] 的大致图像(图7-1-4).
这种通过五个关键点作出正弦函数大致图像的方法,通常称为 “五点(作图)法”.
例1 用“五点法”作出函数y=1-sinx,x∈[0,2π]的大致图像,并写 出使得y<1的x的取值范围. 解 将五个关键点列表(表71)如下:
描点并用光滑曲线把它们连接起来,就得到y=1-sinx, x∈[0,2π]的 大致图像(图7-1-5).
作出函数y=1的图像,如图7-1-5所示.由图可知,使得y<1的x的取值范 围是 (0,π).
随着α的变化,可以得到函数y=sinx图像上的其他
点. 方便起见,我们先将单位圆O1 分为12等份(等
份数越多,作出的图像越精确),使得角α的弧度数依
次取0、
…、2π,再借助圆 O1 得到对应
的纵坐标,依次作出函数y=sinx图像上的点(0,
sin0)、
…、
(2π,sin2π),用光滑的曲线将这些点连接起
我们已经知道,任意一个给定的实数狓都对应着唯一确 定的角(其弧度数等于实数x),而这个角又对应着唯一 确定的正弦值sinx.这样,对于任意一个给定的实数 x,都有唯一确定的正弦值sinx与之对应.按照这个 对应关系所建立的函数叫做正弦函数,记作y=sin x.正弦函数的定义域是实数集R.

正弦函数的图像和性质(1)

正弦函数的图像和性质(1)

二.正弦函数的图象
在画正弦函数图象时,我们可以先画出 0, 2 , 上的 正弦函数的图象,再利用周期性将其拓展到整个定义域上.
y sin x, x 0, 2
Ⅰ、用描点法作出函数图象
⑴.列表
x
y
0

6 1 2

3
3 2

0
2
2 3
3 2
5 6
1
1 2

7 6
4 3
3 2
π
2π x
-1
坐标依次为:
3 (0,0)、( 2 ,1)、( ,0)、( 2 ,-1)、( 2 ,0)

正弦函数的图象
y 1
2

o -1
2

3 2
2
x
y=sinx x[0,2] y=sinx xR
-4 -3 -2 -
y
1
正弦曲线
o
-1

2
3
4
5
6
x
探究:如何作余弦函数的图象
π

π
2
O
2
π
2k ,2k 减区间 2k ,2k
x
对称轴 对称中心
-1
(k ,0) 2 k Z
x k

四、几何法作图
用正弦线作正弦函数 的图象
y sin x( x [0,2 ])
(1)作直角坐标系,在直角坐标系的y轴左侧画单位圆,
圆心在x轴上. (2)把单位圆分成12等份。过单位圆上的各分点作x轴 的垂线,可以得到对应于各角的正弦线; (3)找横坐标:把x轴上从0到2这一段分成12等份; (4)找纵坐标:将正弦线对应平移,即可作出相应12 个点; (5)连线:用平滑的曲线将12个点依次从左到右连接 起来,即得到 y sin x( x [0,2 ])的图象。 演示做图

1126三角函数图像及性质

1126三角函数图像及性质

4-1.4.1正弦、余弦函数的图象(1)函数y=sinx 的图象 (2)余弦函数y=cosx 的图象正弦函数y=sinx 的图象和余弦函数y=cosx 的图象分别叫做正弦曲线和余弦曲线. 2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的五个点关键是 (0,1) (2π,0) (π,-1) (23π,0) (2π,1) 讲解范例:例1 作下列函数的简图(1)y=1+sinx ,x ∈[0,2π], (2) y=|sinx |, (3)y=sin |x |例2 用五点法作函数2cos(),[0,2]3y x x ππ=+∈的简图.例3 分别利用函数的图象和三角函数线两种方法,求满足下列条件的x 的集合:1(1)sin ;2x ≥ 15(2)cos ,(0).22x x π≤<<课后作业:作业:补充:1.分别用单位圆中的三角函数线和五点法作出y=sinx 的图象 2.分别在[-4π,4π]内作出y=sinx 和y=cosx 的图象 3.用五点法作出y=cosx,x ∈[0,2π]的图象“五点(画图)法”-----描点、连线,画出简图。

例1. 画出下列函数的简图:(1) y =1+sinx ,x∈〔0,2π〕 (2) y=-cosx ,x∈〔0,2π〕 一、 合作学习 ●探究1如何利用y=sinx ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到(1)y =1+sinx ,x∈〔0,2π〕的图象;(2)y=sin(x- π/3)的图象?小结:函数值加减,图像上下移动;自变量加减,图像左右移动。

●探究2如何利用y=cos x ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y =-cosx ,x∈〔0,2π〕的图象?小结:这两个图像关于X 轴对称。

正弦函数余弦函数的图象【新教材】人教A版高中数学必修第一册课件

正弦函数余弦函数的图象【新教材】人教A版高中数学必修第一册课件

O
x
“五点法”画正弦、余弦函数图象:
正弦函数、余弦函数图象的画法:
(3) 连线(用光滑的曲线顺次连结五个点)
画出函数
的简图:
途径:利用单位圆中正弦线来解决。
正弦函数、余数函数的图象 画出函数
5 y=1+sinx,x [0, 2 ] 则 解 集 是 { x | + 2 k x + 2 k ,k Z } . 正弦函数、余弦函数图象的画法:
的简图. 正弦函数、余数函数的图象
探究4:类比于正弦函数图象的五个关键点,你能找出余弦函数的五个关键点吗?请将它们的坐标填入下表,然后作出
的简图.
-1 0 函数在[0,2π]
范围1 以外0的图象-与1 此y范围的图象有什么关系呢?
-1 0
1 0 -1 2
y1sinx
1
210
1
正弦函数、余弦函数图象的画法:
y
-
-
1
1-
6 -4 -34
-2 2 -
oo
-1-
-1
2 2
43
4 6 5
6xx
函 数 y s in x x R 的 图 象
正弦曲线
探究2:你能利用学过的知识作y=cosx的 图象?
ycox ssix n(), xR
2
结 论 :把 正 弦 函 数 ysinx,xR 的 图 象 向 左 平 移
个 单 位 , 得 到 余 弦 y 函 数 ycosx,xR 的 图 象 .
【课堂小结】
1.代数描点法(误差大)
正余弦函 数图象 的作法
2.几何描点法(精确但步骤繁) 3.五点法(重点掌握)
4.平移法
其中五点法最常用,要牢记五个关键点的坐标.

3.4三角函数的图像与性质

3.4三角函数的图像与性质

例2 求函数y=cos3x的最大值及取得最大值时自变量x的集合.
解:令t=3x,y=cos3x=cost,ymax=1.
因为使函数cost取得最大值的t的集合为{t|t=2kΠ,k∈Z}因为t=3x,
所以{x|x=23kΠ,k∈Z}
练习
1.比较cos5与cos7值的大小.
解:5=36°,7≈26°,因为区间[0,Π]是减函数,所以cos5<cos7.
y=sinx是奇函数,从图像来看,y=sinx的图像关于原点对称,也能判断
出y=sinx是奇函数.
周期性:物体有规律地重复出现,做周期运动.
正弦曲线的部分图像是重复出现的,因此正
弦函数具有周期性.
周期函数:一般地,对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内
的每一个值,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么,函数f(x)就
下面五个点在确定图像形状
时起着关键作用:

(0,1),(
,0),(Π,2
1),(3
,0),(2Π,1)
2
这五个点描出后,余弦函数
y=cosx(x∈[0,2Π]) 的 图 像
形状就基本确定了.
0=0°,2=90°,Π=180°,3
=270°,2Π=360°,这五个点都是相差90°角
2
的关系.像这样画余弦函数的方法称为五点法.
(2)求出它的最大值和最小值;
(3)判断它的奇偶性;
(4)指出这个函数在[0,2Π]上的单调区间.
(2)ymin=-0.5,ymax=0.5.
(3)函数y=12sinx是奇函数.
(4)单调减区间为[ 2 , 3
],

正弦型函数图象与性质

正弦型函数图象与性质

定义域:R
值域:[-A,A],最大值是A,最小值是-A 2 周期: T

想一 想 求下列函数的最大值、最小值和周期:
1.y=5sinx
4.y= 2sin(x+ ) 6
1 2.y=sin x 4
3 5.y=2sin(3x+ 4 )
3.y=sin(x- )
思考 题
2π 已知函数y=5sin(3x) 3
2
π
2π x
0 0 0 0
2
1 2 1/2
π 0 0 0
3 2
-1 -2 -1/2
2π 0 0 0
1、A的作用:研究 y=Asinx 与 y=sinx 图象的关系
1 先观察y=2sinx、y= sinx与y=sinx的图象间的关系 2 y
2
1 0 -1 -2 A的作用:使正弦函数相应的函数值发生变化。 y=Asinx(A>0, A1)的图象是由y=sinx的图象上所有 点的纵坐标扩大 (当A>1时)或缩小(当0<A<1时)到原 来打的A倍而得到. π 2π x
π 12
π 3
7π 12
5π 6
x
x 2x


-3
6 0
0

12

3

3

2
3

0
7 12 3 2
3
5 6 2
0
y 3 sin( 2 x ) 3
y
o
x
横坐标不变
纵坐标不变
图像向左平移
y=sinx
y=3sin2x
y=sin2x
纵坐标伸长到原来的3倍
横坐标缩短到原来1/2

三角函数图像与性质

三角函数图像与性质

三角函数的图像与性质一.正弦函数和余弦函数的图象:y=sinx打 3口正弦函数y = sin x 和余弦函数y = cos x 图象的作图方法:五点法:先取横坐标分别为0,-,兀,3-,2兀的2 2五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。

二、正弦函数y = sin x (x G R )、 余弦函数 y = cos x (x G R )的性质:(1)定义域:都是R 。

(2)值域:1、都是[-1,1],2、y = sin x ,当 x = 2 k -+-(k G Z )时,y 取最大值 1;当 x = 2 k -+ 3-( k G Z )时,y 取最小值一1; 2 2 3、y = cos x ,当 x = 2k - (k G Z )时,y 取最大值 1,当 x = 2k -+-(k G Z )时,y 取最小值一1。

例:(1)若函数y = a - b sin(3x + -)的最大值为3,最小值为-L 则a = , b =622——(答:a = —, b = 1或 b = —1 );22.函数y=-2sinx+10取最小值时,自变量x 的集合是课堂练习:1、函数y = sin x - sin x 的值域是2.已知f (x )的定义域为[0, 1],求f (c os x )的定义域;(3)周期性:①y = sin x 、y = cos x 的最小正周期都是2兀;2兀②f (x ) = A sin (3x +。

和f (x ) = A cos (3x +中)的最小正周期都是T = ——。

13| 兀x例:(1)若 f (x ) = sin 一,则 f (1)+ f (2) + f (3) + .・・ + f (2003)=—(答:0); ^3⑵.下列函数中,最小正周期为兀的是()(4)奇偶性与对称性:1、正弦函数y —sin x (x E R ) 7是奇函数,对称中心是(k 兀,0)(k E z ),对称轴是直线x — k K+-(k E Z );2 2、余弦函数y — cos x (x E R )是偶函数,对称中心是(k K +-,0 ](k E Z ),对称轴是直线x — k R (k E Z ) I 2)(正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。

正余弦函数图像和性质PPT课件

正余弦函数图像和性质PPT课件

(2)余弦函数“五点作图法”:
y 1 y=cosx
3 2
2
o
2
-1
3 2
Y=sinx 2 5 3 x
2
五个关 键点:
( 0 ,1),
( ,0 ), 2
( , 1), ( 3 , 0 ) , ( 2 ,1)
2
(3)正、余弦函数图象的关系
cosx=sin(x+
2
y=cosx
y
) sinx=cos( -x)=cos(x- )
定义域 值域 周期性 对称性 单调性
性质的应. 用
3
一.基础知识复习
(一)正、余弦函数图象
“五点作图法”
(1)正弦函数“五点作图法”:
y
1
4
3
2
-
3 2
-
-
2
o
2
3 2
2
3
4 x
-1
五个关键点:
( 0 , 0 ) ,(
2
, 1 ) , ( , 0 ) ,( 3
2
, 1)(, 2 , 0 )
正 余弦函数的图象与性质(1)
y
1
ysinx,x[0,2
3p
π
2

O
p
x
2
-1
思考4:观察函数y=sin在[0,2π]内的 图象,其形状、位置、凸向等有何变化 规律?
《正弦函数、余弦函数的图象和性质》的知识框架
正弦线 正弦函数的图象 平移变换 余弦函数的图象
正弦函数的性质 “五点法”作 图
余弦函数的性质
⑤奇偶性:
奇偶性的y1定义y=:sif f n( ( x x x ) ) ( x ff R( ( x x )) ) ff( ( x x ) ) 为 为 偶 奇 函 函 数 数

正弦函数课件

正弦函数课件


3 a=-2 解得 b=1 2
.
正弦函数的奇偶性
=-sin x 由公式 sin(-x)=- - =-
正弦函数是奇函数. 正弦函数是奇函数.
图象关于原点成中心对称 .
y
1
x
-3π
− 5π 2
-2π

3π 2


π 2
o
-1
π 2
π
3π 2

5π 2

7π 2

正弦函数的单调性
y
1
上, 是增函数; 是增函数;
上,是减函数. 是减函数
-3π

5π 2
-2π

3π 2


π 2
o
-1
x
π 2
π
3π 2

5π 2

7π 2

[例] 求
π y=sin3x-3的单调区间.
• 复合函数y=f[g(x)] • 由函数y=f(t)和函数t=g(x)复合而成 • 单调性的判定方法是: 当y=f(t)和t=g(x)同为增(减)函数时,y=f[g(x)]为增函数; 当y=f(t)和t=g(x)一个为增函数,一个为减函数时,y= f[g(x)]为减函数. “同增异减”
最小正周期) 周期(最小正周期)
T =

ω
讲授新课
求下列三角函数的周期: 例. 求下列三角函数的周期:
y = A sin( ω x + ϕ )
T =

ω
取最大值、 例 :求使函数 y=2+sin x 取最大值、最小值 = + 的集合,并求出这个函数的最大值, 的 x 的集合,并求出这个函数的最大值, 最小值和周期 T . 解

5.1-5.2 正弦函数的图像

5.1-5.2 正弦函数的图像
5.1 从单位圆看正弦函数的性质 5.2 正弦函数的图像
5.1 从单位圆看正弦函数的性质
sin α= v
1
函数y=sinx y
正弦函数y=sinx有以下性 质:
(1)定义域:R
P(u,v)
(2)值域:[-1,1]
α
(3)是周期函数,最小
-1
o M 1x
正周期是 2 (4)在[ 0,2]上的单调
P Mo
135 o 角的
正弦线为 MP;
余弦线为 OM. x
5.2 正弦函数的图像
1.用描点法作出函数图像的主要步骤是怎样的?
(1) 列表 y sin x, x 0,2
x
0

6

3
2 5
236
7 6
4 3
3 2
5 3
11 6
2
y0
1 2
3 2
1
3 2
1 2
0

x
0
ππ
2

2 2
sinx 0
1
0
-1
0
1sinx 1
2
1
0
1
2 y . y 1 sinx,x [0,2π]
1.
.
.
o -1
.
π 2

3π 2
2
x
y sinx,x [0,2π]
1.用五点法画出y=sinx+2, x∈[0, ]的简图
. 2. y
1
y=sinx+2, x∈[0, ]
例1.作出 y= -sinx, x [0,2] 的图像。
解:(1)
x
0
y=sinx 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=sinx向右平移|φ|个单位得到。
变式训练3
1、求下列函数的最大值、最小值和周期。
(1)y=sin(x+π)
(2)y=sin(x-π)
解: (1)y=sin(x+π)的最大值是1,最小值-1,
周期是2π(2)y=sin(x- π)的最大值是1,
最小值是-1,周期是2π。
2、将函数y=sinx图象向左平移1个单位,再向右平 移
2、正弦型函数y=Asin(ωx+φ)应该具有哪些性质?
它的图象与函数y=sinx有什么关系?
Y
y=sinx y=sin(x+0.5π) 1
y=sin(x-0.5π)
-0.5π 0
0.5π π 1.5π 2π 2.5π X
-1
最大值 0.5
1 2
A
(点击可放大)
最小值 -0.5
-1 -2
值域 [-0.5,0.5] [-1,1] [-2,2]
-A
[-A,A]
周期 2π 2π 2π

变式训练1
1、求下列函数的最大值、最小值和周期:
(1)y=8sinx
(2)y=0.75sinx
解:(1)y=8sinx的最大值是8,最小值是-8,周期T=2π (2)y=0.75sinx的最大值是0.75,
最小值是-0.75,周期T=2π。
2、函数y=4sinx和y=sinx的图象有什么关系?
3、函数y=3sinx的值域是(B )
(A)[-1,1] (B)[-3,3] (C)[-2,1] (D)[-1,2]
y=sin(ωx)的图象
例2、用“五点法”作出函数y=sin(0.5x) 的图
像。
0.5 x
0 0.5π π 1.5π 2π
正弦型函数的图象和性质
复习 函数 y= sinx 的图象和性质
1、y=sinx的图象 (x∈[0,2π] )
2、y=sinx的性质
① 定义域 R。 ② 值域 [-1,1];最大值1,最小值-1。 ③ 周期 T= 2π。 ④ 奇偶性:奇函数。正弦曲线关于坐标原点成中心对称。 ⑤ 单调性:在[2kπ-0.5π,2kπ+0.5π]上是增函数,
3个单位,可以得到函数( B )的图象。
(A)y=sin(x+2)
(B)y=sin(x-2)
(C)y=sin(x+4)
(D)y=sin(x-4)
本节小结
1、函数y=Asinx的(A>0)的值域是[-A,A], 最大值A,最小值-A;周期2π。
2、函数y=sin(ω x)(w>0)的值域[-1,1], 最大值1,最小值-1;周期2π/ω。
在[2kπ+0.5π,2kπ+1.5π]上是减函数。
y= A sinx 的图象
例1、用“五点法”作出函数y=2sinx和y=0.5sinx的图像。
x
0 0.5π π 1.5π 2π
y=sinx 0 1 y=2sinx 0 2 y=0.5sinx 0 0.5
0
-1
0
0
-2
0
0 -0.5 0
y
y=2sinx
3、某函数形如y=sin(ωx),其周期是0.25π,那么ω的大
小为( )D
(A)6 (B)7 (C)5 (D)8
y=sin(x+φ)的图象
例3、用“五点法”作出函数y=sin(x+0.5π) 的图象。
x+0.5π
0 0.5π
x
-0.5π 0
y=sin(x+0.5π) 0 1
π 1.5π 2π
0.5π π 1.5π
y=sinx(红线) y=sin(0.5x)(蓝线) y=sin(2x)(黑线)
(点击可放大)
函数 y=sin(0.5 x) y=sinx y=sin(2x) ……
y=sin(ωx)(ω>0)
最大值 1 1 1
最小值 -1 -1 -1
1
-1
值域
[-1,1] [-1,1] [-1,1]
周期 4π 2π π
2

建立坐标系 y=sinx(红) 作y=2sinx
1
y=0.5sinx

0●

0.5π
π

1.5π

x

-1
-2

作y=0.5sinx 清除图象
y= A sinx 的性质
y=sinx(红线) y=2sinx(黑线) y=0.5 sinx(蓝线)
函数 y=0.5sin x y=sinx y=2sinx …… y=Asinx(A>0)
3、y=sin(x+φ)的图象,当φ>0时,由y=sinx 向左平移|φ|个单位得到;当φ<0时,由 y=sinx向右平移|φ|个单位得到。
课后思考与作业
想一 想
1、怎样作出下列函数的图象? (1)y=2sin(x+π) (2)y=sin(2x+π) (3)y=0.5sin(x+0.5π) (4) y=2sin(2x-π)
0
-1
0
建立坐标系 y=sinx(红)
y
y=sin(x+0.5π)
1●



-0.5π
0
0.5π
π
y=sin(x+0.5π)
y=sin(x-0.5π)
x y=sin(x-0.5π)


1.5π

2.5π
-1


清除图象
一试身手:用“五点法”作出函数y=sin(x-0.5π)的图
像。
y=sin(x+φ)的性质
x
0 π 2π 3π 4π
y=sin(0.5x) 0 1 0 -1
0
建立坐标系 y=sinx(红)
y
2 y=sin(2x)
1


0●


π




-1

y=sin(0.5x)
y=sin(0.5x)


x
y=sin(2x)
清除图象
-2
一试身手:用“五点法”作出函数y=sin(2x)的图
y=sin(ωx)的性质
y=sinx(红线) y=sin(x+0.5π)(蓝 线) y=sin(x-0.5π)(黑线)
(点击可放大)
由结简论图可:知: y=ys=ins(ixn+(x0+.5φπ))图的象图由象y=,s当inxφ图>象0向时左,平由移y0=.5sπi个nx单位得到; y=向si左n(平x-移0|.5φπ)|图个象单由位y=得si到nx;图当象φ向<右0平时移,0.5由π个单位得到。
[-1,1] 2π/ω
Hale Waihona Puke 变式训练21、求下列函数的最大值、最小值和周期。
(1)y=sin(4x)
(2)y=sin(0.25x)
解:(1)y=sin(4x)的最大值是1,最小值是-1,
周期T=0.5π
(2)y=sin(0.25x)的最大值
是1,最小值是-1,周期T=8π。
2、函数y=sin(6x)与函数y=sinx的图象有什么关系?
相关文档
最新文档