习题选解

2.3.1设图题2.3.1中的运放为理想器件,试求出a 、b 、c 、d 中电路输出电压v 0的值。

图题2.3.1

解:利用虚短和虚断的概念:p n v v =,0

==p n i i 图(a)可知21i i =,2

01110R v v R v -=-,V v p 0=式中V v 21=,

则V v 60=

图(b)可知p v R R v )1(1

20+=,式中V v p 2=,则V

v 60=图(c)可知0==p n v v ,则V

v 20=图(d)可知V v v p n 2==,

则V v 20=2.4.1一高输入电阻的桥式放大电路如图题2.4.1所示,试写出)(0δf v =的表达式(R R ?=δ)。

解:因A 1、A 2为电压跟随器,有

201i A v v v ==,i i B v v R R R v v δ

δ+=+==2120201v 、02v 为差分式运算电路A 3的输入信号电压,即有

i v R R v R R R R R v R R v )24())(1(12022121201120δ

δ+-=+++-=

图题2.4.1

2.4.2图题 2.4.2为一增益线性调节运放电路,试求出该电路的电压增益)(210i i V v v v A -=的表达式。

图题2.4.2

解A 1、A 2是电压跟随器,有2

02101,i i v v v v ==利用虚短和虚断概念,有

???????????=-=-=-=-33

0430420431301231301p n P P n n v v v R R v R v v R v v R v R v v 将上述方程组联立求解,得0431022012v R R R v R v R ???

? ??-=-故04

231210)(v R R R R v v v A i i V -=-=2.4.5同相输人加法电路如图题2.4.5a 、b 所示。

(1)求输出电压v 0表达式。当R 1=R 2=R 3=R 4时,v 0=?

(2)求图b 中输出电压的表达式,当R 1=R 2=R 3时,v 0=?

解:(1)输出电压为p v R R v )1(340+=,式中22

111212i i p v R R R v R R R v +++=即))(1)(1(21122

1340i i v R v R R R R R v +++=若R 1=R 2=R 3=R 4,则2

10i i v v v +=

图题2.4.5a

(2)输出电压为p v v =0,式中

33

2312121232312131132312132i i i p v R R R R R R R R v R R R R R R R R v R R R R R R R R v ++++++++=即

33

23121212323121311323121320i i i v R R R R R R R R v R R R R R R R R v R R R R R R R R v ++++++++=若R 1=R 2=R 3,则)(3

13210i i i v v v v ++=

图题2.4.5b

2.4.6加减运算电路如图题2.4.6所示,求输出电压v O 的表达式。

解:方法一:应用虚短概念和叠加定理。

令043==i i v v ,则21226116'024

5i i i i v v v R R v R R v --=--=再令021==i i v v ,则43453453354354113116////////i i i i p v v v R R R R R v R R R R R v +=+++=

43216''044

512251//1(i i p v v v R R R v +≈+=将'0v 与''o v 叠加得输出电压为4321''0'0044

512251245i i i i v v v v v v v ++--=+=

方法二:利用虚断列节点方程

6

02211R v v R v v R v v n n i n i -=-+-5

4433R v R v v R v v p p i p

i =-+-令n p v v =,联立求解上述方程,结果与方法一同。

图题2.4.6

2.4.7电路如图题2.4.7所示,设运放是理想的,试求v O1、v O2及v O 的值。

图题2.4.7

解A 1、A 2组成电压跟随电路

V

V v V V v 4,3202101==-==A 3组成加减电路。利用叠加原理。

当V 3=0,反相加法时,A 3的输出电压为

V v R R v R R v 1022

30113'0-=--=当v O1=0,v O2=0,V 3=+3V 时,A 3的输出电压为

p v R R R v )//1(2

13''0+=式中V V R R R v p 235

45=+=即V V R R R R R R v 6//1(3545213''0=++

='0

v 与''o v 叠加得输出电压为V v v v 5''0'00=+=2.4.8积分电路如图题2.4.8a 所示,设运放是理想的,已知初始态时V v C 0)0(=,试回答下列问题:(1)当R=100k Ω,C=2μF 时,若突然加入V t v I 1)(=的阶跃电压,求1s 后输出电压0v 的值;(2)当R=100k Ω,C=0.47μF ,输入电压波形如图题2.4.8b 所示,试画出0v 的波形,并标出0v 的幅值和回零时间。

图题2.4.8

解:(1)当输入电压为V t v I 1)(=的阶跃电压,t=1s 时,输出电压0v 波形如图解

2.4.8a 所示,其0v 的幅值为V RC

t v v I 50-=-=(2)R=100k Ω,C=0.47μF 时,如图题2.4.8b 所示,0v 波形如图解2.4.8a 所示,

当t 1=60ms 时,其0v 的幅值为V RC t v v I 66.7)60(10-=-

=而当t 1=120ms 时,其0v 的幅值为

V v v 010)60120(10

47.0101006)60()120(36300=?-???--=-

图解2.4.8

2.4.9电路如图题2.4.9所示,A 1、A 2为理想运放,电容器C 的初始电压V v C 0)0(=。

(1)写出0v 与1I v 、2I v 和3I v 之间的关系式;(2)当电路中电阻R 1=R 2=R 3=R 4=R 5=R 6=R 时,求输出电压0v 的表达式。

图题2.4.9

解:(1)A 1组成差分式运算电路,A 2组成积分电路。A 1的输出电压为

11

421432301)1)((I I v R R v R R R R R v -++=A 2的输出电压为dt R v R v C v t I ?+-

=0635010)(1(2)当R 1=R 2=R 3=R 4=R 5=R 6=R 时,

1

201I I v v v -=dt v v v RC

v t I I I ?+--=03120])[(12.4.11微分电路如图题2.4.11a 所示,输入电压I v 如图题2.4.11b 所示,设电路R=10k Ω,C=100μF ,设运放是理想的,试画出输出电压0v 的波形,并标出0v 的幅值。

图题2.4.11

解:当s t )10~0(=时,

101=dt dv I ,0v 的幅值为V dt dv RC v I 1.010

1)101001010(630-=???-=-=-当s t )30~10(=时,0=dt

dv I ,故00=v 当s t )40~30(=时,

101-=dt dv I ,0v 的幅值为V dt dv RC v I 1.0)10

1)(101001010(630=-???-=-=-其输出的电压0v 的波形如图解2.4.11所示。

图解2.4.11

2.4.14电路如图题2.4.14a 所示。设运放是理想的,电容器C 上的初始电压为零V v C 0)0(=。V v I 1.01-=,2I v 幅值为V 3±,周期T=2s 的矩形波。

(1)求出01v 、02v 和0v 的表达式;

(2)当输入电压1I v 、2I v 如图题2.4.14b 所示时,画出0v 的波形。

图题2.4.14

(a )电路(b)输入电压1I v 、2I v 的波形图

解:(1)01v 、02v 和0v 的表达式

由图可看出,A 1、A 2、A 3分别组成反相比例运算电路、反相积分电路和反相求和电路,因此有

V v R R v i 3.0112101=-=dt v C

R v t i ?-=022021

)(024

23013230v R R v R R v +-=将给定的参数代人上式得,

s

C R 102==τdt v v t i ?-=0202101dt v dt v v v R R v R R v t i t i ??+-=+-=+-=0

20201024230132301013.010*******)((2)画出0v 波形

当t=0时,V v C 0)0(=,V v I 1.01-=,V v 3.001=,V v 002=,则有

V

v 3.00-=当t=1s 时,,,V v 3.001=,V v 3.0110302-=?-=,则有0110

33.00=?+-=v 当t=2s 时,V v I 1.01-=,2I v 由+3V 变到-3V ,输出电压为

V V dt v dt v v v I I I 3.010

)12(31013(3.0)11(321210210-=-?--?---=---=??ττ由以上结果可以画出0v 波形,如图解2.4.14所示。

图解2.4.14

人教a版数学【选修1-1】作业:1.1.2四种命题(含答案)

1.1.2四种命题 课时目标 1.了解四种命题的概念.2.认识四种命题的结构,会对命题进行转换. 1.四种命题的概念: (1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的______________,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题. (2)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题. (3)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题. 2.四种命题的结构: 用p和q分别表示原命题的条件和结论,用綈p,綈q分别表示p和q的否定,四种形式就是: 原命题:若p成立,则q成立.即“若p,则q”. 逆命题:________________________.即“若q,则p”. 否命题:______________________.即“若綈p,则綈q”. 逆否命题:________________________.即“若綈q,则綈p”. 一、选择题 1.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为() A.1 B.2 C.3 D.4 2.命题“若A∩B=A,则A?B”的逆否命题是() A.若A∪B≠A,则A?B B.若A∩B≠A,则A?B C.若A?B,则A∩B≠A D.若A?B,则A∩B≠A 3.对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是() A.它的逆命题是真命题 B.它的否命题是真命题 C.它的逆否命题是假命题 D.它的否命题是假命题 4.有下列四个命题: ①“若xy=1,则x、y互为倒数”的逆命题; ②“相似三角形的周长相等”的否命题; ③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题; ④若“A∪B=B,则A?B”的逆否命题. 其中的真命题是() A.①②B.②③C.①③D.③④ 5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是() A.4 B.3 C.2 D.0

方差典型例题

方差典型例题 【例1】选用恰当的公式,求下列各数据的方差。 (1)-2,1,4 (2)-1,1,2 (3)79,81,82 分析:由于(1)中各数据及它们的平均数为较小整数,因此选用公式: 求方差较简便;(2)中各数据虽为较小整数,但 它们的平均数为分数,因此选用公式:求方差较简便;(3)中数据较大且接近80,因此取运用公式: 求方差较简便。 答案:(1);(2);(3) 【例2】甲、乙两人在相同条件下,各射靶10次,每次射靶的成绩情况如图所示, (1)请填写下表:

①从平均数和方差相结合看; ②从平均数和中位数相结合看(分析谁的成绩好些); ③从平均数和命中9环以上次数相结合看(分析谁的成绩好些); ④从折线图上两人射击命中环数的走势看(分析谁更有潜力) 解:(1)略; (2)①∵平均数相同,,∴甲的成绩比乙稳定; ②∵平均数相同,甲的中位数<乙的中位数,∴乙的成绩比甲好些; ③∵平均数相同,命中9环以上环数甲比乙少,∴乙的成绩比甲好些; ④甲成绩的平均数上下波动,而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力。 【例3】某工人加工一种轴,轴的直径要求是20±5毫米,他先加工了8件,量得直径分别为(单位:毫米):19.7、20.2、19.6、19.8、20.2、20.3、19.8、20.0。当他加工完10件后,发现这10件的直径平均数为20毫米,标准差为0.3毫米,请问此工人最后加工的两件轴的直径符合要求吗?为什么? 分析:要想作出正确的判断,需首先根据已知的平均数和标准差求出最后加工的两件轴的直径。 解:此工人最后加工的两件轴中,只有一件的直径符合要求。 设最后加工的两件轴的直径分别为毫米,毫米(≤),令,,取,则。 由得: 由得: ∴有方程组,解得: ∴, 因此该工人最后加工的两件轴中有一件是符合要求的(直径为19.8毫米的),一件是不符合要求的(直径为20.6毫米的)。

四边形例题选讲

四边形例题选讲 类型一、平行四边形的性质与判定 例1.如图,ABCD 为平行四边形,E 、F 分别为AB 、CD 的中点,①求证:AECF 也是平行四边形;②连接BD ,分别交CE 、AF 于G 、H ,求证:BG =DH ;③连接CH 、AG ,则AGCH 也是平行四边形吗? A B C D E F G H 例2. 如图,已知在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若∠EAF =60 o ,CE =3cm ,FC =1cm ,求AB 、BC 的长及ABCD 面积. 60o A B C D E F 类型二、矩形、菱形的性质与判定 例3. 如图,在矩形ABCD 中,对角线交于点O ,DE 平分∠ADC ,∠AOB =60°,则∠COE = . A B C D E O 例4. 如图,矩形ABCD 中的长AB =8cm ,宽AD =5cm ,沿过BD 的中点O 的直线对折,使B 与D 点重合,求证:BEDF 为菱形,并求折痕EF 的长. O F E D C B A 类型三、正方形的性质与判定 例6. 如图,已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若∠EAF =50°,则∠CME +∠CNF = . F E D C B A M N 类型四、与三角形中位线定理相关的问题 例7. 如图,BD =AC ,M 、N 分别为AD 、BC 的中点,AC 、BD 交于E ,MN 与BD 、AC 分

别交于点F 、G ,求证:EF =EG . N M G F E D C B A 类型五、梯形、等腰梯形、直角梯形的相关问题 例8. 如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则你可得到哪些结论? 4 3 2 1 F E D C B A 例9. 如图,在梯形ABCD 中,AD ∥BC ,BD =CD ,AB <CD ,且∠ABC 为锐角,若AD =4,BC =12,E 为BC 上一点.问:当CE 分别为何值时,四边形ABED 是等腰梯形?请说明理由. A B C D E 能力训练 1.在菱形ABCD 中,AC 、BD 相交于点O ,DE ⊥BC 于点E ,且DE =OC ,OD =2,则AC = . 2.如图,正方形OMNP 的一个顶点与正方形ABCD 的对角线交点O 重合,且正方形ABCD 、OMNP 的边长都是acm ,则图中重合部分的面积是 cm 2. 第5题图 第4题图 第3题图第2题图 C' A B C D E M A B C D M N B 3.如图,设M 、N 分别是正方形ABCD 的边AB 、AD 的中点,MD 与NC 相交于点P ,若△PCD 的面积是S ,则四边形AMPN 的面积是 . 4.如图,M 为边长为2的正方形ABCD 对角线上一动点,E 为AD 中点,则AM +EM 的最小值为 . 5.边长为1的正方形ABCD 绕点A 逆时针旋转30 o 到正方形AB C D ''',图中阴影部分的面积为 . 6.在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC =8cm ,BD =8cm ,则此梯形的高为 cm

期望与方差例题选讲含详解

概率统计(理)典型例题选讲 (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种.

第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 典型例题分析 1.有10张卡片,其中8张标有数字2,有2张标有数字5.从中随机地抽取3张卡片,设3张卡片上的数字和为ξ,求Eξ与Dξ. 解:这3张卡片上的数字和ξ这一随机变量的可能取值为6,9,12,且“ξ=6”表示取 出的3张卡上都标有2,则P (ξ=6)=.“ξ=9”表示取出的3张卡片上两张为2, 一张为5,则P (ξ=9)= .?? “ξ=12”表示取出的3张卡片上两张为5,一张为 2,则P (ξ=12)=.??? 则期望Eξ=6×+9×+12×=,???? 方差Dξ= 2 + 2 + 2 =. 2.(2010江西)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、

2016年专项练习题集-定积分的计算

2016年专项练习题集-定积分的计算 一、选择题 1.dx x )5(1 22-?=( ) A.233 B. 31 C.3 4 D .83 【分值】5分 【答案】D 【易错点】求被积函数的原函数是求解关键。 【考查方向】求定积分 【解题思路】求出被积函数的原函数,应用微积分基本定理求解。 【解析】dx x )5(122-?=123153x x -=83 . 2.直线9y x =与曲线3 y x =在第一象限内围成的封闭图形的面积为( ) A 、 B 、 C 、2 D 、4 【分值】5分 【答案】D 【易错点】求曲线围成的图形的面积,可转化为函数在某个区间内的定积分来解决,被积函

数一般表示为曲边梯形上边界的函数减去下边界的函数. 【考查方向】定积分求曲线围成的图形的面积 【解题思路】先求出直线与曲线在第一象限的交点,再利用牛顿-莱布尼茨公式求出封闭图形的面积. 【解析】由? ??==39x y x y ,得交点为()()()27,3,27,3,0,0--, 所以()4 81034129942303 =??? ??-=-=?x x dx x x S ,故选D. 3.2 2-?2412x x -+dx =( ) A.π 4 B.π 2 C.π D.π3 【分值】5分 【答案】A 【易错点】利用定积分的几何意义,一般根据面积求定积分,这样可以避免求原函数,注意理解所涉及的几何曲线类型. 【考查方向】求定积分 【解题思路】利用定积分的几何意义,转化为圆的面积问题。 【解析】设y =2412x x -+,即(x -2)2+y 2=16(y ≥0).∵2 2-?2412x x -+dx 表示以4为半径的圆的四分之一面积.∴2 2-?2412x x -+dx =π4. 4.F4遥控赛车组织年度嘉年华活动,为了测试一款新赛车的性能,将新款赛车A 设定v =3t 2+1(m/s)的速度在一直线赛道上行驶,老款赛车B 设定在A 的正前方5 m 处,同时以v

高二数学选修1、1-1-2四种命题及其相互关系

1.1.2四种命题及其相互关系 一、选择题 1.(2009·重庆文,2)命题“若一个数是负数,则它的平方是正数”的逆命题是() A.“若一个数是负数,则它的平方不是正数” B.“若一个数的平方是正数,则它是负数” C.“若一个数不是负数,则它的平方不是正数” D.“若一个数的平方不是正数,则它不是负数” [答案] B [解析]考查命题与它的逆命题之间的关系. 原命题与它的逆命题的条件与结论互换,故选B. 2.命题“若a=5,则a2=25”与其逆命题、否命题、逆否命题这四个命题中,假命题是() A.原命题、否命题 B.原命题、逆命题 C.原命题、逆否命题 D.逆命题、否命题 [答案] D [解析]∵原命题为真,逆命题为假, ∴逆否命题为真,否命题为假. 3.命题“若A∪B=A,则A∩B=B”的否命题是() A.若A∪B≠A,则A∩B≠B B.若A∩B=B,则A∪B=A C.若A∩B≠B,则A∪B≠A D.若A∪B≠A,则A∩B=B [答案] A [解析]否命题是对命题的条件和结论都否定,故选A. 4.若命题p的否命题为r,命题r的逆命题为s,p的逆命题为t,则s是t的() A.逆否命题B.逆命题 C.否命题D.原命题 [答案] C [解析]特例: p:若∠A=∠B,则a=b r:若∠A≠∠B,则a≠b

s:若a≠b,则∠A≠∠B t:若a=b,则∠A=∠B. 5.在命题“若抛物线y=ax2+bx+c的开口向下,则集合{x|ax2+bx+c<0}≠?”的逆命题,否命题,逆否命题的真假结论是() A.都真B.都假 C.否命题真D.逆否命题真 [答案] D [解析]原命题为真,故逆否命题为真. 6.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中真命题的个数是() A.4B.3 C.2D.0 [答案] C [解析]当AB=AC时,△ABC为等腰三角形为真,故逆否命题为真, 逆命题:△ABC为等腰三角形,则AB=AC为假, 故否命题为假. 7.设a,b,c表示三条直线,α、β表示两个平面,则下列命题中逆命题不成立的是() A.c⊥α,若c⊥β,则α∥β B.b?β,c是α在β内的射影,若b⊥c,则a⊥b C.b?β,则b⊥α,则β⊥α D.b?α,c?α,若c∥α,则b∥c [答案] C [解析]C选项的逆命题为“设a,b,c表示三条直线,α、β表示两个平面,b?β,若β⊥α,则b⊥α”,这个命题是假命题,b与α的位置关系除垂直外,还可能b与α相交或b∥α. 8.与命题“若m∈M,则n?M”等价的命题是() A.若m∈M,则n?M B.若n?M,则m∈M C.若m?M,则n∈M D.若n∈M,则m?M [答案] D [解析]原命题与逆否命题等价. 9.有下列四个命题: (1)“若x-y=0,则x,y为相等的实数”的逆命题; (2)“若a>b,则a2>b2”的逆否命题;

定积分典型例题11198

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 例18 计算2 1 ||x dx -?. 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1||x dx -?=0 2 10()x dx xdx --+??=220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算2 20 max{,}x x dx ?. 分析 被积函数在积分区间上实际是分段函数 212()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且10 ()3()f x x f t dt =+?,则()________f x =. 分析 本题只需要注意到定积分()b a f x dx ?是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而10 ()f t dt ?是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且11 (3)()x a dx f t dt a +==??.

数据的分析知识点总结与典型例题

数据的分析知识点总结 与典型例题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

目录 数据的分析知识点总结与典型例题 一、数据的代表 1、算术平均数: 把一组数据的总和除以这组数据的个数所得的商. 公式:n x x x n +???++21 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度相同时,一般使 用该公式计算平均数. 2、加权平均数: 若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则 n n n w w w w x w x w x +???+++???++212211,叫做这n 个数的加权平均数. 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度(权)不同时, 一般选用加权平均数计算平均数. 权的意义:权就是权重即数据的重要程度. 常见的权:1)数值、2)百分数、3)比值、4)频数等。 3、组中值:(课本P128)

数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数,统计中常用各组的组中值代表各组的实际数据. 4、中位数: 将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半. 5、众数: 一组数据中出现次数最多的数据就是这组数据的众数. 特点:可以是一个也可以是多个. 用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量. 6、平均数、中位数、众数的区别: 平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义. ※典型例题: 考向1:算数平均数 1、数据-1,0,1,2,3的平均数是(C) A.-1 B.0 C.1 D.5

理财计算题目选讲

某公务员今年35岁,计划通过年金为自己的退休生活提供保障。经过测算,他认为到60岁退休时年金账户余额至少应达到60万元.如果预计未来的年平均收益率为8%,那么他每月末需投入( D ) (A )711元(B )679元(C )665元(D )631元 60000012%8112%8112%8112992=??? ???????? ??+++??? ??++??? ??++ A 300600000 6318%1211128%=????+-??? ??????? 某三年期证券未来每年支付的利息分别为200元、400元、200元,到期无本金支付,如果投资者要求的收益率为8%,那么该证券的发行价格应为( B ) (A )800元(B )686.89元(C )635.07元(D )685.87元 23200400200686.8872686.8918%(18%)(18%) P =++=≈+++ 软件设计师张先生最近购买了一套总价为50万元人民币的住房。由于他工作刚3年,积蓄不足,所以他按最高限向银行申请了贷款,20年期,贷款利率5.5%。如果采用等额本息还款方式,张先生每月需还款( A ) (A )3439.44元(B )2751.55元(C )2539.44元(D )2851.55元 50000012%5.5112%5.5112%5.51123921=??? ???????? ??+++??? ??++??? ??++--- A

2405.5%500000123439.445.5%1112-?=????-+?? ??????? 某后付年金每年付款2000元,连续15年,年收益率4%,则年金现值为( A ) (A )22236.78元(B )23126.25元(C )28381.51元(D )30000元 04.11104.11 104.11200004.1104.1104.1104.112000151532--??=??? ??++++ 15112000122236.774922236.780.04 1.04???-=≈ ??? 如果某股票的β值为0.8,当市场组合的期望收益率为11%,无风险利率为5%时,该股票的期望收益率为( B ) (A )13.8%(B )9.8%(C )15.8%(D )8.8% 5%0.8(11%5%)5% 4.8%9.8%+?-=+= 一高级证券分析师预测某股票今天上涨的概率是20%,同昨日持平的概率是10%,则这只股票今天不会下跌的概率是( B ) (A )10% (B )30% (C )20% (D )70% 假定上证综指以0.55的概率上升,以0.45的概率下跌。还假定在同一时间间隔内深证综指以0.35的概率上升,以0.65的概率下跌。再假定两个指数可能以0.3的概率同时上升。那么同一时间上证综指或深证综指上升的概率是( B ) (A )0.3 (B )0.6 (C )0.9 (D )0.1925

四种命题与充要条件教案

四种命题与充要条件 廖士哲(时间:2008年10月22日 地点:06文 (1)) 一、教学目标:了解命题的概念和命题的构成;理解四种命题及其互相关系,会 分析四种命题的含义;理解必要条件充分条件充要条件的含义,反证法在证明过程中的应用. . 二、教学重难点:复合命题的构成及其真假的判断,四种命题的关系,必要条件充分条件充要条件的判断. 三、教学过程: (一)知识归纳: 1.命题:可以判断真假的语句叫做命题 2.四种命题 (1).一般地,用p 和q 分别表示原命题的条件和结论,用┐p 和┐q 分别表示p 和q 的否定。于是 四种命题的形式为: 原命题:若p 则q (q p ?) 逆命题:若q 则p )(p q ? 否命题:若┐p 则┐q )(q p ??? 逆否命题:若┐q 则┐p )(p q ??? (2).四种命题的关系: (3).一个命题的真假与其它三个命题的真假有如下四条关系: a.原命题为真,它的逆命题不一定为真。 b.原命题为真,它的否命题不一定为真。 c.原命题为真,它的逆否命题一定为真。 d.逆命题为真,否命题一定为真。 3.必要条件充分条件充要条件的含义 (二)几点说明 1.对命题的否定只是否定命题的结论,而否命题既否定题设又否定结论 2.互为逆否命题的两个命题等价,为命题真假判定提供一个策略。 3.充要条件与集合的关系:小推大。 4.通常复合命题“p 或q ”的否定为“p ?且q ?”、“p 且q ”的否定为“p ?或q ?”、“全为”的否定是“不全为”、“都是”的否定为“不都是”等等; 5.有时一个命题的叙述方式比较的简略,此时应先分清条件和结论,该写成“若p ,则q ” 互 逆 互 为 为 否 逆 逆 互 互 互 逆

统计案例分析典型例题

统计案例分析及典型例题 §抽样方法 1.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,总体的一个样本是 . 答案 200个零件的长度 2.某城区有农民、工人、知识分子家庭共计2 004户,其中农民家庭1 600户,工人家庭303户,现要从中抽取容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法:①简单随机抽样,②系统抽样,③分层抽样中的 . 答案①②③ 3.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为 . 答案3,9,18 4.某工厂生产A、B、C三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,那么此样本的容量n= . 答案80 例1某大学为了支援我国西部教育事业,决定从2007应届毕业生报名的18名志愿者中,选取6人组成志愿小组.请 用抽签法和随机数表法设计抽样方案. 解抽签法: 第一步:将18名志愿者编号,编号为1,2,3, (18) 第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签; 第三步:将18个号签放入一个不透明的盒子里,充分搅匀; 第四步:从盒子中逐个抽取6个号签,并记录上面的编号; 基础自测

第五步:所得号码对应的志愿者,就是志愿小组的成员. 随机数表法: 第一步:将18名志愿者编号,编号为01,02,03, (18) 第二步:在随机数表中任选一数作为开始,按任意方向读数,比如第8行第29列的数7开始,向右读; 第三步:从数7开始,向右读,每次取两位,凡不在01—18中的数,或已读过的数,都跳过去不作记录,依次可得到12,07,15,13,02,09. 第四步:找出以上号码对应的志愿者,就是志愿小组的成员. 例2 某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施. 解 (1)将每个人随机编一个号由0001至1003. (2)利用随机数法找到3个号将这3名工人剔除. (3)将剩余的1 000名工人重新随机编号由0001至1000. (4)分段,取间隔k= 10 0001=100将总体均分为10段,每段含100个工人. (5)从第一段即为0001号到0100号中随机抽取一个号l. (6)按编号将l ,100+l ,200+l,…,900+l 共10个号码选出,这10个号码所对应的工人组成样本. 例3 (14分)某一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人 的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法并写出具体过程. 解 应采取分层抽样的方法. 3分 过程如下: (1)将3万人分为五层,其中一个乡镇为一层. 5分 (2)按照样本容量的比例随机抽取各乡镇应抽取的样本. 300×153=60(人);300× 15 2 =40(人); 300×155=100(人);300×15 2=40(人); 300× 15 3=60(人), 10分 因此各乡镇抽取人数分别为60人,40人,100人,40人,60人. 12分 (3)将300人组到一起即得到一个样本. 14分

逻辑联结词、四种命题、充分条件与必要条件

逻辑联结词、四种命题、充分条件与必要条件 1. 主要内容: 命题、真命题、假命题的概念,逻辑连接词、简单命题、复合命题的概念、复合命题的真值表,四种命题、四种命题的关系,反证法、充分条件、必要条件的概念、充分条件的判断。 2. 重点: 判断复合命题真假的方法,四种命题的关系,关于充要条件的判断。 3. 难点: 逻辑连结词的理解与日常用语的区别,反证法的理解和应用,关于充要条件的判断。 【例题选讲】 例1. 分别指出下列复合命题的形式及构造的简单命题。 (1)小李是老师,小赵也是老师。 (2)1是合数或质数。 (3)他是运动员兼教练员。 (4)不仅这些文学作品艺术上有缺点,而且政治上有错误。

解:(1)这个命题是p且q的形式,其中p:小李是老师,q:小赵是老师。 (2)这个命题是p或q的形式,其中p:1是合数,q:1是质数。 (3)这个命题是p且q的形式,其中,p:他是运动员,q:他是教练员。 (4)这个命题是p且q的形式,其中,p:这些文学作品艺术上有缺点,q:这些文学作品政治上有错误。 小结:正确理解逻辑联结词“或”“且”“非”的含义是解题的关键。应根据组成上述各复合命题的语句中所出现的逻辑联结词,或语句的意义确定复合命题的形式。 例2. 已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根。若p或q为真,p且q为假,求m的取值范围。 解: 若方程4x2+4(m-2)x+1=0无实根,

解得:1≤≥??? ≤<

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

典型例题分析

典型例题-G-方差分析-2 某企业准备用三种方法组装一种新的产品,为确定哪种方法每小时生产的产品数量最多,随机抽取了30名工人,并指定每个人使用其中的一种方法。通过对每个工人生产的产品数进行方差分析,得到如下表所示的结果。 每个工人生产产品数量的方差分析表 (2)若显著性水平为α=0.05,检验三种方法组装的产品数量之间是否有显著差异。 解: (1)完成方差分析表,以表格中所标的①、②、③、④、⑤、⑥为顺序,来完成表格,具体步骤如下: ①求k -1 根据题目中“该企业准备用三种方法组装一种新的产品”可知,因素水平(总体)的个数k =3,所以第一自由度df 1=k -1=3-1=2,即SSA 的自由度。 ②求n -k 由“随机抽取了30名工人”可知,全部观测值的个数n =30,因此可以推出第二自由度df 2=n -k =30-3=27,即SSE 的自由度。 ③求组间平方和SSA 已知第一自由度df 1=k -1=3-1=2,MSA =210 根据公式 1-= = k SSA MSA 自由度组间平方和 所以,SSA =MSA ×(k -1)=210×2=420 ④求总误差平方和SST 由上面③中可以知道SSA =420;此外从表格中可以知道:组内平方和SSE =3836,根据公式SST =SSA +SSE 可以得出SST =420+3836=4256,即总误差平方和SST=4256 ⑤求SSE 的均方MSE 已知组内平方和SSE =3836,SSE 的自由度n -k =30-3=27 根据公式 0741 .142273836 ==-== k n SSE MSE 自由度组内平方和 所以组内均方MSE =142.0741 ⑥求检验统计量F 已知MSA =210,MSE =142.0741 根据 4781.10741.142210 === MSE MSA F 所以F=1.4781

数理统计典型例题分析

典型例题分析 例1.分别从方差为20和35的正态总抽取容量为8和10的两个样本,求第一个样本方差是第二个样本方差两倍的概率的范围。 解 以21 S 和22 S 分别表示两个(修正)样本方差。由22 22 12σσy x S S F =知统计量 22 2 1222175.13520S S S S F == 服从F 分布,自由度为(7,9)。 1) 事件{}2 2 212S S =的概率 {}{}05.32035235 20222221222122 2 1 ===??? ????==??????===F P S S P S S P S S P 因为F 是连续型随机变量,而任何连续型随机变量取任一给定值的概率都等于0。 2) 现在我们求事件{}二样本方差两倍第一样本方差不小于第=A 的概率: {} {}5.322 221≥=≥=F P S S P p 。 由附表可见,自由度9,721==f f 的F 分布水平α上侧分位数),(21f f F α有如下数值: )9,7(20.45.329.3)9,7(025.005.0F F =<<=。 由此可见,事件A 的概率p 介于0.025与0.05之间;05.0025.0<

解 由随机变量2χ分布知,随机变量σ/12S n )(-服从2χ分布,自由度 1-=n v ,于是,有 {}{}95.0)1(5.1)1(5.1)1(2,05.0222 2=≤≥-≤=? ?????-≤-=v v v P n P n S n P χχχσ 其中2v χ表示自由度1-=n v 的2χ分布随机变量,2 ,05.0v χ是自由度为1-=n v 的水 平05.0=α的2χ分布上侧分位数(见附表)。我们欲求满足 2,05.015.1v n χ≥-)( 的最小1+=v n 值,由附表可见 2 26,05.0885.3839)127(5.1χ=>=-, 22505.0652.375.401265.1,)(χ=<=-。 于是,所求27=n 。 例3.假设随机变量X 在区间[]1,+θθ上有均匀分布,其中θ未知: )(1n X X ,, 是来自X 的简单随机样本,X 是样本的均值,{} n X X X ,,min 1)1( =是最小观察值。证明 21?1-=X θ 和 11?12+-=n X ) (θ 都是θ的无偏估计量。 解 由X 在[]1,+θθ上均匀分布,知2/)12(+==θEX EX i 。 1) 由 θθθθ=-+=-+=-=∑∑==2 121212221211?111n i n i i n EX n E , 可见1?θ是θ的无偏估计量。 2) 为证明2?θ是θ的无偏估计。我们先求统计量)1(X 的概率分布。

高中数学选修2-1学案:1.1.2四种命题-1.1.3四种命题间的相互关系

1.1.2 四种命题 1.1.3 四种命题间的相互关系 [学习目标] 1.理解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.2.知道四种命题之间的相互关系以及真假性之间的联系.3.会利用逆否命题的等价性解决问题. 知识点一四种命题的概念 (1)互逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题. (2)互否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这两个命题叫做互否命题.其中一个命题叫做原命题,另一个叫做原命题的否命题. (3)互为逆否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个叫做原命题的逆否命题. 知识点二四种命题的真假性的判断 原命题为真,它的逆命题不一定为真;它的否命题也不一定为真.原命题为真,它的逆否命题一定为真.

题型一四种命题的概念 例1写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假. (1)若m·n<0,则方程mx2-x+n=0有实数根; (2)弦的垂直平分线经过圆心,且平分弦所对的弧; (3)若m≤0或n≤0,则m+n≤0; (4)在△ABC中,若a>b,则∠A>∠B. 解(1)逆命题:若方程mx2-x+n=0有实数根,则m·n<0,假命题. 否命题:若m·n≥0,则方程mx2-x+n=0没有实数根,假命题. 逆否命题:若方程mx2-x+n=0没有实数根,则m·n≥0,真命题. (2)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线,真命题.

12练习题解答:第十二章 方差分析分析

第十二章 方差分析 练习题: 1. 现今越来越多的外国人学习汉语,某孔子学院设计了3种汉字的讲授方法, 随机抽取了28名汉语基础相近的学生进行试验,试验后对每一个学生汉字理解记忆水平进行打分,满分为10分,28名学生的分数如下: 表12-3 三种汉字讲授方法下的学生得分 汉字讲授方法 9.1 6.6 6.2 8.6 7.0 7.4 9.0 8.0 7.8 8.1 7.4 7.9 9.4 7.6 8.2 9.2 8.1 8.1 8.8 7.4 6.7 9.4 7.9 6.9 7.5 1y = 2y = 3y = y = (1) 请分别计算3种汉字讲授方法下学生相应分数的平均值1y 、2y 与 3y 以及所有参加试验的学生的平均得分y ,并填入上表。 (2)请根据上表计算总平方和(TSS ),组间平方和(BSS ),组内平方和(WSS ), 组间均方(MSS B ),组内均方(MSS W ),以及各自对应的自由度并填入下表。 B B W 组内 WSS : n-k: MSS W : —————— —— ———— 总和 TSS : n-1: ———— —————— —— ———— (3)根据上表计算出F 值,并查附录中的F 分布表,看P 是否小于0.05。 (4)若显著性水平为0.05,请查附录中的F 分布表找出F 临界值,并填入上表。 (5)若显著性水平为0.05,请根据P 值或F 临界值判断三种汉字的讲授方法对 学生汉字的理解和记忆水平是否有显著性影响。 解: (1)1y =8.9222≈8.92,2y =7.5667≈7.57,3y =7.3800≈7.38,y =7.9357≈7.94.

高中数学定积分计算习题

定积分的计算 班级 姓名 一、利用几何意义求下列定积分 (1)dx x ? 1 1 -2-1 (2)dx x ? 2 2-4 (3) dx x ? 2 2-2x (4) ()dx x x ? -2 4 二、定积分计算 (1)()dx ?1 7-2x (2)( ) d x ?+2 1 x 2x 32 (3)dx ?3 1 x 3 (4)dx x ?π π - sin (5)dx x ?e 1 ln (6)dx ? +1 x 112 (7)() dx x x ?+-10 2 32 (8)()dx 2 31 1-x ? (9)dx ?+1 1 -2x x 2)( (10)( ) d x x ?+21 2x 1x (11)() dx x x ?-+1 1 -352x (12)() dx e e x x ?+ln2 x -e (13)dx x ?+π π --cosx sin ) ( (14)dx ? e 1 x 2 (15)dx x ?2 1 -x sin -2e )( (16)dx ?++2 1-3x 1 x x 2 (17)dx ? 2 1x 13 (18)()dx 2 2 -1x ?+

三、定积分求面积、体积 1求由抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积。 2.求曲线y =x ,y =2-x ,y =-1 3 x 所围成图形的面积. 3.求由曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积 4.如图求由两条曲线y =-x 2 ,y =-14 x 2 及直线y =-1所围成的图形的面积. 5、求函数f(x)=???? ? x +1 (-1≤x<0)cosx (0≤x ≤π 2)的图象与x 轴所围成的封闭图形的面积。 6.将由曲线y =x 2,y =x 3所 围成平面图形绕x 周旋转一周,求所得旋转体的体积。 7.将由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形绕x 周旋转一周,求所得旋转体的体积。 8.由曲线y =x 与直线x =1,x =4及x 轴所围成的封闭图形绕x 周旋转一周,求所得旋转体的体积

相关文档
最新文档