初中数学三角函数综合练习试题整理

合集下载

初中三角函数练习试题和答案解析

初中三角函数练习试题和答案解析

初中三角函数练习题及答案一精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都 A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点-sin60°,cos60°关于y 轴对称的点的坐标是A .32,12B .-32,12C .-32,-12D .-12,-329.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地A 350m B100 m C150m D 3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒,图145︒30︒BAD C向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距 .A30海里 B40海里 C50海里 D60海里 二细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B,且BP=2,那么PP '的长为____________. 不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个4错误!单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号.7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________. 9.根据图中所给的数据,求得避雷针CD 的长约为_______m 结果精确的到0.01m .可用计算器求,也可用下列参考数据求:sin43°≈,sin40°≈,cos43°≈,cos40°≈,tan43°≈,tan40°≈10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米结果用含α的三角比表示. 第6题图 xO A y B北甲北 乙第5题图αBCD第4题图1 211.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.•保留两个有效数字,2≈,3≈三、认真答一答1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒ 分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解;注意分母有理化,3 如图1,在∆ABC 中,AD 是BC 边上的高,tan cos B DAC =∠; 1求证:AC =BD2若sinC BC ==121312,,求AD 的长;图1分析:由于AD 是BC 边上的高,则有Rt ADB ∆和Rt ADC ∆,这样可以充分利用锐角三角函数的概念使问题求解;4如图2,已知∆ABC 中∠=∠C Rt ,AC m BAC =∠=,α,求∆ABC 的面积用α的三角函数及m 表示图2分析:要求∆ABC 的面积,由图只需求出BC;解应用题,要先看条件,将图形抽象出直角三角形来解.5. 甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高.6. 从A 处观测铁塔顶部的仰角是30°,向前走100米到达B 处,观测铁塔的顶部的仰角是 45°,求铁塔高.分析:求CD,可解Rt ΔBCD 或Rt ΔACD.但由条件Rt ΔBCD 和Rt ΔACD 不可解,但AB=100若设CD 为x,我们将AC 和BC 都用含x 的代数式表示再解方程即可.7、如图,一铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度为3:2=ι,路基高AE 为3m,底CD 宽12m,求路基顶AB 的宽B ADCE300 450ArE D BCAH8.九年级1班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆的水平距离15m BD =,人的眼睛与地面的高度 1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.9.如图3,沿AC 方向开山修路,为了加快施工速度,要在小山的另一边同时施工;从AC 上的一点B,取∠=︒=ABD BD 145500,米,∠=︒D 55;要使A 、C 、E 成一直S 线,那么开挖点E 离点D 的距离是多少图3分析:在Rt BED ∆中可用三角函数求得DE 长;10 如图8-5,一条渔船某时刻在位置A 观测灯塔B 、C 灯塔B 距离A 处较近,两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l 小时45分钟之后到达D 点,观测到灯塔B 恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C 周围海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险分析:本题考查解直角三角形在航海问题中的运用,解决这类问题的关键在于构造相关的直角三角形帮助解题.11、如图,A 城气象台测得台风中心在A 城的正西方300千米处,以每小时107千米的速度向北偏东60º的BF 方向移动,距台风中心200千米的范围内是受这次台风影响的区域;问A 城是否会受到这次台风的影响为什么若A 城受到这次台风的影响,那么A 城遭受这次台风影响的时间有多长图8-4EA C BD北东12. 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD 和高度DC 都可直接测得,从A 、D 、C 三点可看到塔顶端H,可供使用的测量工具有皮尺、测倾器;1请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案;具体要求如下:测量数据尽可能少,在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上如果测A 、D 间距离,用m 表示;如果测D 、C 间距离,用n 表示;如果测角,用α、β、γ表示;2根据你测量的数据,计算塔顶端到地面的高度HG 用字母表示,测倾器高度忽略不计;13. 人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里处的A 点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行;为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问1需要几小时才能追上点B 为追上时的位置2确定巡逻艇的追赶方向精确到01.︒如图 4图4参考数据:sin ..cos ..sin ..cos ..sin ..cos ..sin ..cos ..6680919166803939674092316740384668409298684036817060943270603322︒≈︒≈︒≈︒≈︒≈︒≈︒≈︒≈,,,,分析:1由图可知∆ABO 是直角三角形,于是由勾股定理可求;2利用三角函数的概念即求;14. 公路MN 和公路PQ 在点P 处交汇,且∠=︒QPN 30,点A 处有一所中学,AP=160m,一辆拖拉机以3.6km/h 的速度在公路MN 上沿PN 方向行驶,假设拖拉机行驶时,周围100m 以内会受噪声影响,那么,学校是否会受到噪声影响如果不受影响,请说明理由;如果受影响,会受影响几分钟NP A Q M.15、如图,在某建筑物AC 上,挂着“多彩云南”的宣传条幅BC,小明站在点F 处,看条幅顶端B,测的仰角为︒30,再往条幅方向前行20米到达点E 处,看到条幅顶端B,测的仰角为︒60,求宣传条幅BC 的长,小明的身高不计,结果精确到0.1米16、一艘轮船自西向东航行,在A 处测得东偏北°方向有一座小岛C,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近参考数据:°≈925,°≈25, °≈910,°≈217、如图,一条小船从港口A 出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里结果精确到1海里 友情提示:以下数据可以选用:sin 400.6428≈,cos 400.7660≈,tan 400.8391≈,3 1.732≈.A BC北东P 北403018、如图10,一枚运载火箭从地面O 处发射,当火箭到达A 点时,从地面C 处的雷达站测得AC 的距离是6km ,仰角是43.1s 后,火箭到达B 点,此时测得BC 的距离是6.13km ,仰角为45.54,解答下列问题:1火箭到达B 点时距离发射点有多远精确到0.01km2火箭从A 点到B 点的平均速度是多少精确到0.1km/s19、经过江汉平原的沪蓉上海—成都高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得68=∠ACB .1求所测之处江的宽度.48.268tan ,37.068cos ,93.068sin ≈≈≈; 2除1的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.20 某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC 杆子的底端分别为D,C,且∠DAB=66. 5°.1求点D 与点C 的高度差DH ;2求所用不锈钢材料的总长度l 即AD+AB+BC,结果精确到0.1米.参考数据:°≈,°≈,°≈答案一、选择题1——5、CAADB 6——12、BCABDAB 二、填空题图10ABOCCB图①图②1,352, 3,30°点拨:过点C 作AB 的垂线CE,构造直角三角形,利用勾股定理CE4连结PP ',过点B 作BD ⊥PP ',因为∠PBP '=30°,所以∠PBD=15°,利用sin15°=,先求出PD,乘以2即得PP '5.48点拨:根据两直线平行,内错角相等判断6.0,4+B 作BC ⊥AO,利用勾股定理或三角函数可分别求得AC 与OC的长7.1点拨:根据公式sin 2α+cos 2α=18.125点拨:先根据勾股定理求得AC=5,再根据tan ACB AB =求出结果 9.点拨:利用正切函数分别求了BD,BC 的长 10.20sin α点拨:根据sin BCAB α=,求得sin BC AB =•α11.35三,解答题可求得 1. -1; 2. 43.解:1在Rt ABD ∆中,有tan B AD BD=, Rt ADC ∆中,有cos ∠=DAC ADACtan cos B DACAD BD ADACAC BD =∠∴==,故 2由sinC AD AC ==1213;可设AD x AC BD x ===1213, 由勾股定理求得DC x =5, BC BD DC x =∴+==121812即x =23 ∴=⨯=AD 122384.解:由tan ∠=BAC BCAC∴=∠=∠=∴=∴=⋅=⋅=BC AC BAC AC m BAC BC m S AC BC m m m ABC tan tan tan tan ,αααα∆12121225解过D 做DE ⊥AB 于E∵∠MAC=45° ∴∠ACB=45° BC=45在Rt ΔACB 中,BCAB tgACB =)(4545米=⋅=∴ tg BC AB在Rt ΔADE 中,∠ADE=30°DEAE tgADE =315334530=⋅=⋅=∴tg DE AE )(31545米-=-=∴AE AB CD答:甲楼高45米,乙楼高31545-米. 6 解:设CD=x在Rt ΔBCD 中,CD BCctgDBC =∴BC=x 用x 表示BC 在Rt ΔACD 中,CDACctgDAC = x ctgDAC CD AC 3=⋅=∴∵AC-BC=100 1003=-x x 100)13(=-x ∴)13(50+=x 答:铁塔高)13(50+米. 7、解:过B 作BF ⊥CD,垂足为FBF AE =∴ 在等腰梯形ABCD 中 AD=BC D C ∠=∠ 3:2=iBC AE=3m ∴DE=4.5mAD=BC,D C ∠=∠,︒=∠=∠90DEA CFB ∴∆BCF ≅∆ADE ∴CF=DE=4.5m ∴EF=3m300450Ar E D BC︒=∠=∠90AEF BFE∴BF ∴∴3m CD FB ⊥AB FB ⊥CD AB∴∥CGE AHE∴△∽△CG EG AH EH∴=CD EF FD AH FD BD -=+3 1.62215AH -∴=+11.9AH ∴=11.9 1.613.5(m)AB AH HB AH EF ∴=+=+=+=∠=︒∠=︒∴∠=︒ABD D BED 1455590,,Rt BED ∆ cos cos D DEBDDE BD D =∴=⋅, BD =500∠=︒D 55︒=∴55cos 500DE 716284AD =⨯=∵cos24°15′=ADAB, ∴2830.71cos 24150.9118AD AB ==≈'︒海里.AC=AB+BC=+12=海里. 在Rt△ACE 中,sin24°15′=CEAC, ∴CE=AC·sin24°15′=×=海里. ∵<,∴有触礁危险;答案有触礁危险,不能继续航行; 11、1过A 作AC ⊥BF,垂足为C︒=∠∴︒=∠30601ABC在RT ∆ABC 中 AB=300km响城会受到这次台风的影A kmAC ABC ∴=∴︒=∠150302AHh hkm kmt h km v km DE kmCD kmad km AC AD AE E ,BF km AD D ,BF 1071071007107100750200,150200==∴==∴=∴==== 使上取在使上取在答:A 城遭遇这次台风影响10个小时;12 解:1在A 处放置测倾器,测得点H 的仰角为α 在B 处放置测倾器,测得点H 的仰角为β()在中,2Rt HAI AI HI DI HI AI DI m ∆==-=tan tan αβHI m=-tan tan tan tan αββαHG HI IG mn =+=-+tan tan tan tan αββα13解:设需要t 小时才能追上; 则AB t OB t ==2426,1在Rt AOB ∆中, OB OA AB 222=+,∴=+()()261024222t t则t =1负值舍去故需要1小时才能追上; 2在Rt AOB ∆中sin .∠==≈AOB AB OB tt242609231 ∴∠=︒AOB 674. 即巡逻艇沿北偏东674.︒方向追赶; 14 解:1008030sin 1<=︒=∆AP AP APB Rt 中,)在( ∴会影响N()在中(米)2100806022Rt ABD BD ∆=-=6023610006022⨯⨯=∴.(分钟)分钟15 解: ∵∠BFC =︒30,∠BEC =︒60,∠BCF =︒90 ∴∠EBF =∠EBC =︒30 ∴BE = EF = 20 在Rt⊿BCE 中, )(3.17232060sin m BE BC ≈⨯=︒⋅= 答:宣传条幅BC 的长是17.3米;16 解:过C 作AB 的垂线,交直线AB 于点D,得到Rt△ACD 与Rt△BCD. 设BD =x 海里,在Rt△BCD 中,tan∠CBD=CDBD,∴CD=x ·°. 在Rt△ACD 中,AD =AB +BD =60+x 海里,tan∠A=CDAD,∴CD= 60+x ·°.∴x·°=60+x·°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近17 解:过B 点作BE AP ⊥,垂足为点E ;过C 点分别作CD AP ⊥, CF BE ⊥,垂足分别为点D F ,,则四边形CDEF 为矩形. CD EF DE CF ∴==,,…………………………3分30QBC ∠=,60CBF ∴∠=.2040AB BAD =∠=,,B CDAFP 北4030cos 40200.766015.3AE AB ∴=⨯≈≈; sin 40200.642812.85612.9BE AB =⨯=≈≈. 1060BC CBF =∠=,,sin 60100.8668.668.7CF BC ∴=⨯=≈≈; cos60100.55BF BC ==⨯=.12.957.9CD EF BE BF ∴==-=-=. 8.7DE CF =≈,15.38.724.0AD DE AE ∴=++=≈.∴由勾股定理,得222224.07.9638.4125AC AD CD =++=≈≈.即此时小船距港口A 约25海里 18 解1在Rt OCB △中,sin 45.54OBCB=1分 6.13sin 45.54 4.375OB =⨯≈km 3分火箭到达B 点时距发射点约4.38km 4分 2在Rt OCA △中,sin 43OACA=1分 6sin 43 4.09(km)OA =⨯= 3分()(4.38 4.09)10.3(km /s)v OB OA t =-÷=-÷≈ 5分答:火箭从A 点到B 点的平均速度约为0.3km/s 19解:1在BAC Rt ∆中,68=∠ACB , ∴24848.210068tan =⨯≈⋅=AC AB 米答:所测之处江的宽度约为248米……………………………………………………3分 2从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识 来解决问题的,只要正确即可得分 20 解:1DH=×34=米.2过B 作BM ⊥AH 于M,则四边形BCHM 是矩形. MH=BC=1 ∴AM=AH -MH=1+一l=. 在RtAMB 中,∵∠A=° ∴AB=1.23.0cos66.50.40AM ≈=︒米.∴S=AD+AB+BC ≈1++1=米.答:点D 与点C 的高度差DH 为l.2米;所用不锈钢材料的总长度约为5.0米。

三角函数综合测试题(含答案)

三角函数综合测试题(含答案)

三角函数分解测试题(本试卷满分150分,测验时光120分)第Ⅰ卷(选择题 共40分)一.选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是相符标题请求的) 1.若点P 在32π的终边上,且OP=2,则点P 的坐标()A .)3,1(B .)1,3(-C .)3,1(--D .)3,1(- 2.已知=-=-ααααcos sin ,45cos sin 则() A .47B .169-C .329-D .3293.下列函数中,最小正周期为2π的是()A .)32sin(π-=x yB .)32tan(π-=x yC .)62cos(π+=x y D .)64tan(π+=x y4.等于则)2cos(),,0(,31cos θππθθ+∈=( )A .924-B .924C .97-D .97 5.将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,则ϕ等于()A .12π-B .3π-C .3πD .12π6. 50tan 70tan 350tan 70tan -+的值等于( )A .3B .33C .33-D .3-7.在△ABC 中,sinA >sinB 是A >B 的( )A .充分不须要前提B .须要不充分前提C .充要前提D .既不充分也不须要前提 8.ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( )A .33sin 34+⎪⎭⎫ ⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πBC .33sin 6+⎪⎭⎫ ⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB第Ⅱ卷(非选择题 共110分)二.填空题(本大题共5小题,每小题6分,共30分,把答案填在题中横线上)9.已知3sin()45x π-=,则sin 2x 的值为;10.在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S =_________11.已知,1)cos(,31sin -=+=βαα则=+)2sin(βα _______. 12.函数x x y 2cos )23cos(--=π的最小正周期为__________.13.关于三角函数的图像,有下列命题:①x y sin =与x y sin =的图像关于y 轴对称;②)cos(x y -=与x y cos =的图像雷同;③x y sin = 与)sin(x y -=的图像关于y 轴对称;④x y cos =与)cos(x y -=的图像关于y 轴对称;个中准确命题的序号是___________.三.解答题(本大题共6小题,共80分.解答应写出须要的文字解释,证实进程或演算步调)α,其地点的圆的半径为R .(1)若060α=,R=10cm,求扇形的弧长及该弧地点的弓形的面积; (2)若扇形的周长为定值p ,当α为若干弧度时,该扇形有最大的面积?这一最大面积是若干?)0(3cos >-=b x b a y 的最大值为23,最小值为21-,求函数bx a y 3sin 4-=的单调区间.最大值和最小正周期.(1)若a 与2b c -垂直,求tan()αβ+的值; (2)求||b c +的最大值;(3)若tan tan 16αβ=,求证:a ∥b .ABC ∆中,C B A ∠∠∠、、所对的边长分离为c b a 、、,设c b a 、、知足前提222a bc c b =-+和321+=b c,乞降A ∠B tan 的值.18.在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD=5,求sinA 的值.ABC 的内角A B C ,,的对边分离为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值规模. 1~8 DCBDCDCD9.725-10.4315 11.31- 12.3π14.②④15.(1)设弧长为l ,弓形面积为S 弓,则∵0603πα==,R=10,∴10()3l cm π=, 211011010sin 2323S S S ππ∆=-=⨯⨯-⨯弓扇250()3cm π=-;(2)∵扇形周长22p R l R R α=+=+,∴2pR α=+, ∴222111()422224p p S R ααααα===⨯+++扇,由44αα+≥,得216p S ≤扇,∴当且仅当4αα=,即2α=时,扇形取得最大面积216p .16.[解答]由已知前提得⎪⎪⎩⎪⎪⎨⎧-=-=+;,2123b a b a 解得⎪⎩⎪⎨⎧==;,121b a ∴x y 3sin 2-=,其最大值为2,最小正周期为32π,在区间[326326ππππk k ++-,](Z k ∈)上是增函数, 在区间[322326ππππk k ++,](Z k ∈)上是减函数. 18.解:由余弦定理212cos 222=-+=bc a c b A ,是以,︒=∠60A 在△AB C 中,∠C=180°-∠A-∠B=120°-∠B. 由已知前提,运用正弦定理BB BC bc sin )120sin(sin sin 321-︒===+ ,21cot 23sin sin 120cos cos 120sin +=︒-︒=B B B B 解得,2cot =B 从而.21tan =B 19.解:设E 为BC 的中点,衔接DE,则DE//AB,且36221==AB DE ,设BE =x在ΔBDE 中运用余弦定理可得:BED ED BE ED BE BD cos 2222⋅-+=,x x 6636223852⨯⨯++=,解得1=x ,37-=x (舍去)故BC=2,从而328cos 2222=⋅-+=B BC AB BC AB AC ,即3212=AC 又630sin =B ,故2sin A =1470sin =A 20.解:(Ⅰ)由2sin a b A =,依据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =.(Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =+3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=.2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭3A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值规模为322⎛⎫⎪⎪⎝⎭,.。

初中三角函数练习题(经典版)

初中三角函数练习题(经典版)

初中三角函数练习题(经典版)1. 已知直角三角形ABC,其中∠B = 90°,BC = 5cm,AC = 12cm,求∠A和∠C的正弦、余弦和正切值。

解答:根据直角三角形的定义,可以得知:∠A = 90° - ∠C根据正弦定理,可以得知:sin(∠A) = AC / hypotenusecos(∠A) = BC / hypotenusetan(∠A) = sin(∠A) / cos(∠A)代入已知数据,可以计算出:sin(∠A) = 12 / 13 ≈ 0.92cos(∠A) = 5 / 13 ≈ 0.38tan(∠A) ≈ 2.41同理,我们可以计算出:sin(∠C) ≈ 0.38cos(∠C) ≈ 0.92tan(∠C) ≈ 0.412. 已知角A的正弦值sin(∠A) = 0.6,∠A为锐角,求∠A的角度。

解答:根据正弦函数的定义,可以得知:sin(∠A) = opposite / hypotenuse代入已知数据,可以得到:0.6 = opposite / 1解方程,可以得到:opposite ≈ 0.6由于∠A为锐角,因此0° < ∠A < 90°通过查表或计算可以得知:∠A ≈ 36.87°3. 已知∠A = 60°,求sin(∠A)和cos(∠A)的值。

解答:根据正弦函数和余弦函数的定义,可以得知:sin(∠A) = opposite / hypotenusecos(∠A) = adjacent / hypotenuse对于∠A = 60°,可以设置一个等边三角形,即opposite = adjacent = hypotenuse,代入已知数据,可以计算出:sin(∠A) = 0.87cos(∠A) = 0.5...(继续列出更多练题)总结:通过解答以上练习题,我们可以更好地理解和掌握三角函数的概念和计算方法,同时加深对直角三角形的认识。

三角函数试题及答案初中

三角函数试题及答案初中

三角函数试题及答案初中一、选择题(每题3分,共30分)1. 若sinα=1/2,则α的度数是()A. 30°B. 60°C. 90°D. 120°2. cos30°的值是()A. 1/2B. √3/2C. √2/2D. 13. 已知tan45°=1,则sin45°的值是()A. 1/√2B. √2/2C. √2D. 14. 如果sinβ=3/5,且β为锐角,则cosβ的值是()A. 4/5B. -4/5C. 3/5D. -3/55. 根据三角函数的定义,下列哪个选项是错误的()A. sin0°=0B. cos90°=0C. tan60°=√3D. sin180°=-16. 已知sinA=1/2,那么cos2A的值是()A. 1/4B. 1/2C. 3/4D. 07. 在直角三角形中,如果一个锐角的正弦值是1/3,那么它的余弦值是()A. 2√2/3B. √2/3C. √6/3D. 3√2/38. 根据三角函数的周期性,sin(360°+α)等于()A. sinαB. -sinαC. co sαD. -cosα9. 一个角的正切值是-√3,那么这个角的度数是()A. 60°B. 120°C. 240°D. 300°10. 根据三角函数的和角公式,sin(α+β)=sinαcosβ+cosαsinβ,那么cos(α+β)的值是()A. cosαcosβ-sinαsinβB. cosαcosβ+sinαsinβC. sinαcosβ-cosαsinβD. -cosαcosβ-sinαsinβ二、填空题(每题4分,共20分)1. sin60°的值是______。

2. 一个角的余弦值是-1/2,那么这个角的正弦值是______。

3. 已知tanA=2,则sinA的值是______。

初中数学中考复习:25锐角三角函数综合复习(含答案)

初中数学中考复习:25锐角三角函数综合复习(含答案)

中考总复习:锐角三角函数综合复习—巩固练习(提高)【巩固练习】一、选择题1. 在△ABC中,∠C=90°,cosA=,则tan A等于( )A.B.C.D.2.在Rt△ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA=.则下列关系式中不成立的是( )A.tanA•cotA=1 B.sinA=tanA•cosA C.cosA=cotA•sinA D.tan2A+cot2A=1第2题第3题3.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于( )A.B.C.D.4.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( )A.B.C.D.5.如图所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-x+,则cosα等于( )A.B.C.D.第5题第6题6.如图所示,在数轴上点A所表示的数x的范围是( )A. B.C. D.;二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为.9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90°时,求的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.已知:正方形ABCD的边长为2,点P是直线CD上一点,若DP=1,则tan∠BPC的值是 .三、解答题13.如图所示,某拦河坝截面的原设计方案为AH∥BC,坡角∠ABC=74°,坝顶到坝脚的距离AB=6m 为了提高拦河坝的安全性,现将坡角改为55°,由此,点A需向右平移至点D,请你计算AD的长.(精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)【答案与解析】一、选择题1.【答案】D;【解析】在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A=.故选D.2.【答案】D;【解析】根据锐角三角函数的定义,得A、tanA•cotA==1,关系式成立;B、sinA=,tanA•cosA=,关系式成立;C、cosA=,cotA•sinA=,关系式成立;D、tan2A+cot2A=()2+()2≠1,关系式不成立.故选D.3.【答案】B;【解析】连接BD.∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC=故选B.4.【答案】C;【解析】设CE=x,则AE=8-x.由折叠性质知AE=BE=8-x.在Rt△CBE中,由勾股定理得BE2=CE2+BC2,即(8-x)2=x2+62,解得,∴tan∠CBE.5.【答案】A;【解析】∵y=-x+,∴当x=0时,y=,当y=0时,x=1,∴A(1,0),B,∴OB=,OA=1,∴AB==,∴cos∠OBA=.∴OP⊥AB,∴∠α+∠OAB=90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=.故选A.6.【答案】D;【解析】由数轴上A点的位置可知,<A<2.A、由sin30°<x<sin60°可知,×<x<,即<x<,故本选项错误;B、由cos30°<x<cos45°可知,<x<×,即<x<,故本选项错误;C、由tan30°<x<tan45°可知,×<x<1,即<x<1,故本选项错误;D、由cot45°<x<cot30°可知,×1<x<,即<x<,故本选项正确.故选D.二、填空题7.【答案】30°;【解析】x1·x2=2sinθ,x1+x2=-3,则(x1-x2)2=(x1+x2)2-4x1x2=9-8sinθ=()2,∴sinθ=,∴θ=30°.8.【答案】;【解析】∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF==.9.【答案】;【解析】连接AO并延长交圆于E,连CE.∴∠ACE=90°(直径所对的圆周角是直角);在直角三角形ACE中,AC=4,AE=6,∴sin∠E=;又∵∠B=∠E(同弧所对的的圆周角相等),∴sinB=.10.【答案】1;【解析】由sin2α+cos2α=1,可得1-sin2α=cos2α∵sin2α+cos2α=1,∴cos2α=1-sin2α.∴.∵0°<α<90°,∴cosα>0.∴原式==1.11.【答案】;【解析】连接EC.根据圆周角定理∠ECO=∠OBE.在Rt△EOC中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.12.【答案】2或;【解析】此题有两种可能:(1)当点P在线段CD上时,∵BC=2,DP=1,CP=1,∠C=90°,∴tan∠BPC==2;(2)当点P在CD延长线上时,∵DP=1,DC=2,∴PC=3,又∵BC=2,∠C=90°,∴tan∠BPC=.故答案为:2或.三、解答题13.【答案与解析】解:如图所示,过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.在Rt△ABE中,,∴AE=ABsin∠ABE=6sin 74°≈5.77(cm);,∴BE=ABcos∠ABE=6cos 74°≈1.65(m).∵AH∥BC,∴DF=AE≈5.77m.在Rt△BDF中,,∴(m).∴AD=EF=BF-BE=4.04-1.65≈2.4(m).14.【答案与解析】解:在Rt△ABD中,∠ABD=90°,∠BAD=18°,∴,BD=tan∠BAD·AB=tan 18°×9,∴CD=tan 18°×9-0.5.在Rt△DCE中,∠DEC=90°,∠CDE=72°,∴,=sin 72°×(tan 18°×9-0.5)≈2.3(m).即该图中CE的长约为2.3m.15.【答案与解析】解:如图所示,由已知可得∠ACB=60°,∠ADB=45°.∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵,∴,即.∵BD=BC+CD,∴.∴CD=AB-AB=180-180×=(180-60)米.答:小岛C、D间的距离为(180-)米.16.【答案与解析】解:(1)BF=CG.证明:在△ABF和△ACG中,∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC,∴△ABF≌△ACG(AAS),∴BF=CG.(2)DE+DF=CG.证明:过点D作DH⊥CG于点H(如图所示).∵DE⊥BA于点E,∠G=90°,DH⊥CG,∴四边形EDHG为矩形,∴DE=HG.DH∥BG.∴∠GBC=∠HDC∴AB=AC.∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS),∴DF=CH.∴GH+CH=DE+DF=CG,即DE+DF=CG.(3)仍然成立.(注:本题还可以利用面积来进行证明,比如(2)中连结AD)。

初中三角函数练习题及答案

初中三角函数练习题及答案

初中三角函数练习题及答案初中三角函数练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( ) A 、1:1:2 B 、1:1:2 C 、1:1:3 D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( ) A 、sinA=sinB B 、sinA=cosB C 、tanA=tanB D 、cosA=tanB7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()A.sinB=23 B.cosB=23 C.tanB=23D .tanB=3 28.点(-sin60°,cos60°)关于y轴对称的点的坐标是()A.(32,12) B.(-32,12) C.(-32,-12)D.(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为()A.6.9米 B.8.5米 C.10.3米 D.12.0米10.王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()(A)350m (B)100 m(C)150m (D)3100m11、如图1,在高楼前D点测得楼顶的仰角为30︒,向高楼前进60米到C点,又测得仰角为45︒,则该高楼的高度大约为()A.82米B.163米C.52米D.70米图145︒30︒BA D C12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______. 4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=62-,cos15°=62+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.第6题x O AyB 北甲北乙第5题第46.如图,机器人从A点,沿着西南方向,行了个42单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB段的长度为20米,倾斜角A为α,高度BC为___________米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•2≈1.413 1.73)三、认真答一答αA CB第10A4052CD第9B431,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒ 分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

九年级数学 三角函数50道练习题

九年级数学 三角函数50道练习题

九年级数学三角函数50道练习题(以上为标题,不计入800字)1. 已知一个角的补角是60度,求该角的大小。

2. 求解sin45°的值。

3. 已知tanθ = 1/√3,求θ的度数。

4. 求解cos30°的值。

5. 若sinθ = cos(180° - θ),求θ的度数。

6. 求解tan60°的值。

7. 若secθ = 2,求cosθ的值。

8. 若tanθ = 2,求cotθ的值。

9. 求解sin60°的值。

10. 若sinθ = cos90° - θ,求θ的度数。

11. 已知sinθ = 1/2,求θ的度数。

12. 求解tan30°的值。

13. 若cscθ = 4/3,求sinθ的值。

14. 已知cosθ = 1/√2,求θ的度数。

15. 求解cos45°的值。

16. 若secθ = -2,求cosθ的值。

17. 如果tanθ = 4/3,求cotθ的值。

18. 求解sin30°的值。

19. 若sinθ = cos(90° - θ),求θ的度数。

20. 已知cosθ = 1/2,求θ的度数。

21. 求解tan45°的值。

22. 若secθ = -1/2,求cosθ的值。

23. 如果tanθ = 3/4,求cotθ的值。

24. 求解sin120°的值。

25. 若sinθ - cosθ = 0,求θ的度数。

26. 已知tanθ = √3,求θ的度数。

27. 求解cos60°的值。

28. 若secθ = -√2,求cosθ的值。

29. 如果tanθ = -2/3,求cotθ的值。

30. 求解sin150°的值。

31. 若sinθ + cosθ = 1,求θ的度数。

32. 已知cotθ = 4/3,求θ的度数。

33. 求解cos75°的值。

34. 若secθ = -1/√3,求cosθ的值。

初中数学三角函数巩固练习含答案

初中数学三角函数巩固练习含答案

三角函数巩固练习一.选择题(共16小题)1.如图,港口A在观测站O的正东方向,某船从港口A出发,沿北偏东15°方向航行15km 到达B处,此时从观测站O处测得该船位于北偏东45°的方向,则观测站O距港口A 的距离为()A.km B.15km C.km D.15km2.在△ABC中,∠C=90°,AC=1,BC=2,则cos A的值是()A.B.C.D.3.如图,从地面B处测得热气球A的仰角为45°,从地面C处测得热气球A的仰角为30°,若BC为240米则热气球A的高度为()A.120米B.120(﹣1)米C.240米D.120(+1)米4.临沂高铁即将开通,这将极大方便市民的出行.如图,在距离铁轨200米处的B处,观察由东向西的动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上,10秒钟后,动车车头到达C处,恰好位于B处西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200D.3005.如图,点P(x,y)(x>0,y>0)在半径为1的圆上,则cosα=()A.x B.y C.D.6.如图,广场上空有一个气球A,地面上点B,C,D在一条直线上,BC=20m.在点B,C分别测得气球A的仰角∠ABD=45°,∠ACD=60°.则气球A离地面的高度()A.(30﹣10)米B.20米C.(30+10)米D.40米7.如图,一辆小车沿着坡度为i=1:的斜坡向上行驶了50米,则此时该小车离水平面的垂直高度为()A.25米B.25米C.30米D.35米8.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米9.△ABC在正方形网格中的位置如图所示,则cosα的值是()A.B.C.D.10.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD为100m,点A、D、B在同一直线上,CD⊥AB,则A、B两点的距离是()A.200m B.200m C.m D.11.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90m,那么该建筑物的高度BC约为()A.100m B.120m C.100m D.120m12.如图,河流的两岸PQ,MN互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得∠DAN=45°,然后沿河岸走了130米到达B处,测得∠CBN=60°.则河流的宽度CE为()A.80B.40(3﹣)C.40(3+)D.4013.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B两点间的距离为()米.A.750B.375C.375D.75014.朝天门,既是重庆城的起源地,也是“未来之城”来福士广场的停泊之地,广场上八幢塔楼临水北向,错落有致,宛若巨轮扬帆起航,成为我市新的地标性建筑﹣﹣“朝天扬帆”,来福士广场T3N塔楼核芯筒于2017年12月11日完成结构封顶,高度刷新了重庆的天际线,小明为了测量T3N的高度,他从塔楼底部B出发,沿广场前进185米至点C,继而沿坡度为i=1:2.4的斜坡向下走65米到达码头D,然后在浮桥上继续前行100米至趸船E,在E处小明操作无人勘测机,当无人勘测机飞行之点E的正上方点F时,测得码头D的俯角为58°.楼顶A的仰角为30°,点A、B、C、D、E、F、O在同一平面内,则T3N塔楼AB的高度约为()(结果精确到1米,参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,≈1.73)A.319米B.335米C.342米D.356米15.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平底面A处安置测角仪测一得楼房CD顶部点CD的仰角为45°,向前走20米到达A1处,测得点D的仰角为67.5°.已知测角仪AB的高度为1米,则楼房CD的高度为()A.()米B.()米C.()米D.()米16.在Rt△ABC中,把各边都缩小到,那么sin A的值()A.都缩小B.都不变C.都扩大5倍D.无法确定二.填空题(共4小题)17.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则的值=______,tan∠APD的值=______.18.如图,在△ABC中,sin B=,tan C=,AB=3,则AC的长为______.19.如图所示是小明家房子的侧面图,屋面两侧的斜坡AB=AC=6米,屋顶∠BAC=150°,计划把图中△ABC(阴影部分)涂上墙漆,若墙漆的造价每平方米为100元,则这部分墙漆的造价共需______元.20.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cos B=______.三.解答题(共7小题)21.小明学校门前有座山,山上有一电线杆PQ,他很想知道电线杆PQ的高度.于是,有一天,小明和他的同学小亮带着测角器和皮尺来到山下进行测量,测量方案如下:如图,首先,小明站在地面上的点A处,测得电线杆顶端点P的仰角是45°;然后小明向前走6米到达点B处,测得电线杆顶端点P和电线杆底端点Q的仰角分则是60°和30°,设小明的眼睛到地面的距离为1.6米,请根据以上测量的数据,计算电线杆PQ的高度(结果精确到1米,参考数据=1.7,=1.4).22.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,AB:BD=.(1)求tan∠DAC的值;(2)若BD=4,求S△ABC.23.我国海域辽阔,渔业资源丰富,如图所示.现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上,在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向海里处,则海岛A,C之间的距离为多少海里?24.如图是某路灯在铅锤面内的示意图,灯柱AC的高为15.25米,灯杆AB与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为22米,从D、E两处测得路灯B的仰角分别为α和β,且tanα=8,tanβ=,求灯杆AB的长度.25.如图,在Rt△ABC中,∠C=90°,点D在边BC上,AD=BD=5,sin∠ADC=,求tan∠ABC的值.26.如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求(1)∠C的度数.(2)A,C两港之间的距离为多少km.27.已知:如图,在△ABC中,AB=AC=5,BC=8,D是边AB上一点,且tan∠DCB=.(1)试求cos B的值;(2)试求△BCD的面积.三角函数巩固练习参考答案与试题解析一.选择题(共16小题)1.解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∠B=180°﹣45°﹣90°﹣15°=30°,∴AD=AB•sin30°=15×=km,∴OA=AD=km.即观测站O距港口A的距离为km.故选:A.2.解:在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB===,∴cos A===,故选:C.3.解:如图所示,过点A作AD⊥BC于点D,由题意知,∠B=45°,∠C=30°,BC=240米,设AD=x米,则BD=AD=x米,CD===x米,由BC=BD+CD可得x+x=240,解得:x=120(﹣1),即热气球的高度为120(﹣1)米,故选:B.4.解:作BD⊥AC于点D.∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD=200(米),同理,CD=BD=200(米).则AC=200+200(米).则平均速度是=20(+1)米/秒.故选:A.5.解:如图,过点P作PQ⊥x轴于点Q,则OQ=x、PQ=y,OP=1,∴cosα==x,故选:A.6.解:作AE⊥BD于E,在Rt△ACE中,CE==AE,∵∠ABE=45°,∴BE=AE,由题意得BE﹣CE=20,即AE﹣AE=20,解得AE=30+10.答:气球A离地面的高度约为(30+10)m.故选:C.7.解:设此时该小车离水平面的垂直高度为x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=502.解得x=25.即此时该小车离水平面的垂直高度为25米.故选:A.8.解:作DE⊥AB于E,作DF⊥BC于F,∵CD的坡度为i=1:2.4,CD=52米,∴=1:2.4,∴=52,∴DF=20(米);∴BE=DF=20(米),∵∠BDE=45°,∴DE=BE=40m,在Rt△ADE中,∠ADE=37°,∴AE=tan37°•20=15(米)∴AB=AE+BE=35(米).故选:B.9.解:如图所示:∵AD=3,CD=4,∴AC=5∴cosα==.故选:C.10.解:∵从热气球C处测得地面A、B两点的俯角分别为30°、45°,∴∠BCD=90°﹣45°=45°,∠ACD=90°﹣30°=60°,∵CD⊥AB,CD=100m,∴△BCD是等腰直角三角形,∴BD=CD=100m,在Rt△ACD中,∵CD=100m,∠ACD=60°,∴AD=CD•tan60°=100×=100m,∴AB=AD+BD=100+100=100(+1)m.故选:D.11.解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120(m),故选:D.12.解:过点C作CF∥DA交AB于点F.∵MN∥PQ,CF∥DA,∴四边形AFCD是平行四边形.∴AF=CD=50,∠CFB=∠DAN=45°,∴FE=CE,设BE=x,∵∠CBN=60°,∴EC=x,∵FB+BE=EF,∴130﹣50+x=x,解得:x=40(+1),∴CE=x=40(3+),故选:C.13.解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故选:A.14.解:如图,作FG⊥AB于点G,CH⊥DO于点H,由i==可设CH=x、DH=2.4x,∵CD2=CH2+DH2,且CD=65,∴652=x2+(2.4x)2,解得:x=25,则BO=CH=25,DH=2.4x=60,∴FG=EO=ED+DH+OH=100+60+185=345,则AG=FG tan∠AFG=345×=115,又∵GO=EF=ED×tan∠FDE=100×tan58°≈100×1.60=160.∴AB=AG+OG﹣OB=115+160﹣25≈198.95+135≈335(米)故选:B.15.解:过B作BF⊥CD于F,作B′E⊥BD,∵∠BDB'=∠B'DC=22.5°,∴EB'=B'F,在Rt△BEE′中,∵∠BEB′=45°,BB′=20米,∴EB′=B′F=10(米),∴BF=BB′+B′F=(20+10)(米)∴DF=(20+10)(米)∴DC=DF+FC=20+10+1=(21+10)米故选:B.16.解:根据锐角三角函数的定义,知若各边都缩小到,则∠A的大小没有变化,所以sin A的值不变.故选:B.二.填空题(共4小题)17.解:∵四边形BCED是正方形,∴DB∥AC,∴△DBP∽△CAP,∴==3,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==2,∵∠APD=∠BPF,∴tan∠APD=2,故答案为:3,2.18.解:过A作AD⊥BC,在Rt△ABD中,sin B=,AB=3,∴AD=AB•sin B=1,在Rt△ACD中,tan C=,∴=,即CD=,根据勾股定理得:AC===,故答案为.19.解:如图,过点B作BD垂直于CA延长线于点D,∵∠BAC=150°,∴∠BAD=30°.∴BD=AB•sin30°=AB=3米.∴S阴影=AC•BD==9(平方米)则造价为:9×100=900(元)故答案是:900.20.解:由勾股定理可知:BC==,∴cos B==,故答案为:三.解答题(共7小题)21.解:设QH=x米,由题意得,∠PDH=60°,∠QDH=30°,∴∠DPH=30°,在Rt△QDH中,tan∠QDH=,则DH===x,在Rt△PDH中,tan∠PDH=,则PH==3x,∵∠PCH=45°,∴CH=PH,即6+x=3x,解得,x=3+,则PQ=3x﹣x=2x=6+2≈9,答:电线杆PQ的高度约为9米.22.解:(1)过D作DE⊥AB于E,∴∠BED=∠C=90°,∵AD是∠BAC的平分线,∴DE=DC,∵∠B=∠B,∴△BDE∽△BAC,∴=,∵AB:BD=,∴tan∠DAC==;(2)∵tan∠DAC=,∴∠DAC=30°,∴∠ADC=60°,∠BAD=∠CAD=30°,∴∠B=30°,∴∠ABD=∠DAB,∴AD=BD=4,∴CD=AD=2,AC=AD=2,∴BC=6,∴S△ABC=AC•BC=6×=.23.解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=28(1+),解得,x=28,答:A,C之间的距离为28海里.24.解:过点B作BF⊥CE,交CE于点F,过点A作AG⊥BF,交BF于点G,则FG=AC =15.25.由题意得∠BDE=α,tan∠β=.设BF=4x,则EF=5x在Rt△BDF中,∵tan∠BDF==8,∴DF==,∵DE=22,∴x+5x=22.∴x=4.∴BF=16,∴BG=BF﹣GF=16﹣15.25=0.75,∵∠BAC=120°,∴∠BAG=∠BAC﹣∠CAG=120°﹣90°=30°.∴AB=2BG=1.5,答:灯杆AB的长度为1.5米25.解:在Rt△ADC中,sin∠ADC==,∴=,∴AC=4,CD===3,∴BC=CD+DB=3+5=8,在Rt△ABC中,tan∠ABC===.26.解:(1)由题意得:∠ACB=20°+40°=60°;(2)由题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=30,过B作BE⊥AC于E,如图所示:∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=30,∴AE=BE=AB=30,在Rt△CBE中,∵∠ACB=60°,tan∠ACB=,∴CE===10,∴AC=AE+CE=30+10,∴A,C两港之间的距离为(30+10)km.27.解:(1)作AE⊥BC于E,如图,∵AB=AC,∴BE=CE=BC=×8=4,在Rt△ABC中,cos B==;(2)作DF⊥BC于F,如图,在Rt△CDF中,tan∠DCF==,设DF=3x,则CF=5x,在Rt△ABE中,AE==3,∴tan B==,在Rt△BDF中,tan B==,而DF=3x,∴BF=4x,∴BC=BF+CF=4x+5x=9x,即9x=8,解得x=,∴DF=3x=,∴S△BCD=×DF×BC=××8=.。

初中数学三角函数专题练习答案

初中数学三角函数专题练习答案

初中数学三角函数专题练习答案在初中数学的学习中,三角函数是一个重要且具有一定难度的知识点。

为了帮助同学们更好地掌握这部分内容,我们进行了一系列的专题练习。

下面将为大家详细呈现这些练习的答案及解析。

一、选择题1、在直角三角形中,若一个锐角为 30°,斜边为 2,则直角边的长度为()A 1B √3C 2√3D √3/2答案:B解析:在直角三角形中,30°角所对的直角边等于斜边的一半。

已知斜边为 2,所以 30°角所对的直角边为 1。

根据勾股定理,另一条直角边的长度为√(2² 1²) =√3 。

2、已知 sinA = 1/2 ,且∠A 为锐角,则∠A 的度数为()A 30°B 45°C 60°D 90°答案:A解析:因为 sin30°= 1/2 ,且∠A 为锐角,所以∠A = 30°。

3、若tanα =√3 ,则α的度数为()A 30°B 45°C 60°D 90°答案:C解析:因为 tan60°=√3 ,所以α = 60°。

二、填空题1、计算:sin45°=____答案:√2/2解析:sin45°的值是固定的,为√2/2 。

2、已知 cosA = 1/2 ,且 0°<∠A < 90°,则∠A =____答案:60°解析:因为 cos60°= 1/2 ,且 0°<∠A < 90°,所以∠A = 60°。

3、若tanθ = 1,则θ =____答案:45°解析:因为 tan45°= 1 ,所以θ = 45°。

三、解答题1、已知在 Rt△ABC 中,∠C = 90°,∠A = 60°,AB = 4,求AC 和 BC 的长度。

初中三角函数10道大题综合练习

初中三角函数10道大题综合练习

三角函数1.已知函数()4cos sin()16f x x x π=+-.(Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值.2、已知函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ(Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.4、已知函数xxx x x f sin 2sin )cos (sin )(-=.(1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间.5、 设函数2()cos(2)sin 24f x x x π=++. (I )求函数()f x 的最小正周期;(II )设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时,1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.6、函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值. 7、设426f (x )cos(x )sin x cos x π=ω-ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域(Ⅱ)若y f (x )=在区间322,ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.9、已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A ; (2)若2a =,ABC ∆的面积为3;求,b c .10、在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C .(Ⅰ)求tan C 的值; (Ⅱ)若a ∆ABC 的面积.答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为()4cos sin()16f x x x π=+-14cos cos )12x x x =+-222cos 1x x =+-2cos 22sin(2)6x x x π=+=+, 所以()f x 的最小正周期为π.(Ⅱ)因为64x ππ-≤≤,所以22663x πππ-≤+≤.于是,当262x ππ+=,即6x π=时,()f x 取得最大值2;当266x ππ+=-,即6x π=-时,()f x 取得最小值-1.2、【解析】 (1)2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--2sin 2coscos 2)34x x x ππ=+=+ 函数()f x 的最小正周期为22T ππ==(2)32sin(2)11()4444424x x x f x ππππππ-≤≤⇒-≤+≤⇒-≤+≤⇔-≤≤当2()428x x πππ+==时,()max f x ,当2()444x x πππ+=-=-时,min ()1f x =-【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.【精讲精析】(I )【解析】由2,42+≠+∈x k k Z πππ, 得,82≠+∈k x k Z ππ. 所以()f x 的定义域为{|,}82∈≠+∈k x R x k Z ππ,()f x 的最小正周期为.2π(II )【解析】由()2cos 2,2f =αα得tan()2cos 2,4+=παα 22sin()42(cos sin ),cos()4+=-+παααπα 整理得sin cos 2(cos sin )(cos sin ).cos sin +=+--αααααααα因为(0,)4∈πα,所以sin cos 0.+≠αα因此211(cos sin ),sin 2.22-==ααα即 由(0,)4∈πα,得2(0,)2∈πα.所以2,.612==ππαα即4、解(1):sin 0()x x k k Z π≠⇔≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈(sin cos )sin 2()(sin cos )2cos sin x x xf x x x xx-==-⨯sin 2(1cos 2))14x x x π=-+=--得:)(x f 的最小正周期为22T ππ==;(2)函数sin y x =的单调递增区间为[2,2]()22k k k Z ππππ-+∈ 则322224288k x k k x k πππππππππ-≤-≤+⇔-≤≤+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z ππππππ-+∈5、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力. 【解析】2111())sin cos 2sin 2(1cos 2)4222f x x x x x x π=++=-+-11sin 222x =-, (I )函数()f x 的最小正周期22T ππ== (II )当[0,]2x π∈时,11()()sin 222g x f x x =-= 当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1x x g x ππ⎧--≤≤⎪⎪=⎨⎪.6、【解析】(1)∵函数()f x 的最大值是3,∴13A +=,即2A =.∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期T π=,∴2ω=. 故函数()f x 的解析式为()2sin(2)16f x x π=-+.(2)∵()2f α2sin()126πα=-+=,即1sin()62πα-=,∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3πα=.7、解:(1)()314sin sin cos 22f x x x x x ωωωω⎫=++⎪⎪⎝⎭22223cos 2sin cos sin x x x x x ωωωωω=++-321x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为13,13⎡+⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数, 故()3sin 21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得:2()6cos33(0)2xf x x ωωω=->=3cosωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f .……………………6分(Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=………………………………………………………12分 9..解:(1)由正弦定理得:cos 3sin 0sin cos 3sin sin sin a C a C b c A C A C B C --=⇔=+sin cos 3sin sin()sin 13cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔=++⇔-=⇔-=⇔-=⇔=(2)1sin 342S bc A bc ==⇔=, 2222cos 4a b c bc A b c =+-⇔+= 10. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A =23>0,∴sin A 251cos A -=5cos C =sin B =sin(A +C )=sin A cos C +sin C cos A =5cos C +23sin C . 整理得:tan C 5.(Ⅱ)由图辅助三角形知:sin C =56.又由正弦定理知:sin sin a cA C=, 故3c = (1)对角A 运用余弦定理:cos A =2222b c a +-=. (2)解(1) (2)得:b=or b舍去).∴∆ABC的面积为:S.。

2024年数学九年级下册三角函数基础练习题(含答案)

2024年数学九年级下册三角函数基础练习题(含答案)

2024年数学九年级下册三角函数基础练习题(含答案)试题部分一、选择题:1. 已知sinA = 0.6,cosA = 0.8,那么tanA的值为()A. 0.75B. 0.75C. 0.75D. 0.752. 在直角三角形ABC中,∠C = 90°,若sinB = 3/5,则cosA 的值为()A. 4/5B. 3/4C. 4/3D. 3/43. 若0°<θ<90°,且cosθ = 4/5,则sin(90° θ)的值为()A. 3/5B. 4/5C. 3/4D. 4/34. 已知tanα = 1,则sinα和cosα的值分别为()A. 1, 1B. 1, 0C. 1, 1D. 1, 05. 在直角坐标系中,点P(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 若sinθ = 0.5,则θ的终边可能位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 已知sinα = √3/2,且α为锐角,则cosα的值为()A. 1/2B. √3/2C. 1/√2D. 1/28. 若0°<θ<180°,且cosθ = 1/2,则sinθ的值为()A. √3/2B. √3/2C. 1/2D. 1/29. 在直角三角形中,若一个锐角的正弦值为1/2,则这个锐角的度数为()A. 30°B. 45°C. 60°D. 90°A. sinAB. cosAC. tan(90° A)D. cotA二、判断题:1. 若一个角的正弦值等于它的余弦值,则这个角为45°。

()2. 在直角三角形中,锐角的正弦值随着角度的增大而增大。

()3. 若sinA = 0,则A为90°。

()4. 对于任意锐角α,sinα和cosα的值都在0到1之间。

()5. 在直角坐标系中,第二象限的点的横坐标为正,纵坐标为负。

(完整)初中数学三角函数练习题

(完整)初中数学三角函数练习题

(完整)初中数学三角函数练习题初中数学三角函数练题1. 求下列三角函数的值:a) sin 30°b) cos 45°c) tan 60°2. 在直角三角形 ABC 中,∠ACB = 90°,AC = 5 cm,BC = 12 cm。

求 sin A、cos A 和 tan A 的值。

3. 如果 sin x = 0.6,求 x 的值(0° ≤ x ≤ 180°)。

4. 已知 sin y = 0.8,求 cos y 的值(0° ≤ y ≤ 180°)。

5. 在直角三角形 DEF 中,∠E = 30°,EF = 6 cm,DE = 8 cm。

求 sin F、cos F 和 tan F 的值。

6. 如果 cos z = 0.4,求 z 的值(0° ≤ z ≤ 180°)。

7. 已知 cos w = 0.7,求 sin w 的值(0° ≤ w ≤ 180°)。

8. 在直角三角形 GHI 中,∠H = 60°,GH = 9 cm,HI = 3 cm。

求 sin G、cos G 和 tan G 的值。

9. 如果 tan v = 1.5,求 v 的值(0° ≤ v ≤ 180°)。

10. 已知 tan u = 2,求 sin u 的值(0° ≤ u ≤ 180°)。

11. 在直角三角形 ___ 中,∠K = 45°,JK = 6 cm,KL = 6 cm。

求 sin L、cos L 和 tan L 的值。

12. 如果 cot t = 0.75,求 t 的值(0° ≤ t ≤ 180°)。

13. 已知 cot s = 4,求 sin s 的值(0° ≤ s ≤ 180°)。

14. 已知cos α = 0.6,求sin^2 α 和cos^2 α 的值。

三角函数综合测试题(附答案)

三角函数综合测试题(附答案)

三角函数综合测试题学生: 用时: 分数一、选择题:在每题给出的四个选项中,只有一项为哪一项符合题目要求的〔本大题共18小题,每题3分,共54分〕1.〔08全国一6〕2(sin cos )1y x x =--是 〔 〕 A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数2.〔08全国一9〕为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像〔 〕A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位3.(08全国二1)假设sin 0α<且tan 0α>是,那么α是〔 〕A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角4.〔08全国二10〕.函数x x x f cos sin )(-=的最大值为 〔 〕 A .1 B . 2 C .3 D .25.〔08安徽卷8〕函数sin(2)3y x π=+图像的对称轴方程可能是 〔 〕A .6x π=-B .12x π=-C .6x π=D .12x π=6.〔08福建卷7〕函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,那么g(x )的解析式为( )xxxx7.〔08广东卷5〕函数2()(1cos2)sin ,f x x x x R =+∈,那么()f x 是 〔 〕 A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数C 、最小正周期为π的偶函数D 、最小正周期为2π的偶函数 8.〔08海南卷11〕函数()cos 22sin f x x x =+的最小值和最大值分别为 〔 〕A. -3,1B. -2,2C. -3,32D. -2,329.〔08湖北卷7〕将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,假设F ′的一条对称轴是直线,1x π=那么θ的一个可能取值是 〔 〕A.512π B.512π- C.1112π D.1112π- 10.〔08江西卷6〕函数sin ()sin 2sin2xf x xx =+是 〔 〕A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,那么MN 的最大值为 〔 〕 A .1BCD .212.〔08山东卷10〕πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是〔 〕A. BC .45-D .4513.〔08陕西卷1〕sin 330︒等于 〔 〕 A.2-B .12-C .12D.214.〔08四川卷4〕()2tan cot cos x x x += ( ) A.tan x B.sin x C.cos x D.cot x 15.〔08天津卷6〕把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍〔纵坐标不变〕,得到的图象所表示的函数是 〔 〕 A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R ,C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 16.〔08天津卷9〕设5sin 7a π=,2cos 7b π=,2tan 7c π=,那么 〔 〕 A .a b c <<B .a c b <<C .b c a <<D .b a c <<17.〔08浙江卷2〕函数2(sin cos )1y x x =++的最小正周期是 〔 〕A.2π B .π C.32πD.2π 18.〔08浙江卷7〕在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是 〔 〕1-18题答案:二、填空题:把答案填在答题卡相应题号后的横线上〔本大题共5小题,每题3分,共 15分〕.19.〔08北京卷9〕假设角α的终边经过点(12)P -,,那么tan 2α的值为 . 20.〔08江苏卷1〕()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,那么ω= .21.〔08辽宁卷16〕设02x π⎛⎫∈ ⎪⎝⎭,,那么函数22sin 1sin 2x y x +=的最小值为 .22.〔08浙江卷12〕假设3sin()25πθ+=,那么cos 2θ=_________。

初中三角函数试题及答案

初中三角函数试题及答案

初中三角函数试题及答案一、选择题(每题3分,共30分)1. 若sinA=1/2,则cosA的值为:A. 1/2B. √3/2C. -√3/2D. -1/22. 已知一个角的正弦值为0.6,那么这个角的余弦值的范围是:A. (0,1)B. (-1,0)C. (0,1)D. (-1,1)3. 函数y=sin(x)的周期是:A. 2πB. πC. 2D. 14. 函数y=cos(x)的图像关于:A. y轴对称B. x轴对称C. 原点对称D. 以上都不对5. 已知tanA=2,那么sinA/cosA的值为:A. 2B. 1/2C. -2D. -1/26. 函数y=sin(x)+cos(x)的最大值是:A. 1B. √2C. 2D. √37. 如果一个角的余弦值为-1,则这个角的度数是:A. 0°B. 90°C. 180°D. 270°8. 函数y=sin(x)在区间[0,π]上是:A. 增函数B. 减函数C. 先增后减D. 先减后增9. 函数y=cos(x)的图像在x=π/2处的切线斜率是:A. 0B. 1C. -1D. 不存在10. 已知sin(A+B)=sinAcosB+cosAsinB,那么cos(A+B)的表达式是:A. cosAcosB-sinAsinBB. cosAcosB+sinAsinBC. -cosAcosB-sinAsinBD. -cosAcosB+sinAsinB二、填空题(每题3分,共30分)1. 若sinA=3/5,且A为锐角,则cosA=______。

2. 函数y=cos(x-π/3)的图像关于点______对称。

3. 函数y=tan(x)的周期是______。

4. 如果一个角的正弦值为1/2,则这个角的余弦值可以是______。

5. 函数y=sin(x)在x=π/2处的值是______。

6. 函数y=cos(x)在x=0处的值是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.选择题(共10小题) 三角函数综合练习题1.如图,在网格中,小正方形的边长均为 1,点A, B , C 都在格点上,则/ ABC 的正切值是I ・...■鼻A1 ]__ ■卜-■…7 -L ____ _( ) A. 2B C 「D如图,点 D( 0, 3), 0( 0, 0), C (4, 0)在O A 上, BD 是O A 的一条弦,贝U sin /OBD=2. D. 斜边 AB 的长为 m, / A=35°, 则直角边BC 的长是()Rt △ ABC中,3.如图, 在 C. ID如图,△ ABC 中 AB=AC=4 / C=72° , D 是 AB 中点,点 E 在 AC 上, DEL AB,贝U cosA 的值4.A ' _ _ I B.、_ _ I C. - " D. -244 25.如图,厂房屋顶人字形(等腰三角形)钢架的跨度 C. 5tan36 °米 D.10tan36 °米6.—座楼梯的示意图如图所示, BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为0 .现要在 楼梯上铺一条地毯,已知 CA=4米,楼梯宽度1米,则地毯的面积至少需要(底部C 处的俯角为60°,热气球A 处与楼的水平距离为 120m 则这栋楼的高度为(sin米 2C. (4+ ')米 2tan fD. (4+4tan 0)7•如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°, 看这栋楼BC=10米,/ B=36°,则中柱 AD( DA. 160 m B . 120耳 3m C. 300m D. 160 :m &如图,为了测量某建筑物 MN 的高度,在平地上 A 处测得建筑物顶端 M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端 M 的仰角为45°,则建筑物MN 的高度等为底边中点)的长是(3三裂二矗帯nia劲鲁毎!? 白 E**十 EX?*!臣 ECBQCGS SU 二一?JCDfMLJ口n 自13歼3S si s 口「-on cma □于()A. 8 d ;」)mB. 8 ( . : - 1 ) mC. 16 (*•• ) mD. 16 C :Q ) m9.某数学兴趣小组同学进行测量大树 CD 高度的综合实践活动, 如图,在点A 处测得直立于 地面的大树顶端 C 的仰角为36。

,然后沿在同一剖面的斜坡 AB 行走13米至坡顶B 处,然后 再沿水平方向行走 6米至大树脚底点 D 处,斜面AB 的坡度(或坡比)i=1 : 2.4,那么大树 CD 的高度约为(参考数据: sin36 ’ 0.59 , cos36 ’ 0.81 , tan360.73 )()A. 8.1 米 B . 17.2 米 C. 19.7 米 D. 25.5 米10.如图是一个3X2的长方形网格,组成网格的小长方形长为宽的 2倍,△ ABC 的顶点都是网格中的格点,贝U cos / ABC 的值是().解答题(共13小题)(y) _ 1+ 11 _ V2 I -2cos45*11.计算:(=)-|tan45 °—「12.计算:13.计算:二sin45 °+cos230°- +2sin604 2-tan60°14.计算:cos 245 530:+cot 230°2sin6015.计算: sin45 °+ :sin60-2ta n45216.计算: 2 2cos 45° +tan60 ° ? cos30 ° -3cot 60°.〜0.5 ,* 1.7 )17.如图,某办公楼 AB 的后面有一建筑物 CD 当光线与地面的夹角是 22°时,办公楼在建 筑物的墙上留下高 2米的影子CE 而当光线与地面夹角是 45°时,办公楼顶A 在地面上的影 子F 与墙角C 有25米的距离(B, F , C 在一条直线上). (1 )求办公楼AB 的高度;(2)若要在A , E 之间挂一些彩旗,请你求出 A , E 之间的距离.(参考数据:sin22 ° ^―, cos22 °, tan22 ° p —)8 16 518•某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图, 某探 测对在地面A 、B 两处均探测出建筑物下方 C 处有生命迹象,已知探测线与地面的夹角分别 是25°和60°,且AB=4米,求该生命迹象所在位置C 的深度.(结果精确到1米,参考数据:□□ * □□□n \ D\帀EBFCtan2519. 如图,为测量一座山峰CF 的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角/ BAF=30,/CBE=45 .(1 )求AB段山坡的高度EF;(2)求山峰的高度CF.(』2宀1.414 , CF结果精确到米)20. 如图所示,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得C 的仰角为45°,已知OA=200米,山坡坡度为寺(即tan / PAB*),且O, A, B在同一条直线上,求电视塔OC的高度以及此人所在的位置点P的垂直高度.(侧倾器的高度忽略不计,结果保留根号)B水平地面21. 如图,为了测量出楼房 AC 的高度,从距离楼底 C 处60二米的点D (点D 与楼底C 在同 一水平面上)出发,沿斜面坡度为 i=1 :二的斜坡DB 前进30米到达点B ,在点B 处测得楼 顶A 的仰角为53 °,求楼房AC 的高度(参考数据:sin530.8 , cos53 0.6 , tan53 ° ~戈3计算结果用根号表示,不取近似值).22. 如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼 得障碍物边缘点 C 的俯角为30。

,测得大楼顶端A 的仰角为45 °(点B, C , E 在同一水平直 线上),已知AB=80m DE=10m 求障碍物B , C 两点间的距离(结果精确到0.1m )(参考数据:1.414 , ^31.732 )DE 在小楼的顶端D 处测23. 某型号飞机的机翼形状如图,根据图示尺寸计算AC和AB的长度(精确到0.1米,匚~完美WORD 格式编辑2016年12月23日三角函数综合练习题初中数学组卷参考答案与试题解析.选择题(共10小题)1. ( 2016?安顺)如图,在网格中,小正方形的边长均为 1,点A , B , C 都在格点上,则/1 1I ・■■■・dAL.C[ ..$…- 1- L ____A. 2由勾股定理,得AC= .:, AB=2 :, BC= . i, •••△ ABC 为直角三角形,.一 /a AC 1• • tan / B= =, AE 2故选:D.2. ( 2016?攀枝花)如图,点 D(0, 3), 0( 0, 0) , C (4, 0)在O A 上,BD 是O A 的一条弦,贝U sin / OBD=()d―>【分析】根据勾股定理,可得 AC AB 的长,根据正切函数的定义,可得答案.D.【点评】本题考查了锐角三角函数的定义,先求出AC AB 的长,再求正切函数. 【解答】3【解答】解:••• D (0, 3), C (4, 0), OD=3 OC=4vZ COD=90 ,••• cD=m -=5 , 连接CD 如图所示:vZ OBD Z OCD• sin Z OBD=sin Z OCD=-1=.CD 5故选:D.【点评】本题考查了圆周角定理,勾股定理、 以及锐角三角函数的定义;熟练掌握圆周角定 理是解决问题的关键.3. ( 2016?三明)如图,在 Rt △ ABC 中,斜边 AB 的长为 m Z A=35°,则直角边BC 的长是A. msin35 ° B . mcos35° C. _______ ____ D. ____ ____sin35° cos35°【分析】 根据正弦定义:把锐角 A 的对边a 与斜边c 的比叫做/ A 的正弦可得答案. 【解答】解:sin / A^ ,AB•/ AB=m / A=35°, /• BC=msi n35°, 故选:A.【点评】此题主要考查了锐角三角函数,关键是掌握正弦定义.ABC 中 AB=AC=4 / C=72°,D 是 AB 中点,点 E 在 AC 上, DEL AB,【分析】先根据等腰三角形的性质与判定以及三角形内角和定理得出/AE=BE=BC 再证明△ BC 0A ABC 根据相似三角形的性质列出比例式 后在△ ADE 中利用余弦函数定义求出 cosA 的值. 【解答】 解:•••△ ABC 中, AB=AC=4 / C=72°,•••/ ABC 玄 C=72°,Z A=36°,•/ D 是 AB 中点,DEL AB, :.AE=BE • Z ABE=/ A=36° ,• Z EBC=/ ABC- / ABE=36 , / BEC=180 -Z EBC-Z C=72° ,• Z BEC=/ C=72°,• BE=BC • AE=BE=BCD.EBC=36 Z BEC=72 , 4. ( 2016?绵阳)如图,△24设 AE=x,贝U BE=BC=x EC=4— x .在△ BCE 与△ ABC 中, r ZCBE=ZBAC=36e \ZC=ZABC=72° •••△ BC0A ABC • 一 _L -即二 … _ , 即卩 --- _ ,BC AC x 4解得x_ - 2翌-(负值舍去), • AE_- 2+2 二.在厶 ADE 中,I/ ADE_90 ,故选C.【点评】本题考查了解直角三角形, 等腰三角形的性质与判定,三角形内角和定理,线段垂 直平分线的性质,相似三角形的判定与性质,难度适中.证明△BCE^A ABC 是解题的关键.5. ( 2016?南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度 C. 5tan36。

米 D. 10tan36。

米DC_BD_5^,在Rt △ ABD 中,利用/ B 的正切进行计算即可得到AD 的长度.【解答】 解:I AB_AC AD 丄BC, BC_10米, • DC_BD_5米,在 Rt △ ADC 中,/ B_36°,An• tan36 ° ,即 AD_BD tan36 °5tan36 °(米).BD故选:C.【点评】本题考查了解直角三角形的应用. 解决此问题的关键在于正确理解题意的基础上建 立数学模型,把实际问题转化为数学问题.cosA__ _ _ _ + 】 7T !- BC_10米,/ B_36°则中柱AD ( D 为底边中点)的长是(【分析】根据等腰三角形的性质得到, 2D. (4+4tan 0)米sin【分析】由三角函数表示出 BC 得出AC+BC 勺长度,由矩形的面积即可得出结果.【解答】 解:在 Rt △ ABC 中,BC=AC tan 0 =4tan B (米), ••• AC+BC=4+4tan 0(米),2•地毯的面积至少需要 1 x 4+4tan 0) =4+4tan 0(米); 故选:D.【点评】 本题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出 BC 是解决问题的关键.7. ( 2016?长沙)如图,热气球的探测器显示,从热气球 A 处看一栋楼顶部 B 处的仰角为 30°,看这栋楼底部C 处的俯角为60°,热气球A 处与楼的水平距离为 120m,则这栋楼的高 A. 160 'm B . 120 ~m C. 300m D. 160 ■:m【分析】 首先过点A 作AD 丄BC 于点D,根据题意得/ BAD=30,/CAD=60 ,AD=120m 然后 利用三角函数求解即可求得答案.【解答】 解:过点 A 作AD 丄BC 于点D,则/ BAD=30,/CAD=60 ,AD=120m6. ( 2016?金华)一座楼梯的示意图如图所示, BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要cos \17米2ri 二二-1 二二二二三黑尸" 二-'■■=二.2n 二二-二 / "二rnfflCKWF-TLssBh gTrJ 弓二nETE- / 3口30£1丸-1||71口"」司00在 Rt △ ACD 中, CD=AD tan60 •••BC=BD+CD=160乙(m ).【点评】此题考查了仰角俯角问题•注意准确构造直角三角形是解此题的关键.& ( 2016?南通)如图,为了测量某建筑物 MN 的高度,在平地上 A 处测得建筑物顶端仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端 M 的仰角为45 ° ,【分析】 设MN=xm 由题意可知△ BMN 是等腰直角三角形,所以 BN=MN=x 则AN=16+x Rt △ AMN 中,利用30°角的正切列式求出x 的值. 【解答】解:设MN=xm 在 Rt △ BMN^,VZ MBN=45 , • BN=MN=,在 Rt △ AMIN 中 tan / MAN=」,AN• tan30 °16+x 3解得:x=8 ( >1),则建筑物MN 的高度等于8 ( 「;+1) m 故选A.【点评】本题是解直角三角形的应用, 考查了仰角和俯角的问题, 要明确哪个角是仰角或俯 角,知道仰角是向上看的视线与水平线的夹角; 俯角是向下看的视线与水平线的夹角;并与三角函数相结合求边的长.在 Rt △ ABD 中, 则建)mC. 16 f 」)m D. 16 ( ) mBD=AD tan30 =120X U=120 7 (m ), 故选A.筑物MN 的高度等于()9. (2016?重庆)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1 :2.4,那么大树CD 的高度约为(参考数据:sin 36 ° 0.59 , cos36 0.81 , tan 36 ° 0.73)()A. 8.1 米B. 17.2 米C. 19.7 米D. 25.5 米【分析】作BF丄AE于F,贝U FE=BD=6米,DE=BF设BF=x米,贝U AF=2.4米,在Rt△ ABF 中, 由勾股定理得出方程,解方程求出DE=BF=5米, AF=12米,得出AE的长度,在Rt△ ACE中, 由三角函数求出CE即可得出结果.【解答】解:作BF丄AE于F,如图所示:贝U FE=BD=6米, DE=BF•••斜面AB的坡度i=1 : 2.4 ,••• AF=2.4BF,设BF=x米,则AF=2.4x 米,2 2 2在Rt △ ABF中,由勾股定理得:x+ (2.4x )=13 ,解得:x=5,• DE=BF=5米, AF=12 米,• AE=AF+FE=18米,在Rt △ ACE中,CE=AE tan36 ° =18 >0.73=13.14 米,• CD=C E DE=13.14 米-5 米~ 8.1 米;故选:A.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;决问题的关键.10. (2016?广东模拟)如图是一个3>2的长方形网格,组成网格的小长方形长为宽的2倍, △ ABC的顶点都是网格中的格点,贝U cos / ABC的值是()A. 一B. —C. —D.—3 5 5 5【分析】根据题意可得/ D=90°,AD=3X1=3, BD=2>2=4,然后由勾股定理求得AB的长,又由余弦的定义,即可求得答案.【解答】解:如图,•••由6块长为2、宽为1的长方形,•••/ D=90°,AD=3>=3,BD=2>=4,•••在Rt △ ABD中, AB=「一 . | 川「'=5,• cos / ABC=^==.AB 5故选D.aZJ o8 c【点评】此题考查了锐角三角函数的定义以及勾股定理.的应用.二.解答题(共13小题)11. (2016?成都模拟)计算:由勾股定理得出方程是解此题比较简单,注意数形结合思想(—=)°+ (石)1•…—|tan45【分析】本题涉及零指数幕、负整数指数幕、特殊角的三角函数值、二次根式化简四个考点.在 计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:原式=1+3X p 〒-1 1- H=1+2 二-7+1=,■:.【点评】本题考查实数的综合运算能力, 是各地中考题中常见的计算题型. 解决此类题目的 关键是熟记特殊角的三角函数值,熟练掌握负整数指数幕、零指数幕、 二次根式、绝对值等考点的运算.【分析】要根据负指数,绝对值的性质和三角函数值进行计算•注意: L |= J 对-1, cos45 ° =' 一2【解答】解:原式=;「一1 一一 [八匸-」一 :=2.2【点评】本题考查实数的运算能力, 解决此类题目的关键是熟记特殊角的三角函数值,熟练 掌握负整数指数幕、二次根式、绝对值等考点的运算•注意:负指数为正指数的倒数;任何 非0数的0次幕等于1; 二次根式的化简是根号下不能含有分母和能开方的数.13 (2016?天门模拟)计算:乎sin45"30°扁亍+2sin60 °【分析】先把各特殊角的三角函数值代入,再根据二次根式混合运算的法则进行计算即可. 【解答】 解:原式=二?工二+42-匚+二4 46=1+. 键.14. (2016?黄浦区一模)计算:cos 245°- 7+cot 230°2sin6012. (2016?顺义区二模)计算:(y) _ |1 _ V2 I - 2COS 45(1)-仁3,|1 -■J-+2X '【点评】本题考查的是特殊角的三角函数值, 熟记各特殊角度的三角函数值是解答此题的关【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案./」+323=6【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.【分析】根据特殊角的三角函数值进行计算.2 216. (2016?虹口区一模)计算: cos 45° +tan60 ° ? cos30 °£cot 60°=1.【点评】本题考查了特殊角的三角函数值, 解答本题的关键是掌握几个特殊角的三角函数值.17. (2016?青海)如图,某办公楼 AB 的后面有一建筑物 CD 当光线与地面的夹角是 22° 时,办公楼在建筑物的墙上留下高 2米的影子CE 而当光线与地面夹角是 45°时,办公楼顶 A 在地面上的影子 F 与墙角C 有25米的距离(B, F , C 在一条直线上). (1 )求办公楼AB 的高度;15.( 2016 ?深圳校级模拟)计算:_ Sin45+^z sin60—2ta n45【点评】本题考查了特殊角的三角函数值•特指 30°、45°、60 °角的各种三角函数值.sin30 sin 45=;cos30 ° =; tan30 ° =;2 23sin60 =一 ;cos60 ° =;2 2tan60【解答】2【解答】tan45 【分析】 将特殊角的三角函数值代入求解.(2)若要在A, E之间挂一些彩旗,请你求出A, E之间的距离.(参考数据:sin22 °^―, cos22。

相关文档
最新文档