概率论八大分布

合集下载

概率论-随机变量的几种重要分布及数字特征

概率论-随机变量的几种重要分布及数字特征

2. 若X 是随机变量,若C是常数,则 E(CX ) CE( X );
3. 若 ( X ,Y )是二维随机向量,则
E( X Y ) E( X ) E(Y );
注: 推广到 n 维随机向量,有
n
n
E( Xi ) E(Xi )
i 1
ห้องสมุดไป่ตู้
i 1
数学期望的性质
4. 若 ( X ,Y ) 是二维随机向量,且 X ,Y相互独立,
E( X )E(Y ) E( XY ) E( X )E(Y ).
特别地,当X与Y 独立时,有 cov( X ,Y ) 0.
协方差的性质 1. 协方差的基本性质
(1) cov( X , X ) D( X ); (2) cov( X ,Y ) cov(Y , X ); (3) cov(aX ,bY ) abcov( X ,Y ), 其中 a,b 是
定理1 设 X 是一个随机变量,Y g( X ), 且E(X ) 存
在, 于是
(1) 若X 为离散型随机变量,其概率分布为
P{ X xi } pi , i 1,2,
若 g(xi ) pi 绝对收敛,则Y的数学期望为
i 1

E(Y ) E[g( X )] g(xi ) pi;

cov( X ,Y )
[x E( X )][ y E(Y )] f ( x, y)dxdy.

协方差的定义
利用数学期望的性质,易将协方差的计算化简.
cov( X ,Y ) E{[ X E( X )][Y E(Y )]} E( XY ) E( X )E(Y ) E(Y )E( X )
x0

概率论与数理统计公式大全

概率论与数理统计公式大全

第1 章随机事件及其概率第二章随机变量及其分布x 2 x1P(x 1 X x 2 )2 1ba其中 0 ,则称随机变量 X 服从参数为 的指数分布。

X 的分布函数为1 e x,x 0,F (x)记0,住积分公式:0,x<0。

x n e xdx n!几何 分布 均匀 分布P(X k) q p,k 1,2,3, ,其中 p ≥ 0, q=1-p 。

随机变量 X 服从参数为 p 的几何分布,记为 G(p) 。

设随机变量 X 的值只落在 [a ,b ]内,其密度函数f(x)在[a ,b ]上为常数 1,即 ba1, f (x)b a,0,a ≤x ≤b其他,b) 。

0,x<a ,xaxbaa ≤x ≤bF(x) f(x)dx1,x>b 。

则称随机变量 X 在[a ,b ] 上服从均匀分布,记为 X~ U(a , 分布函数为 当 a ≤x 1<x 2≤b 时, X 落在区间( x 1,x2)内的概率为指数 分布x0 x0正态分布设随机变量X 的密度函数为1(x )212f(x) e 2 2 2其中、0为常数,则称随机变量X 服从参数为、的正态分布或高斯2( Gauss)分布,记为X ~ N( , )。

x,f (x)具有如下性质:1° f (x)的图形是关于x对称的;12° 当x时,f( ) 1为最大值;2 则(t X2)2的分布函数为2 2dt。

若X ~ N(1, )F(x)2参数0记为(x)x,e1时的正态分布称为标准正态分布,记为X ~ N(0,1),其密度函数x2e2t2e2dt分布函数为1。

(x) 21(x)是不可求积函数,其函数值,已编制成表可供查用。

1Φ (-x) = 1- Φ (x) 且Φ (0) =。

2 X2如果X ~N( , ) ,则~N(0,1) 。

P(x1 X x2)x22x11。

离散型已知X 的分布列为X x1,x2,L, x n, LP(X x i) p1, p2, L, p n, LY g( X )的分布列( y i g(x i ) 互不相等)如下:YP(Y y i )若有某些g(x ig(x1), g(x2), L, g(x n), L ,,则应将对应的p i相加作为g(x i) 的概率。

概率论中几种常用重要分布

概率论中几种常用重要分布

概率论中几种常用的重要的分布摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。

其在实际中的应用。

关键词1 一维随机变量分布随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论.随机事件是按试验结果而定出现与否的事件。

它是一种“定性”类型的概念。

为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。

称这种变数为随机变数。

本章内将讨论取实值的这种变数—— 一维随机变数。

定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P Xx x=∈-∞=-∞+∞.这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。

它是一个普通的函数。

成这个函数为随机函数X 的分布函数。

有的随机函数X 可能取的值只有有限多个或可数多个。

更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈=称这样的随机变数为离散型随机变数。

称它的分布为离散型分布。

【例1】下列诸随机变数都是离散型随机变数。

(1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。

称这种随机变数的分布为退化分布。

一个退化分布可以用一个常数a 来确定。

(2)X 可能取的值只有两个。

确切地说,存在着两个常数a ,b ,使([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。

如果([])P X b p ==,那么,([])1P X a p ===-。

因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。

特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。

概率论常用的离散分布

概率论常用的离散分布
概率论常用的离散分布
目 录
• 引言 • 二项分布 • 泊松分布 • 超几何分布 • 几何分布 • 负二项分布
01 引言
离散分布的定义
离散分布:离散随机变量所有可能取 值的概率分布。
离散分布描述了随机变量取各个可能 值时所对应的概率。
离散分布的应用场景
统计学研究
离散分布在统计学中有着广泛的应用,如人口普 效之 前所经历的试验次数。
02
在生物统计学中,负二项分布可以用于描述在一定时间内捕获
猎物的数量或者在一定时间内发生的事件次数。
在金融领域,负二项分布可以用于描述股票价格在一定时间内
03
上涨或下跌的次数。
THANKS FOR WATCHING
感谢您的观看
它以法国数学家西莫恩·德尼·泊松的名字命名,他在19世纪中叶首次研究了这种 分布。
泊松分布的性质
泊松分布具有离散性和随机性, 适用于描述在一定范围内随机 事件的次数。
泊松分布的概率函数由两个参 数决定:均值和方差。
当随机事件的概率保持不变且 相互独立时,泊松分布成立。
泊松分布在现实生活中的应用
泊松分布在统计学、物理学、 生物学、经济学等领域有广 泛应用。
在网络请求中,直到得到响应所需要的请求次数可以服从几何分布。
自然选择与遗传
在生物进化过程中,自然选择对某一性状的选择压力可以用几何分 布来描述。
06 负二项分布
负二项分布的定义
负二项分布是一种离散概率分布,描 述了在成功达到某一目标之前需要进 行的独立、同分布的伯努利试验次数。
负二项分布的概率质量函数为 P(X=k) = (n+1) choose k * p^k * (1p)^(n+1-k),其中 X 表示试验次数, k 表示成功次数,n 表示试验次数上 限,p 表示每次试验成功的概率。

概率论中的分布

概率论中的分布

概率论中的分布
概率论中的分布是指在一定条件下,随机变量可能取到不同数值的概率分布情况。

概率分布可分为离散和连续两种类型。

离散分布是指随机变量只能取到有限个或可数个数值的分布情况,如伯努利分布、二项分布、泊松分布等。

连续分布则是指随机变量可以取到任意实数值的分布情况,如正态分布、指数分布、均匀分布等。

除此之外,还有一些常见的分布,如伽玛分布、负二项分布、beta分布等。

在实际应用中,经常需要根据已知数据对分布进行拟合或推断参数,以便对未知数据进行预测或分析。

因此,对不同的分布类型及其特点进行了解和掌握是非常重要的。

- 1 -。

概率论 常用统计分布

概率论  常用统计分布

由中心极限定理得
n
lim P {
n
2 n n
2n
x}
x
lim P{ i 1
n
2 X i n
n
x}


1 2
t2 e 2 dt
即 2分布的极限分布是正态 分布,也即当 n
很大时,
2 n n
2n
2 服从N (0,1), 进而 n N ( n,2n).
Y12
Y22
~ 2 ( 2)
则C1 1 2 , C2 1 4 .
2. t 分布 历史上,正态分布由于其广泛的应用背景 和良好的性质,曾一度被看作是“万能分布”, 在这样的背景下,十九世纪初英国一位年轻 的酿酒化学技师Cosset. WS, 他在酒厂从事试验 数据分析工作,对数据误差有着大量感性的认 识,我们知道在总体均值和方差已知情况下, 样本均值的分布将随样本量 增大而接近正态分布,
n
x
1 2

e dt .
t2
2
2 证 由假设和定义5.6, n X i2 , 其中X 1 , X 2 ,, X n i 1
2 2 2 独立且每个X i ~ N (0,1),因而X1 , X2 ,, X n 独立同分布,

E( X i2 ) 1, D( X i2 ) 2 (i 1,2,, n)
(3) T的数字特征
E (T ) 0,
n D(T ) n2
( n 2).
例3 设总体X和Y相互独立, 且都服从N(0,9)
X 1 , X 2 ,, X 9和Y1 ,Y2 ,,Y9来自总体X ,Y的样本,
求统计量T的分布,其中
T Xi /

(浙大第四版)概率论与数理统计知识点总结

(浙大第四版)概率论与数理统计知识点总结
1° 0≤P(A)≤1,
2° P(Ω) =1
3° 对于两两互不相容的事件 , ,…有
常称为可列(完全)可加性。
则称P(A)为事件 的概率。
(8)古典概型
1° ,
2° 。
设任一事件 ,它是由 组成的,则有
P(A)= =
(9)几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,
(4)
(5)对于
.
(4)离散型与连续型的关系
(5)边缘分布
离散型
X的边缘分布为

Y的边缘分布为

连续型
X的边缘分布密度为
Y的边缘分布密度为
(6)条件分布
离散型
在已知X=xi的条件下,Y取值的条件分布为
在已知Y=yj的条件下,X取值的条件分布为
连续型
在已知Y=y的条件下,X的条件分布密度为

在已知X=x的条件下,Y的条件分布密度为
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。

Z=max,min(X1,X2,…Xn)
若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:
分布
设n个随机变量 相互独立,且服从标准正态分布,可以证明它们的平方和
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:

概率论八大分布的期望和方差

概率论八大分布的期望和方差

概率论八大分布的期望和方差
概率论是数学中一个很重要的分支,它通过概率来研究不确定性事件发生的规律。

其中,概率论8大分布描述了多次实验和事件中,可能出现的概率位置及其期望等统计量,被广泛用于对数据的拟合和预测。

首先说明的是正态分布,即平均数和方差成正比的分布,它的期望为μ,标准差为σ,因此它的方差为σ²。

接下来介绍的是指数分布,它是描述数据发生在某一时刻及其之前的分布,其期望是1/λ,方差也为1/λ²,其中λ>0。

三角分布是描述一个实验发生三次时的分布,其期望是a+b+c/3,方差为abcb/36。

威布尔分布的期望是α/(1+α),方差为α/((1+α)²(1+2α))。

泊松分布是按概率论中常用的概率模型,其期望是λ,方差也为λ。

F比例的期望依赖于自由度的不同,给定两个自由度为m和n的差异,它的期望为m/n,方差为2m²n²/((m+n)²(m+n+2))。

相间分布是另一种概率模型,它描述了一个试验出现在某个位置的概率,它的期望为μ+σ/2,及其方差为(σ/2)²。

最后要介绍的是Gamma分布,它由α和β决定,其期望为αβ,方差为
αβ²。

以上是概率论8种分布的期望和方差。

科学家们利用这些概念,处理概率性事件作出合理的决策,从而取得成果。

从长远来看,熟悉概率论8大分布的期望和方差,对于科学家精确处理概率性问题有着至关重要的作用。

概率论中的六种常用分布

概率论中的六种常用分布

U ab . [ ,]
基金项 目: 河南省教育科学 “ 十一五” 规划课题 ( 2 1 ] K H G一 4 6 [0 0 一J G A 00 ) 作者 简介 : 崔欢欢 (9 2一) 女 , 18 , 河南偃 师人 , 讲师 .

2 4・
洛 阳师 范学 院学报 2 1 0 1年第 8期


发生的概率时, 我们对事件 所在的试验进行独立
重 复观 察 ,统 计 出事 件 / 生 的 次 数 .这 里 4发 是一 个 随机 变量 ,它 就 服 从 二项 分 布 .另 外 ,一 批
收 稿 日期 : 0 1 l 7 2 1 —0 一1
则 称 服 从 区 间 [ ,] 的 均 匀 分 布 ,记 作 — a b上
( 洛阳师范学院数学科学学 院 , 河南洛 阳 4 12 ) 7 0 2

要 :本文主要探讨 了概率论 中的六种常用分布 ,即( 0—1 分 布、二 项分布 、泊松 分布、均 匀分布 、指数 分 )
布和正 态分布 ,的来 源及其在 实际 中的应用.有助 于增进 学生对该部分 内容的理解与 掌握.
均 匀分 布 描述 的是 在一 个 区 间上等 可 能取 值 的
分 布规 律 , 即是 说 概率 在该 区间上 的分 布是 均匀 也 的 .均 匀 分布 是 最 简 单 、最基 本 的 连续 型分 布 , 就
其 中 , 为常 数且 >0 ,则 称 服 从 参 数 为 和 r o 的正 态分 布 , 作 ~ /, . 记 N( o ) zr 正 态分 布 是 德 国数 学 家 和 天 文 学 家 棣 莫 弗 于
关 键 词 :随机 变 量 ; 离散 型 分 布 ; 续 型 分 布 连

概率论——常用分布

概率论——常用分布

概率论——常⽤分布伯努利试验 伯努利试验(Bernoulli experiment)是在同样的条件下重复地、相互独⽴地进⾏的⼀种随机试验,其特点是该随机试验只有两种可能结果:发⽣或者不发⽣。

我们假设该项试验独⽴重复地进⾏了 n 次,那么就称这⼀系列重复独⽴的随机试验为 n 重伯努利试验,或称为伯努利概型。

单个伯努利试验是没有多⼤意义的,然⽽,当我们反复进⾏伯努利试验,去观察这些试验有多少是成功的,多少是失败的,事情就变得有意义了,这些累计记录包含了很多潜在的⾮常有⽤的信息。

如果⽆穷随机变量序列 X1,X2,… 是独⽴同分布 (i.i.d.) 的,⽽且每个随机变量 X i 都服从参数为 p 的伯努利分布, 那么 随机变量 X1,X2,… 就形成参数为 p 的⼀系列伯努利试验。

同样,如果 n 个随机变量 X1,X2,…,X n 独⽴同分布,并且都服从参数为 p 的伯努利分布,则随机变量 X1,X2,…,X n 形成参数为 p 的 n 重伯努利试验。

下⾯举⼏个例⼦加以说明,假定重复抛掷⼀枚均匀硬币,如果在第 i 次抛掷中出现正⾯,令 X i=1 ;如果出现反⾯X i=0,那么,随机变量 X1,X2,… 就形成参数为 p=12 的⼀系列伯努利试验,同样,假定由⼀个特定机器⽣产的零件中 10% 是有缺陷的,随机抽取n 个进⾏观测,如果第 1 个零件有缺陷,令 X i=1 ; 如果没有缺陷,令 X i=0,i=1,2,…,n , 那么,随机变量 X1,X2,…,X n 就形成参数为 p=110 的 n 重伯努利试验。

离散分布⼆项分布 定义:在 n 次独⽴重复的伯努利试验中,设每次试验中事件 A 发⽣的概率为 p。

⽤ X 表⽰ n 重伯努利试验中事件 A 发⽣的次数,则 X 的可能取值为 0,1,…,n ,且对每⼀个 k(0≤k≤n),事件 X=k 即为 “ n 次试验中事件 A 恰好发⽣ k 次”,随机变量 X 的离散概率分布即为⼆项分布(Binomial Distribution)。

概率论与数理统计第四章_几种重要的分布

概率论与数理统计第四章_几种重要的分布
用贝努公式计算ξ的分布律下
ξ
0
1
2
3
4
p 0.0016 0.0256 0.1536 0.4096 0.4096
4.2超几何分布(了解)
主要内容: (一)了解超几何分布的概念 (二)了解超几何分布的期望和方差
4.2超几何分布
例1 某班有学生20名,其中有5名女同学,今从 班上任选4名学生去参观展览,被选到的女同学数ξ
k1 (k 1)!(n k)!
n
(k 11)n! pk (1 p)nk
k1 (k 1)!(n k)!
n
(k 1)n!
n
pk (1 p)nk
n!
pk (1 p)nk
k1 (k 1)!(n k)!
k1 (k 1)!(n k)!
n
n!
n
pk (1 p)nk
n!
pk (1 p)nk
k2 (k 2)!(n k)!
解 可以取0,1,2,3这4个值。
P(
=k)=
C3k
C4k 17
C420
(k=0,1,2,3,)
列成概率分布如下
ξ
0
1
2
3
p 0.4912 0.4211 0.0842 0.0035
定义42 设N个元素分为两类,有N1个属于第一类, N2个属于第二类(N1+N2=N)。从中按不重复抽 样取n个,令ξ表示这n个中第一(或二)类元素的个数,
k1 (k 1)!(n k)!
n2
n1
n(n 1)Cnl 2 pl2 (1 p)n2l nCnj1 p j1(1 p)n1 j
l0
j0
n2
n(n 1)Cnl 2 pl2 (1 p)n2l l0

概率论与数学统计公式定理(全)

概率论与数学统计公式定理(全)
某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。
(3)一些常见排列
重复排列和非重复排列(有序)
对立事件(至少有一个)
顺序问题
(4)随机试验和随机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
(2)
(2)二维随机变量的本质
(3)联合分布函数
设(X,Y)为二维随机变量,对于任意实数x,y,二元函数
称为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。
分布函数是一个以全平面为其定义域,以事件 的概率为函数值的一个实值函数。分布函数F(x,y)具有以下的基本性质:
(1)
(2)F(x,y)分别对x和y是非减的,即
, 其中 ,
则称随机变量 服从参数为 , 的二项分布。记为 。
当 时, , ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。
泊松分布
设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
第1章 随机事件及其概率
(1)排列组合公式
从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n种方法来完成。

概率论八大分布公式

概率论八大分布公式

概率论八大分布公式概率论中的八大分布公式是指常见的概率分布函数,它们在统计学和概率分析中有着广泛的应用。

这些分布包括:二项分布、泊松分布、均匀分布、正态分布、指数分布、伽玛分布、贝塔分布和卡方分布。

下面将对这八个分布公式进行简要介绍。

1. 二项分布二项分布是离散概率分布的一种,适用于只有两种可能结果的事件,如投掷硬币的结果。

它的概率分布函数可以用来计算在n次独立重复试验中,成功事件发生k次的概率。

2. 泊松分布泊松分布是一种离散概率分布,用于描述单位时间或空间内事件发生的次数。

它的概率分布函数可以用来计算在一个固定时间或空间单位内,事件发生k次的概率。

3. 均匀分布均匀分布是一种连续概率分布,它的概率密度函数在一个区间内的取值相等。

例如,投掷一个均匀骰子的结果就符合均匀分布。

4. 正态分布正态分布是一种连续概率分布,也被称为高斯分布。

它的概率密度函数呈钟形曲线,对称分布在均值附近。

许多自然界的现象都可以用正态分布来描述,如身高、体重等。

5. 指数分布指数分布是一种连续概率分布,用于描述事件发生的间隔时间。

它的概率密度函数呈指数下降的形式,适用于模拟一些随机事件的发生。

6. 伽玛分布伽玛分布是一种连续概率分布,它的概率密度函数呈正偏态分布。

伽玛分布常用于描述一些随机变量的持续时间,如寿命、等待时间等。

7. 贝塔分布贝塔分布是一种连续概率分布,它的概率密度函数呈S形曲线。

贝塔分布常用于描述概率或比率的分布,如投掷硬币的概率、产品的可靠性等。

8. 卡方分布卡方分布是一种连续概率分布,它的概率密度函数呈非对称形状。

卡方分布常用于统计推断中的假设检验和置信区间估计,如样本方差的分布。

概率论八大分布公式涵盖了离散分布和连续分布的常见情况。

这些分布公式在实际应用中具有重要的意义,可用于模拟随机事件、进行统计推断以及进行风险评估等。

熟练掌握这些分布公式,对于数据分析和决策制定都具有重要的帮助。

概率论与数理统计知识点总结

概率论与数理统计知识点总结
在已知X=xi的条件下,Y取值的条件分布为
在已知Y=yj的条件下,X取值的条件分布为
连续型
在已知Y=y的条件下,X的条件分布密度为

在已知X=x的条件下,Y的条件分布密度为
(7)独立性
一般型
F(X,Y)=FX(x)FY(y)
离散型
有零不独立
连续型
f(x,y)=fX(x)fY(y)
直接判断,充要条件:
若 ,则 的分布函数为
。。
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为

是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。

(6)分位数
下分位表: ;
上分位表: 。
(7)函数分布
离散型
已知 的分布列为

的分布列( 互不相等)如下:
若事件 、 相互独立,且 ,则有
若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2)≥F(x,y1);
(3)F(x,y)分别对x和y是右连续的,即
(4)
(5)对于
.
(4)离散型与连续型的关系
(5)边缘分布
离散型
X的边缘分布为

Y的边缘分布为

考研概率论大总结

考研概率论大总结
在已知X=xi的条件下,Y取值的条件分布为
在已知Y=yj的条件下,X取值的条件分布为
连续型
在已知Y=y的条件下,X的条件分布密度为

在已知X=x的条型
F(X,Y)=FX(x)FY(y)
离散型
有零不独立
连续型
f(x,y)=fX(x)fY(y)
直接判断,充要条件:
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有

(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,

,i=1,2,…n。
此公式即为贝叶斯公式。
。其中L为几何度量(长度、面积、体积)。
(10)加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
(11)减法公式
P(A-B)=P(A)-P(AB)
当B A时,P(A-B)=P(A)-P(B)
当A=Ω时,P( )=1- P(B)
(12)条件概率
定义设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。
设随机向量(X,Y)的分布密度函数为
其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~U(D)。
例如图3.1、图3.2和图3.3。
y
1
D1
O1x
图3.1
y

概率论与数理统计常用的统计分布

概率论与数理统计常用的统计分布

概率论与数理统计
2 X ~ N ( , ) , X1 , X 2 ,... X n 是 定理 2 设总体
取自 X 的一个样本, X 与 S 为该样本的样 本均值与样本方差,则有
2 2 S 2 2 ( X i X )2 ~ 2 (n 1) (1) i 1
概率论与数理统计
设总体 X 的均值和方差 2 E( X ) , D( X ) 都存在. X1 , X 2 , , Xn 是来自总体 X 的样本,则 2 E ( X ) , D( X ) n , E ( S 2 ) 2
n n 1 1 E( X ) E( n X i ) n E( X i ) i 1 n i 1 n
n
X (2) T S / n ~ t (n 1)
概率论与数理统计
设 X1 , X 2 , , Xn 是总体 X ~ N ( , 2 ) 的样本, X , S 2分别为样本均值和样本方差,则有 X ~ t (n 1) S/ n 由定理一、定理二有 2 ( n 1) S X 2 Y ~ N ( 0 , 1) , 2 ~ (n 1) 2 / n 2 且 Y 与 独立,由 t 分布的定义有 X X / n Y ~ t (n 1) S/ n (n 1) S 2 / 2 S 2/n n 1


3 0.1 P3 |X | 99.7%. P | X | X | 0.03} 99.7%. P{| n 100

概率论与数理统计
例3 在设计导弹发射装置时, 重要事情之 一是研究弹着点偏离目标中心的距离的方 差.对于一类导弹发射装置, 弹着点偏离目标 中心的距离服从正态分布N(μ,100), 现在进 行了25次发射试验, 用S2记这25次试验中弹 着点偏离目标中心的距离的样本方差. 试求 S2超过50的概率.

概率论与数理统计(完整公式,知识点梳理)

概率论与数理统计(完整公式,知识点梳理)

p
k

对于分布 二项分布

f ( x)dx

P(X=1)=p, P(X=0)=q
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生 的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2,, n 。
k k nk P( X k ) Pn(k ) Cn p q
P( A)
(10)加法 公式 (11)减法 公式 (12)条件 概率
L( A) 。其中 L 为几何度量(长度、面积、体积) 。 L ()
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB) 当 B A 时,P(A-B)=P(A)-P(B) 当 A=Ω 时,P( B )=1- P(B) 定义 设 A、B 是两个事件,且 P(A)>0,则称
P(a X b) F (b) F (a)
可以得到 X 落入区间 ( a, b] 的概率。分布
函数 F ( x) 表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 2° 3° 4° 5°
0 F ( x) 1,
x ;
F ( x) 是单调不减的函数,即 x1 x2 时,有 F ( x1) F ( x2) ;
积分元 f ( x)dx 在连续型随机变量理论中所起的作用与 P( X xk ) pk 在离 散型随机变量理论中所起的作用相类似。
4 / 27
(4)分布 函数
设 X 为随机变量, x 是任意实数,则函数
F ( x) P( X x)
称为随机变量 X 的分布函数,本质上是一个累积函数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论八大分布
概率论是统计学的一个重要分支,它探究随机变量及其关联性,研究不同的现象的结果和概率分布之间的关系,提供量化的度量工具以确保实际应用的准确性。

概率论八大分布是概率论中应用最为广泛的几个分布,它们提供了研究各种随机现象的基础,影响了大量的现实问题的解决方案,其实质是根据大量试验获得的数据来拟合出不同类型的概率分布。

首先,概率论八大分布中首先涉及的是正态分布。

是一种最常见的概率分布,也称作高斯分布。

正态分布的图形可以表示为一个双峰的曲线,其特点是只有两个参数:均值μ和标准差σ,它可以用来描述平均值的概率密度分布情况,即随机变量的取值可能会靠近均值μ。

其次,另一个重要的概率分布是均匀分布。

均匀分布是一种两个参数(下限a和上限b)的概率分布,这两个参数分别代表了随机变量可能取值的范围,即该变量只能在a和b之间取值,其中每一个结果都有相同的概率。

第三,指数分布是另一种广泛使用的分布,它具有唯一的参数λ,该参数代表了随机变量的变化率。

指数分布的特性是,它可以用来衡量发生某种事件的时间间隔,以及研究受试者遭受某种不利影响的持续时间。

接下来,椭圆分布(又称偏态分布)是一种广泛应用的概率分布,它可以用来描述数据集中对称性差异。

椭圆分布有三个参数:均值μ、标准差σ和偏度γ,其中偏度γ决定了数据集中偏斜程度。

接着,卡方分布是一种常常用来拟合实验数据的分布,它用一个参数k来描述数据的分布形状。

卡方分布是一种双峰分布,它的参数
k决定了其双峰形状陡峭程度。

此外,t-分布是一种密度比较大的分布,它是一种卡方分布的变种,但具有更大的连续性。

t-分布有两个参数,即自由度ν和不同的中心值μ,它主要用于检验两个样本之间的差异和单样本的参数估计。

接着,F-分布是t-分布的多变量拓展,如果两个样本是来自不
同的总体,那么可以使用F-分布来检验这两个样本的差异。

F-分布
的参数为两个自由度,即自由度1和自由度2,它最常用于在两个样本之间检验方差的差异。

最后,Beta分布是一种双参数概率分布,参数为α和β,它可
以用来研究随机实验结果的概率分布。

Beta分布最常用于贝叶斯统
计中的参数估计,也可以用于研究连续变量之间的关系。

总而言之,概率论八大分布是统计学中最常用的概率分布,它们可以用来研究各种随机现象,并影响着大量实际问题的解决方案,以度量其实际应用的准确性。

因此,深入理解概率论八大分布是统计学和实际应用上的必要,也是重要的一步。

相关文档
最新文档