地铁B型车列车最高运行速度选择研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地铁B型车列车最高运行速度选择研究
发表时间:2019-08-27T10:16:09.700Z 来源:《基层建设》2019年第16期作者:孟庆伟闫广盛邹靖
[导读] 摘要:现在城市交通愈发发达起来,人们的出行频率也在不断的提高,在这一过程中列车的运行就占据了相当的重要性。
中车唐山机车车辆有限公司河北唐山 063035
摘要:现在城市交通愈发发达起来,人们的出行频率也在不断的提高,在这一过程中列车的运行就占据了相当的重要性。列车的最高运行速度是直接决定了项目成体成本和运行效益的重要影响因素,文章就此进行分析。
关键词:地铁运行;列车速度;选择研究
1 地铁的必要性分析及我国地铁发展的现状
1.1 建地铁的必要性
近些年来,我国的城市化水平不断提高,进城务工的人员不断增多,像北京、上海、广州这三个一线城市的人口已经达到了一千多万,这里边流动人口就占很大的一部分,比如广州,广州的流动人口就达到总人口的一半。这么多的人每天要出行,想想会给这些城市的交通带来多大的压力。如果仅仅依靠地上交通设施是很难满足这些人的出行需要的。因此,我们的设计师们就想到了利用地下空间。可以说,地铁成了缓解城市交通拥挤的一项最有效的措施。在城市中,地铁也是上班族、打工族等出行的主要交通工具。
1.2 我国地铁发展的现状及展望
我国自1965年在北京建成第一条地铁后,相继在全国的其他城市比如上海、广州、天津、深圳、大连等城市也建设了地铁。地铁产业在中国已经成为了一个朝阳产业。随着经济的发展,我国的城市化进程不断加快,城市人口越来越多。因人口增加带来的交通堵塞问题已经成为了影响我国经济和社会发展的一大阻碍。据有关部门统计交通堵塞每年给国家带来的经济损失超过了上千亿元。交通拥堵已经成了政府亟待解决的问题。地铁的出现为解决这个问题带来了希望。地铁有效地利用了地下空间,并且相对于其他的交通方式具有运行速度快,承载量大,保护环境等优势。地铁有这么好的发展前景,同时地铁的发展存在也存在一些技术问题,比如地铁的建成需要消耗很多的材料并且地铁的运行也会损耗很大的能量。如何降低地铁的能耗成了地铁设计师们急需解决的问题。
2 地铁B型车牵引能耗分析
目前,我国地铁车辆以B型车辆为主,B型车辆类型主要分为B1和B2,其中B1型列车为3动3拖编组,B2型列车为4动2拖编组。
2.1 列车速度分析
根据B2型车技术标准,得出这样的数据信息,地铁在平直干燥轨道上进行启动加速时,其速度从0直接加速到40km/h,其平均起动加速度大于等于1.0m/s2。而速度从0加速到100km/h时,其中平均起动加速度大于等于0.5m/s2。反过来,列车进行制动减速环节中,其制动初速度为100km/s2时,其常用的制动平均减速度大于等于1.0m/s2。
在对北京市B型地铁启动与制动加速度和减速度进行分析中,能够发现,B型车从0加速到96km/s时,加速度在0.6-1.0m/s2。那么在这样的理论值与实际值进行对比环节中能够发现,实际的地铁列车的加速度均高于指标,针对这样的情况,具体的原因如下:第一,在B型地铁线路上进行不同程度的坡度设计,设计出节能坡。第二,节能坡能够实现高车站、低区间,保障列车在出站环节中是下坡,其启动的加速度就比较快,也比较节能。在进站为上坡路,制动减速也比较快,通过增加滑动摩擦力的方式,迅速的停车。
2.2 牵引耗电分析
B型车中不同的细分型号其运行牵引耗电量不同,其中B2型列车每千米的电能消耗为3.41千万时。而B1型列车每千米的电能消耗为3.25千瓦时。具数据统计,我国地铁每车每千米的耗电量一般在2.5-3.0千瓦时之间。而北京某线路的列车单位耗电量指标较高,与线路中坡段位置以及坡段长度有关系。在某条线路中,其为南北向线路,在地铁列车上行方向与下行方向之间相差34米。
3 地铁B型车再生制动节能方案
为了实现地铁B型车的牵引节能,需要针对地铁B型车进行再生制动节能方案的确定。首先需要进行再生制动电能的分析,其次,对B 型车的运行速度进行合理化的调节,最后对车辆类型的选择进行分析。
3.1 再生制动电能分析
B2型车在下行与上行中的耗电量分别为958每千瓦时、1066每千瓦时,上下行差额在108每千瓦时;其再生制动电能分别为481.98每千瓦时,553每千瓦时,上下行差额为71每千瓦时。节能效果效率为50%;B1型车在下行与上行中的耗电量分别为912每千瓦时、1053每千瓦时,上下行差额在141每千瓦时;其再生制动电能分别为455每千瓦时,492每千瓦时,上下行差额为37每千瓦时,节能效率为49%。从以上数据中能够得出以下结论:
第一,地铁再生电能与列车制动初速度之间为正比例关系,当制动的初始速度比较大的情况下,其再生电能量将会增大。但是如果在上坡道进行制动环节中,所需要的制动力都比较小,其再生电能量也随之降低了很多。
第二,再生制动电能与地铁列车的质量相关,但与动车、拖车的比例关系不大。在进行分析环节中能够发现B2型车的线网电流大些。
3.2 运行速度的合理化调节
为了实现再生制动节能,需要对地铁列车的实际运行速度进行合理化的调节,具体的调节中,需要将列车运行的速度提升。目前,在很多城市中都将地铁的运行速度提升。在不同的速度习其再生制动能耗不同,所达到的节能效果也不同。如,当最高的运行速度为75km/h 时,区间运行时间为3223秒,最大的牵引能耗为709;当最高的运行速度为95km/h时,区间运行时间为2936秒,最大的牵引能耗为895。针对以上数据分析,列车提速之后的能耗时增加了25%。
4 制动电阻在牵引电机中的作用机制
目前我国各大城市的地铁行业发展迅速,民众对地铁的需求量大增。为了适应民众的需求地铁增加了对开班次,使得列车之间的行车间距不断缩短。这种改进可以为列车运行的技术经济统计提供数据。
经过各种数据统计和测算,可以总结出:使用了电阻制动的地铁节能效果显著,再生回馈的电力接近五成,符合国家绿色发展的战略。其次,虽然地铁的供电系统结构、各个车站的平均距离、列车运行班次的安排等多种原因会导致再生回馈电力的比例不同,但是总体趋势是行车密度越高,电力再生率就越高。在同一行车区间之内,制动的列车恰巧碰上启动的列车时,再生效率是最高的[3]。虽然这种趋势无法用数学正比模型进行模拟,只是一种大概的趋势。根据以上的各种研究可以发现,相较于无法改变的供电系统结构、各车站之间的