三角函数求值域专题

合集下载

【三角函数值域的求法】 求三角函数值域图解

【三角函数值域的求法】 求三角函数值域图解

所以t∈[-3,3].
六、三角函数也是函数,所以其他一些函数值域的求法对于求三角
函数的值域照样适用
如分别常数法:
例6 若cos2x+2msinx-2m-2sin2x+1sinx-1,
sinx-1=t∈[-1,0)
所以2m>t+2t+2,因为(t+2t+2)max=-1.
所以m>-12.
巧用“对比法〞解题
江苏靖江季南初中(214523) 陈一平
对比法:把两个或两个以上的事物进行比较,找其共同点与不同点的进行解题的方法.对比法是最基本的思维,也是解题方法.它有时会使思维、解题一清二楚,直接明了.
例1 横河九年级物理兴趣小组的同学在讨论“沙子和水谁的吸热本事大〞时,选用了两只完全相同的酒精灯分别给质量都是200 g的沙子和水加热.他们绘制出沙子与水的温度随加热时间改变的图象如图1所示. 已知酒精的热值是3.0×107 J/kg,水的比热容4.2×103 J/(kg·℃),加热时酒精灯平均每分钟消耗0.8 g酒精.那么请问:
(1)图中a图和b图哪个是沙子吸热升温的图象?为什么?
(2)请依据图象说出水在受热过程中温度改变的特点.
(3)加热满2 min时,水汲取了多少热量?
(4)给水加热持续了10 min时间,共消耗了多少酒精?这些酒精假如完全燃烧将放出多少热量?
(5)试求出沙子的比热容.
图1解:(1) 图a表示的是沙子吸热升温的过程,因为沙子的比热比水小,汲取相同热量时沙子温度升得多.。

专题二 微重点6 三角函数中ω,φ的范围问题

专题二 微重点6 三角函数中ω,φ的范围问题

P0,12,现将 y=f(x)的图象向左平移π3个单位长度得到的函数图象也过
点 P,则
√A.ω 的最小值为 2
B.ω 的最小值为 6
C.ω 的最大值为 2
D.ω 的最大值为 6
12345678
依题意 f(0)=sin φ=12,0<φ<π2,φ=π6, f(x)=sinωx+π6的图象向左平移π3个单位长度得到 g(x)=sinωx+π3+π6=sinωx+π3ω+π6,g(0)=sinπ3ω+π6=12, 所以π3ω+π6=2k1π+π6或π3ω+π6=2k2π+56π, 即ω=6k1或ω=6k2+2,其中k1,k2∈Z, 由于ω>0,所以ω的最小值为2.
跟踪演练3 (2022·湛江模拟)已知函数 f(x)=sin(ωx+φ)ω>0,|φ|≤π2,f π3+x
=f π3-x,f -π3=0,且 f(x)在区间1π0,π2上有且只有一个极大值点,
33 则 ω 的最大值为__4___.
由题意知,-π3ω+φ=k1π, π3ω+φ=k2π+π2,
k1,k2∈Z,
12345678
若 x∈(0,2π),则 ωx+π6∈π6,2ωπ+π6. 设 t=ωx+π6,则 t∈π6,2ωπ+π6, 因为 2ωπ+π6∈π6,176π, 所以函数 y=sin t 在π6,2ωπ+π6上的零点最多有 2 个. 所以f(x)在(0,2π)上的零点最多有2个.
12345678
4.(2022·萍乡模拟)设函数 f(x)=sin2x+π4在区间a,a+π3上的最大值为
M,最小值为 m,则 M-m 的最小值为
A.
2 2
√B.12
C.1-
2 2
2-1 D. 2

三角函数的定义域与值域题库(精)

三角函数的定义域与值域题库(精)

专题三:三角函数的定义域与值域(习题库)一、选择题1、函数f(x)的定义域为[﹣,],则f(sinx)的定义域为()A、[﹣,]B、[,]C、[2kπ+,2kπ+](k∈Z)D、[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)分析:由题意知,求出x的范围并用区间表示,是所求函数的定义域;解答:∵函数f(x)的定义域为为[﹣,],∴,解答(k∈Z)∴所求函数的定义域是[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)故选D.2、函数的定义域是()A、.B、.C、D、.解答:由题意可得sinx﹣≥0⇒sinx≥又x∈(0,2π)∴函数的定义域是.故选B.3、函数的定义域为()A、 B、C、 D、解答:由题意得tanx≥0,又tanx 的定义域为(kπ﹣,kπ+),∴,故选D.4、函数f(x)=cosx(cosx+sinx),x∈[0,]的值域是()A、[1,]B、C、D、解答:∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx===又∵∴∴则1≤f(x)≤故选A.5、函数y=﹣cos2x+sinx﹣的值域为()A、[﹣1,1]B、[﹣,1]C、[﹣,﹣1]D、[﹣1,]解答:函数y=﹣cos2x+sinx﹣=﹣(1﹣2sin2x)+sinx﹣=sin2x+sinx﹣1=﹣∵﹣1≤sinx≤1,∴当sinx=﹣时,函数y有最小值为﹣.sinx=1时,函数y 有最大值为1,故函数y 的值域为[﹣,1],故选B.6、函数值域是()A、 B、C、 D、[﹣1,3]解答:因为,所以sinx∈[],2sinx+1∈故选B7、函数的最大值是()A、5B、6C、7D、8解答:∵==∈[﹣7,7] ∴函数的最大值是78、若≤x≤,则的取值范围是()A、[﹣2,2]B、C、D、解答:=2(sinx+cosx)=2sin(),∵≤x≤,∴﹣≤≤,∴≤﹣sin()≤1,则函数f(x)的取值范围是:.故选C.9、若,则函数y=的值域为()A、 B、 C、 D、解答:函数y===因为,所以sin∈(0,)∈故选D10、函数,当f(x)取得最小值时,x的取值集合为()A、 B、C、 D、解答:∵函数,∴当 sin(﹣)=﹣1时函数取到最小值,∴﹣=﹣+2kπ,k∈Z函数,∴x=﹣+4kπ,k∈Z,∴函数取得最小值时所对应x的取值集合:为{x|x═﹣+4kπ,k∈Z} 故选A.11、函数y=sin2x﹣sinx+1(x∈R)的值域是()A、[,3]B、[1,2]C、[1,3]D、[,3]解答:令sinx=t,则y=t2﹣t+1=(t﹣)2+,t∈[﹣1,1],由二次函数性质,当t=时,y取得最小值.当t=﹣1时,y取得最大值3,∴y∈[,3] 故选A.12、已知函数,则f(x)的值域是()A、[﹣1,1]B、C、D、解答:解:由题=,当 x∈[,]时,f(x)∈[﹣1,];当 x∈[﹣,]时,f (x)∈[﹣1,]可求得其值域为.故选D.13、函数的值域为()A、 B、 C、[﹣1,1] D、[﹣2,2]解答:=﹣sinxcosx+cos2x=cos2x ﹣sin2x=cos (2x+)∴函数的值域为[﹣1,1] 故选C .14、若≥,则sinx 的取值范围为( ) A 、 B 、 C 、∪D 、∪解答:∵≥,∴解得x ∈[,)∪(,] ∴sinx ∈故选B15、函数y=sin2x+2cosx 在区间[﹣,]上的值域为( )A 、[﹣,2]B 、[﹣,2)C 、[﹣,]D 、(﹣,] 解答:∵x ∈[﹣,] ∴cosx ∈[﹣,1]又∵y=sin2x+2cosx=1﹣cos2x+2cosx=﹣(cosx ﹣1)2+2 则y ∈[﹣,2] 故选A 二、填空题(共7小题) 16、已知,则m 的取值范围是 .解答:∵=2(sinθ+cosθ)=2sin(θ+),∴﹣2≤≤2,∴m≥,或m≤﹣,故m的取值范围是(﹣∝,﹣]∪[,+∞).17、函数在上的值域是___________.解答:因为,故故答案为:18、函数的值域为.解答:由题意是减函数,﹣1≤sinx≤1,从而有函数的值域为,故答案为19、(理)对于任意,不等式psin2x+cos4x≥2sin2x恒成立,则实数p的范围为.解答:∵psin2x+cos4x≥2sin2x ∴psin2x≥2sin2x﹣1﹣sin4x+2sin2x=4sin2x﹣sin4x﹣1∴p≥4﹣(sin2x+)而sin2x+≥2∴4﹣(sin2x+)的最大值为2则p≥2 故答案为:[2,+∞)20、函数的值域是.解答:令t=sinx+cosx=,t2=1+2sinxcosx∵∴x+∴从而有:f(x)==﹣2 在单调递增当t+1=2即t=1时,此时x=0或x=,函数有最小值当t+1=1+即t=时此时x=,函数有最大值2﹣2故答案为:[﹣2]21、函数的定义域为.解答:要使函数有意义,必须解得,故答案为:(0,).三、解答题(共8小题)22.(1)已知f(x)的定义域为[0,1],求f(cosx)的定义域;(2)求函数y=lgsin(cosx)的定义域;分析:求函数的定义域:(1)要使0≤cosx≤1,(2)要使sin (cosx)>0,这里的cosx以它的值充当角。

高一数学三角函数值域的求法

高一数学三角函数值域的求法

小结
1.本节课涉及到求函数值域(最值)的方法有: ①分离系数法
②反表示法
③判别式法 ④单调性法 ⑤数形结合法
小结
2.树立转化的数学思想锻炼发散思维能力.
排除法
1 y 2 sin x 1
3 sin x 1 y sin x 2
sin x y 2 cos x
y sin x sin x 3
课外练习1、2、3、4、 《数学之友》 P 70
IU酒店 派酒店 喆啡 7天酒店 7天优品 窝趣公寓
知道,爷哪里是查啥啊功课,这分明是要去安抚李姐姐。不过两各大麻烦都离开咯霞光苑,她也算是能清静清静,于是不咸不淡地赶快开口 道:“有姐姐陪着,妾身就不送爷咯。”第壹卷 第323章 后账壹回到烟雨园,淑清壹头倒在他の怀中:“爷,这就是您给妾身主持の公道 吗?就听吟雪那奴才の壹面之辞,妾身连开口の机会都没有,这让妾身の冤屈往哪儿伸啊!妾身就是再不讨爷の喜欢,但好歹也是各主子吧, 反倒被各奴才弄得没脸没面,妾身以后还有啥啊脸面继续在府里呆下去!”“你还没脸没面?爷连福晋都没理会,亲自把你送咯回来,是福 晋の脸面重要,还是壹各奴才の脸面重要?你真是越活越抽抽咯,瞧你比の那人,你不跟福晋比脸面,非跟各奴才比脸面。”淑清本来愤恨 不已地要跟他讨说法,谁知道才壹开口,竟被他壹句话就堵咯壹各哑口无言,半天找不出壹句话。可是她心中の那口气根本咽不下,怎么就 这么不明不白地让那各奴才逃咯处罚?“爷,您怎么会向着怡然居の人说话咯?您这是嫌弃妾身人老珠黄,比不得人家粉嫩水灵?”他被淑 清这番话气得恨不能骂她两句!先是跟奴才争脸面,现在又跟那主子争风吃醋,简直就是蠢到家咯!他要是对水清真有那心思,还用等得到 现在?他这么假门假事地搞咯这各四堂会审,还不都是为咯安抚她李淑清才走の这各过场。现在淑清不但不领情,反而责怪他喜新厌旧,淑 清委屈,他更委屈!而且他最痛恨の就是后院诸人之间の争宠,于是留下“好自为之”四各字后,他直接就回咯书院。没有排字琦の老练圆 滑,没有水清の聪明智慧,直到他走咯以后,她都没有明白爷为啥啊走咯。从来没有为争宠费过心思の淑清,首各回合就是不战自败。壹回 到怡然居,吟雪急急地对水清说道:“仆役!您怎么不告诉爷,您の手,是因为扶锦茵格格才受の伤啊!”“吟雪,你白跟咯我两年多の时 间!今天这阵势,明摆着爷就是为咯给李侧福晋壹各说法,我若是说这手是因为扶大格格受の伤,谁能证明?李侧福晋还不更得以为我这是 存心跟她过意不去,故意伤咯手去诬告她。”“仆役,那,那您就白白地受咯伤,还落咯冤屈?”“冤屈不冤屈,其实,爷根本就没有这各 必要弄啥啊四堂会审,到时候问问锦茵格格不就全知道咯嘛。所以我才说,刚刚这各会审不过是走走过场而已。”听水清说完,吟雪却是扑 通壹下子跪在咯她の面前,让水清惊诧不已:“吟雪,你这是怎么咯?有啥啊话赶快起来再说也不迟。”“仆役,这全是奴婢の错!假如奴 婢不是去扶锦茵格格,也不会被李侧福晋寻咯仆役您の短处,还让您の手也伤咯,奴婢真是该死……”“好咯,好咯,瞧瞧你说の这都是啥 啊话!你不去扶,我不去扶,锦茵格格真の摔倒咯怎么办?那罪过不是更大咯?我の手伤咯,那也是我不小心弄の,跟你有啥啊关系,真是 の,你赶快好好地当差去,别净跟我这儿说这些没用の!”水清の话音刚落,只听月影进屋来禀报:“仆役,张太医来咯。”第壹卷 第 324章 锦茵今天是锦茵格格回门の日子。府里早早就准备妥当,按照规矩,郡主与额附双双向王爷和排字琦敬上谢恩茶。淑清作为格格の亲 额娘,也壹并受礼。礼毕之后,王爷吩咐秦顺领额附到他の书院等候,又让惜月和韵音几各人先行退下,单独将格格留咯下来。。待众人退 下后,屋子里只剩王爷、排字琦、淑清、水清四各主子。然后王爷又将除吟雪以外の所有奴才全都摒退到门外,连红莲都没能留下,更不要 说菊香咯。面对这各安排,锦茵莫名其妙,望向她阿玛の目光中充满咯疑惑不解の神情。对此,他也没有转弯抹角,而是开门见山:“茵茵, 今天是你回门の日子,见到你在婆家壹切都好,阿玛和你额娘都放心咯。”“阿玛,让您担心,女儿深感惭愧。女儿不能侍奉父母,还要父 母大人如此牵挂,实为不孝。女儿真恨不能够永远留在这府里,日日孝敬您们……”“你说の这叫啥啊傻话!男大当婚、女大当嫁,天经地 义の事情,难不成你壹辈子不嫁,留在府里侍奉我们?那不是害咯你壹辈子吗?趁现在额附不在,阿玛也要嘱咐你几句,你在府里是郡主, 嫁到婆家就是媳妇,好好孝敬公婆、姑嫂和睦才是正道儿。咱们这府里就你这么壹各格格,没人跟你争,也没人跟你抢,额娘和姨娘们全都 宠着你。阿玛确实是担心你啊,到咯婆家可就真の不壹样咯。那么多の太爷太婆、姑舅姨侄,全都要好生处着。不要总以为自己是郡主,想 怎么着就怎么着,丢咯规矩,就是丢咯脸面,就是丢咯咱们府里の脸面。”“女儿谨记阿玛の教诲。”“记得就好,当格格和当媳妇还是有 很大不壹样の,你是壹各好格格,阿玛希望你也能做壹各好媳妇,不要等以后哭哭啼啼の时候才想起今天阿玛说の这番话。好咯,这件事情 就先不说咯,阿玛问你壹件事情。成婚那天,听说差点儿摔咯各跟头,连鞋子都坏咯,那是怎么回事儿?”“回阿玛,是女儿走路不小心, 也不知怎么就踩上咯啥啊东西,可能是小石子吧。”“茵茵!你怎么能肯定不是别人推の你?”淑清壹听锦茵说是自己走路不小心,气得心 中直骂这各丫头是各大傻瓜。好好の平地路,怎么就能摔咯跟头?小石子?哪各奴才们当差这么不仔细,连石子都没有清理干净?王爷听咯 锦茵の回答,心里总算是踏实咯,可淑清仍是不依不饶の样子,竟然明目张胆地暗示格格有人推她,他不想在这件事情上纠缠得没完没

三角函数的定义域与值域题库

三角函数的定义域与值域题库

专题三:三角函数的定义域与值域(习题库)一、选择题1、函数f(x)的定义域为[﹣,],则f(sinx)的定义域为()A、[﹣,]B、[,]C、[2kπ+,2kπ+](k∈Z)D、[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)分析:由题意知,求出x的范围并用区间表示,是所求函数的定义域;解答:∵函数f(x)的定义域为为[﹣,],∴,解答(k∈Z)∴所求函数的定义域是[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)故选D.2、函数的定义域是()A、.B、.C、D、.解答:由题意可得sinx﹣≥0⇒sinx≥又x∈(0,2π)∴函数的定义域是.故选B.3、函数的定义域为()A、B、C、 D、解答:由题意得tanx≥0,又tanx 的定义域为(kπ﹣,kπ+),∴,故选D.4、函数f(x)=cosx(cosx+sinx),x∈[0,]的值域是()A、[1,]B、C、D、解答:∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx===又∵∴∴则1≤f(x)≤故选A.5、函数y=﹣cos2x+sinx﹣的值域为()A、[﹣1,1]B、[﹣,1]C、[﹣,﹣1]D、[﹣1,]解答:函数y=﹣cos2x+sinx﹣=﹣(1﹣2sin2x)+sinx﹣=sin2x+sinx﹣1=﹣∵﹣1≤sinx≤1,∴当sinx=﹣时,函数y有最小值为﹣.sinx=1时,函数y 有最大值为1,故函数y 的值域为[﹣,1],故选B.6、函数值域是()A、B、 C、D、[﹣1,3]解答:因为,所以sinx∈[],2sinx+1∈故选B7、函数的最大值是()A、5B、6C、7D、8解答:∵==∈[﹣7,7] ∴函数的最大值是78、若≤x≤,则的取值范围是()A、[﹣2,2]B、C、D、解答:=2(sinx+cosx)=2sin(),∵≤x≤,∴﹣≤≤,∴≤﹣sin()≤1,则函数f(x)的取值范围是:.故选C.9、若,则函数y=的值域为()A、B、 C、D、解答:函数y===因为,所以sin∈(0,)∈故选D10、函数,当f(x)取得最小值时,x的取值集合为()A、 B、C、 D、解答:∵函数,∴当 sin(﹣)=﹣1时函数取到最小值,∴﹣=﹣+2kπ,k∈Z函数,∴x=﹣+4kπ,k∈Z,∴函数取得最小值时所对应x的取值集合:为{x|x═﹣+4kπ,k∈Z}故选A.11、函数y=sin2x﹣sinx+1(x∈R)的值域是()A、[,3]B、[1,2]C、[1,3]D、[,3]解答:令sinx=t,则y=t2﹣t+1=(t﹣)2+,t∈[﹣1,1],由二次函数性质,当t=时,y取得最小值.当t=﹣1时,y取得最大值3,∴y∈[,3] 故选A.12、已知函数,则f(x)的值域是()A、[﹣1,1]B、C、D、解答:解:由题=,当x∈[,]时,f(x)∈[﹣1,];当x∈[﹣,]时,f(x)∈[﹣1,] 可求得其值域为.故选D.13、函数的值域为()A、B、 C、[﹣1,1] D、[﹣2,2]解答:=﹣sinxcosx+cos2x=cos2x﹣sin2x=cos(2x+)∴函数的值域为[﹣1,1] 故选C.14、若≥,则sinx的取值范围为()A、 B、C、∪D、∪解答:∵≥,∴解得x∈[,)∪(,] ∴sinx∈故选B15、函数y=sin2x+2cosx在区间[﹣,]上的值域为()A、[﹣,2]B、[﹣,2)C、[﹣,]D、(﹣,]解答:∵x∈[﹣,] ∴cosx∈[﹣,1]又∵y=sin2x+2cosx=1﹣cos2x+2cosx=﹣(cosx﹣1)2+2则y∈[﹣,2] 故选A二、填空题(共7小题)16、已知,则m的取值范围是.解答:∵=2(sinθ+cosθ)=2sin(θ+),∴﹣2≤≤2,∴m≥,或m≤﹣,故m的取值范围是(﹣∝,﹣]∪[,+∞).17、函数在上的值域是___________.解答:因为,故故答案为:18、函数的值域为.解答:由题意是减函数,﹣1≤sinx≤1,从而有函数的值域为,故答案为19、(理)对于任意,不等式psin2x+cos4x≥2sin2x恒成立,则实数p的范围为.解答:∵psin2x+cos4x≥2sin2x ∴psin2x≥2sin2x﹣1﹣sin4x+2sin2x=4sin2x﹣sin4x ﹣1∴p≥4﹣(sin2x+)而sin2x+≥2∴4﹣(sin2x+)的最大值为2则p≥2故答案为:[2,+∞)20、函数的值域是.解答:令t=sinx+cosx=,t2=1+2sinxcosx∵∴x+∴从而有:f(x)==﹣2在单调递增当t+1=2即t=1时,此时x=0或x=,函数有最小值当t+1=1+即t=时此时x=,函数有最大值2﹣2故答案为:[﹣2]21、函数的定义域为.解答:要使函数有意义,必须解得,故答案为:(0,).三、解答题(共8小题)22.(1)已知f(x)的定义域为[0,1],求f(cosx)的定义域;(2)求函数y=lgsin(cosx)的定义域;分析:求函数的定义域:(1)要使0≤cosx≤1,(2)要使sin(cosx)>0,这里的cosx以它的值充当角。

三角函数专题:三角函数最值(值域)的5种常见考法(解析版)

三角函数专题:三角函数最值(值域)的5种常见考法(解析版)

三角函数专题:三角函数最值(值域)的5种常见考法1、形如sin y a x = (或cos y a x =)型可利用正弦函数,余弦函数的有界性,注意对a 正负的讨论 2、形如sin()y a x b ωϕ=++ (或cos()y a x b ωϕ=++型 (1)先由定义域求得x ωϕ+的范围(2)求得sin()x ωϕ+ (或cos()x ωϕ+)的范围,最后求得最值 3、形如sin cos y a x b x =+型引入辅助角转化为22)y a b x ϕ=++,其中tan baϕ=,再利用三角函数的单调性求最值。

4、形如2sin sin (0)y a x b x c a =++≠或2cos cos (0)y a x b x c a =++≠型, 可利用换元思想,设sin y x =或cos y x =,转化为二次函数2y at bt c =++求最值,t 的范围需要根据定义域来确定. 5、形如sin cos (sin cos )y x x x x =⋅±±型利用sin cos x x ±和sin cos x x ⋅的关系,通过换元法转换成二次函数求值域 6、分式型三角函数值域(1)分离常数法:通过分离常数法进行变形,再结合三角函数有界性求值域; (2)判别式法题型一 借助辅助角公式求值域【例1】该函数sin 3y x x =的最大值是( ) A .1 B 6 C .2 D .2- 【答案】C【解析】因为πsin 32sin 3y x x x ⎛⎫==+ ⎪⎝⎭,又[]πsin 1,13x ⎛⎫+∈- ⎪⎝⎭,所以函数sin 3y x x =的最大值是2.故选:C.【变式1-1】已知()()sin 3cos 0f x A x x A =->的最大值是2,则()3sin 3cos g x x A x +在π3π,44⎡⎤⎢⎥⎣⎦中的最大值是( )A .32B .3C 326+ D .23【答案】C【解析】根据辅助角公式可得:()2223sin 3=333f x A x x A x x A A ⎫=+⎪⎪++⎭()2=3A x ϕ+-,其中3tan ϕ=. 由()f x 的最大值为2()2320A A +>,解得1A =.∴()1333cos 23sin 2g x x x x x ⎫=+=⎪⎪⎭π233x ⎛⎫=+ ⎪⎝⎭.∵π3π,44x ⎡⎤∈⎢⎥⎣⎦,∴π7π13π,31212x ⎡⎤+∈⎢⎥⎣⎦. ∴当π7π312x +=,即π4x =时,()g x 取得最大值. 故()max ππ343g x ⎛⎫=+ ⎪⎝⎭231326232⎫+==⎪⎪⎝⎭故选:C.【变式1-2】已知函数()()3cos sin 3cos 0,2f x x x x x π⎫⎡⎤=∈⎪⎢⎥⎣⎦⎝⎭,则函数()f x 的值域为( ) A .33⎡⎢⎣⎦ B .3⎡⎤⎢⎥⎣⎦C .11,22⎡⎤-⎢⎥⎣⎦D .1,12⎡⎤-⎢⎥⎣⎦ 【答案】B【解析】()23sin cos 3x x f x x =+)133sin 21cos 22x x =+sin 23x π⎛⎫=+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦, 42,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以3sin 213x π⎛⎫≤+≤ ⎪⎝⎭, 所以函数()f x 的值域为3⎡⎤⎢⎥⎣⎦.故选:B【变式1-3】函数2()sin 3cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A .1B .2C .32D .3 【答案】C【解析】因为2()sin 3cos f x x x x =,所以1cos 231()2sin(2)226x f x x x π-==+-,42ππx ≤≤,52366x πππ∴≤-≤,1sin 2126x π⎛⎫∴≤-≤ ⎪⎝⎭,∴13()122max f x =+=.故选:C .【变式1-4】己知函数()3sin 4cos ,R f x x x x =+∈,则()()12f x f x -的最小值是_________. 【答案】10-【解析】由题意可得()()343sin 4cos 5sin cos 5sin 55f x x x x x x ϕ⎛⎫=+=+=+ ⎪⎝⎭,其中4sin 5ϕ=,3cos 5ϕ=,且0,2πϕ⎛⎫∈ ⎪⎝⎭.因为12,R x x ∈,所以min max ()5,()5f x f x =-=.所以()()12f x f x -的最小值是min max ()()10f x f x -=-.题型二 借助二次函数求值域【例2】求函数22sin 2sin 1y x x =-++的值域.【答案】3[3,]2-【解析】y =−2sin 2x +2sinx +1=−2(sinx −12)2+32,−1≤sinx ≤1,根据二次函数性质知,当1sin 2x =时,max 32y =;当sin 1x =-时,min 3y =-, 故值域为3[3,]2-.【变式2-1】函数2cos sin 1y x x =+-的值域为( )A .11[,]44-B .1[0,]4C .1[2,]4-D .1[1,]4- 【答案】C【解析】函数222cos sin 11sin sin 1sin sin y x x x x x x =+-=-+-=-+,设sin t x =,11t -≤≤,则()2f t t t =-+, 由二次函数的图像及性质可知2124t t -≤-+≤,所以cos 2sin 1y x x =+-的值域为1[2,]4-,故选:C.【变式2-2】函数2tan 4tan 1y x x =+-的值域为____________【答案】[)5,-+∞【解析】因为2tan 4tan 1y x x =+-令tan t x =,则t R ∈所以()()224125f t t t t =+-=+-,所以()[)5,f t ∈-+∞,故函数的值域为[)5,-+∞【变式2-3】函数()193sin cos 2R 24y x x x =+-∈的最小值是( ) A .14B .12 C .234- D .414-【答案】C【解析】22197313sin cos 2sin 3sin sin 24422y x x x x x ⎛⎫=+-=-+-=--+ ⎪⎝⎭,令sin x t =,则11t -≤≤.因为23122t ⎛⎫--+ ⎪⎝⎭在[]1,1-上单增,所以当1t =-时,2min31231224y ⎛⎫=---+=- ⎪⎝⎭.故选:C .题型三 借助换元法求值域【例】已知函数(),则()A .()f x 的最大值为3,最小值为1 B .()f x 的最大值为3,最小值为-1 C .()f x 的最大值为32,最小值为34D .()f x 的最大值为32,最小值为32 【答案】C【解析】因为函数()sin cos 2sin cos 2f x x x x x =+++,设sin cos 24x x x t π⎛⎫+=+= ⎪⎝⎭,2,2t ⎡∈-⎣, 则22sin cos 1x x t =-,所以2213124y t t t ⎛⎫=++=++ ⎪⎝⎭,2,2t ⎡∈-⎣,当12t =-时,()min 34f t =;当2t =时,()max 32f t =故选:C【变式3-1】函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________. 【答案】[-1,1]【解析】设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,即sin x cos x =1-t 22,且-1≤t ≤ 2. ∴y =-t 22+t +12=-12(t -1)2+1. 当t =1时,y max =1;当t =-1时,y min =-1. ∴函数的值域为[-1,1].【变式3-2】函数()sin cos sin 2f x x x x =++的最大值为( ) A .1 B .12 C .12 D .3 【答案】C【解析】()sin cos sin 2sin cos 2sin cos f x x x x x x x x =++=++,令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,所以[2,2]t ∈-,则22(sin cos )12sin cos t x x x x =+=+, 所以22sin cos 1x x t =-,所以原函数可化为21y t t =+-,[2,2]t ∈,对称轴为12t =-,所以当2t 时,21y t t =+-取得最大值,所以函数的最大值为222121=,即()sin cos sin 2f x x x x =++的最大值为12C【变式3-3】函数f (x )=sinxcosx +√2sin (x −π4)的值域为________. 【答案】[−12−√2,1]【解析】由于f (x )=sinxcosx +√2sin (x −π4)=sinxcosx +sinx −cosx ,令sinx −cosx =t ,则sinxcosx =1−t 22,于是函数化为y =1−t 22+t =−12(t −1)2+1,而t =sinx −cosx =√2sin (x −π4)∈[−√2,√2] , 所以当1t =时,函数取最大值1,当t =−√2时,函数取最小值−12−√2,故值域为[−12−√2,1].题型四 分式型三角函数的值域【例4】函数cos 12cos 1x y x +=-的值域是( )A .][(),04,∞∞-⋃+B .][(),02,∞∞-⋃+ C .[]0,4 D .[]0,2 【答案】B【解析】令11cos ,1,,122x t t ⎡⎫⎛⎤=∈-⋃⎪ ⎢⎥⎣⎭⎝⎦,13(21)11322212122211t t y t t t -++===+⋅---,可得[)(]213,00,1t -∈-⋃,[)11,1,213t ⎛⎤∈-∞-⋃+∞ ⎥-⎝⎦,3113,,22122t ⎛⎤⎡⎫⋅∈-∞-⋃+∞ ⎪⎥⎢-⎝⎦⎣⎭,故(][),02,y ∈-∞⋃+∞.故选:B.【变式4-1】函数sin 3sin 2x y x +=+的值域为___________. 【答案】4,23⎡⎤⎢⎥⎣⎦【解析】解:sin 31sin 2sin 21x y x x +==+++, 因为1sin 1x -≤≤,所以1sin 23x ≤+≤,所以1113sin 2x ≤≤+,所以411+23sin 2x ≤≤+, 所以sin 3sin 2x y x +=+的值域是4,23⎡⎤⎢⎥⎣⎦.【变式4-2】函数sin cos ()1sin cos =++x xf x x x的值域为_____________.【答案】212111,2⎡⎫⎛-----⎪ ⎢⎪⎣⎭⎝⎦【解析】令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,[2,1)(1,2]t ∈---,则212sin cos t x x =+,即21sin cos 2t x x -=,所以2112()12t t f t t --==+,又因为[2,1)(1,2]t ∈---,所以()212111,2f t ⎫⎛---∈--⎪ ⎪ ⎣⎭⎝⎦, 即函数sin cos ()1sin cos =++x xf x x x 的值域为212111,2⎡⎫⎛-----⎪ ⎢⎪ ⎣⎭⎝⎦.【变式4-3】当04x π<<时,函数221sin ()cos sin sin xf x x x x-=⋅-的最小值是________.【答案】4【解析】22cos ()sin cos sin xf x x x x=-21tan tan x x =-, 当04x π<<时,tan (0,1)x ∈,所以21110tan tan 244<-≤-=x x ,()4f x ∴≥,即221sin ()cos sin sin xf x x x x-=⋅-的最小值为4.含绝对值的三角函数值域A .[-1,0] B .[0,1] C .[-1,1] D .[-2,0] 【答案】D【解析】当0sin 1x ≤≤ 时,sin sin 0y x x =-= ,所以,当1sin 0x -≤<,2sin y x =,又22sin 0x -≤< ,所以函数的值域为[]2,0-,故选:D.【变式5-1】函数()2sin 3cos f x x x =+的值域是( )A .[]2,5B .[]3,5C .13⎡⎤⎣⎦D .13⎡⎣【答案】C【解析】()sin()2cos()2sin 3cos 2sin 3cos f x x x x x x x +=+++=-+-=+πππ,∴()f x 为周期函数,其中一个周期为T π=,故只需考虑()f x 在[0,]π上的值域即可,当[0,]2x π∈时,()2sin 3cos 13)f x x x x =+=+α,其中cos 13α,sin 13α=, ∴max ()()132f x f =-παmin ()()22f x f ==π,当[,]2x ππ∈时,()2sin 3cos 13)f x x x x =-=+β,其中,cos 13β=sin 13=β, ∴max ()()132f x f =-πβmin ()()22f x f ==π,∴()f x 的值域为13].故选:C【变式5-2】设函数2()|sin |2cos 1f x x x =+-,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的最小值是______. 【答案】0【解析】∵2()|sin |2cos 1f x x x =+-|sin |cos 2x x =+为偶函数,∴只需求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的最小值,此时2()sin cos22sin sin 1f x x x x x =+=-++,令[]sin 0,1t x =∈,则221y t t =-++,函数的对称轴为[]10,14t =∈,∴当1t =时,min 2110y =-++=.【变式5-3】若不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则k 的取值范围是______. 【答案】[)2,∞+ 【解析】∵ ()sin 1cos sin tan sin sin cos cos x x xx x x x x++=+=,3,4x ππ⎡⎤∈⎢⎥⎣⎦∴ sin 0,1cos 0,cos 0x x x >+><,∴ tan sin 0x x +<,∴sin tan tan sin sin tan tan sin 2tan x x x x x x x x x -++=---=-, ∵ 不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立 ∴ 2tan k x ≥-,3,4x ππ⎡⎤∈⎢⎥⎣⎦,∴()max 2tan 2k x ≥-=. 故k 的取值范围是[)2,∞+.。

专题5.3 三角函数的图象与性质(原卷版)

专题5.3 三角函数的图象与性质(原卷版)

专题5.3 三角函数的图象与性质题型一 三角函数的值域题型一 三角函数的值域例1.(2023春·重庆铜梁·高一铜梁中学校校考期中)求2()2cos 2sin 3R f x x x x =--+∈()的最小值是_____例2.(2023·上海·高三专题练习)已知函数()1πsin 223f x x ⎛⎫=- ⎪⎝⎭,ππ,44x ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的值域为______.练习1.(2023春·北京·高一清华附中校考期中)当0,2x π⎛⎤∈ ⎥⎝⎦时,()14sin sin f x x x =+的最小值为( ) A .5 B .4C .2D .1练习2.(2023春·江苏镇江·高三江苏省扬中高级中学校联考期中)函数π()cos (sin ),[0,]4f x x x x x =∈的最大值与最小值的和为( )A B C D .3练习3.(2022·高三课时练习)函数y =tan(π-x ),x ∈(,)43ππ-的值域为________.练习4.(2023·全国·高三专题练习)函数()sin 2sin 1cos x xf x x=+的值域__________.练习5.(2023·福建龙岩·统考模拟预测)已知()23sin 8cos2xf x x =-,若()()f x f θ≤恒成立,则sin θ=( )A .35B .35 C .45D .45-题型二 求三角函数的周期性,奇偶性,单调性,对称性例3.(2023春·北京·高三北京一七一中校考期中)下列函数中,最小正周期为π的奇函数是( )A .sin2cos2y x x =+B .sin cos y x x =+C .πsin 22y x ⎛⎫=+ ⎪⎝⎭D .πcos 22y x ⎛⎫=+ ⎪⎝⎭例4.(2023春·海南海口·高三海口一中校考期中)(多选)已知函数()π2sin 26f x x ⎛⎫=-- ⎪⎝⎭则( )A .函数()f x 的最小正周期为2πB .函数()f x 的图像关于直线π6x =-对称 C .函数()f x 为偶函数D .函数()f x 的图像向左平移ϕ个单位后关于y 轴对称,则ϕ可以为5π6练习6.(2023春·全国·高三专题练习)(多选)若函数44()sin cos f x x x =+,则( ) A .函数()f x 的一条对称轴为π4x =B .函数()f x 的一个对称中心为π,04⎛⎫⎪⎝⎭C .函数()f x 的最小正周期为π2D .若函数3()8()4g x f x ⎡⎤=-⎢⎥⎣⎦,则()g x 的最大值为2练习7.(2023春·安徽六安·高三六安市裕安区新安中学校考期中)(多选)函数()π2sin 2f x x =+⎛⎫ ⎪⎝⎭,则以下结论中正确..的是( )A .()f x 在π0,2⎛⎫⎪⎝⎭上单调递减B .直线 π6x =为()f x 图象的一条对称轴C .()f x 的最小正周期为2πD .()f x 在π0,2⎛⎫ ⎪⎝⎭上的值域是(练习8.(2023春·江西·高三校联考期中)(多选)已知函数π()cos 25x f x ⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的图象关于2π,05⎛⎫- ⎪⎝⎭对称B .()f x 的图象关于直线8π5x =对称 C .3π5f x ⎛⎫+ ⎪⎝⎭为奇函数D .()f x 为偶函数练习9.(2023·北京海淀·高三专题练习)函数()cos π6f x x ω=+⎛⎫ ⎪⎝⎭在[]π,π-的图象如图所示.则(1)()f x 的最小正周期为__________; (2)距离y 轴最近的对称轴方程__________.练习10.(2023·北京海淀·高三专题练习)函数()()()cos sin f x x a x b =+++,则( ) A .若0a b +=,则()f x 为奇函数B .若π2a b +=,则()f x 为偶函数C .若π2b a -=,则()f x 为偶函数 D .若πa b -=,则()f x 为奇函数题型三 解三角不等式例5.(2023春·广东佛山·高三佛山一中校考阶段练习)不等式tan 1x >-的解集是________.例6.(2023春·辽宁本溪·高三校考阶段练习)已知函数()π2cos 23f x x ⎛⎫=+ ⎪⎝⎭.(1)用五点法画出函数()f x 在2,33ππ⎡⎤-⎢⎥⎣⎦上的大致图像,并写出()f x 的最小正周期;(2)1≤.练习11.(2023秋·广东深圳·高三统考期末)已知函数()()lg 2cos 1f x x =-,则函数()f x 的定义域为( )A .ππ2π,2π,Z 33k k k ⎛⎫-+∈ ⎪⎝⎭B .ππ2π,2π,Z 33k k k ⎡⎤-+∈⎢⎥⎣⎦C .Z ππ,ππ2,266k k k ⎛⎫-+∈ ⎪⎝⎭D .Z ππ,ππ2,266k k k ⎡⎤-+∈⎢⎥⎣⎦练习12.(2023春·广东深圳·高一深圳市光明区高级中学统考期中)已知函数()()2sin (0,0π)f x x ωϕωϕ=+><<的部分图象如图所示.(1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)若()f x >x 的取值范围.练习13.(2021春·高三课时练习)解不等式1tan x ≤≤-练习14.(2023春·辽宁铁岭·高三铁岭市清河高级中学校考阶段练习)已知某地某天从6时到22时的温度变换近似地满足函数π510sin π2084y x ⎛⎫=-+ ⎪⎝⎭.(1)求该地这一天该时间段内温度的最大温差;(2)若有一种细菌在15C 到25C 之间可以存活则在这段时间内,该细菌最多能存活多长时间?练习15.(2023春·江西南昌·高三校考阶段练习)函数lgsin y x =_________.题型四 由三角函数的值域(最值)求参数例7.(2023·全国·高三专题练习)已知函数()()11sin 06f x a x x a =-≠,且()7π6f x f ⎛⎫≤ ⎪⎝⎭恒成立,则()f x =______例8.(2023春·上海青浦·高三上海市朱家角中学校考期中)设函数sin y x =定义域为[],a b ,值域为11,2⎡⎤--⎢⎥⎣⎦,则b a -的最大值为______练习16.(2023春·江苏镇江·高三江苏省镇江中学校考期中)已知()π0,sin sin3a f x x a x ⎛⎫>=-- ⎪⎝⎭=a __________.练习17.(2023春·辽宁朝阳·高三朝阳市第一高级中学校考期中)已知函数()cos f x x x =-的定义域为[,]a b ,值域为[1,2]-,则b a -的取值范围是( ) A .π,π3⎡⎤⎢⎥⎣⎦B .π5π,26⎡⎤⎢⎥⎣⎦C .π24π,3⎡⎤⎢⎥⎣⎦D .2433ππ,⎡⎤⎢⎥⎣⎦练习18.(2023·上海·高三专题练习)若函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,则ω的取值范围是__________.练习19.(2023·湖北襄阳·襄阳四中校考模拟预测)若函数()sin cos()f x x x ϕ=++的最小值为ϕ的一个取值为___________.(写出一个即可)练习20.(2023春·北京·高三北师大二附中校考期中)已知函数()ππ2sin 25f x x ⎛⎫=+ ⎪⎝⎭,若对任意的实数x ,总有()()()12f x f x f x ≤≤,则12x x -的最小值是( ) A .2 B .4C .πD .2π题型五 根据单调求参数例9.(2021·高一课时练习)若不等式tan x a >在ππ,42x ⎛⎫∈ ⎪⎝⎭- 上恒成立,则a 的取值范围为( ) A .1a > B .1a ≤ C .1a <- D .1a ≤-例10.(2023·山东烟台·统考二模)已知函数()()()cos 202πf x x ϕϕ=+≤<在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ϕ的取值范围为( ). A .4ππ3ϕ≤≤ B .π4π23ϕ≤≤ C .4π2π3ϕ≤≤ D .4π3π32ϕ≤≤练习21.(2023秋·云南楚雄·高三统考期末)已知函数()()πcos 03f x x ωω⎛⎫=-> ⎪⎝⎭,若()f x 在区间3π0,2⎛⎫⎪⎝⎭上为单调函数,则ω的取值范围是______.练习22.(2023春·河南南阳·高三南阳中学校考阶段练习)(多选)若函数cos2y x =与函数()sin 2y x ϕ=+在π0,4⎡⎤⎢⎥⎣⎦上的单调性相同,则ϕ的一个值为( )A .π6B .3π4C .4π3-D .4π3练习23.(2023春·四川成都·高三成都市第二十中学校校考阶段练习)已知函数 tan y x ω=在ππ,22⎛⎫- ⎪⎝⎭内是减函数, 则( ) A .01ω<< B .10ω-≤< C .1ω≥ D .1ω≤-练习24.(2023春·辽宁·高二辽宁实验中学校考阶段练习)若函数()()cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在,63ππ⎛⎫⎪⎝⎭上不单调,则实数ω的取值范围是______.练习25.(2023·河北承德·统考模拟预测)已知1ω>,函数π()cos 3f x x ω⎛⎫=- ⎪⎝⎭.(1)当2ω=时,求()f x 的单调递增区间; (2)若()f x 在区间ππ,63⎡⎤⎢⎥⎣⎦上单调,求ω的取值范围.题型六 根据对称求参数例11.(2023春·河北石家庄·高三石家庄市第十五中学校考阶段练习)若()ππcos 232f x x ϕϕ⎛⎫⎛⎫=++< ⎪⎪⎝⎭⎝⎭是奇函数,则ϕ=_________.例12.(湖南省名校2023届高三考前仿真模拟(二)数学试题)函数()()()sin cos f x x x ϕϕ=++的图象的一条对称轴方程是π4x =-,则ϕ的最小正值为( )A .π6B .π4C .π3D .π2练习26.(2023·全国·高三专题练习)(多选)若函数()ππsin cos sin sin 36f x x x ϕϕ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭的图象关于坐标原点对称,则ϕ的可能取值为( ) A .π3-B .π6-C .π3D .2π3练习27.(2023·重庆·统考模拟预测)已知函数π()sin()(0)3f x x ωω=+>,若对于任意实数x ,都有π()()3f x f x =--,则ω的最小值为( )A .2B .52C .4D .8练习28.(2023春·重庆渝中·高三重庆巴蜀中学校考期中)已知函数()2s πsin co 2f x x x x ⎛⎫=+ ⎪⎝⎭.(1)设[0,π)θ∈,函数()f x θ+是偶函数,求θ的值;(2)若()f x 在区间,π3m ⎡⎤-⎢⎥⎣⎦上恰有三条对称轴,求实数m 的取值范围.练习29.(2023·全国·高三专题练习)已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,若()0f =π6x =为()f x 图象的一条对称轴,则ω的最小值为______.练习30.(2022·高三课时练习)已知()()3sin f x x ωϕ=+对任意x 都有()()33ππ+=-f x f x ,则3f π⎛⎫⎪⎝⎭等于________.题型七 由图象确定三角函数解析式例13.(2023春·陕西安康·高三陕西省安康中学校考阶段练习)已知函数()()πcos 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则( )A .()7ππ2cos 123f x x ⎛⎫=+⎪⎝⎭ B .()ππ2cos 243f x x ⎛⎫=+ ⎪⎝⎭C .()11ππ2cos 243f x x ⎛⎫=-⎪⎝⎭ D .()11ππ2cos 243f x x ⎛⎫=+⎪⎝⎭例14.(2022春·福建·高二统考学业考试)(多选)函数()()sin 0y A x A ωϕ=+>的一个周期内的图象如图所示,下列结论正确的有( )A .函数()f x 的解析式是()π2sin 23f x x ⎛⎫=- ⎪⎝⎭B .函数()f x 的最大值是2C .函数()f x 的最小正周期是πD .函数()f x 的一个对称中心是π,06⎛⎫⎪⎝⎭练习31.(2023春·四川成都·高三石室中学校考期中)如图,函数()()sin f x A x =+ωϕ(0A >,0ω>,π<ϕ)的部分图象与坐标轴的三个交点分别为()1,0P -,Q ,R ,且线段RQ 的中点M 的坐标为31,22⎛⎫- ⎪⎝⎭,则()2f -等于( )A .1B .-1CD .练习32.(2023春·吉林长春·高三东北师大附中校考阶段练习)函数()()πsin (0,0,)2f x A x A ωϕωϕ=+>><的部图象如图所示,则ω=______,ϕ=______;练习33.(2023春·辽宁沈阳·高三沈阳二十中校联考期中)(多选)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭ 的部分图像如图所示,下列说法正确的是( )A .()f x 的图像关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图像关于直线5π12x =-对称 C .将函数2cos2y x =的图像向右平移π12个单位长度得到函数()f x 的图像D .若方程()f x m =在π,02⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m 的取值范围是(2,-练习34.(湖南省部分名校联盟2023届高三5月冲刺压轴大联考数学试题)(多选)如图是某质点作简谐运动的部分图象,位移y (单位:mm )与时间t (单位:s )之间的函数关系式是()sin 0,0,0,2y A t A πωϕωϕ⎛⎫⎛⎫=+>>∈ ⎪ ⎪⎝⎭⎝⎭,则下列命题正确的是( )A .该简谐运动的初相为π6B .该简谐运动的频率为12πC .前6秒该质点的位移为12mmD .当42π,33t ⎡⎤∈⎢⎥⎣⎦时,位移y 随着时间t 的增大而增大练习35.(2023春·河北衡水·高三衡水市第二中学期末)已知函数()()tan f x A x ωϕ=+π02ϕϕ⎛⎫>< ⎪⎝⎭,,()y f x =的部分图象如图,则 7π24f ⎛⎫= ⎪⎝⎭( )A .2+BC .D .题型八 描述三角函数的变换过程例15.(2022春·福建·高二统考学业考试)为了得到函数π()2cos 3f x x ⎛⎫=+ ⎪⎝⎭的图像,只需把曲线()cos f x x =上所有的点( )A .向左平移π3个单位,再把纵坐标伸长到原来的2倍B .向右平移π3个单位,再把纵坐标伸长到原来的2倍C .向左平移π3个单位,再把纵坐标缩短到原来的12D .向右平移π3个单位,再把纵坐标缩短到原来的12例16.(北京市2023届高三高考模拟预测考试数学试题)要得到cos 2xy =的图像,只要将sin 2xy =的图像( )A .向左平移π2个单位B .向右平移π2个单位C .向左平移π个单位D .向右平移π个单位练习36.(2021·高三课时练习)函数ππ()2sin(),0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图象如图所示, 为了得到这个函数的图象,只要将2sin y x =的图象上所有的点 ( )A .向右平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B .向右平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向右平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D .向右平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变练习37.(2023春·江西赣州·高三校考期中)(多选)要得到函数y x =的图象,只需将函数π24y x ⎛⎫=+ ⎪⎝⎭的图象上所有的点的( )A .先向左平移π8个单位长度,再横坐标伸长到原来的2倍(纵坐标不变)B .先向左平移π4个单位长度,再横坐标缩短到原来的12倍(纵坐标不变)C .先横坐标伸长到原来的2倍(纵坐标不变),再向左平移π4个单位长度D .先横坐标伸长到原来的2倍(纵坐标不变),再向左平移π8个单位长度练习38.(2023春·贵州·高三校联考期中)为了得到函数πsin 28y x ⎛⎫=- ⎪⎝⎭的图象,只要将函数πcos 24y x ⎛⎫=-- ⎪⎝⎭的图象( )A .向左平移5π8个单位长度 B .向右平移5π8个单位长度 C .向左平移5π16个单位长度 D .向右平移5π16个单位长度练习39.(2023春·重庆渝中·高三重庆巴蜀中学校考期中)为得到函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图象,只需把函数()cos g x x =图象上的所有点的( )A .横坐标伸长到原来的2倍,纵坐标不变,再把得到的图象向左平移π6个单位长度B .横坐标伸长到原来的2倍,纵坐标不变,再把得到的图象向右平移π12个单位长度 C .横坐标缩短到原来的12,纵坐标不变,再把得到的图象向左平移π6个单位长度D .横坐标缩短到原来的12,纵坐标不变,再把得到的图象向右平移π12个单位长度练习40.(2023春·辽宁朝阳·高二校联考期中(多选))已知函数()()2sin (π0,)f x x ωϕϕω><=+的部分图象如图所示,则()f x 的图象可以由函数()2sin g x x =的图象( )A .先纵坐标不变,横坐标变为原来的12,再向左平移11π12个单位长度得到 B .先纵坐标不变,横坐标变为原来的2倍,再向右平移π12个单位长度得到 C .先向右平移π12个单位长度,再纵坐标不变,横坐标变为原来的12得到 D .先向右平移π6个单位长度,再纵坐标不变,横坐标变为原来的12得到题型九 求图象变换前(后)的函数解析式例17.(2023·陕西榆林·统考模拟预测)将函数cos2y x =的图象向右平移π20个单位长度,再把所得图象各点的横坐标缩小到原来的12(纵坐标不变),所得图象的一条对称轴为x =( ) A .π80B .π60C .π40D .π20例18.(2023·江苏南通·统考模拟预测)将函数()πsin 13f x x ⎛⎫=++ ⎪⎝⎭的图象上的点横坐标变为原来的12(纵坐标变)得到函数()g x 的图象,若存在()0,πθ∈,使得()()2g x g x θ+-=对任意x ∈R 恒成立,则θ=( )A .π6B .π3C .2π3D .5π6练习41.(2023·河南郑州·模拟预测)把函数()y f x =图象上所有点的纵坐标不变,横坐标伸长到原来的2倍,再把所得曲线向右平移π4个单位长度,得到函数πcos 3y x ⎛⎫=- ⎪⎝⎭的图象,则()f x =( ) A .15πsin 212x ⎛⎫+ ⎪⎝⎭B .πsin 212x ⎛⎫- ⎪⎝⎭C .5πsin 212x ⎛⎫+ ⎪⎝⎭D .1πsin 212x ⎛⎫- ⎪⎝⎭练习42.(2023·辽宁·校联考三模)(多选)已知函数()()cos 202f x x πϕϕ⎛⎫=+-<< ⎪⎝⎭图像的一条对称轴为8x π=,先将函数()f x 的图像上所有点的横坐标伸长为原来的3倍,再将所得图像上所有的点向右平移4π个单位长度,得到函数()g x 的图像,则函数()g x 的图像在以下哪些区间上单调递减( ) A .[],2ππ B .[]2,ππ--C .79,22ππ⎡⎤⎢⎥⎣⎦D .9,42ππ⎡⎤--⎢⎥⎣⎦练习43.(2023春·重庆铜梁·高三铜梁中学校校考期中)(多选)将函数π3sin()3y x =+的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图象向右平移π3个单位长度,得到函数()y g x =的图象,下列结论正确的是( ) A .函数()y g x =的图象关于点π,06⎛⎫⎪⎝⎭对称B .函数()y g x =的图象最小正周期为πC .函数()y g x =的图象在π0,2⎡⎤⎢⎥⎣⎦上单调递增D .函数()y g x =的图象关于直线5π12x =对称练习44.(2023·江西上饶·校联考模拟预测)已知π3是函数()sin cos f x x a x =+的一个零点,将函数()2y f x =的图象向右平移π12个单位长度后所得图象的表达式为( ) A .7π2sin 26y x ⎛⎫=- ⎪⎝⎭B .π2sin 212y x ⎛⎫=+ ⎪⎝⎭C .2cos 2y x =-D .2cos2y x =。

高考数学-三角函数专题复习

高考数学-三角函数专题复习

高考数学-三角函数专题复习三角函数专题考点例题解析】考点1.求值1、求sin330°、tan690°、sin585°的值。

解:利用三角函数的周期性和对称性,可得:sin330°=sin(360°-30°)=sin30°=1/2tan690°=tan(720°-30°)=tan30°=1/√3sin585°=sin(540°+45°)=sin45°=√2/22、已知角α为第三象限角,求sin(α+π/2)的值。

解:由于α为第三象限角,所以sinα<0,cosα<0.又因为sin(α+π/2)=cosα,所以sin(α+π/2)<0.3、已知sinθ+cosθ=5/3,cosθ-sinθ=2,求sin2θ的值。

解:将sinθ+cosθ和cosθ-sinθ相加,可得cosθ+cosθ=5/3+2=11/3,即cosθ=11/6.将cosθ-sinθ和sinθ+cosθ相减,可得2sinθ=-1/6,即sinθ=-1/12.代入sin2θ=2sinθcosθ的公式,可得sin2θ=-11/72.4、已知si n(π/4-α)=2/√5,求cosα的值。

解:sin(π/4-α)=sinπ/4cosα-cosπ/4sinα=2/√5,代入cosπ/4=√2/2和sinπ/4=√2/2,可得cosα=1/√10.5、已知f(cosx)=cos3x,求f(sin30°)的值。

解:将x=π/6代入f(cosx)=cos3x,可得f(cosπ/6)=cos(3π/6)=cosπ=-1.又因为sin30°=cosπ/6,所以f(sin30°)=-1.6、已知tanα=15π/22,求cos(π/2-α)的值。

解:tanα=15π/22,所以α为第三象限角,cos(π/2-α)=sinα>0.由tanα=sinα/cosα,可得cosα=15/√466,代入sin^2α+cos^2α=1,可得sinα=7/√466,最终可得cos(π/2-α)=7/15.7、已知tan(π/4+x)=2tan(π/4-x),求cos2x的值。

求三角函数的值域(最值)题型例析

求三角函数的值域(最值)题型例析
3c
2
2
1
3
3
s
i
n2
x c
o
s2
x +
=
3 =
2
2
2
s
i
n2
x-
(
3

π
。 由 0≤x ≤
,可 得
+
2
1
2
3
)
π
π

3
,所 以 - ≤ 2
x ≤

3
3
6
2
s
i
n2
x-
(
π
π
≤1,所 以 0 ≤ s
i
n2
+
x3
3
)
(
)
[
;
当定义域为某个给定
-|A|+k,
|A|+k]
函数的单调性求值域。
题 型 2:
(
或 y=Ac
Aω≠0)
o
s(
ωx+φ)
+k(
Aω≠0)
例1
(32π-x) - 3 cosx + 3。 当 x ∈
[0,712π] 时,函 数 f(x)的 最 小 值 和 最 大 值 分
s
i
n
2

别为
解:
函数 f(
x)= (-s
i
nx)(-c
o
sx)-
1
3
(
o
s2x+ 3= s
i
n2
xc
o
s2
x+1)+
i
n(
ωx+φ)
+k 或y=Ac

三角函数给定区间求值域

三角函数给定区间求值域

三角函数给定区间求值域三角函数是数学中常见的一类函数,它们以弧度作为自变量,返回一个特定角度的正弦值、余弦值或正切值。

在本文中,我们将探讨三角函数在给定区间的值域。

让我们从定义开始。

正弦函数(sin)是一个周期函数,其图像在一个周期内在-1和1之间取值。

因此,我们可以说正弦函数的值域为[-1, 1]。

在给定区间内,正弦函数的值域取决于该区间的长度和起始点。

例如,在区间[0, π/2]内,正弦函数的值域为[0, 1],因为在这个区间内,正弦函数的值从0逐渐增加到1。

类似地,在区间[π/2, π]内,正弦函数的值域为[0, -1],因为在这个区间内,正弦函数的值从1逐渐减小到-1。

接下来,我们来讨论余弦函数(cos)。

余弦函数也是一个周期函数,其图像在一个周期内同样在-1和1之间取值。

因此,余弦函数的值域也是[-1, 1]。

在给定区间内,余弦函数的值域也取决于该区间的长度和起始点。

例如,在区间[0, π/2]内,余弦函数的值域为[1, 0],因为在这个区间内,余弦函数的值从1逐渐减小到0。

类似地,在区间[π/2, π]内,余弦函数的值域为[0, -1],因为在这个区间内,余弦函数的值从0逐渐减小到-1。

我们来讨论正切函数(tan)。

正切函数在一些特殊点上没有定义,例如在π/2的整数倍点上。

在其他点上,正切函数的值域是整个实数集。

在给定区间内,正切函数的值域同样取决于该区间的长度和起始点。

例如,在区间[0, π/4]内,正切函数的值域为[0, +∞),因为在这个区间内,正切函数的值从0逐渐增加到+∞。

类似地,在区间[π/4, π/2]内,正切函数的值域为(-∞, 0],因为在这个区间内,正切函数的值从0逐渐减小到-∞。

三角函数在给定区间的值域可以通过观察函数的周期性和起始点来确定。

对于正弦函数和余弦函数,它们的值域都是[-1, 1],而对于正切函数,它的值域是整个实数集,但在一些特殊点上没有定义。

在实际问题中,我们可以利用三角函数的值域来求解各种与角度有关的问题,如力学中的物体运动、电工中的交流电信号等。

三角函数值域的求法

三角函数值域的求法

三角函数值域的求法三角函数是数学中的重要概念之一,它在几何学、物理学、工程学等领域中有着广泛的应用。

在学习三角函数时,我们不仅需要了解它们的定义和性质,还需要掌握它们的值域。

本文将围绕三角函数值域的求法展开讨论。

我们来回顾一下三角函数的定义。

在直角三角形中,我们可以定义三个基本的三角函数:正弦函数(sin)、余弦函数(cos)和正切函数(tan)。

对于一个给定的角度θ,这些函数的值可以通过三角形的边长比例来计算。

接下来,我们将重点讨论三角函数的值域。

值域是函数在定义域上所有可能的输出值的集合。

对于正弦函数和余弦函数来说,它们的值域是[-1, 1]。

换句话说,对于任意的θ,-1 ≤ sinθ ≤ 1,-1 ≤ cosθ ≤ 1。

这是因为在单位圆上,正弦函数和余弦函数的取值范围都在-1到1之间。

而正切函数的值域则是整个实数集。

也就是说,对于任意的θ,tanθ可以取到任意的实数值。

这是因为正切函数是通过sinθ除以cosθ得到的,而在某些角度上,cosθ可能等于0,导致无法除以0。

因此,我们可以得到tanθ的值域是整个实数集。

除了这三个基本的三角函数,还存在其它的三角函数,如余切函数(cot)、正割函数(sec)和余割函数(csc)。

这些函数的值域与它们的定义有关,但可以通过基本的三角函数进行推导和计算。

在实际问题中,我们经常需要根据已知条件来求解三角函数的值域。

这时,我们可以利用三角函数的性质和定义来推导。

例如,当给定θ的范围时,我们可以确定sinθ和cosθ的取值范围。

然后,根据这些取值范围来确定三角函数的值域。

我们还可以利用三角函数的周期性来求解值域。

正弦函数和余弦函数的周期都是2π,而正切函数的周期是π。

这意味着在一个周期内,三角函数的值会重复出现。

因此,我们可以利用周期性来确定三角函数的值域。

总结起来,三角函数的值域是根据其定义和性质来确定的。

正弦函数和余弦函数的值域是[-1, 1],而正切函数的值域是整个实数集。

三角函数求值域专题(最新整理)

三角函数求值域专题(最新整理)

(0, ] ,则当△OAB 的面积达最大值时,
2
__________2___ .
10.已知函数 f (x) 2 cos x(sin x cos x) 1, x R .
(Ⅰ)求函数
f
(x)
的最小正周期;(Ⅱ)求函数
f
(x)
在区间
π, 8
3π 4 上的最小值和最大值.
解:(Ⅰ) f (x) 2 cos x(sin x cos x) 1 sin 2x cos 2x
②利用万能公式求解;
③采用数形结合法(转化为斜率问题)求最值。
例 1:求函数 y sin x 的值域。 cos x 2
解法 1:数形结合法:求原函数的值域等价于求单位圆上的点 P(cosx, sinx)与定点 Q(2, 0)所确定的
直线的斜率的范围。作出如图得图象,当过 Q 点的直线与单位圆相切时得
3
3
sin y cos2 x (sin x 1)2 11 ,当 sin x 1 时, sin y cos2 x 有最小值 11 ;当 sin x 2
2 12
2
12
3
时, sin y cos2 x 有最小值 4 . 9
例 2:已知 3sin 2 2 sin 2 2 sin ,求 y sin 2 sin 2 的取值范围。
f
(x)
1 cos 2x 2sin( x)
sin
x
a2
sin( x
)
4
的最大值为
2 3 ,试确定常数 a 的值.
2
解:
f
(x)
1 2 cos2 x 1
2 sin(
x)
sin
x
a2
sin( x

专题10 三角函数性质、最值和ω题型归类(解析版)

专题10 三角函数性质、最值和ω题型归类(解析版)

专题10 三角函数性质、最值和ω题型归类一、重点题型目录【题型】一、整体代入法求三角函数的单调区间对称轴和对称中心 【题型】二、代入检验判定求三角函数的单调区间对称轴和对称中心 【题型】三、图像法求三角函数的最值或值域 【题型】四、换元法求三角函数的最值或值域【题型】五、利用三角函数的单调性、奇偶性、周期性和对称性求参数 【题型】六、五点法求三角函数的解析式 【题型】七、利用图象平移求函数的解析式或参数 二、题型讲解总结【题型】一、整体代入法求三角函数的单调区间对称轴和对称中心 例1.(2023·全国·高三专题练习)已知函数π()sin()(0,0)2f x A x A ϕϕ=+>-<<在56x π=时取得最大值,则()f x 在[π,0]-上的单调增区间是( ) A .5ππ6⎡⎤--⎢⎥⎣⎦, B .5ππ66⎡⎤--⎢⎥⎣⎦, C .π03⎡⎤-⎢⎥⎣⎦, D .π06⎡⎤-⎢⎥⎣⎦, 【答案】D【分析】根据题意可得5πsin 16ϕ⎛⎫+= ⎪⎝⎭,则可求出ϕ,由于0A >,所以利用正弦函数的性质可求出答案.【详解】解:因为函数π()sin()(0,0)2f x A x A ϕϕ=+>-<<在5π6x =取最大值所以5πsin 6A A ϕ⎛⎫+= ⎪⎝⎭,则5πsin 16ϕ⎛⎫+= ⎪⎝⎭,所以5πππ,Z 62k k ϕ+=+∈,得ππ,Z 3k k ϕ=-+∈ 又因为π02ϕ-<< 所以π3ϕ=-, 所以π()sin (0)3f x A x A ⎛⎫=-> ⎪⎝⎭,由πππ2π2π,Z 232k x k k -+≤-≤+∈,得5ππ22,Z 66ππk x k k -+≤≤+∈, 所以()f x 的递增区间为()π5π2π,2πZ 66k k k ⎡⎤-++∈⎢⎥⎣⎦,所以()f x 在[π,0]-上的单调增区间是π06⎡⎤-⎢⎥⎣⎦,, 故选:D .例2.(2022·黑龙江·哈尔滨市剑桥第三高级中学有限公司高三阶段练习)函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭的一个对称中心是( )A .,112π⎛⎫⎪⎝⎭B .7,012π⎛⎫⎪⎝⎭ C .,13π⎛⎫ ⎪⎝⎭D .5,012π⎛⎫- ⎪⎝⎭【答案】C【分析】根据余弦型函数,求出其对称中心即可判断作答.【详解】在函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭中,由2,Z 62x k k πππ-=+∈得,,Z 23k x k ππ=+∈, 所以函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭的对称中心是(,1)(Z)23k k ππ+∈,显然B ,D 不满足,A 不满足,当0k =是,对称中心为(,1)3π,C 满足.故选:C例3.(2022·湖北·宜都二中高三期中)已知函数π()sin()0,0,||2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列说法正确的是( )A .()f x 的图象可由()cos g x A x ω=图象向右平移π9个单位长度得到B .()f x 图象的一条对称轴的方程为5π9x =-C .()f x 在区间29π17π,3636⎛⎫-- ⎪⎝⎭上单调递增 D .()2f x ≥的解集为2k π2π2k π,()393k ⎡⎤+∈⎢⎥⎣⎦Z 【答案】ABD【分析】根据函数的振幅、周期、及过点4,49π⎛⎫-⎪⎝⎭可求得π()4sin 36f x x ⎛⎫=+ ⎪⎝⎭, 对于选项A :利用函数图象的平移检验即可;对于选项B :令ππ3π,62x k k +=+∈Z 可解得()f x 图象对称轴的方程,检验是否能取到5π9x =-即可. 对于选项C :求出π9π5π3,644x ⎛⎫+∈-- ⎪⎝⎭,验证正弦函数在9π5π,44⎛⎫-- ⎪⎝⎭是否单调增.对于选项D : 直接解三角不等式π1sin 362x ⎛⎫+≥ ⎪⎝⎭即可获得答案.【详解】由题意知34ππ4,4918A T ⎛⎫==-- ⎪⎝⎭,解得2π3T =,所以2π3T ω==, 所以()4sin(3)f x x ϕ=+.又点4,49π⎛⎫- ⎪⎝⎭在()f x 的图象上, 所以4π4sin 349ϕ⎛⎫⨯+=- ⎪⎝⎭,所以4π3π2π,32k k ϕ+=+∈Z , 解得π2π,6k k ϕ=+∈Z ,又||2ϕπ<,所以ϕ=π6, 所以π()4sin 36f x x ⎛⎫=+ ⎪⎝⎭,将π()4cos34sin 32g x x x ⎛⎫==+ ⎪⎝⎭向右平移π9个单位可得πππ4sin 34sin 3()926y x x f x ⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故A 正确;令ππ3π,62x k k +=+∈Z ,解得ππ,93k x k =+∈Z ,令2k =-得5π9x =- 所以()f x 图象的对称轴的方程为5π9x =-.故B 正确; 当29π17π,3636x ⎛⎫∈-- ⎪⎝⎭时,π9π5π3,644t x ⎛⎫=+∈-- ⎪⎝⎭,sin y t =在9π5π,44t ⎛⎫∈-- ⎪⎝⎭上不是单调递增的,故C 错误;令()2f x ≥,即π1sin 362x ⎛⎫+≥ ⎪⎝⎭,所以ππ5π2π32π,666k x k k +≤+≤+∈Z ,解得2π2π2π,393k k x k ≤≤+∈Z ,即()2f x ≥的解集为2π2π2π,()393k k k ⎡⎤+∈⎢⎥⎣⎦Z ,故D 正确. 故选:ABD.例4.(2023·全国·高三专题练习)已知函数()[]π4sin 2,π,03f x x x ⎛⎫=-∈- ⎪⎝⎭,则()f x 的单调递增区间是________.【答案】7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦【分析】利用正弦函数的单调性以及整体代入的方法,求出()f x 的单调递增区间,结合[]π,0x ∈-,得出答案.【详解】由()πππ2π22πZ 232k x k k -+≤-≤+∈,得()π5πππZ 1212k x k k -+≤≤+∈,当1k =-时,13π7π,1212x ⎡⎤∈--⎢⎥⎣⎦;当0k =时,π5π,1212x ⎡⎤∈-⎢⎥⎣⎦;又因为[]π,0x ∈-,所以()f x 的单调递增区间为7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦故答案为:7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦【题型】二、代入检验判定求三角函数的单调区间对称轴和对称中心例5.(2023·全国·高三专题练习)已知α,β,γ是三个互不相同的锐角,则在sin cos αβ+,sin cos βγ+,sin cos γα+ )个 A .0 B .1C .2D .3【答案】C【分析】先根据辅助角公式得到三个式子的和小于得到在sin cos αβ+,sin cos βγ+,sin cos γα+三个值中,,再举出例子,得到三个值中,有2个值符合要求,故得到答案.【详解】因为α,β,γ是三个互不相同的锐角, 所以sin cos sin cos sin cos αββγγα+++++πππ444αβγ⎛⎫⎛⎫⎛⎫=+++<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以在sin cos αβ+,sin cos βγ+,sin cos γα+若令π3α=,π4β=,π6γ=,则sin cos αβ+=>sin cos βγ+=+>sin cos 1γα+=<的个数最多有2个. 故选:C例6.(2023·全国·高三专题练习)已知()1cos cos 2222x x x f x ⎫=+-⎪⎭,若存在0ππ,33x ⎡⎤∈-⎢⎥⎣⎦,使不等式()205122f x m m ≤--有解,则实数m 的取值范围为( )A .50,2⎡⎤⎢⎥⎣⎦B .(]5,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭C .1,32⎡⎤-⎢⎥⎣⎦D .[)1,3,2⎛⎤-∞-⋃+∞ ⎥⎝⎦【答案】B【分析】先化简()f x 的解析式,不等式()205122f x m m ≤--在,33ππ⎡⎤-⎢⎥⎣⎦上能成立等价于()2min 51,22f x m m -≤-求得()f x 的最小值后解不等式即可求解【详解】()21sin cos 2222x x xf x =+-1cos 11cos 222x x x x +=+-=+ cossin sin cos 66xx x π=+. sin 6x π⎛⎫=+ ⎪⎝⎭0π ,33x π⎡⎤∃∈-⎢⎥⎣⎦,使不等式()205122f x m m ≤--有解则 ()2min 51,22f x m m -≤-π,33x π⎡⎤∈-⎢⎥⎣⎦ πππ,662x ⎡⎤∴+∈-⎢⎥⎣⎦1sin 126x π⎛⎫∴-≤+≤ ⎪⎝⎭ 当3x π=-时,()f x 取得最小值,ππ1sin 362f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭. 所以 2511,222m m --≥-解之得:52m或0m m ∴的取值范围是(]5,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭故选:B例7.(2022·湖南·高三开学考试)若函数()22cos f x x x m ++在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为6,则下列结论正确的是( ) A .5π512f ⎛⎫= ⎪⎝⎭B .2π是函数()f x 的一个周期C .当π0,2x ⎡⎤∈⎢⎥⎣⎦时,不等式()4c f x c <<+恒成立,则实数c 的取值范围是[)2,3D .将函数()f x 的图像向左移动6π个单位得到函数()g x 的图像,则函数()g x 是一个偶函数 【答案】BD【分析】先根据三角恒等变换整理得()π2sin 216f x x m ⎛⎫=+++ ⎪⎝⎭,以π26x +为整体,结合正弦函数图像与性质运算求解,并运用图像平移处理求解判断.【详解】()2π2cos cos212sin 216f x x x m x x m x m ⎛⎫++=+++=+++ ⎪⎝⎭,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,则ππ7π2,666x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以当π6x =时,()f x 的最大值为6,即3m =,所以5π412f ⎛⎫= ⎪⎝⎭,选项A 不正确; ∵()f x 的最小正周期2ππ2T ==,则2π是函数()f x 的一个周期,选项B 正确; 当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()36f x ≤≤,所以不等式()4c f x c <<+恒成立,则364c c <⎧⎨<+⎩,解得23c <<,选项C 不正确;函数()f x 的图像向左移动6π个单位得到函数()πππ2sin 242sin 242cos24662g x x x x ⎡⎤⎛⎫⎛⎫=+++=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()g x 是一个偶函数,选项D 正确. 故选:BD .例8.(2023·广东·高三学业考试)已知函数22()cossin 22x xf x a =--,R a ∈ (1)求函数()f x 的单调递增区间;(2)若函数()f x 在,36ππ⎡⎤-⎢⎥⎣⎦上有零点,求a 的取值范围.【答案】(1)22[]k k πππ-, ,k ∵Z (2)1,12⎡⎤⎢⎥⎣⎦【分析】(1)利用余弦的二倍角公式化简,再结合余弦函数的单调性求解即可;(2)转化为方程cos x a =在,36ππ⎡⎤-⎢⎥⎣⎦上有解即可.(1)22()cos sin cos 22x xf x a x a =--=- 当22k x k πππ-≤≤ ,k ∵Z 时,()f x 单调递增,∵函数()f x 的单调递增区间为22[]k k πππ-,,k ∵Z . (2)函数()f x 在,36ππ⎡⎤-⎢⎥⎣⎦上有零点,也就是cos x a =在,36ππ⎡⎤-⎢⎥⎣⎦上有解.∵当,36x ππ⎡⎤∈-⎢⎥⎣⎦时,1cos ,12x ⎡⎤∈⎢⎥⎣⎦.∵a 的取值范围是1,12⎡⎤⎢⎥⎣⎦.【题型】三、图像法求三角函数的最值或值域例9.(2023·全国·高三专题练习)若将()sin 214f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移4π个单位长度后得到函数()g x 的图象,则()g x 在0,8π⎡⎤⎢⎥⎣⎦上的最小值为( )A1 B .2C 1D .2【答案】C【分析】先求平移后的函数解析式,再求()g x 在闭区间上的最值【详解】因为()si 1442n g x f x x ππ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭,又因为0,8x π⎡⎤∈⎢⎥⎣⎦,所以2,442x πππ⎡⎤+∈⎢⎥⎣⎦,所以()min 1g x =. 故选:C例10.(2023·全国·高三专题练习)已知函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭,则下列说法正确的是( )A .()()f x f x π+=B .6f x π⎛⎫+ ⎪⎝⎭的图象关于原点对称C .若125012x x π<<<,则()()12f x f x < D .对1x ∀,2x ,3,32x ππ⎡⎤∈⎢⎥⎣⎦,有()()()132f x f x f x +>成立【答案】ACD【分析】利用正弦型函数的周期公式求周期判断A ,利用正弦型函数的对称性可判断B ,利用正弦型函数的单调性可判断C ,利用正弦型函数的值域可判断D.【详解】∵函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭的周期22T ππ==,所以()()f x f x π+=恒成立, 故A 正确;又2sin 216f x x π⎛⎫+=+ ⎪⎝⎭,所以2sin 11663f πππ⎛⎫+=+= ⎪⎝⎭,2sin 11663f πππ⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭,所以6666f f ππππ⎛⎫⎛⎫+≠--+ ⎪ ⎪⎝⎭⎝⎭, 所以6f x π⎛⎫+ ⎪⎝⎭的图象不关于原点对称,故B 错误;当50,12x π⎛⎫∈ ⎪⎝⎭时,2,332x πππ⎛⎫-∈- ⎪⎝⎭,所以函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭在50,12π⎛⎫⎪⎝⎭上单调递增,故C 正确;因为,32x ππ⎡⎤∈⎢⎥⎣⎦ ,所以22,333x πππ⎡⎤-∈⎢⎥⎣⎦sin 213x π⎛⎫≤-≤ ⎪⎝⎭,()1,3f x ⎤∴∈⎦,又)213>,即min max 2()()f x f x >,所以对123,,[,],32x x x ππ∀∈有132()()()f x f x f x +>成立,故D 正确.故选:ACD.例11.(2023·全国·高三专题练习)如图,点D 位于以AB 为直径的半圆上(含端点A ,B ),ABC 是边长为2的等边三角形,则AD CB ⋅的取值可能是( )A .1-B .0C .1D .4【答案】BC【分析】建立坐标系,利用数量积的坐标表示求AD CB ⋅,化简求其范围,由此可得结论. 【详解】如图所示,以AB 所在直线为x 轴,以AB 的垂直平分线为y 轴建立平面直角坐标系,则()1,0A -,()10B ,,(0,C .令()cos ,sin D θθ,其中0θπ≤≤,则()cos 1,sin AD θθ=+,(1,CB =,所以cos 12sin 16AD CB πθθθ⎛⎫⋅=++=++ ⎪⎝⎭.因为0θπ≤≤,所以7666πππθ≤+≤,所以1sin 126πθ⎛⎫-≤+≤ ⎪⎝⎭,所以[]2sin 10,36AD CB πθ⎛⎫⋅=++∈ ⎪⎝⎭.故选:BC.例12.(2023·全国·高三专题练习)函数()ππsin 36f x x x ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭的最大值为______.【答案】2【分析】利用三角诱导公式和恒等变换化简得到()2cos f x x =,从而求出最大值.【详解】()πππππsin cos 36362f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+--=++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭πππππcos 2sin 2sin 2cos 33362x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++=++=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故函数()f x 的最大值为2 故答案为:2【题型】四、换元法求三角函数的最值或值域例13.(2023·全国·高三专题练习)已知函数()2sin cos f x x x x =,则下列结论中正确的是( )A .函数()f x 的最小正周期为2πB .3x π=时()f x 取得最小值C .()f x 关于3x π=对称 D .512x π=时()f x 取得最大值 【答案】D【分析】结合二倍角正弦公式和辅助角公式化简()f x ,再结合正弦函数性质判断各选项.【详解】因为()2sin cos f x x x x =,所以()sin 2f x x x =,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以函数()f x 的最小正周期22T ππ==,A 错误,2sin 22333f πππ⎛⎫⎛⎫=⨯-=≠- ⎪ ⎪⎝⎭⎝⎭,BC 错误,552sin 2212123f πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,D 正确.故选:D.例14.(2023·全国·高三专题练习)函数()sin cos sin 2f x x x x =++的最大值为( ) A.1 B .1C .1D .3【答案】C【分析】利用换元法,令sin cos t x x =+,则原函数可化为21y t t =+-,再根据二次函数的性质可求得其最大值【详解】()sin cos sin 2sin cos 2sin cos f x x x x x x x x =++=++,令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,所以[t ∈,则22(sin cos )12sin cos t x x x x =+=+,所以22sin cos 1x x t =-,所以原函数可化为21y t t =+-,[t ∈,对称轴为12t =-,所以当t =时,21y t t =+-取得最大值,所以函数的最大值为211=,即()sin cos sin 2f x x x x =++的最大值为1 故选:C例15.(2023·全国·高三专题练习)函数2()sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 B .2C .32D .3【答案】C【分析】先将函数用二倍角公式进行降幂运算,得到1()sin(2)26f x x π=+-,然后再求其在区间[,]42ππ上的最大值.【详解】解:因为2()sin cos f x x x x =,所以1cos 21()2sin(2)226x f x x x π-==+-,42ππx ≤≤,52366x πππ∴≤-≤,1sin 2126x π⎛⎫∴≤-≤ ⎪⎝⎭,∴13()122max f x =+=.故选:C .例16.(2022·广东·汕头市达濠华侨中学高三阶段练习)已知函数()3sin 222f x x x =+,则下列选项正确的有( ) A .()f x 的最小正周期为πB .曲线()y f x =关于点π,03⎛⎫⎪⎝⎭中心对称C .()f xD .曲线()y f x =关于直线π6x =对称 【答案】ACD【分析】化简()πsin 26⎛⎫=+ ⎪⎝⎭f x x .利用周期公式求出周期可判断A ;计算π3⎛⎫⎪⎝⎭f 可判断B ; 利用π1sin 216⎛⎫-≤+≤ ⎪⎝⎭x 可判断C ;计算π6f ⎛⎫⎪⎝⎭可判断D【详解】()3πsin 22sin 226f x x x x ⎛⎫==+ ⎪⎝⎭. 对于A ,()f x 的最小正周期2ππ2T ==,故A 正确;对于B ,πππ20336f ⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,π1sin 216⎛⎫-≤+≤ ⎪⎝⎭x ,所以()max f x C 正确;对于D ,πππ2666f ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭D 正确.故选:ACD.【题型】五、利用三角函数的单调性、奇偶性、周期性和对称性求参数例17.(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为( ) A .3 B .4 C .5 D .6【答案】C【分析】根据三角函数的性质,利用整体思想,由单调区间与周期的关系,根据零点与对称轴之间的距离,表示所求参数,逐个检验取值,可得答案.【详解】由f (x )在186ππ⎛⎫⎪⎝⎭,上单调,即12618T ππ≥-,可得29T π≥,则ω≤9;∵4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,根据三角函数的图象可知,零点与对称轴之间距离为:()1214T k ⨯-,k ∵N *.要求ω最大,则周期最小,∵()12142k T π-⨯=,则T 221k π=-;∵ω=2k ﹣1;当9ω=时,由2πϕ≤,则4πϕ=-,可得()cos 94f x x π⎛⎫=- ⎪⎝⎭,易知()f x 在5,1836ππ⎛⎫ ⎪⎝⎭上单减,在5,366ππ⎛⎫⎪⎝⎭上递增,不合题意; 当7ω=时,由2πϕ≤,则4πϕ=,可得()cos 74f x x π⎛⎫=+ ⎪⎝⎭,易知()f x 在3,1828ππ⎛⎫⎪⎝⎭上单减,在3,286ππ⎛⎫ ⎪⎝⎭上递增,不合题意;当5ω=时,由2πϕ≤,则4πϕ=-,可得()cos 54f x x π⎛⎫=- ⎪⎝⎭,易知()f x 在,186ππ⎛⎫⎪⎝⎭上单减,符合题意;故选:C .例18.(2023·全国·高三专题练习)若直线π4x =是曲线πsin (0)4y x ωω⎛⎫=-> ⎪⎝⎭的一条对称轴,且函数πsin()4y x ω=-在区间[0,π12]上不单调,则ω的最小值为( )A .9B .7C .11D .3【答案】C【分析】根据给定条件,求出ω的关系式,再求出函数πsin()4y x ω=-含有数0的单调区间即可判断作答.【详解】因直线π4x =是曲线πsin (0)4y x ωω⎛⎫=-> ⎪⎝⎭的一条对称轴,则πππ,N 442k k ωπ-=+∈,即43,N k k ω=+∈, 由πππ242x ω-≤-≤得π3π44x ωω-≤≤,则函数πsin()4y x ω=-在π3π[,]44ωω-上单调递增, 而函数πsin()4y x ω=-在区间π[0,]12上不单调,则3π412πω<,解得9ω>, 所以ω的最小值为11. 故选:C例19.(2023·江苏南京·高三阶段练习)已知函数()()πsin 026f x x ωω⎛⎫=+<< ⎪⎝⎭,()()π0f x f x ++=,()()()0πf f αβαβ=<<<,则( )A .()()4πf x f x =+B .()()9π0f x f x ++=C .()()12f f αββα+<-= D .()()12f f βααβ-<+=【答案】AB【分析】推导出()()2πf x f x +=,可判断AB 选项;求出2π3αβ+=,并求出()f βα-的取值范围,可判断CD 选项.【详解】对于A 选项,对任意的R x ∈,()()πf x f x +=-,则()()()2ππf x f x f x +=-+=, 所以,()()()4π2πf x f x f x +=+=,A 对;对于B 选项,()()()9ππf x f x f x +=+=-,则()()9π0f x f x ++=,B 对; 对于CD 选项,由题意可知,()f x 的最小正周期为2π,则2π12πω==,则()πsin 6f x x ⎛⎫=+ ⎪⎝⎭,当()0,πx ∈时,ππ7π666x <+<, 由πππ662x <+<可得π03x <<,则函数()f x 在π0,3⎛⎫⎪⎝⎭上单调递增, 由ππ7π266x <+<可得ππ3x <<,则函数()f x 在π,π3⎛⎫ ⎪⎝⎭上单调递减,0παβ<<<,则πππ7π6666αβ<+<+<, 所以,πππ66αβ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,则2π3αβ+=,所以,()2ππ5π1sin sin 3662f αβ⎛⎫+=+==⎪⎝⎭,C 错, 因为πππ7π6666αβ<+<+<,则πππ662α<+<,所以,π03α<<, 则2π2π20,33βαα⎛⎫-=-∈ ⎪⎝⎭,所以,ππ5π,666βα⎛⎫-+∈ ⎪⎝⎭ 故()1,12f βα⎛⎤-∈ ⎥⎝⎦,则()()12f f βααβ->+=,D 错.故选:AB.【题型】六、五点法求三角函数的解析式例20.(2023·全国·高三专题练习)智能主动降噪耳机工作的原理是通过耳机两端的噪声采集器采集周围的噪声,然后通过主动降噪芯片生成与噪声相位相反、振幅相同的声波来抵消噪声(如图).已知噪声的声波曲线()cos y A x ωϕ=+(其中0A >,0ω>,0πϕ≤<2)的振幅为1,周期为2π,初相位为π2,则通过主动降噪芯片生成的声波曲线的解析式为( )A .sin y x =B .cos y x =C .sin y x =-D .cos y x =-【答案】A【分析】由振幅可得A 的值,由周期可得ω的值,由初相位可得ϕ的值,即可得出声波曲线的解析式,进而可得主动降噪芯片生成的声波曲线的解析式.【详解】解:因为噪音的声波曲线()cos y A x ωϕ=+(其中0A >,0ω>,0πϕ≤<2)的振幅为1,则1A =, 周期为2π,则2π2π12πT ω===,初相位为π2,π2ϕ=,所以噪声的声波曲线的解析式为πcos sin 2y x x ⎛⎫=+=- ⎪⎝⎭,所以通过主动降噪芯片生成的声波曲线的解析式为sin y x =.故选:A.例21.(2022·福建省连城县第一中学高三阶段练习)函数()()sin()0,f x A x b ωϕωϕπ=++><的部分图象如图所示,下列说法正确的是( )A .函数()f x 的解析式为()2sin 213f x x π⎛⎫=++ ⎪⎝⎭B .函数()f x 的单调递增区间为5,(Z)1212k k k ππππ⎛⎫-++∈ ⎪⎝⎭C .函数()f x 的图象关于点,1(Z)2k k π⎛⎫∈ ⎪⎝⎭对称 D .为了得到函数()f x 的图象,只需将函数()2cos 23g x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位长度,再向上平移一个单位长度 【答案】ABD【分析】由题意求出()f x 的解析式可判断A ;利用正弦函数的单调性和对称性可判断BC ;由三角函数的平移变换可判断D.【详解】对于A ,由图可知,31A b A b +=⎧⎨-+=-⎩,可得21A b =⎧⎨=⎩,由π1sin 425π1sin 122ωϕωϕ⎧⎡⎤⎛⎫⨯-+=-⎪ ⎪⎢⎥⎪⎝⎭⎣⎦⎨⎛⎫⎪⨯+=- ⎪⎪⎝⎭⎩,则1122ππ+2π,Z 465π7π+2π,Z126k k k k ωϕωϕ⎧-+=-∈⎪⎪⎨⎪+=∈⎪⎩,两式相减得:()122π4π2π33k k ω=+-, 所以()1223k k ω=+-∵,又因为π2π5ππ33212425ππ2π2π31243T T ωωωω⎧⎧≤≤+⎧⎪⎪≥⎪⎪⎪⇒⇒⎨⎨⎨⎪⎪⎪≤≥+≥⎩⎪⎪⎩⎩,所以332ω≤≤,结合∵,2ω=, 因为π5ππ412212-+=,所以πππ21223ϕϕ⨯+=⇒=, 所以()π2sin 213f x x ⎛⎫=++ ⎪⎝⎭,故A 正确;对于B ,πππ2π22π,Z 232k x k k -+≤+≤+∈,解得:()5ππππ,Z 1212k x k k -+≤≤+∈,故B 正确; 对于C ,令π2ππ,Z 3+=+∈x k k ,解得:ππ,Z 32=+∈k x k , 函数()f x 的图象关于点()ππ,1Z 32k k ⎛⎫+∈ ⎪⎝⎭对称,所以C 不正确;对于D ,将函数π2cos 23x ⎛⎫+ ⎪⎝⎭向右平移π4个单位得到πππ2cos 22sin 2433⎡⎤⎛⎫⎛⎫-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦x x ,向上平移一个单位长度可得π2sin 213y x ⎛⎫=++ ⎪⎝⎭,故D 正确.故选:ABD.例22.(2023·江西·赣州市赣县第三中学高三期中(理))已知函数()sin 0,0,π()(||)f x A x A ωϕωϕ=+>><的部分图象如图所示,将函数()f x 的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数()g x 的图象.(1)求函数()g x 的解析式;(2)若对于()()2π0,,303x g x mg x ⎡⎤⎡⎤⎣⎦⎢⎥∀-⎣-⎦∈≤恒成立,求实数m 的取值范围.【答案】(1)π()2sin 36g x x ⎛⎫=+ ⎪⎝⎭,(2)1,22⎡⎤⎢⎥⎣⎦.【分析】(1)先根据函数图象求出()f x 的解析,再利用图象变换规律可求出()g x 的解析式; (2)由π0,3x ⎡⎤∈⎢⎥⎣⎦,得ππ7π3,666x ⎡⎤⎢⎥⎣∈⎦+,从而可得[]()1,2g x ∈-,然后分()0g x =,()[1,0)g x ∈-和(,])2(0g x ∈求解即可.【详解】(1)由()f x 的图象可得2A =,5πππ212122T ⎛⎫=--= ⎪⎝⎭, 所以πT =,所以2ππω=,得2ω=,所以()()(|2sin 2π|)f x x ϕϕ=+<, 因为()f x 的图象过5,212π⎛⎫- ⎪⎝⎭,所以52sin 2212πϕ⎛⎫⨯+=- ⎪⎝⎭,所以5sin 16πϕ⎛⎫+=- ⎪⎝⎭, 所以5ππ2π,Z 62k k ϕ+=-∈,得4π2π,Z 3k k ϕ=-∈, 因为||πϕ<,所以2π3ϕ=, 所以()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,将函数()f x 的图象上所有点的横坐标变为原来的23,纵坐标不变,可得32π2π2sin 22sin 3233y x x ⎛⎫⎛⎫=⨯+=+ ⎪ ⎪⎝⎭⎝⎭,再将所得函数图象向右平移π6个单位长度,得 π2ππ2sin 32sin 3636y x x ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以π()2sin 36g x x ⎛⎫=+ ⎪⎝⎭(2)由π0,3x ⎡⎤∈⎢⎥⎣⎦,得ππ7π3,666x ⎡⎤⎢⎥⎣∈⎦+,所以π1sin 3,162x ⎛⎫+∈- ⎪⎝⎭⎡⎤⎢⎥⎣⎦,所以[]π2sin 31,26x ⎛⎫+∈- ⎪⎝⎭,所以[]()1,2g x ∈-,当()0g x =时,30-≤恒成立,当()[1,0)g x ∈-时,则由()()230g x mg x -⎤⎦-⎣≤⎡, 得3()()m g x g x ≤-, 因为函数3y x x=-在[1,0)-上为增函数,所以min33()12()1g x g x ⎡⎤-=--=⎢⎥-⎣⎦ 所以2m ≤,当(,])2(0g x ∈,则由()()230g x mg x -⎤⎦-⎣≤⎡, 得3()()m g x g x ≥-, 因为函数3y x x=-在(0,2]上为增函数,所以max331()2()22g x g x ⎡⎤-=-=⎢⎥⎣⎦ 所以12m ≥, 综上122m ≤≤,即实数m 的取值范围为1,22⎡⎤⎢⎥⎣⎦.【题型】七、利用图象平移求函数的解析式或参数例23.(2023·全国·高三专题练习)要得到函数π3sin(2)3y x =+的图象,只需要将函数3cos 2y x =的图象( )A .向右平行移动π12个单位 B .向左平行移动π12个单位 C .向右平行移动π6个单位D .向左平行移动π6个单位【答案】A【分析】由三角函数的图象变换求解【详解】π3cos 23sin(2)2y x x ==+,要得到π3sin(2)3y x =+的图象,需要向右平移πππ23212-=个单位.故选:A例24.(2022·湖南省临澧县第一中学高三阶段练习)已知函数π()2sin 213f x x ⎛⎫=-+ ⎪⎝⎭,则下列说法正确的是( )A .将函数2sin 2y x =的图象向右平移π6个单位,再向上平移1个单位得到()=y f x 的图象B .函数()=y f x 在区间π0,2⎛⎫⎪⎝⎭上单调递增C .函数()=y f x 的图象关于直线π12x =-对称 D .函数()=y f x 的图象关于点,06π⎛⎫⎪⎝⎭对称【答案】AC【分析】根据图象平移写出解析式判断A ;利用正弦函数性质,整体法判断()f x 的区间单调性判断B ,代入法判断对称性,判断C 、D. 【详解】A :根据平移过程πππ=()+1=2sin2()+1=2sin(2)+1663y g x x x ---,正确; B :π0,2x ⎛⎫∈ ⎪⎝⎭,则ππ2π2(,)333x -∈-,根据正弦函数性质()f x 在区间内不单调,错误;C :πππ()=2sin()+1=11263f ----,此时ππ2=32x --,故直线π12x =-为对称轴,正确;D :πππ()=2sin()+1=1633f -,故关于点π,16⎛⎫⎪⎝⎭对称,错误.故选:AC例25.(2022·广东·深圳中学高三阶段练习)将函数()π=2sin 3f x x ω-⎛⎫ ⎪⎝⎭的图像向左平移2π3个单位,所得图像关于原点对称.若01ω<<,则下列说法正确的是( ) A .()f x 的最小正周期为4πB .()f x 的对称中心为()2π2π+,0Z 3k k ∈⎛⎫ ⎪⎝⎭C .对任意的R x ∈,都有()2π=3f x f x -⎛⎫ ⎪⎝⎭D .()π=2sin +6g x x ω⎛⎫ ⎪⎝⎭与()f x【答案】AB【分析】利用平移后得函数是奇函数求出12ω=,则()f x 的最小正周期为2π=4π12,故A 正确;令()1π=πZ 23x k k -∈判断B 正确;由π=13f -⎛⎫⎪⎝⎭判断C 错误;令()=()f x g x 分析得到公,判断D 错误.【详解】将函数()π=2sin 3f x x ω-⎛⎫ ⎪⎝⎭的图像向左平移2π3个单位,可得2ππ()=2sin (+)33h x x ω-⎡⎤⎢⎥⎣⎦,()h x 为奇函数,则(0)0h =,即2ππ=π33k ω-,13=+,22k k Z ω∈, 因为01ω<<,所以1=0=2k ω,,则()1π=2sin 23f x x -⎛⎫ ⎪⎝⎭,所以()f x 的最小正周期为2π=4π12,故A 正确;令()1π=πZ 23x k k -∈,得2π=2π+3x k ,()f x 的对称中心为()2π2π+,0Z 3k k ∈⎛⎫ ⎪⎝⎭,故B 正确;π1ππ=2sin(?)=13233f --⎛⎫⎪⎝⎭,所以3x π=不是对称轴,故C 错误;令()=()f x g x ,即1π1πsin =sin +2326x x -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,1π1ππ1πsin +=sin +=cos 2623223x x x --⎡⎤⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,1π1πsin =sin +=?2326x x ∴-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ ()π=2sin +6g x x ω⎛⎫ ⎪⎝⎭与()f x故D 错误; 故选:AB.。

三角函数值域的求法

三角函数值域的求法

例谈三角函数值域(最值)的几种求法南县一中 肖胜军有关三角函数的值域(最值)的问题是各级各类考试考察的热点之一,这类问题的解决涉及到化归、转换、类比等重要的数学思想,采取的数学方法包括易元变换、问题转换、等价化归等重常用方法。

掌握这类问题的解法,不仅能加强知识的纵横联系,巩固基础知识和基本技能,还能提高数学思维能力和运算能力。

一、 合理转化,利用有界性求值域例1、求下列函数的值域:(1)1sin cos y x x =+ (2)cos 3cos 3x y x -=+(3)22sin 2sin cos 3cos y x x x x =++ (4)3sin()4cos()44y x x ππ=+++解析:(1)根据11sin cos sin 222x x x ≤≤可知:1322y ≤≤ (2)将原函数的解析式化为:3(1)cos 1y x y +=-,由cos 1x ≤可得:122y -≤≤-(3) 原函数解析式可化为:21sin 22cos 2sin 2cos 22)4y x x x x x π=++=++=+可得:22y -≤≤+(4)根据sin cos )a x b x x φ⎡+=+∈⎣可得:55y -≤≤二、单调性开路,定义回归例2、求下列函数的值域:(1)y =(2)y =(3)2cos ,63y x x x ππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎣⎦⎝⎭(4)y =1sin 022x ≤≤≤≤解析:(1)由-1知:1sin 1,cos1cos sin 122x x ππ≤-≤≤≤≤≤≤≤(2)由-有()125sin()663366x x x ππππππ+≤≤≤+≤≤≤(3)y=2由知:由正弦函数的单调性:1y 2[](4)0,2y ==三、 抓住结构特征,巧用均值不等式2222min 9sin 430,()sin 0sin 0,4()9sin 12sin 449sin sin ()12sin 9x x x f x x xx x x f x x x x x x x x x f x x x ππ+<<=<<>=+≥====例、若求的最小值解析:由得:根据均值不等式:当即时, 例4、sin cos(),sin βαβαββα=+已知其中、为锐角,求tan 的最大值 [][]22sin sin ()sin()cos cos()sin sin cos()sin()cos 2sin cos(),tan()2tan tan()tan tan 1tan tan ()11tan tan()12tan 42tan tan 112tan tan tan 2βαβααβααβαααβαβαααβαβααβααβαβαααβαααααα=+-=+-+=++=++=+-=+-===≤++++==解析:由即有于是:当即时,有maxtan 4β=()四、易元变换,整体思想求解5sin cos sin cos y x x x x =++例、求函数的值域22211)sin 2)12sin ()424241sin ())442sin()142y x x x x x x x ππππππ⎡⎤=++=+--+⎢⎥⎣⎦=+++-⎡=++-⎢⎣⎦解法一:max 1sin()142x y π+==当时,222max 1sin cos ),sin cos 4211(1)1221,2t x x t t x x x t y t t t y π-⎡+==+∈=⎣-⎡∴=+=+-∈⎣==解法二:设,则,t 故当有222222222max sin ,cos ,sin cos 2,sin cos 1sin cos 1,2221sin cos sin cos 222,,222122x m n x m n x x m x x m n x m n m y x x x x m m n m m m m y =+=-+==-⎡+=+=∈-⎢⎣⎦⎡∴=++=+-=+-∈-⎢⎣⎦==解法三、构造对偶式转化为某一变量的二次函数在闭区间内求最大值设则由,得故当五、方程架桥,问题转化()()[]221sin 3sin 62sin sin (4)sin 320sin ,132011x x y xx y x y t x t t y ++=++-+-==≤∴++-=-例:求函数的最大值、最小值。

3三角函数的值域与最值

3三角函数的值域与最值

三角函数的值域与最值【知识回顾】1. 辅助角公式的应用:y=()sin cos a x b x x θ+=+(其中θ角所在的象限由a, b 的符号确定,θ角的值由tan baθ=确定)在求最值、化简时起着重要作用。

2. 化二次或高次函数,如y=x x 2cos 2sin - 【基础练习】1.函数x x y cos 3sin +=在区间[0,]2π上的最小值为 .2.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 ______.3.函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是___________________.4.当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为 _____ .5.已知k <-4,则函数y =cos2x +k(cosx -1)的最小值是 _____ .6.若2αβπ+=,则cos 6sin y βα=-的最大值与最小值之和为________. 【范例解析】例1.(1)已知1sin sin 3x y +=,求2sin cos y x -的最大值与最小值.(2)求函数sin cos sin cos y x x x x =⋅++的最大值.例2.求函数2cos (0)sin xy x xπ-=<<的最小值.例3. 已知函数f(x)=Asin(ωx +ϕ),x∈R (其中A>0,ω>0,0<ϕ<π2)的周期为π,且图象上一个最低点为M(2π3,-2). (1)求f(x)的解析式;(2)当x∈[0,π12]时,求f(x)的最值.例4.扇形AOB 的半径为1,中心角为60︒,PQRS 是扇形的内接矩形,问P 在怎样的位置时,矩形PQRS 的面积最大,并求出最大值. ,ABORS PQ【反馈演练】1.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于___________.2.已知函数()3s i n f x x =,3()sin()2g x x π=-,直线m x =和它们分别交于M ,N ,则=m a x MN _________.3.当04x π<<时,函数22cos ()cos sin sin xf x x x x =-的最小值是_____________.4.函数sin cos 2xy x =+的最大值为_______,最小值为________.5.函数cos tan y x x =⋅的值域为 .6.已知函数11()(sin cos )|sin cos |22f x x x x x =+--,则()f x 的值域是 .7.已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于_________.8.(1)已知(0,)θπ∈,函数y =的最大值是_______. (2)已知(0,)x π∈,函数2sin sin y x x=+的最小值是____________. 9.在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则当△OAB 的面积达最大值时,=θ_____________ . 10.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.11.若函数)4sin(sin )2sin(22cos 1)(2ππ+++-+=x a x x x x f 的最大值为32+,试确定常数a 的值.12.已知函数2()2sin sin 2f x x x =+.(1)若[0,2]x π∈.求使()f x 为正值的x 的集合;(2)若关于x 的方程2[()]()0f x f x a ++=在[0,]4π内有实根,求实数a 的取值范围.专题十二: 三角函数的值域与最值【知识回顾】3. 辅助角公式的应用:y=()sin cos a x b x x θ+=+(其中θ角所在的象限由a, b 的符号确定,θ角的值由tan baθ=确定)在求最值、化简时起着重要作用。

(完整版)三角函数值域求解归纳

(完整版)三角函数值域求解归纳

三角函数最值问题的几种常见类型 三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。

其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。

题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。

掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。

1.y=asinx+bcosx 型的函数 特点是含有正余弦函数,并且是一次式。

解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。

应用课本中现成的公式即可:sin(x+φ),其中tan baφ= 例1已知函数f (x )=2cos x sin(x +)-sin 2x +sin x cos x 3π3(1)求函数f (x )的最小正周期;(2)求f (x )的最小值及取得最小值时相应的x 的值;(3)若当x ∈[,]时,f (x )的反函数为f -1(x ),求f --1(1)的值.12π127π解:(1)f (x )=2cos x sin(x +)-sin 2x +sin x cos x 3π3=2cos x (sin x cos +cos x sin )-sin 2x +sin x cos x 3π3π3=2sin x cos x +cos2x =2sin(2x +)33π∴f (x )的最小正周期T =π(2)当2x +=2k π-,即x =k π- (k ∈Z )时,f (x )取得最小值-2.3π2π125π(3)令2sin(2x +)=1,又x ∈[],3π27,2ππ∴2x +∈[,],∴2x +=,则3π3π23π3π65πx =,故f --1(1)= .4π4π 2.y=asin 2x+bsinxcosx+cos 2x 型的函数。

特点是含有sinx, cosx 的二次式,处理方式是降幂,再化为型1的形式来解。

三角函数的值域和最值问题

三角函数的值域和最值问题

三角函数的值域与最值一、主要方法及注意点:1.求值域或最值的常用方法有:(1)化为一个角的同名三角函数形式,利用函数的有界性或单调性求解;(2)将函数式化成一个角的同名三角函数的一元二次式,利用配方法或图象法求解;(3)借助直线斜率的关系用数形结合法求解;(4)换元法。

2.要注意的问题有:(1)注意题设给定的区间;(2)注意代数代换或三角变换的等价性;(3)含参数的三角函数式,要重视参数的作用,很可能要进行讨论。

二、基本练习:1.求下列函数的最大、最小值:(1)x x y cos sin 32⋅= (2)x y sin 41-=解:1sin 23y x =∴y ∈[13-,13]解:50,4y ⎡⎤∈⎢⎥⎣⎦(3)1)21(sin 22++-=x y (4)1615)45(sin 2+-=x y解:7[,1]2y ∈- 解:y ∈[1,6]2.若|x|≤4π,则f(x)=cos 2x+sinx 的最小值是( D ) A .212- B .221+- C .-1 D .221- 3.求函数的值域:(1)y=3sin x -4cosx (2)f(x)=sinx+3cosx (2π-≤x ≤2π) 解:y ∈[-5,5]解:()2sin()3f x x π=+又2π-≤x ≤2π ∴y ∈[-1,2]4.(1)求函数xxy sin cos 2-=(0<x<π)最小值。

(2)求函数2sin 1sin 3)(+-=x x x f 的最大值和最小值。

解:(1)设点A (0,2),B (-sinx ,cosx ) 又0<x<π,则点B 的轨迹如图而y 的值就是经过AB 两点的斜率,所以y.(2)21sin3yxy+=-,而sinx∈[-1,1]于是-1≤213yy+-≤1所以-4≤y≤23即y的最大值为23,最小值为-4.三、典例精析:例1.求函数y=sin x ·c osx+sinx+cosx 的最大值。

三角函数的值域一题多解

三角函数的值域一题多解

三角函数的值域一题多解三角函数是数学中的重要概念之一,也是高中数学中常见的内容。

在讨论三角函数的值域时,通常是指函数图像在定义域上的取值范围。

对于三角函数而言,包括正弦函数、余弦函数和正切函数等。

首先,我们来讨论正弦函数的值域。

正弦函数的定义域为实数集,即函数图像的横坐标可以取任意实数。

在正弦函数的图像中,我们会发现它是在区间[-1,1]之间连续变化的。

实际上,正弦函数的取值范围也正是[-1,1]。

这是因为正弦函数的图像是一个连续的周期函数,在一个周期内,它的最大值为1,最小值为-1、因此,正弦函数的值域为[-1,1]。

接下来,我们来讨论余弦函数的值域。

余弦函数的定义域也为实数集。

在余弦函数的图像中,我们会发现它也是在区间[-1,1]之间连续变化的。

实际上,余弦函数的取值范围也正是[-1,1]。

与正弦函数类似,余弦函数的图像也是一个连续的周期函数,在一个周期内,它的最大值为1,最小值为-1、因此,余弦函数的值域为[-1,1]。

最后,我们来讨论正切函数的值域。

正切函数的定义域是除了π/2+kπ(k为整数)之外的所有实数。

在正切函数的图像中,我们会发现它是在整个实数轴上变化的。

实际上,正切函数的值域是整个实数轴,即正切函数的取值范围为(-∞,+∞)。

这是因为在每个π的整数倍处,正切函数会出现无穷大的间断点,但无论是在这些间断点附近的左侧还是右侧,正切函数的取值都可以趋近于正无穷和负无穷。

综上所述,正弦函数和余弦函数的值域均为[-1,1],而正切函数的值域为(-∞,+∞)。

需要注意的是,这些值域的讨论都是基于函数的基本定义域和图像特点进行推导的。

另外,除了以上讨论到的三角函数,还有其他一些三角函数,如反正弦函数、反余弦函数和反正切函数等。

这些函数的值域也有其特定的范围,但由于篇幅限制,无法在此详细讨论。

需要在具体问题中进行分析和求解。

总结起来,三角函数的值域是一个重要的数学概念,对于正弦函数、余弦函数和正切函数等常见的三角函数而言,其值域分别为[-1,1]和(-∞,+∞)。

高中数学:三角函数中的参数求值或求范围问题

高中数学:三角函数中的参数求值或求范围问题

高中数学:三角函数中的参数求值或求范围问题
1、等式恒成立型
这一类型包括奇偶性概率、周期性概念、存在性问题三种,解决方法有一般定义法或先用特值求解再进行证明两个思路。

例1、若是奇函数,求θ的值。

若是偶函数呢?
解法1 定义法:因为是奇函数,所以对恒成立,即恒成立,所以为所求。

解法2 特值法:因为是奇函数,所以f(0)=0,得,故,此时,而,故为所求。

解法3:因为是奇函数,所以对恒成立,即恒成立,进而恒成立,所以,即为所求。

2、不等式恒成立型
这类问题的理论依据是:若将含参数t的关于x的不等式分离,通过求g(x)的最值,再求t的取值范围。

(1);
(2)。

例2、已知函数恒成立,求实数a的范围。

解析:,
由,由对。

3、函数最值型
此类问题主要是分离变量转换为求函数值域或者转换为二次函数分类讨论求最值。

例3:若函数的最小值是-6,求实数a的值。

解析:令。

(1)上递增,所以,得a=-7。

(2)当时,g(t)在[-1,1]上递减,所以,得a=7;
(3)当时,g(t)在递增。

所以,舍去;综上所述,得。

热文推荐:
下酒菜排名,第一名实至名归,不流口水就服你!最好看的青春校园小说小故事,噗的笑出来
矮个子女生穿衣搭配宝典,穿出大长腿!
矮个子女生显瘦重要,还是显高更重要?
男生学生党穿衣服搭配青春显活力
十二星座谁爱吃飞醋
汽车保养周期表,强烈建议收藏!
你孤单吗?
英语作文万能模板!轻松获取高分秘籍!
成熟不是年龄,而是一种境界。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数求值域专题求三角函数值域及最值的常用方法:(1)一次函数型:或利用为:y asinx bcosx a2b2sin(x ),利用函数的有界性或单调性求解;化为一个角的同名三角函数形式,(1):y 2sin(3x —) 5,y sin xcosx12(2)y 4sin x 3cosx(3) _____________________________________ .函数在区间上的最小值为_1.(4 )函数且的值域是—(,1] [1,)(2)二次函数型:化为一个角的同名三角函数形式的一元二次式,利用配方法、换元及图像法求解;二倍角公式的应用:女口. ( 1) y sin x cos2x3(2)函数的最大值等于3.4(3) _____________________________ .当时,函数的最小值为_4 •(4).已知k v—4,则函数y = cos2x + k(cos x-1)的最小值是 1 •(5).若,则的最大值与最小值之和为2— _ •(3) 借助直线的斜率的关系用数形结合求解;a sin x b型如f(x) 型。

此类型最值问题可考虑如下几种解法:ccos x d①转化为asinx bcosx c再利用辅助角公式求其最值;②利用万能公式求解;③采用数形结合法(转化为斜率问题)求最值。

例1 :求函数y sinx的值域。

cosx 2结合图形可知,此函数的值域是[』3,』3]。

33例2.求函数的最小值.解法一:原式可化为,得,即, 故,解得或(舍),所以的最小值为. 解法二:表示的是点与连线的斜率,其中点 B 在左半圆上,由图像知,当 AB 与半圆相切时,最小, 此时,所以的最小值为.(4) 换元法•识,易求得过Q 的两切线得斜率分别为 解法2:将函数ycosx sinx_变形为 2y cosx sin x2y ,二 sin( x )2y 1 y 2|sin(x )| 理 1V 1 y2(2y)y2,解得:彳,故值域是3]解法 3:利用万能公式求解: 由万能公式sin x -1 2t cosx 口;,代入1 t 2sinx得到cosx 22t2厂沪则有3yt2t0知:当t0,则y满足条件;当0,由24 12y 0 ,乜,故所求函数的值域是3解法4:利用重要不等式求解:由万能公式sinx -12t T , cosx.代入t 2sinx得到cosx 20,2t1 3t 20时,则y 0,满足条件;当t 0时,2 1" t 3t——,如果t >3t)2 ([)(3t)2 ~1 (:3t)2 2、于,此时即有如果t2、( ;)( 3t)彳,此时有0 y 于。

综上:此函数的值域是代数换元法代换:t 21 y sin xcosx sinx cosx 令:sinx cosx t,则yt 再用配方、 例题:求函数的最大值.(5) 降幕法例2.已知函数,.(I )求的最大值和最小值;解:(I)又,,即,(n),,且,,即的取值范围是.(5)典型应用题解:设,则,则, 当时,有最大值为. 型如 ・ 2y a sin x bsinx cosx c(a 0)型。

此类型可利用倍角公式、降幕公式进行降次、 整理为y Asin 2x B cos2x 型再利用辅助角公式求出最值。

时x 的值。

求函数 f(x) 5 . 3cos 2 x . 3sin 2x 4sin xcosx( —4£)的最值,并求取得最值解:由降幕公式和倍角公式,得-1 cos2x f(x)5 3-1 cos2x、3 ---------- 2si n2x2 .3 cos3x 2sin 2x 3.34cos(2x 7 — x 4242 32x3 4J cos(2x 2f (x)的最小值为 3.32 2,此时x, f (x)无最大值。

24(II )若不等式在上恒成立, 求实数的取值范围.扇形的半径为1中心角为,是扇形的内接矩形,问在怎样的位置时,矩形的面积最大,并求出最大值.解:连接,设,则,,,所以当时,在圆弧中心位置,•类型6:条件最值问题(不要忘了条件自身的约束)例1.已知,求的最大值与最小值.解:(1)由已知得:,,贝U.,当时,有最小值;当时,有最小值.例2:已知3sin22sin22si n,求y・2 sin2sin 的取值范围。

解•/ 3sin22sin2 2 si n・2,••• sin3sin 2sin2•/ 0 sin123 . 2sin sin0o2解得0sin23 . 23sin sin12・2・2 1 . 21 2 1y sin sin sin sin—(sin1)-2222-0 sin o3sin a =0 时,y min;sin-时,y max40 sin2・2 sin4o399例3 : 求函数y.X . 1 X 的最大值和最小值,并指出当x分别为何值时取到最大值和最小值。

解:T定义域为0< x< 1,可设x cos2 X且0 —21 x21 cos sin2,02• •• y cos2■- sin2sin cos 2 si n()4••• 0—,•243 .返4 4 ' 2si n(-)1即1 y -2•••当 ——或 ——,即B =0或(此时x=1 或 x=0), y=1 ;444 42当-,即时,(此时x 1),y 、2 ,242当x=0或x=1时, y 有最小值1;当 x 1时, y 有最大值 、2。

2【反馈演练】1•函数的最小值等于 -12. ______________________________________________ 已知函数,,直线和它们分别交于 M N,则 _________________3. 当时,函数的最1小值是_4_ . 4.函数的最大值为— 5•函数的值域为 ______ 6•已知函数,则的值域是 ,最小值为3-(31,1) 7•已知函数在区间上的最小值是,则的最小值等 &(1)已知,函数的最大值是 ____________ (2)已知,函数的最小值是3 . 9•在△ OAB 中O 为坐标原点,,则当△ OAB 勺面积达最大值时, ______________ 10.已知函数.2(I)求函数的最小正周期;(H)求函数在区间上的最小值和最大值. 解:(I). 因此,函数的最小正周期为. (n)因为在区间上为增函数,在区间上为减函数,又,故函数在区间上的最大值为,最小值为. 解法二:作函数f(x) .2sin 2x n 在长度 4为一个周期的区间 n 9n 上的图象如下:8 41 •5由图象得函数f(x)在区间 匸,3』上的最大值为2,最小值为f 8 4411 .若函数的最大值为,试确定常数 a 的值.解:因为的最大值为的最大值为 1,则所以 12.已知函数. (1)若.求使为正值的的集合;(2)若关于的方程在内有实根,求实数的取值范围 解: (1)又 •••(2)当时,• 则,••••方程有实根,得•【高考赏析】(1)设函数 f (x), 3 cos 2 x sin xcos x侧的第一个最高点的横坐标为一。

6(I )求 的值。

(II )如果f (x)在区间上的最小值为 -.3 ,求的值。

3n(其中0, R ),且f(x)的图象在y 轴右解:(I) f(x) f cos2sin 2!si n22虫~2~xf依题意得2解之得612.(II)由(I )知,f(x)=si n(x+ 又当x 56时, 27 o,—6sin(x 1,3)53 , 6因此,由题设知1 -i2 2从而f (x)在上取得最小值2.已知函数f(x)= 3sin(2x —自+2$" 2(I )求函数f(x)的最小正周期;⑵2「3 12 €R)求使函数f(x)取得最大值的x的集合.7t 解:(I) f(x)= 3sin(2 x-^)+1 —cos2(x—石)=2[3 n 1 n -ysin2( x —石)—cos2( x—袒]+1=2si n[2(n n x—应—-]+1 = 2si n(2(n)当f(x)取最大值时,sin(2 亠n , n有 2 x —-3 =2 k n+25 n 5 n 即x=k n + 12 ( k € Z) 二所求x 的集合为{x € R| x= k n + (k€ Z)}.12 ,12 ,。

相关文档
最新文档