统计学第五版-第十四章--统计指数

合集下载

贾俊平《统计学》(第5版)章节题库-第14章 指 数【圣才出品】

贾俊平《统计学》(第5版)章节题库-第14章 指 数【圣才出品】

第14章 指 数一、单项选择题1.考察总体中个别现象或个别项目数量变动的相对数称为( )。

A.个体指数B.总指数C.简单指数D.加权指数【答案】A【解析】个体指数是考察总体中个别现象或个别项目数量变动的相对数,如某种产品的产量指数、某种商品的价格指数等。

个体指数是计算总指数的基础。

2.反映数量指标变动程度的相对数称为( )。

A.数量指标指数B.质量指标指数C.简单指数D.加权指数【答案】A【解析】数量指标指数是反映数量指标变动程度的相对数,如商品销售量指数、工业产品产量指数等,数量指标通常采用实物计量单位。

3.综合反映多种项目数量变动的相对数称为( )。

A.数量指数B.质量指数C.个体指数D.总指数【答案】D【解析】总指数是综合反映多种项目数量变动的相对数,如多种产品的产量指数、多种商品的价格指数等。

4.拉氏指数方法是指在编制综合指数时( )。

A.用基期的变量值加权B.用报告期的变量值加权C.用固定某一时期的变量值加权D.选择有代表性时期的变量值加权【答案】A【解析】拉氏指数是1864年德国学者Laspeyres提出的一种价格指数计算方法,它在计算综合指数时将作为权数的同度量因素固定在基期。

5.帕氏指数方法是指在编制综合指数时( )。

A.用基期的变量值加权B.用报告期的变量值加权C.用固定某一时期的变量值加权D.选择有代表性时期的变量值加权【答案】B【解析】帕氏指数是1874年德国学者Paasche 提出的一种指数计算方法,它在计算综合指数时将作为权数的同度量因素固定在报告期。

6.拉氏指数的特点是( )。

A .权数固定在基期,不同时期的指数可以比较B .权数固定在基期,不同时期的指数不能比较C .权数固定在报告期,不同时期的指数可以比较D .权数固定在报告期,不同时期的指数不能比较【答案】A【解析】拉氏指数的特点是以基期变量值为权数,可以消除权数变动对指数的影响,从而使不同时期的指数具有可比性。

贾俊平《统计学》(第5版)课后习题-第14章 指 数【圣才出品】

贾俊平《统计学》(第5版)课后习题-第14章 指 数【圣才出品】

第14章 指 数一、思考题1.什么是指数?它有哪些性质?答:指数,或称统计指数,是分析社会经济现象数量变化的一种重要统计方法。

它有如下一些性质:(1)相对性。

指数是总体各变量在不同场合下对比形成的相对数,它可以度量一个变量在不同时间或不同空间的相对变化,如一种商品的价格指数或数量指数。

它也可以反映一组变量的综合变动,比如综合物价指数是根据一组商品价格的相对变化并给每种商品的相对数定以不同权数计算出来的,这种指数称为综合指数。

另外根据对比两变量所处的是不同时间还是不同空间,它们计算出来的指数分时间性指数和区域性指数。

(2)综合性。

综合性说明指数是一种特殊的相对数,它是由一组变量或项目综合对比形成的。

比如,由若干种商品和服务构成的一组消费项目,通过综合后计算价格指数,以反映消费价格的综合变动水平。

(3)平均性。

平均性含义有二:一是指数进行比较的综合数量是作为个别量的一个代表,这本身就具有平均的性质;二是两个综合量对比形成的指数反映了个别量的平均变动水平,比如物价指数反映了多种商品和服务项目价格的平均变动水平。

2.什么是同度量因素?同度量因素在编制加权综合指数中有什么作用?答:在统计学中,一般把相乘以后使得不能直接相加的指标过渡到可以直接相加的指标的那个因素,称为同度量因素或同度量系数。

在编制指数时,对于不能直接相加的指标,可通过同度量因素把指标过渡到具有可加性。

3.拉氏指数和帕氏指数各有什么特点?答:拉氏指数是由德国学者拉斯贝尔斯在1864年提出来的,它是用基期消费量加权来计算价格指数,这一指数被称为拉氏指数。

其特点是:由于拉氏指数是以基期变量值为权数,可以消除权数变动对指数的影响,从而使不同时期的指数具有可比性。

但拉氏指数也存在一定的缺陷。

比如,物价指数是在假定销售量不变的情况下报告期价格的变动水平,这一指数尽管可以单纯反映价格的变动水平,但不能反映出消费量的变化。

从实际生活角度看,人们更关心在报告期销售量条件下价格变动对实际生活的影响。

统计学第五版-第十四章--统计指数(1)培训讲学

统计学第五版-第十四章--统计指数(1)培训讲学

第十四章 统计指数1.某企业生产甲、乙两种产品,资料如下:要求:(1)计算产量与单位成本个体指数。

(2)计算两种产品产量总指数以及由于产量增加而增加的生产费用。

(3)计算两种产品单位成本总指数以及由于成本降低而节约的生产费用。

解:(2)产量指数:%64.1155500063600010==∑∑qz q z()∑∑=-=-元860055000636000010qz q z(3)单位成本指数:%84.9963600635001011==∑∑qz q z()∑∑-=-=-元10063600635001011qz q z2.某商场销售的三种商品资料如下: 要求:(1)计算三种商品的销售额总指数。

(2)分析销售量和价格变动对销售额影响的绝对值和相对值。

解:(1)销售额总指数:%06.1212600031475011==∑∑qp q p()∑∑=-=-元547526*********011qp q p(2)价格的变动:%29.10928800314751011==∑∑qp q p()∑∑=-=-元267528800314751011qp q p销售量的变动:%77.1102600028800010==∑∑qp q p()∑∑=-=-元280026000288000010qp q p3.试根据下列资料分别用拉氏指数和帕氏指数计算销售量指数及价格指数。

解:价格指数: %5.924804441011==∑∑qp q p %765003800001==∑∑q p q p销售量指数 %965004800010==∑∑qp qp %8.1163804440111==∑∑q p q p4.某公司三种产品的有关资料如下表,试问三种产品产量平均增长了多少,产量增长对产值有什么影响?解:%125260325601001006050.110010.110025.10000010001==++⨯+⨯+⨯===∑∑∑∑p q p q q q p q p q k q()∑∑=-=-万元652603250010qp q p三种产品产量平均增长了25%,由于产量增长使得产值也相应增长了25%,绝对额增加65万元。

统计学统计指数

统计学统计指数

统计学统计指数统计学是一门研究如何收集、整理、分析和解释数据的学科。

它是一门广泛应用于社交学科、自然科学、商务经济学及工程学等学科的学科。

通过合理地运用统计技术,我们能够更加客观、科学地分析和解读复杂的现象和实际问题。

在统计学中,有许多指数和统计量,它们可以有效地反映、衡量和比较实际问题的各种性质和特征,使得问题的定量分析成为可能。

今天,我们将主要简单介绍几种常见的统计指数。

一、基本指数基本指数是我们最常用、最基础的几个指标。

包括平均值、中位数、众数、最大值与最小值。

平均值:属于高频使用指数之一,是指所有数据之和除以数据的总数。

它是用于反映数据集合中心特征的一个重要指标。

平均值对于研究数据的趋势或规律,特别是用于对比两个或多个数据集时很有用。

中位数:中位数与平均数不同,是把一组数据从小到大排序后,位于中间位置上的数。

它的好处在于不会被极端值影响以及能够不失客观地反映数据的中间水平。

众数:众数与平均值和中位数不一样,是数据里出现最多的数字。

通常用于从大量数据中检测出明显的模式,帮助研究者了解整体数据的分布特征。

最大值与最小值:最大值与最小值是这组数据集合所包含的最大值和最小值。

在数据研究分析中,它们可用于参考不同数据之间的分布情况。

二、分散指数分散指数是用于衡量数据分布的不均匀程度。

其中包括方差和标准差。

方差:方差是数据集与其平均值的差的平方和除以数据总数的操作得到的指数。

方差越大,表示这组数据离散程度较大。

反之,越小则表明数据离散程度较小。

标准差:标准差是方差算术平方根的结果。

反映了数据集各数据与平均数的平均偏差值,是常用的反映数据集的离散程度的客观指标。

三、相关指数相关指数是用于度量数据的相似程度或关联程度。

其中包括相关系数和回归系数。

相关系数:相关系数是用来衡量两个数据集合之间的相关性或线性关系。

相关系数的取值范围为-1到+1之间,值越接近+1表示越正相关,值越接近-1表示越负相关。

当相关系数为0时,两个数据集之间无关联性。

贾俊平《统计学》第五版第14章 指数

贾俊平《统计学》第五版第14章 指数
商品 彩电 蔬菜 计量单位 台 公斤 P0 8000 1 P1 4000 2
Ip
p p
0
1
4002 Biblioteka 50% 8001简单指数2.简单平均指数 将个体指数进行简单平均得到的总 指数。
Ip

p0 p1
n
Iq
q0 q 1
n
简单平均指数的计算
• 采用简单平均的方法计算价格指数。
商品 计量单位 P0 P1
彩电
蔬菜

公斤
8000
1
4000
2
Ip
p0 p 1
n
4000 2 8000 1 = =1.25=125% 2
加权指数
权数的确定(要点)
1. 根据现象之间的联系确定权数
计算数量指数时,应以相应的质量为权数 计算质量指数时,应以相应的物量为权数
2. 确定权数的所属时期
报告期总量加权的平均指数
(要点和计算公式)
1. 以报告期总量为权数对个体指数加权平均
2. 计算形式上采用调和平均形式
3. 计算公式为
质量指数:p1 0
pq p
1 p0
1
1 1
p1 q1

数量指数:q1 0
pq
1 1
1 q q p1q1 1 0
报告期总量加权的平均指数
(实例)
商品名称 粳 米 标准粉 花生油 计量 单位 公斤 公斤 公斤
销售量
1998 1200 1500 500 1999 1500 2000 600 3.6 2.3 9.8
单价(元)
1998 1999 4.0 2.4 10.6
拉氏指数(计算过程)

统计学第五版第十四章统计指数

统计学第五版第十四章统计指数

第十四章统计指数要求:(1)计算产量与单位成本个体指数。

(2)计算两种产品产量总指数以及由于产量增加而增加的生产费用。

(3)计算两种产品单位成本总指数以及由于成本降低而节约的生产费用。

解:(2)产量指数:63600 115.64%z°q°55000Z)qi Z)q0 63600 55000 8600 元(3 )单位成本指数:6350099.84% 如1 63600Z© 63500 63600 100元要求:(1)计算三种商品的销售额总指数。

(2)分析销售量和价格变动对销售额影响的绝对值和相对值。

解:(1)销售额总指数:P21 31475 121.06%P °q ° 26000Piq P °q ° 31475 260005475 元(2)价格的变动:pq 31475 109.29%P °q 128800Piqip °q i 31475 28800 2675 元销售量的变动:28800110.77%P °q °26000P 0q iP o q 。

28800 260002800 元3.试根据下列资料分别用拉氏指数和帕氏指数计算销售量指数及价格指数。

价格指数:一迪 444 —Piq0 鰹 P o q i 480P o q o 5004.某公司三种产品的有关资料如下表, 试问三种产品产量平均增长了多少, 产量增长对产值有什么影响?P 0q 1 P 0q 0 325 260 65万元三种产品产量平均增长了 25%由于产量增长使得产值也相应增长了25%绝对额增加65万元。

5. 三种商品销售资料如下,通过计算说明其价格总的变动情况。

q i销售量指数Po5 480 P o q o 50096%pg 444P i q o 380116.8%q 。

P 0q i P 0q 01.25 100 1.10 100 1.50 60 325q- -125%迪P °q 11 pqk p8634 144 26487 78%86 34 144 300. 760.90. 950. 8512.22%,绝对额减少 36.76万元。

cha 14 选择题(贾俊平《统计学》第五版配套指导书选择题)

cha 14 选择题(贾俊平《统计学》第五版配套指导书选择题)

《统计学》补充作业第十四章补充作业1.考察总体中个别现象或个别项目数量变动的相对数称为()。

A.个体指数 B.总指数C.简单指数 D加权指数2.反映数量指标变动程度的相对数称为()A.数量指标指数 B.质量指标指数C.简单指数 D加权指数3.综合反映多种项目数量变动的相对数称为()A、数量指数B、质量指数C、个体指数D、总指数4.拉氏指数方法是指在编制综合指数时()A用基期的变量值加权B用报告期的变量值加权C用固定某一时期的变量值加权D选择有代表性时期的变量值加权5.帕氏指数方法是指在编制综合指数时()A用基期的变量值加权B用报告期的变量值加权C 用固定某一时期的变量值加权D 选择有代表性时期的变量值加权6.拉氏指数的特点是( )A .权数固定在基期,不同时期的指数可以比较。

B .权数固定在基期,不同时期的指数不能比较。

C .权数固定在报告期,不同时期的指数可以比较。

D .权数固定在报告期,不同时期的指数不能比较7.设p 为商品价格,q 为销售量,则指数∑∑0010q p q p 的实际意义是综合反映( )。

A .商品销售额的变动程度B .商品价格变动对销售额的影响程度C .商品销售量变动对销售额的影响程度D .商品价格和销售量变动对销售额的影响程度8.使用基期价格作权数计算的商品销售量指数( ) A .包含了价格变动的影响B .包含了价格和销售量变动的影响C .消除了价格变动的影响D .消除了价格和销售量变动的影响9.下列指数公式中哪个是拉氏数量指数公式( )A.∑∑0111q p q pB. ∑∑0001q p q pC. ∑∑0010q p q p D. ∑∑0011q p q p10.下列指数公式中哪个是帕氏价格指数公式( )A. ∑∑0011q p q p B. ∑∑1011q p q p C. ∑∑0001q p q p D. ∑∑0111q p q p11.在由三个指数构成的综合指数体系中,两个因素指数中的权数必须固定在()A. 报告期B. 基期C. 同一时期D. 不同时期12.由两个不同时期的总量对比形成的指数称为( ) A.总量指数 B.综合指数 C.加权综合指数 D.加权平均指数13.在指数体系中,总量指数与各因素指数之间的数量关系是( ) A.总量指数等于各因素指数之和 B.总量指数等于各因素指数之差 C.总量指数等于各因素指数之积 D.总量指数等于各因素指数之商14.某商店商品销售资料如下:表中所缺数值()A.105和125B.95和85C.85和80D.95和8015.某百货公司今年同去年相比,所有商品的价格平均提高了10%,销售量平均下降了10%,则商品销售额()A.上升B.下降C.保持不变D.可能上升也可能下降16.某地区2005的零售价格指数为105%,这说明()A.商品销售量增长了5%B.商品销售价格增长了5%C.由于价格变动使销售量增长了5%D.由于销售量变动使价格增长了5%17.某商场今年与去年相比,销售量增长了15%,价格增长了10%,则销售额增长了()A 4.8%B 26.5%C 1.5%D 4.5%18.某商店2005年与2006年相比,商品销售额增长了16%, 销售量增长了18%, 则销售价格增减变动的百分比为( )。

统计学—统计指数

统计学—统计指数

统计学—统计指数引言统计学是一门关于数据收集、分析和解释的学科。

通过统计方法,人们可以从各种数据中提取有用的信息,并进行合理的推论和决策。

统计指数是统计学中的一种重要概念,是用来衡量不同数据集中的数据分布、趋势和变化的工具。

本文将介绍统计学中常见的统计指数以及它们的应用。

常见的统计指数均值(Mean)均值是最常见的统计指数之一,用来衡量一组数据的集中趋势。

均值可以简单地用所有数据的算术平均值表示,计算公式为:\[ \text{均值} = \frac{{\sum\limits_{i=1}^n x_i}}{{n}} \] 其中,x i是数据集中的第i 个观测值,n是观测值的总数。

均值对异常值敏感,因为异常值会显著影响整个数据集的平均值。

中位数(Median)中位数是用来衡量一组数据的中间值的统计指数。

对于有序数据集,中位数是中间的观测值。

对于未排序数据集,可以按以下步骤计算中位数: 1. 将数据集按大小进行排序; 2. 如果数据集观测值的数量为奇数,则中位数是中间的值; 3. 如果数据集观测值的数量为偶数,则中位数是中间两个值的平均值。

众数(Mode)众数是数据集中出现最频繁的观测值。

一个数据集可以有一个或多个众数,也可以没有众数。

众数可以帮助我们确定数据中的典型值。

方差(Variance)方差是用来衡量一组数据的离散程度的统计指数。

方差可以用来判断数据分布的散布情况。

方差的计算公式为: \[ \text{方差} = \frac{{\sum\limits_{i=1}^n (x_i - \text{均值})^2}}{{n}} \] 方差越大,数据的分布越分散。

标准差(Standard Deviation)标准差是方差的平方根,也是衡量一组数据的离散程度的指标。

和方差一样,标准差越大,数据的分布越分散。

统计指数的应用统计指数在各个领域都有广泛的应用,包括但不限于经济学、生物学、社会学、工程学等。

以下是一些常见的应用场景:经济学在经济学中,各种统计指数被广泛用于经济数据的分析和预测。

统计学-统计指数

统计学-统计指数

q1z 0 298 100% 115.95% q0 z 0 257
q1z 0
q0 z 0 298 257 41万元
单位成本总指数:
q1z1 285 100% 95.64% q1z 0 298
q1
z 1
q1z 0 285 298 13万元
总成本指数:
q1z1 285 100% 110.89% q0 z 0 257
商品销售量商品销售价格 商品销售总额
所研究的指数化指标 同度量因素 价值量指标
当研究价格的变动时,商品价格是质量指标,则与 之相联系的数量指标——销售量,就是同度量因素
商品销售量商品销售价格 商品销售总额
1 - 1同7 度量因素 所研究的指数化指标 价值量指标
经济、管理类 基础课程
统计学综合指数的编制思路是“先综合,后对比”
1 - 20
经济、管理类
基础课程
统计学
指数化指标
Kq
q1 p0 q0 p0
KP
p1 q1 p0 q1
同度量因素
指数化指标
指在指数分析中被研究的指标
同度量因素
指把不同度量的现象过渡成可以同度量的现
象的媒介因素,同时起到同度量 和权数 的
作用
1 - 21
经济、管理类
基础课综程合指数的计算形式和常用公式
1 - 13
经济、管理类
基础综课程合指数和意义:通过同度量因素,把不
统计学能直接相加的现象数值转化为可以直接
加总的价值形态总量,再将两个不同时 期的总量指标进行综合对比得到相应的 相对指标,以测定所研究现象数量的变 动程度。
依据所测定的指标性质不同,综合指 数可分为数量指标综合指数和质量 指标综合指数。

统计学第五版-第十四章--统计指数

统计学第五版-第十四章--统计指数

第十四章 统计指数1.某企业生产甲、乙两种产品,资料如下:要求:(1)计算产量与单位成本个体指数。

(2)计算两种产品产量总指数以及由于产量增加而增加的生产费用。

(3)计算两种产品单位成本总指数以及由于成本降低而节约的生产费用。

解:(2)产量指数:%64.1155500063600010==∑∑qz q z()∑∑=-=-元860055000636000010qz q z(3)单位成本指数:%84.9963600635001011==∑∑qz q z()∑∑-=-=-元10063600635001011qz q z2.某商场销售的三种商品资料如下: 要求:(1)计算三种商品的销售额总指数。

(2)分析销售量和价格变动对销售额影响的绝对值和相对值。

解:(1)销售额总指数:%06.1212600031475011==∑∑qp q p()∑∑=-=-元547526*********011qp q p(2)价格的变动:%29.10928800314751011==∑∑qp q p()∑∑=-=-元267528800314751011qp q p销售量的变动:%77.1102600028800010==∑∑qp q p()∑∑=-=-元280026000288000010qp q p3.试根据下列资料分别用拉氏指数和帕氏指数计算销售量指数及价格指数。

解: 价格指数:%5.924804441011==∑∑qp q p %765003800001==∑∑q p q p销售量指数%965004800010==∑∑qp q p %8.1163804440111==∑∑q p q p4.某公司三种产品的有关资料如下表,试问三种产品产量平均增长了多少,产量增长对产值有什么影响?解:%125260325601001006050.110010.110025.10000010001==++⨯+⨯+⨯===∑∑∑∑p q p q q q p q p q k q()∑∑=-=-万元652603250010qp q p三种产品产量平均增长了25%,由于产量增长使得产值也相应增长了25%,绝对额增加65万元。

统计学基础(统计指数)

统计学基础(统计指数)
kq p q p
q 0 0 0
Kq
0
q1 (其中,kq ) q0
第三节 平均指数
三、作为综合指数变形的加权调和平均指数。 • q1 p1
质量指标综合指数 K p
q p
1
0
p1 p1 若有质量指标个体指数kp p0 p0 kp p1 将p0 代入原综合指数公式中得到: kp Kp qp 1 k q p
p1 q1 1.计算每一个项目的个体指数k p p 或kq 。 0 q
2.选定权数,计算个体指数的加权算术平均数 或加权调和平均数或加权几何平均数。
0
另外,有时用“相对数固定权数w”加权
第三节 平均指数
一、平均指数的编制原理:先对比,后平均。
• 编制平均指数有两大问题:采用哪种平均方法;权数 如何确定。 • (一)采用哪种平均方法。 • 从实用的角度看,一般采用算术平均法。其计算简单, 也比较直观。 • 但是,根据所掌握的资料和特定研究目的,有时也采 用调和平均法或几何平均法。
q p q p qp q p q p q p q p q p q p q p
1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1
(一种商品时)
1 0
(多种商品时)
第四节 指数体系与因素分析
• 一、指数体系的概念与作用 • (二)指数体系的作用 1、利用指数之间的联系进行指数推算。 2、因素分析。即分析各因素变动对总变动影 响的方向与程度。
二、统计指数的种类
(二)按指数反映的时间状态的不同, 分为动态指数和静态指数。 –动态指数:时间上对比形成的指数。 –静态指数:如比较相对数、计划完 成相对数。
二、统计指数的种类
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章 统计指数
1.某企业生产甲、乙两种产品,资料如下:
要求:
(1)计算产量与单位成本个体指数。

(2)计算两种产品产量总指数以及由于产量增加而增加的生产费用。

(3)计算两种产品单位成本总指数以及由于成本降低而节约的生产费用。

解:
(2)产量指数:
%64.11555000
63600
01
0==
∑∑q
z q z
()∑∑=-=-元860055000636000
01
0q
z q z
(3)单位成本指数:
%84.9963600
63500
1
011==
∑∑q
z q z
()∑∑-=-=-元10063600635001
01
1q
z q z
2.某商场销售的三种商品资料如下: (1)计算三种商品的销售额总指数。

(2)分析销售量和价格变动对销售额影响的绝对值和相对值。

解:
(1)销售额总指数:
%06.12126000
31475
01
1==
∑∑q
p q p
()∑∑=-=-元547526*********
01
1q
p q p
(2)价格的变动:
%29.10928800
31475
1
011==
∑∑q
p q p
()∑∑=-=-元267528800314751
01
1q
p q p
销售量的变动:
%77.11026000
28800
01
0==
∑∑q
p q p
()∑∑=-=-元280026000288000
01
0q
p q p
3.试根据下列资料分别用拉氏指数和帕氏指数计算销售量指数及价格指数。

解: 价格指数:
%5.92480
444
1
011==
∑∑q
p q p %76500
380
001==
∑∑q
p q p
销售量指数
%96500
480
01
0==
∑∑q
p q p %8.116380
444
11
1==
∑∑q
p q p 4.某公司三种产品的有关资料如下表,试问三种产品产量平均增长了多少,产量增长对产值有什么影响?
解:
%125260325601001006050.110010.110025.10
0000
1
0001==++⨯+⨯+⨯===∑∑∑∑p q p q q q p q p q k q
()∑∑=-=-万元652603250
01
0q
p q p
三种产品产量平均增长了25%,由于产量增长使得产值也相应增长了25%,绝对额增加
65万元。

5.三种商品销售资料如下,通过计算说明其价格总的变动情况。

价格总指数
%78.8776
.300264
85
.014495.0349.08614434861
1
11
11
011==+
+++=
=
=
∑∑∑∑q
p k q p q
p q p k p
p
三种商品价格平均下降12.22%,绝对额减少36.76万元。

6.某商场上期销售收入为525万元,本期要求达到556.5万元。

在规定销售价格下调2.6%的条件下,该商场商品销售量要增加多少,才能使本期销售达到原定的目标?
∑∑∑∑∑∑⨯=
01
1
01
10
11p
q p q q p q p q
p q p
∑∑⨯=0
001%4.975255.556p q p q
∴销售量指数%83.108%4.97%1060
01
0=÷==
∑∑q
p q
p k q
该商场商品销售量要增加8.83%才能使本期销售达到原定的目标。

7.某地区2003年平均职工人数为229.5万人,比2002年增加2%;2003年工资总额为167076万元,比2002年多支出9576万元。

试推算2002年职工的平均工资。

2002年平均职工人数 = 229.5÷1.02 = 225(万人) 2002年工资总额 = 167076—9576 = 157500(万元)
2002年职工的平均工资=工资总额÷平均职工人数=157500÷225=700元
8.某电子生产企业2003年和2002年三种主要产品的单位生产成本和产量资料如下:
要求:
(1)计算三种产品的产值总指数和产值增减总额。

(2)以2003年的产量为权数计算三种产品的加权单位产品成本综合指数,以及因单位成本变动的产值增减额。

(3)以2002年单位产品成本为权数计算三种产品的加权产量综合指数,以及由于产量变动的产值增减额。

解: (1)三种产品的产值总指数
%87.123105150
130250
01
1==
∑∑q
z q z
产值增减总额
()∑∑=-=-元251001051501302500
01
1q
z q z
(2)单位产品成本综合指数
%28.112116000
130250
1
011==
∑∑q
z q z
因单位成本变动的产值增减额
()∑∑=-=-元142501160001302501
011q
z q z
(3)三种产品产量综合指数
%32.110105150
116000
01
0==
∑∑q
z q z
由于产量变动的产值增减额()∑∑=-=-元108501051501160000
01
0q
z q z
9.某工厂有三个生产车间,基期和报告期各车间的职工人数和劳动生产率资料如下:试分析该企业劳动生产率的变动及其原因。

总水平指数:
%78.9732
.618
.60
01
110
1==
=
∑∑∑
∑f
f x f f x x x ()万元14.032.618.601-=-=-x x
组水平变动指数:
%66.10202
.618
.61
1
011
1假定
1
==
=∑∑∑∑f
f x f f x x x
()万元16.002.618.6假定1=-=-x x
结构变动指数:
%25.9532.602
.60
假定==x x
()万元3.032.602.60假定-=-=-x x
总水平指数=组水平变动指数×结构变动指数 97.78%=102.66%×95.25%
()()
0101x x x x x x -+-=-假定假定
-0.14 = 0.16 + (-0.30)
计算结果表明,该企业的劳动生产率报告期比基期下降了2,。

22%,减少1400元,是由于企业结构发生了变动,使得公司的劳动生产率下降5.54%,平均每车间减少3500元;由于各车间劳动生产率的提高,使企业劳动生产率提高了3.52%,平均增加2100元共同作用的结果。

10.某市限购令前后的房价如下:
(1)计算价格指数。

(2)房价是上升了还是下降了?为什么? (1)价格指数
%89.1089000000
9800000
600100002001500060011000200160001
011==⨯+⨯⨯+⨯=
∑∑q
p q
p
(2)限购令后该市的房价不但没有下降,反而上升了8.89%,主要原因是均价较低的郊区商品房成交套数增加,并且占全部成交套数的比重由2010年的50%上升到2011年的75%,而均价较高的市区商品房成交套数减少,并且占全部成交套数的比重由2010年的50%下降到2011年的25%。

结构的变化带来该市商品房平均价格下降250元的现象。

相关文档
最新文档