典型的晶体结构

合集下载

典型晶体结构类型

典型晶体结构类型

非金属元素单质晶体的结构基元:第VI族元素
对于第V族元素:
每个原子周围共价单键个数为:8-5=3 其晶体结构是:原子之间首先共价结合形成 无限层状单元,层状单元之间借助范德华力结合 形成晶体
非金属元素单质晶体的结构基元:第V族元素
对于第IV族元素:
每个原子周围共价单键个数为:8-4=4 其中:C、Si、Ge皆为金刚石结构,由四面体 以共顶方式共价结合形成三维空间结构。
刚玉型:α-Fe2O3、Cr2O3、Ti2O3、V2O3、FeTiO3、 LiNbO3
(四)ABO3型结构
—— CaTiO3(钙钛矿)型结构
CaTiO3(钙钛矿)型:PbTiO3、BaTiO3……
在理想对称的ABO3型结构中,三种离子半径 有如下关系:
rA rO 2 rB rO
第二章 晶体结构与晶体 中的缺陷

典型结构类型
硅酸盐晶
金属单质晶体结构 非金属单质晶体结构

无机化合物晶体结构
一、金属单质晶体结构
同种元素组成的晶体称为单质晶体。 典型金属的晶体结构是最简单的晶体结 构。由于金属键的性质,使典型金属的晶体 具有高对称性,高密度的特点。常见的典型
非金属元素单质晶体的结构基元:第IV族元素
典型非金属元素晶体结构
(1)金刚石结构
金刚石结构:Si、Ge、灰锡α-Sn、人工合成的立方氮化硼BN……
(2)石墨结构
石墨型结构:人工合成的六方氮化硼BN……
三、无机化合物晶体结构(离子晶体)
根据数量关系(化学式):
AX型、 AX2型、 A2X3型、 ABO3型、 ABO4型、AB2O4型 根据密堆积形式: 面心立方紧密堆积 六方紧密堆积 常用分析方法: 坐标系法、密堆积法和多面体配置法

金属晶体结构中最常见的三种典型晶体结构

金属晶体结构中最常见的三种典型晶体结构

金属晶体结构中最常见的三种典型晶体结构金属晶体结构是金属内部原子排列的有序结构,它决定了金属的物理和化学性质。

在金属的晶体结构中,最常见的三种典型晶体结构分别是面心立方晶体结构、体心立方晶体结构和简单立方晶体结构。

面心立方晶体结构是金属晶体结构中最常见的一种类型。

它的基本单元是原子在每个面心上都存在一个原子,同时每个边上也存在一个原子。

这种结构具有高度的对称性,晶胞内的原子排列非常紧密。

由于原子之间的距离相对较短,面心立方晶体结构的金属通常具有良好的塑性和导电性能。

例如,铜、铝、银等金属都采用面心立方晶体结构。

体心立方晶体结构是另一种常见的金属晶体结构。

它的基本单元中,一个原子位于晶胞的中心,而其他八个原子将组成一个正八面体排列在体心的位置上。

这种结构相对于面心立方结构而言,原子之间的距离较远,因此体心立方晶体结构的金属通常具有较高的密度和较高的熔点。

例如,钨、铁、钴等金属都采用体心立方晶体结构。

简单立方晶体结构是最简单的一种金属晶体结构。

它的基本单元中只有一个原子位于晶胞的每个角上,形成一个立方体。

因为排列不紧密,简单立方晶体结构的金属通常具有较低的密度和较低的熔点。

例如,铋、钠、铀等金属都采用简单立方晶体结构。

在实际应用中,金属的晶体结构对其性能和用途有着重要的影响。

利用不同的晶体结构可以使金属具有不同的性质。

例如,面心立方结构的金属通常具有良好的延展性和韧性,适用于制造细丝、薄片等产品。

而体心立方结构的金属则更适用于制造强度较高的材料,如建筑材料、汽车零部件等。

简单立方结构的金属则较少应用于工业生产中,但在一些特殊的情况下,也具有一定的应用价值。

总之,金属晶体结构中最常见的三种典型晶体结构是面心立方晶体结构、体心立方晶体结构和简单立方晶体结构。

它们在金属的性质和应用中都发挥着重要的作用。

了解和研究这些晶体结构对于深入理解金属的特性以及开发新材料具有重要的指导意义。

14种晶体结构

14种晶体结构

14种晶体结构晶体是由原子、分子或福隔离子按照一定的空间规则排列而成的有序固体。

晶体结构是指晶体中原子、离子或分子排列的规则和顺序。

在固体物质中,晶体结构的种类有很多种,其中比较常见的有以下14种:1. 立方晶体结构:最简单的晶体结构之一,具有三个等长的边和六个等角,包括简单立方、体心立方和面心立方三种类型。

2. 六方晶体结构:其晶胞的基本结构是六方密堆,其中最典型的就是六方晶体和螺旋晶体。

3. 正交晶体结构:晶胞具有三个不相互垂直的晶轴,分别被称为a、b 和c 轴,是最常见的晶体结构之一。

4. 单斜晶体结构:晶胞具有两个不相互垂直的晶轴,是晶体结构中的一种。

5. 三方晶体结构:具有三个相等的轴,夹角为60度,最常见的晶体结构之一是石英。

6. 菱晶体结构:晶胞内部有四面体结构,是一种简单的晶体结构。

7. 钙钛矿晶体结构:一种具有钙钛矿结构的晶体,包括钙钛矿结构和螺旋钙钛矿结构。

8. 蜗牛晶体结构:晶胞的形状像一只蜗牛的壳,是晶体结构中的一种。

9. 立方密排晶体结构:晶胞的结构是立方密排,是晶体结构中的一种。

10. 体心立方晶体结构:晶体结构的晶胞中有一个原子位于晶体的中心,是晶体结构中的一种。

11. 面心立方晶体结构:晶体结构的晶胞的各个面的中心有一个原子,是晶体结构中的一种。

12. 钻石晶体结构:晶体结构的晶胞构成了一种钻石结构,是晶体结构中的一种。

13. 银晶体结构:晶体结构的晶胞构成了一种银结构,是晶体结构中的一种。

14. 锶钛矿晶体结构:晶体结构的晶胞构成了一种锶钛矿结构,是晶体结构中的一种。

晶体结构的种类繁多,每种晶体结构都有其独特的结构特点和性质,对晶体的物理和化学性质有着重要的影响。

研究晶体结构不仅可以帮助我们更好地了解晶体的构成和性质,还有助于我们在材料科学、物理化学等领域的应用和研究。

因此,对晶体结构的研究具有重要的科学意义和应用价值。

典型的晶体结构

典型的晶体结构

典型的晶体结构的典型晶体结构是1。

铁铁原子可以形成两个体心立方晶胞晶体:910℃以下的α-铁和1400℃以上的δ-铁伽马面心立方晶体可以在这两个温度之间形成在三个晶相中,只有γ-铁能溶解少量碳问:1。

在体心立方晶胞中,面中心的间隙的对称性是什么?如果外来粒子占据这个间隙,外来粒子与宿主离子的最大可能半径比是多少?2。

如果一个以物体为中心的立方体单元中一个空洞的坐标是(0,a/2,a/4),它的对称性是什么?占据间隙的外来粒子与宿主离子的最大半径比是多少?3。

假设在转化温度下,两种晶型α-铁和γ-铁的最近原子之间的距离相等,计算出在转化温度下γ-铁与α-铁的密度比4。

为什么只有γ-铁能溶解一点碳?在体心立方晶胞中,中心的原子与角落的原子接触,而角落的原子彼此不接触。

a=(4/3)r①②③1。

两个立方体单元的中心之间的距离是a,也等于2r+2rh[,如图1]所示,其中rh是空隙的半径“x”,并且a = 2r+2rh = (4/3) r RH/r = 0.115 (2分钟)面对角线(2a)比主体中心之间的距离长,因此空隙形状是缩短的八面体,称为扭曲八面体(1分)2。

身体中心的两个原子(A和B)和连接两个晶体底面的两个角原子在图2中被称为[C和D]从连接顶部原子的线的中心到连接底部原子的线的中心的距离是a/2;顶部原子下面的底部原子形成了半个晶胞。

间隙“h”位于线的一半,这也是对称所要求的。

因此,要考虑的直角三角形的一边的长度是a/2,另一边的长度是a/4[图3],所以斜边是5/16a(1分)r+相对湿度= 5/16a = 5/3r相对湿度/相对湿度= 0.291 (2分)3。

密度比= 42: 33 = 1.09 (2分)4。

c原子体积很大,不能填充在体心立方的任何空隙中,但可以填充在面心立方结构的八面体空隙中(相对湿度/相对湿度/相对湿度=0.414)(2分)2。

Fe3O4+-科学研究表明,fe3o 4是由Fe2、Fe3和O2通过离子键组成的复合离子晶体O2的重复-排列模式如图b所示。

典型的晶体结构

典型的晶体结构

典型的晶体结构
晶体是由具有规则排列的原子、分子或离子组成的固体。

晶体结构是指晶体中各个原子、分子或离子的排列方式和周期性的空间堆积规律。

钠氯化物晶体是一种典型的离子晶体,其晶体结构由钠离子(Na+)和氯离子(Cl-)组成。

钠氯化物晶体结构属于立方晶系,具体来说是面心立方晶系。

在立方晶系中,晶胞由于具有三个相等的边长和90度的内角,因此钠氯化物晶体结构的晶胞形状是一个立方体。

在钠氯化物晶体结构中,每个钠离子都被六个氯离子包围,而每个氯离子也被六个钠离子包围。

这种排列方式使得钠氯化物晶体呈现出高度的对称性和周期性。

在晶体结构中,钠离子和氯离子的排列方式是相互平衡的,以使得整个晶体结构达到最低能量状态。

钠氯化物晶体中的钠离子和氯离子之间通过离子键相互吸引。

离子键是一种强大的化学键,它是由正负电荷之间的电静力吸引力所形成的。

钠离子和氯离子之间的离子键使得钠氯化物晶体具有高熔点、脆性和良好的导电性。

钠氯化物晶体结构的周期性排列使得其具有许多重要的性质和应用。

由于其高熔点和稳定性,钠氯化物被广泛应用于熔盐堆核能反应堆的燃料。

此外,钠氯化物晶体也广泛用于制备其他化合物和合金,
以及用作化学试剂和催化剂。

钠氯化物晶体结构是一种典型的离子晶体结构,具有高度的对称性和周期性排列。

其晶胞形状为立方体,钠离子和氯离子通过离子键相互吸引并形成稳定的晶体结构。

钠氯化物晶体结构不仅具有重要的化学性质和物理性质,还有广泛的应用领域。

常见九种典型的晶体结构

常见九种典型的晶体结构

尖晶石通式是A2+B3+2O4,表示二价阳离子A占据了 晶胞四面体空隙,三价阳离子B占据八面体空隙,此即 尖晶石结构,代表是尖晶石(MgAl2O4),
当结构中的四面体空隙被B3+占据,而八面体空隙则 被B3+和A2+各占一半,即有分子式B3+ A2+B3+ 2O4时, 这种结构叫做反尖晶石结构,代表物质磁铁矿
▪ 值得指出的是,部分元素的单质可以在不同条件下 形成不同的结构,或者可以有不同的结构状态共存,
▪ 如单质铁:
▪ α-铁(Iron-alpha) ---(奥氏体) --立方体心 ▪ γ-铁(Iron-gama) --(马氏体)--立方面心 ▪ ε-铁(Iron- Epsilon) --六方结构
2 氯化铯 CsCl 结构
5 石盐结构
空间群:Fm3m,立方面心格子,
具有NaCl型结构的部分物质,
氯化物 碳化物
氯化钾
(KCl)
氯化铷
(RbCl)
碳化钛
(TiC)
碳化钒
(VC)
碳化锆
(ZrC)
氮化物
氮化钒
(VN)
氮化钛
(TiN)
氮化锆
(ZrN)
氮化钪
(ScN)
氮化铕
(EuN)
氧化物
氧化镁
(MgO)
氧化钴
(CoO)
氧化镍
金刚石的晶体结构可以看成是半数的C作立方最紧密堆积 蓝 球 ,另外一半C相间地充填在其中的四面体孔隙中(红球)而构成 的,
该晶体是典型的原子晶体,每个碳原子都以sp3杂化轨道与四个 碳原子形成强的共价键,键长为0.155nm,键角为109° 28′16″,即C的配位数4,配位多面体是四面体,碳-碳配位 四面体在三维空间共角顶相联,形成最坚强的晶体结构。

常见九种典型的晶体结构

常见九种典型的晶体结构

反萤石型结构
球键图
阳离子四面体配位 阴离子立方体配位
反萤石型结构可看作:阴离子做立方最紧密堆积,阳离 子充填在全部的四面体空隙中。
结构类型 物质名称 萤石(CaF2)
萤石型结 氯化锶(SrCl2)

氯化钡(BaCl2)
氟化铅(PbF2)
氧化钾(K2O)
反萤石型 结构
氧化钠(Na2O)
氧化锂(Li2O)
闪锌矿的晶体结构:球键图(左)、配位多面体连接图(右)
结构中,S2- 和Zn2+配位数都是4,配位多面体都 是四面体。四面体共角顶相联。
从图可看出,[SZn4] 四面体([ZnS4] 四面体 也是一样)共角顶联成的 四面体基元层与[111]方 向垂直。
由于S2-和Zn2+都呈配位四面体,所以闪锌矿只用一种配位 多面体结构形式表达(S和Zn互换是一样的)。
(Fe3+(Fe2+Fe3+)2O4)。
当结构中四、八面体孔隙被A2+和B3+无序占据时, 叫混合尖晶石结构,代表晶相是镁铁矿(Fe, Mg)3O4。
具有尖晶石型结构的部分物质
Fe3O4 VMn2O4 NiAl2O4 NiGa2O4 Co3S4 TiZn2O4 γ-Fe2O3 LiTi2O4 CoAl2O4 MgGa2O4 NiCo2S4 VZn2O4 MnFe2O4 MnTi2O4 ZnAl2O4 MnGa2O4 Fe2SiO4 SnMg2O4 MgFe2O4 ZnCr2O4 Co3O4 ZnIn2S4 Ni2SiO4 TiMg2O4 Ti Fe2O4 CoCr2O4 GeCo2O4 MgIn2O4 Co2SiO4 WNa2O4 LiMn2O4 CuMn2O4 VCo2O4 CuV2S4 Mg2SiO4 CdIn2O4

典型晶体结构

典型晶体结构

https:///
materialsproject晶体结构检索页面
/
matcloud晶体结构检索页面
原子半径
单质的原子半径 离子半径 共价半径 *请阅读讲义相关部分
几种典型金属单质结构
(1) 立方面心结构(A1):空间群:Fm3m, 相当 于等大球立方最紧密堆积。
晶体结构数据
Inorganic Crystal Structure Database(ICSD)
合金结构相图

Book
结构信息来源
合金结构
Visualize the crystal’s Structure by ICSD
材料数据与模拟平台
/
AFLOW晶体结构检索页面 /advanced.php
第五章 典型晶体结构
1,晶体结构命名与晶体结构数据库(了解) 2 ,单质晶体的堆积原理:球的两种最密堆积方式 ( 立方最密堆积、六方最密堆积 ) 、立方最密堆积 的四面体、八面体空隙位置以及一些重要概念 (熟练掌握) 3,熟悉离子晶体的堆积中,离子半径比对配位数的 影响,离子晶体堆积原理,晶体化学定律(熟练 掌握) 4,典型晶体结构(掌握) 5,晶体材料种的成键特征(掌握)
一个球体积:4/3πr3=4/3π×( 2/4 a )3=
3 4/3π× 2 2/64 a =
2 /24 πa 3
立方最密堆积一个单胞中球的数目: 8×1/8+6×1/2= 4个 球体积= 4× 2/24 πa 3 = 2 /6 πa 3 空间利用率= 2 a 3 / a 3 2 / 6 74.05% 6
单质金属堆积原理: 等径球的密堆积 一、等大球体的最紧密堆积
(1)第一层
等大球体在一个平面内的最紧密 堆积只有一种形式,图中的A位。 每个球与球之间形成两套数目相 等、指向相反的弧线三角形空隙, A B C

归纳总结 3 种典型的晶体结构的晶体学特征

归纳总结 3 种典型的晶体结构的晶体学特征

归纳总结 3 种典型的晶体结构的晶体学特征
1、金刚石(C):为典型的共价键晶体(原子晶格),所以不遵循最
紧密堆积原理。

每个C原子与周围另外四个C原子以sp3杂化轨道形成共
价键;其晶胞也为立方面心格子,立方对称。

2、石墨(C):石墨与金刚石是C的两个同质多像(同素异形)变体。

石墨结构中有共价键、分子键等,所以也不遵循最紧密堆积原理。

石墨是
一个典型的层状结构,层内每个C与周围三个C以sp2杂化轨道形成共价键,还有一个p轨道没有参加杂化,这些没有参加杂化的p轨道以垂直于
层是方向平行排列,形成一个大p键(相当于金属键),层间还有分子键。

3、NaCl晶体:Cl-离子做立方最紧密堆积,Na+离子充填于所有的八
面体空隙中,立方对称。

因为n个球形成的八面体空隙也为n个,所以阴、阳离子数量比为1:1。

扩展资料
晶体的共性
1、自范性
晶体物质在适当的结晶条件下,都能自发地成长为单晶体,发育良好
的单晶体均以平面作为它与周围物质的界面,而呈现出凸多面体。

2、守恒定律
同一种晶体在相同的温度和压力下,其对应晶面之间的夹角恒定不变。

3、解理性
当晶体受到敲打、剪切、撞击等外界作用时,可有沿某一个或几个具有确定方位的晶面劈裂开来的性质。

4、各向异性
晶体的物理性质随观测方向而变化的现象称为各向异性。

晶体的很多性质表现为各向异性,如压电性质、光学性质、磁学性质及热学性质等。

常见的晶体结构

常见的晶体结构
Ti4+离子填充1/2八面体空隙;
晶胞分子数:Z=2;
晶胞中:2个八面体空隙 4个四面体空隙;
(2)质点坐标:
111 Ti : 000, 222
4
1 1 1 1 1 1 O : uuo, 1 u 1 u 0, u u , u u 2 2 2 2 2 2
1、金刚石结构
——立方晶系
(1)金刚石是面心立方格子
(2)碳原子位于立方体的8个
顶点,6个面心及立方体内4个
小立方体的中心。 (3)单位晶胞原子数:n=8
(4)晶胞内各原子的空间坐标: 000, ½ ½ 0, ½ 0 ½ , 0 ½ ½ , ¼ ¼ ¾ , ¼ ¾ ¼, ¾ ¼ ¼ , ¾ ¾ ¾
体结构中,每一个负离子电荷数等于或近似等于相邻正离 子分配给这个负离子的静电键强度的总和,其偏差1/4 价”。
静电键强度
S=
正离子电荷数 Z , 正离子配位数 n
Z Z Si i ni i i
则负离子电荷数

电价规则有两个用途: 其一,判断晶体是否稳定;
其二,判断共用一个顶点的多面体的数目。
离子半径、电中性、阴离子多面体之间的连接
1、NaCl型结构
(1)密堆积情况: Cl- 离子面心立方堆积; Na+离子填充八面体空隙;
——立方晶系
晶胞分子数:Z=4;
晶胞中:4个八面体空隙
8个四面体空隙;
Na+离子填充全部八面体空隙
(2)质点坐标:
11 1 1 11 Cl : 000 , 0, 0 ,0 22 2 2 22
连接(2个配位多面体共用一个顶点),或者和另外3个[MgO6]八面体

典型的晶体结构范文

典型的晶体结构范文

典型的晶体结构范文晶体是由原子、分子或离子按照一定的规律排列而组成的固体物质。

晶体结构是指晶体中原子、分子或离子的空间排列方式。

不同的晶体结构决定了晶体的物理性质和化学性质。

下面将介绍几种典型的晶体结构。

1.离子晶体结构:离子晶体是由带正电荷的阳离子和带负电荷的阴离子构成的晶体。

它们之间通过离子键相互结合。

典型的离子晶体如氯化钠(NaCl)。

在氯化钠晶体中,钠离子和氯离子按照八面体配位的方式排列。

每个钠离子被六个氯离子包围,每个氯离子被六个钠离子包围。

2.共价晶体结构:共价晶体是由原子通过共用电子而形成的晶体。

原子之间的共价键保持着晶体的稳定性。

典型的共价晶体如金刚石(C),其中每个碳原子通过共价键与周围四个碳原子相连。

金刚石晶体的结构是由不同的碳原子和碳原子之间的关系构成的。

3.金属晶体结构:金属晶体是由金属原子构成的晶体,金属原子之间通过金属键相互结合。

金属晶体的典型例子是铁(Fe)和铜(Cu)。

在金属晶体中,金属原子形成密堆积结构,具有非常高的导电性和热导性。

4.分子晶体结构:分子晶体是由分子构成的晶体,分子之间通过范德华力相互结合。

分子晶体的典型例子是冰(H2O)。

在冰晶体中,水分子通过氢键连接在一起,形成六角形密堆积结构。

5.网络共价晶体结构:网络共价晶体是由原子通过共价键形成复杂的网状结构的晶体。

典型的例子是二硫化碳(CS2)。

在二硫化碳晶体中,碳原子通过共价键和硫原子形成复杂的网状结构。

以上是一些典型的晶体结构,每种晶体结构都有其独特的特点和性质。

了解晶体的结构对于研究晶体的物理性质和化学性质具有重要意义。

1.3典型的晶体结构,晶向、晶面的表示一晶体结构的表达方

1.3典型的晶体结构,晶向、晶面的表示一晶体结构的表达方

1.3 典型的晶体结构,晶向、晶面的表示一. 晶体结构的表达方法二. 晶向、晶面和它们的标志三. 晶面间距四. 典型晶体结构五. 多晶型现象和结构相变参考黄昆书 1.3 节,Kittel8版 1.3 1.4 节一.晶体结构的表达方法指出晶体所属的点阵、晶系、点群和空间群类型是在不同层次上对晶体结构做描述。

以NaCl 为例说明。

面心立方点阵说明了它属于立方晶系,可以用a=b=c, α=β=γ=90°面心立方晶胞表示其原子周期排列特点。

点群为O h ,说明了它的外形具有的宏观对称性。

空间群为O h 5-F m3m ,指出了它的原子排列规律。

至此我们才可以说对NaCl 晶体的几何结构特点有了比较充分的认识。

NaCl结构中的原子排列NaCl晶体为八面体群的说明:O h,它的每个原子都处在不同原子组成的8面体体心位置。

考虑它的晶场时就要注意到这个特点。

点群对称操作:体对角线是3重轴;3 条棱边是4重轴;棱对角线是2重轴,体心是反演中心。

z但有些元素晶体和所有化合物晶体,其最小重复单位(基元)至少包含2个或2 个以上的原子,它们的每一个原子虽然都构成同样的点阵类型(即同样的周期排列方式),但绘成晶胞时,要绘出基元原子之间位置上的相互关系,所以是同样的点阵类型的叠加,我们称这些晶体具有复式晶格。

例如:CsCl晶体是两个原子各自构成简立方点阵后,沿晶胞对角线方向移动二分之一距离的叠加。

NaCl晶体是两个原子各自形成一个面心立方点阵后,沿立方边方向移动二分之一晶胞边长距离的叠加。

上述复式晶格中,每种原子自身是等价的,有完全相同的环境,但两类原子是不等价的,它们的几何环境是完全不同的。

二. 晶向、晶面和它们的标志:晶体的一个基本特点是各向异性,沿晶格的不同方向晶体的性质不同,因此有必要识别和标志晶格中的不同方向。

点阵的格点可以分列在一系列平行的直线系上,这些直线系称作晶列。

同一点阵可以形成不同的晶列,每一个晶列定义一个方向,称作晶向。

典型的晶体结构

典型的晶体结构

典型的晶体结构1. 铁铁原⼦可形成两种体⼼⽴⽅晶胞晶体:910 C以下为a—Fe,⾼于1400 C时为S—Fe。

在这两种温度之间可形成丫-⾯⼼⽴⽅晶。

这三种晶体相中,只有丫- Fe能溶解少许C。

问:1 ?体⼼⽴⽅晶胞中的⾯的中⼼上的空隙是什么对称?如果外来粒⼦占⽤这个空隙,则外来粒⼦与宿主离⼦最⼤可能的半径⽐是多少?2?在体⼼⽴⽅晶胞中,如果某空隙的坐标为(0, a/2, a/4),它的对称性如何?占据该空隙的外来粒⼦与宿主离⼦的最⼤半径⽐为多少?3. 假设在转化温度之下,这a—Fe和丫⼀F两种晶型的最相邻原⼦的距离是相等的,求丫铁与a铁在转化温度下的密度⽐。

4?为什么只有丫― Fe才能溶解少许的C ?在体⼼⽴⽅晶胞中,处于中⼼的原⼦与处于⾓上的原⼦是相接触的,⾓上的原⼦相互之间不接触。

1 ?两个⽴⽅晶胞中⼼相距为a,也等于2r + 2r h [如图①],这⾥r h是空隙“ X ”的半径,a= 2r +2r h = (4/ , 3 )rr h/r = 0.115 (2 分)⾯对⾓线(...2 a )⽐体⼼之间的距离要长,因此该空隙形状是⼀个缩短的⼋⾯体,称扭曲⼋⾯体。

(1分)2?已知体⼼上的两个原⼦(A和B)以及连接两个晶体底⾯的两个⾓上原⼦[图②中C和D]。

连接顶部原⼦的线的中⼼到连接底部原⼦的线的中⼼的距离为a/2;在顶部原⼦下⾯的底部原⼦构成晶胞的⼀半。

空隙“ h”位于连线的⼀半处,这也是由对称性所要求的。

所以我们要考虑的直⾓三⾓形⼀个边长为a/2,另⼀边长为a/4 [图③],所以斜边为... 5/16a°(1分)r+ r h= J5/16 a= 5/3 rr h/r = 0.291 (2 分)f—1-3?密度⽐=4、2 : 3?-3 = 1.09(2分)4. C原⼦体积较⼤,不能填充在体⼼⽴⽅的任何空隙中,但可能填充在⾯⼼⽴⽅结构的⼋⾯体空隙中(r h/r= 0.414 )。

(2 分)2. 四氧化三铁科学研究表明,Fe3O4是由Fe2+、Fe3+、O2—通过离⼦键⽽组成的复杂离⼦晶体。

材料科学基础第一章2-1典型的晶体结构及几何特征

材料科学基础第一章2-1典型的晶体结构及几何特征
• 立方晶胞中,每个顶角上的原子
与相邻的8个晶胞共有,每个晶胞
实际上只占其1/8;位于晶胞棱上
的原子为相邻的4个晶胞所共有;
每个面心原子为相邻两个晶胞共
有;而晶胞中心原子为晶胞所独
有。
• FCC结构每个晶胞中的原子数:
1
1
8 6 4
8
2
1、FCC 面心立方
配位数
• 配位数是指晶体结构中任一原子周围
( )
3
4
3
4r 3
2
2、HCP 密排六方
••

• 原子半径:
上下底面的中心原子与周围六个
顶角上的原子相切
1
2 = , =
2
• 每个晶胞中的原子数:
1
1
12 2 3 6
6
2

••





••


••
2、HCP 密排六方
• 配位数:
C.N.= 6 + 3×2 =12
最邻近的原子数。常用CN
(coordination number)表示。
• 对于多元素晶体,“最近邻”是同种原
子比较而言,配位数是一个原子周围的
各元素的最近邻原子数之和。
• 晶体结构中每个原子的配位数愈大,
晶体中的原子排列就愈紧密。
• •



• • • •




•ห้องสมุดไป่ตู้
• FCC结构的配位数:
A面、B面、C面上各4个,等同点, 4×3=12
• 堆垛密度
2
c
3

典型晶体结构

典型晶体结构

四方铁电相:固有自发极化(无外场) Ba2+、Ti4+和O2-各占据不同位置( Ti4+和O2-
偏离对称位置)→正、负极性中心不重合; 每个晶胞均具有永久离子偶极; 120℃以上四方晶胞转变为立方顺电相:无自
发极化,无铁电性。 铁电材料-大电容电容器,铁电存储器
2021/3/11
26
(2). 扭转型:阴离子氧八面体相对各轴扭转
插层石墨
2021/3/11
36
2.5 硅酸盐晶体结构
自然矿物是制造所有陶瓷材料的重要原料 地壳中最丰富的两种元素:硅和氧 硅酸盐占所有矿物的1/3以上
研究硅酸盐矿物结构 必要性!
37
1. 无机硅酸盐的结构单元 ―――硅氧四面体[SiO4]4-
(1) 硅原子的外层电子结构 Si 1S22S22P63S23P2――3s电子移
→导体(部分Mn4+ →Mn3+) →La1-xCaxMnO3——高导电、大磁阻
演变
2021/3/11
29
2.4 金刚石和石墨结构
30
1). 金刚石结构
立方晶系,a=0.356nm 面心立方格子
与立方ZnS结构类似 C原子分布于顶角、面心,另4个C分
别交叉地分布于4条体对角线的1/4和 3/4处(即占据1/2四面体空隙) 代表物质:Si,Ge,Sn等
34
石墨结构决定了:石墨在 平行于C层方向具有良好 导电性;硬度低、易加工; 熔点高;润滑感
35
2.4.1. 插层反应 结构演变导致性能变化
层状化合物:石墨,粘土 层内:共价键;层键:范氏力等 插层反应:外来分子插入层间形成插层化合物
(亚稳)(反应可逆:去插层反应) 插层化合物性质发生变化, 如插层石墨导电性增大、插 层化合物用于能量储藏(利 用插层和去插层来充放电) 与电子装置中

典型晶体结构示意图

典型晶体结构示意图

3R 1+2+3层
1层
1+2层
9. 绿柱石、电气石
绿柱石常见晶形
c
cp s
m
ma
六方柱:m{10-10}, a{11-20} 平行双面:c{0001} 六方双锥:s{11-21}, p{10-11}
电气石常见晶形
ro
am
d
三方柱:m{01-10} 六方柱:a{11-20} 三方单锥:r{10-11}, o{02-21} 单面:d{000-1}
白云石晶形
r m
c
菱面体:r{10-13}, c{40-41} 六方柱:m{11-20}
6. 闪锌矿、纤维锌矿
闪锌矿晶体结构
2H
6H
8H
纤维锌矿晶体结构
7. C60、C70
8. 石墨2H、石墨3R
Graphite 2H, P63/mmc(194)
A=2.47, c=6.80, Z=4
C1 2b 0 0 0.25
(1) 高岭石
(2) 蛇纹石
4. 透闪石
r
b m
斜方柱:(m) {110}, (r) {011} 平行双面:b {010}
5. 方解石、白云石
方解石
白云石
方解石晶形
e
v
r
m
f
菱面体:r{10-11}, f{02-21}, e{01-14} 六方柱:m{10-10} 复三方偏三角面体:v{21-332. 白云母、金云母 3. 高岭石、蛇纹石 4. 透闪石 5. 方解石、白云石 6. 闪锌矿、纤维锌矿 7. C60、C70 8. 石墨2H、石墨3R 9. 绿柱石、电气石 10. 沸石
11. Al(OH)3, Mg(OH)2 12. 滑石、叶腊石 13. 钙钛矿结构BaTiO3 14. 刚玉
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型的晶体结构1.铁铁原子可形成两种体心立方晶胞晶体:910℃以下为α-Fe,高于1400℃时为δ-Fe。

在这两种温度之间可形成γ-面心立方晶。

这三种晶体相中,只有γ-Fe能溶解少许C。

问:1.体心立方晶胞中的面的中心上的空隙是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主离子最大可能的半径比是多少?2.在体心立方晶胞中,如果某空隙的坐标为(0,a/2,a/4),它的对称性如何?占据该空隙的外来粒子与宿主离子的最大半径比为多少?3.假设在转化温度之下,这α-Fe和γ-F两种晶型的最相邻原子的距离是相等的,求γ铁与α铁在转化温度下的密度比。

4.为什么只有γ-Fe才能溶解少许的C?在体心立方晶胞中,处于中心的原子与处于角上的原子是相接触的,角上的原子相互之间不接触。

a=(4/3)r。

①②③1.两个立方晶胞中心相距为a,也等于2r+2r h[如图①],这里r h是空隙“X”的半径,a =2r+2r h=(4/3)r r h/r=0.115(2分)面对角线(2a)比体心之间的距离要长,因此该空隙形状是一个缩短的八面体,称扭曲八面体。

(1分)2.已知体心上的两个原子(A和B)以及连接两个晶体底面的两个角上原子[图②中C和D]。

连接顶部原子的线的中心到连接底部原子的线的中心的距离为a/2;在顶部原子下面的底部原子构成晶胞的一半。

空隙“h”位于连线的一半处,这也是由对称性所要求的。

所以我们要考虑的直角三角形一个边长为a/2,另一边长为a/4[图③],所以斜边为16/5a。

(1分)r+r h=16/5a=3/5r r h/r=0.291(2分)3.密度比=42︰33=1.09(2分)4.C原子体积较大,不能填充在体心立方的任何空隙中,但可能填充在面心立方结构的八面体空隙中(r h/r=0.414)。

(2分)2.四氧化三铁科学研究表明,Fe3O4是由Fe2+、Fe3+、O2-通过离子键而组成的复杂离子晶体。

O2-的重复排列方式如图b所示,该排列方式中存在着两种类型的由O2-围成的空隙,如1、3、6、7的O2-围成的空隙和3、6、7、8、9、12的O2-围成的空隙,前者为正四面体空隙,后者为正八面体空隙,Fe3O4中有一半的Fe3+填充在正四面体空隙中,另一半Fe3+和Fe2+填充在正八面体空隙中,则Fe3O4晶体中正四面体空隙数与O2-数之比为2:1,其中有12.5%正四面体空隙填有Fe3+,有50%正八面体空隙没有被填充。

Fe3O4中三价铁离子:亚铁离子:O原子=2:1:4晶胞拥有8个正四面体空隙,4个O2-离子;所以2:1一半三价铁离子放入正四面体空隙,即一个三价铁离子,所以为1/8=12.5%晶胞实际拥有4个正八面体空隙,其中已经有一个放Fe3+,另外一个Fe2+占据一个正八面体空隙,所以50%的正八面体空隙没有被填充。

.铁的原子核是最稳定的原子核组态,所以在可以孕育生命的大红星中,累积很多,这导致铁在宇宙的含量很多,地球也含有很多铁。

1.在制作青灰瓷中,Fe2O3 被部分还原,产生Fe3O4和FeO的混合物,这些不同氧化铁化合物的存在,造成了青灰瓷的特殊色彩。

磁石(Fe3O4)是含Fe2+与Fe3+离子的氧化物,通式为AB2O4。

其中氧离子(O2-)形成面心立方,下图中灰色球是所有氧离子所形成的面心立方结构。

黑色球仅代表一个正四面体的中心位置,白色球仅代表一个正八面体的中心位置。

在一个AB2O4 的单位晶格中,共有几个正八面体的中心位置(当中心和别的单位晶格共享时,要以比例计算)2.AB2O4可形成正旋转和反旋转的结构,在正旋转中,两个B(三价离子)都在正八面体中心,而A(二价离子)在一个正四面体的中心。

在反旋转中,A在正八面体中心,B只有一个可在正八面体中心,另一个必须填到正四面体中心。

在Fe3O4中,有多少正四面体中心被Fe2+或Fe3+填入?用百分比表示。

1.4(=1+(1/4)×12)3.12.5%3.金刚石立方金刚石为一面心立方点阵,参数a=3.56688×10-18cm ,结构中每个碳原子均按四面体方向和四个碳原子以共价键连接,C-C键长为1.544×10-18 cm六方金刚石(可由石墨加热加压制得)a=2.158×10-18 cm, c=4.12×10-18 cm4.二氧化硅5.硫化锌ZnS的晶体结构有两种型式:立方ZnS型和六方ZnS型。

这两种型式的化学键的性质相同,锌原子和硫原子的配位情况也相同。

但是在堆积上有一定差异,立方ZnS结构中,半径大的S 原子作立方最密堆积,半径小的Zn原子填充在一半的四面体空隙中,成为立方面心点阵;六方ZnS结构中,半径大的S原子作六方最密堆积,半径小的Zn原子填充在一半的四面体空隙中,成为六方点阵。

它们的结构图如图所示6.金红石TiO2(1)四方晶系,体心四方晶胞。

(2)Z=2(3)O2-近似堆积成六方密堆积结构,Ti4+填入一半的八面体空隙,每个O2-附近有3个近似于正三角形的Ti4+配位。

(4)配位数6:3。

四方晶系,Ti4+处于配位数为6的八面体中。

而O2-周围有三个近于正三角形配位的Ti4+,每个TiO6八面体和相邻两个八面体共边连接成长链,链和链沿垂直方向共用顶点连成三维骨架。

1.在自然界中TiO2有金红石、板钛矿、锐钛矿三种晶型,其中金红石的晶胞如右图所示,其中Ti4+的配位数为6。

7.CaF2型(萤石)属立方晶系,面心立方晶胞。

Ca2+、F-的配位数分别为8、4。

Ca2+离子立方最密堆积,组成正常的面心立方晶格。

F-填充在全部的四面体空隙中(100%)。

F-占据立方体内部的八个匀称位置,每个位置相当于立体对角线的1/4或3/4附近。

CaF2也可看成F-离子简单立方堆积,Ca2+离子占有一半立方体空隙9. 反莹石结构(1)Be2C为反莹石结构。

其中C4-作面心立方堆积,Be2+填入全部的四面体空隙或Be2+做简单立方堆积,C4-交替的填入立方体空隙。

(大球表示C4-小球表示Be2+)(2)Na2O晶体具有反萤石结构。

其中O2-和Na+分别相当于CaF2中的Ca2 +和F-。

它属于面心立方晶格。

其中O2-离子的配位数是8,Na+离子的配位数是4。

在一个Na2O晶胞中有8个Na+和4个O2-离子。

如果把O2-离子看成在空间呈球密堆积结构,则Na+离子占有了全部四面体空隙位置。

8.碘下图是碘晶体的晶体结构。

碘属于正交晶系,晶胞参数如右:a=713.6pm;b=468.6pm;c=978.4pm;碘原子1的坐标参数为(0,0.15434,0.11741)(1)碘晶体的一个晶胞里含有______个碘分子;(2)请写出碘原子2、3、7的坐标参数;(3)碘原子共价单键半径r1为pm;(4)在晶体中,I2分子在垂直于x轴的平面堆积呈层型结构,层内分子间的最短接触距离d1为;层间分子间的最短距离d2;已知I原子的范德华半径r2可由几个数值相近的分子间接触距离平均求得,其值为218pm。

比较层内分子间的接触距离d1和范德华半径r2大小,你能得出什么结论?(5)I2分子呈哑铃形,如图。

利用下图求I2分子共价单键键长d3;(6)碘晶体的密度为;(1)4(2分)(2)2(0,0.84566,0.88259);3(0,0.34566,0.61741);4(0,0.65434,0.38259);7(1/2,0.65434,0.11741)(2分)(3)r1=136pm(1分)(4)d1=349.6pm;d2=426.9pm;层内分子间的接触距离小于I原子范德华半径之和,说明层内分子间有一定作用力.这种键长介于共价单键键长和范德华距离之间的分子间作用力,对碘晶体性质具有很大影响,例如碘晶体具有金属光泽、导电性能各向异性,平行于层的方向比垂直于层的方向高得多。

(2分)(5)708-436=272pm(1分)(6)5.16g·cm-3(2分)右图是碘晶体的晶胞沿x轴的投影。

碘属于正交晶系,晶胞参数:a=713.6pm;b=468.6pm;c=978.4pm;碘原子1的坐标参数为(0,0.15434,0.11741)。

1.碘晶体的一个晶胞里含有的碘分子数;2.请写出晶胞内所有碘原子的坐标参数;3.计算碘晶体的密度;4.碘原子共价单键半径r1;5.在晶体中,I2分子在垂直于x轴的平面堆积呈层型结构,计算:层内分子间的最短接触距离d1;层间分子间的最短距离d2;已知I原子的范德华半径r2可由几个数值相近的分子间接触距离平均求得,其值为218pm。

比较层内分子间的接触距离d1和范德华半径r2大小,你能得出什么结论?6.I2分子呈哑铃形,画出其结构,并标出主要参数。

1.4(1.5分)2.1 (0,0.15434,0.11741),2 (0,0.84566,0.88259),3 (0,0.34566,0.61741),4 (0,0.65434,0.38259),5 (1/2,0.15434,0.38259),6 (1/2,0.84566,0.61741),7 (1/2,0.65434,0.11741),8 (1/2,0.34566,0.88259)。

(2分)3.5.16g·cm-3(2分)4.r1=136pm(1分)5.d1=349.6pm;d2=426.9pm;(各1分)层内分子间的接触距离小于I原子范德华半径之和,说明层内分子间有一定作用力。

这种键长介于共价单键键长和范德华距离之间的分子间作用力,对碘晶体性质具有很大影响,例如碘晶体具有金属光泽、导电性能各向异性,平行于层的方向比垂直于层的方向高得多。

(2分)6.(1.5分)9.TiCl 3TiCl 3是工业上重要的催化剂,例如在著名的烯烃定向聚合的齐格勒-纳塔催化剂中就有TiCl 3成分,TiCl 3有许多种晶型(有α、β、γ、δ等多种晶型)。

1、下图是β-TiCl 3晶体沿c 轴的投影图(大球代表氯离子,小球代表钛离子):在该晶体中氯离子采取____ ______(选填“ABC ”或“AB ”)堆积;钛离子填充____ ______(选填“四面体”或“八面体”)空隙;钛离子的填充率是______________。

1. AB ,八面体, 33.3%2、下图为α-TiCl3、γ-TiCl 3晶体的堆积模型图(大球代表氯离子,小球代表钛离子):请还原一个α-TiCl 3、γ-TiCl 3的层内结构图,并验证层内Ti 离子与Cl 离子的个数比:如上图在每个单位内:氯离子的个数:826()2+=个 ,钛离子的个数:2个Ti 离子:Cl 离子=1:3(2分)3、请回答α-TiCl 3,γ-TiCl 3晶胞参数与β-TiCl 3的晶胞参数的倍数关系。

相关文档
最新文档