小升初数学衔接资料(最完整版)
(完整版)小升初数学复习重点知识点归纳
小升初数学复习重点知识点归纳体积和表面积三角形的面积=底×高÷2公式: S= a×h÷2正方形的面积=边长×边长公式: S= a2长方形的面积=长×宽公式: S= a×b平行四边形的面积=底×高公式: S= a×h梯形的面积=(上底+下底)×高÷2公式: S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高)×2公式:S=(a×b+a×c+b×c)×2正方体的表面积=棱长×棱长×6 公式:S=6a2长方体的体积=长×宽×高公式:V = abh长方体(或正方体)的体积=底面积×高公式:V = abh正方体的体积=棱长×棱长×棱长公式:V = a3圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh算术1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a3、乘法交换律:a × b = b × a4、乘法结合律:a × b × c = a ×(b × c)5、乘法分配律:a × b + a × c = a × b + c6、除法的性质:a ÷ b ÷ c = a ÷(b × c)7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
小升初数学衔接资料(最完整版)
七年级数学上册第一章 有理数本章的教学时间大约需要课时,建议分配如下:§2.1 正数和负数---------------1课时 §2.2 数轴-------------------------1课时 §2.3 相反数------------------------1课时 §2.4 绝对值----------------------1课时 §2.5 有理数的大小比较----------1课时 §2.6 有理数的加法--------------1课时 §2.7 有理数的减法----------------1课时 §2.8 有理数的加减法混合运算--------1课时§2.9 有理数的乘法----------------1课时 §2.10有理数的除法----------------1课时 §2.11有理数的乘方----------------1课时 §2.12科学记数法------------------1课时 §2.13有理数的混合运算---------1课时 § 复习-----------------------------------1课时1.1正数和负数一、基础知识1. 像3、2、0.8这样大于0的数叫做正数。
(根据需要,有时也在正数前面加正号“+”。
)2. 像-1、-4、-0.6这样在正数前面加负号“-”的数叫做负数。
3. 0既不是正数也不是负数。
4.带有正号的数不一定是正数,同样带有负号的数不一定是负数。
说明:在天气预报图中,零下5℃是用―5℃来表示的。
一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数来表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示。
拿温度为例,通常规定零上为正,于是零下为负,零上10℃就用10℃表示,零下5℃则用―5℃来表示。
小升初数学衔接
小升初数学衔接(一)主要内容求一个数比另一个数多(少)百分之几、纳税问题学习目标1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
5、培养和解决简单的实际问题的能力,体会生活中处处有数学。
考点分析1、一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数。
2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额 = 收入³税率典型例题例1、(解决“求一个数比另一个数多百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
实际比计划多生产百分之几?分析与解:要求“实际比计划多生产百分之几”,就是求实际比计划多生产的辆数占计划产量的百分之几,把原计划产量看作单位“1”。
两者之间的关系可用线段图表示。
计划产量辆实际比计划多的实际产量辆解答:方法1:5500 – 5000 = 500(辆)……实际比计划多生产500辆500 ÷ 5000 = 0.1 = 10%……实际比计划多生产百分之几方法2:5500 ÷ 5000 = 110%……实际产量相当于原计划的110%110% - 100% = 10%……实际比计划多生产百分之几答:实际比计划多生产10%。
例2、(解决“求一个数比另一个数少百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
计划比实际少生产百分之几?分析与解:要求“计划比实际少生产百分之几”,就是求计划比实际少生产的辆数占实际产量的百分之几,把实际产量看作单位“1”。
小学升初中数学衔接班材料 (5)找规律
50元,并且每分通话费是0.4元;神州行用户免月租费,每分通话费0.6 元。 (1)如果王先生上个月本地通话时间A分,请用字母表示: 用全球通的费用: 用神州行的费用: (2)当王先生的每月本地通话时间为多少分时,两种收费标准所付费用 相同? (3)请你为王先生参谋,在本地他使用全球通合算?还是使用神州行
小学升初中数学衔接班材料(5)找规律及应用
数学
姓名
原毕业学校
给出几个具体的、特殊的数、式或图形,要求找出其中的变化规
律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;
具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;
(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下
例如2+2=2×2。但是在分数中,这种现象却很普遍。请观察下面
的几个例子:
因为:+=4,×=4,所以+=×。
因为:+=4,×=4,所以+=×。
根据以上结果,我们发现了这样的一个规律:两个分数,如果它们的
( )相同,并且(
),那么这两个分数的和等于它们
的积。例如( )+( )=( )×( )。
5、根据你发现的规律填空。
面通过举例来说明这些问题.
例 1、找规律填数:1、2、4、7、11、16、22、(
)。
根据规律填空
2、1/2、2/3、1/5、2/7、1/11、2/13、( )、( )、( )
3、请按数字规律,填出下图中空缺的数。
4、自学下面这段材料,然后回答问题。
我们知道,在整数中“两个数的和等于这两个数的积”的情形并不多,
(完整版)小升初数学必考知识点
小升初数学必考知识点(一)倍数、约数1.概念:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
2.常见的倍数特征2的倍数特征:个位上是0、2、4、6、8的数,都能被2整除。
3的倍数特征:一个数的个位上的数的和能被3整除,这个数就能被3整除。
5的倍数特征:个位上是0或5的数,都能被5整除。
7的倍数特征:末三位上数字所组成的数与末三位以前的数字所组成的数之差能被7整除,这个数就能被7整除。
9的倍数特征:一个数个位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的一定能被3整除。
11的倍数特征:奇数位上的数字之和与偶数位上的数字之和的差能被11整除,这个数就能被11整除。
13的倍数特征:末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除,这个数就能被13整除。
4(或25)的倍数特征:一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
8(或125)的倍数特征:一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
(二)奇数与偶数一个自然数,不是奇数就是偶数。
偶数:能被2整除的数叫做偶数(包括0)奇数:不能被2整除的数叫做奇数最小的偶数是:0最小的奇数是:1(三)质数与合数1.概念:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1.不是质数也不是合数,自然数除了1外,不是质数就是合数。
2.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
小升初专用衔接教材数学全套
4、2、5、3 的倍数的特征:个位上是 0、 2、 4、 6、 8 的数,都是 2 的倍数。 个位上是 0 或 5 的数,是 5 的倍数。一个数各位上的数的和是 3 的倍数,这 个数就是 3 的倍数。
5、偶数与奇数:是 2 倍数的数叫做偶数( 0 也是偶数),不是 2 的倍数的数 叫做奇数。
6、质数和和合数:一个数,如果只有 1 和它本身两个因数的数叫做质数(或 素数),最小的质数是 2。一个数,如果除了 1 和它本身还有别的因数的数叫 做合数,最小的合数是 4。
4
小升初专用衔接教材(数学)
第二章 简易方程
【例一】:一个数的 2 倍加上 3,等于这个数加上 12,这个数是多少?
【例二】:李明到书店买了 4 本连环画和 3 本故事书,一共付了 29.7 元,连环画 每本 4.8 元,故事书每本多少元? (本题 6 分)(用两种方法解)
【例三】:爸爸比儿子大 36 岁,今年,爸爸的年龄是儿子年龄的 4 倍,求父子二 人今年各是多少岁?
【例 6】、写出若干个连续的自然数,使它的积是 15120。
【例 7】、将下列八个数平均分成两组,使这两组数的乘积相等。 2、5、14、24、 27、55、 56、99
【例 8】、王老师带领同学去植树,如果王老师和学生每人植树一样多,那么他 们一共植了 539 棵。这个班有多少个学生?每人植树多少棵?
6、小青去看电影,他买的票的排数与座位号数的积是 数大 6,小青买的电影票是几排几号?
391,而且排数比座位号
7、把一篮苹果分给 4 人,使 4 人的苹果数一个比一个多 2,且他们的苹果个数 的乘积是 1920。这篮苹果有多少个?
8、360 的全部因数共有多少个? 2004 的全部因数共有多少个?
小升初数学总复习资料大全(适合全国小学生)1
小升初数学总复习资料大全(最新版)常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数商×除数+余数=被除数小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
小升初数学衔接课讲义(160页)(衔接版)(含答案)
小升初数学衔接课讲义(160页)(衔接版)(含答案)目录第一讲巧算 (1)第二讲行程和工程问题 (9)第三讲和差倍鸡兔同笼 (14)第四讲几何专题 (20)第五讲整数和整除 (54)第六讲素数合数分解素因数 (59)第七讲最大公因数与最小公倍数 (64)第八讲分数的意义和性质 (70)第九讲分数的运算 (75)第十讲分数与小数的互化 (81)第十一讲分数混合运算及应用 (85)第十二讲比的意义和性质 (96)第十三讲比例 (100)第十四讲百分比的意义 (108)第十五讲百分比的应用及等可能事件 (114)答案 (130)第一讲巧算一、【考点解读】测量物体时往往会得不到整数,于是就用小数来补充整数。
小数是十进制分数的一种特殊表现形式。
分母是10 ,100,1000……的分数也可以用小数表示。
二、【知识讲解】加法运算定律加法交换律加法交换律的概念为:两个加数交换位置,和不变。
同时从字母公式:a+b+c=(b+a)+c加法结合律加法结合律的概念为:先把前两个数相加,或者先把后两个数相加,和不变。
字母公式:a+b+c=a+(b+c)乘法运算定律乘法交换律乘法交换律的概念为:两个因数交换位置,积不变。
字母公式:a×b=b×a乘法结合律乘法结合律的概念为:先乘前两个数,或者先乘后两个数,积不变。
字母公式:a×b×c=a×(b×c)乘法分配律乘法分配律的概念为:两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母公式:(a+b)×c=a×c+b×c减法性质减法性质的概念为:一个数连续减去两个数,可以先把后两个数相加,再相减。
字母公式:A-B-C=A-(B+C)差不变的规律字母公式:A-B=(AN)-(BN)=(A-B)/N (N≠0 B≠0)除法的性质除法性质的概念为:一个数连续除以两个数,可以先把后两个数相乘,再相除。
小升初数学衔接班教材
第一讲 计算的技巧知识导航我们在进行运算时,除了熟练掌握好运算法则外,还要通过观察和分析,找出题目中数的特点,合理、有效地进行计算。
整数、小数与分数四则混合运算常用的方法、技巧如下:1、运算法则:先乘除后加减;先算小括号,再算中括号;同级运算从左到右依次计算。
2、运算定律与性质:加法交换律:a b b a +=+; 加法结合律:)()(c b a c b a ++=++;乘法交换律:a b b a ⨯=⨯ 乘法结合律:)(c b a c b a ⨯⨯=⨯⨯乘法分配律:c a b a c b a ⨯±⨯=±⨯)( 减法的性质:)(c b a c b a +-=--除法的性质:)(c b a c b a ⨯÷=÷÷3、灵活运用通分和约分4、分数、小数化成统一的形式再计算,一般是分数化成小数。
5、凑整法:运用运算定律,使式子中一些数凑成整十、整百或整千的数再计算。
我们通常是利用运算律将一些数凑成整一、整十或整百再计算。
6、分组分解法:利用交换律和结合律对式子进行分组求解,最后再综合求解。
7、综合方法:计算比较复杂的式子时要多种方法一起用。
精典例题例1:21 +61+121+201+301+421+561+721+901模仿练习100971......1071741411⨯++⨯+⨯+⨯例2:计算:975×0.25+76439⨯-9.75模仿练习 85444.4251143736111253731÷+⨯+÷例3:3251÷35+4371÷47+5491÷59模仿练习计算:544156766171833185⨯+⨯+⨯例4:计算:⎪⎭⎫ ⎝⎛+++÷⎪⎭⎫ ⎝⎛+++649537425313654543432321模仿练习 )()计算:(111933139911115933539951++÷++第二讲 行程问题知识导航我们知道:距离=速度×时间很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如:总量=每个人的数量×人数. 工作量=工作效率×时间.因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧. 这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米。
衔接点02 式与方程(原卷版)-2024小升初数学暑假衔接讲义
衔接点02式与方程小学阶段主要学习了字母表示数(能用字母表示常见数量关系、运算定律、常见几何体的公式等)、简单的一元一次方程及解法,培养的核心数学素养是学生的符号意识和运算能力。
初中阶段较小学数学在式与方程方面主要变化有:“数与式”是代数的基本语言,初中阶段重点关注代数式的运算与规律探究,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论具有一般性;“方程与不等式”揭示了数学中最基本的数量关系(相等关系和不等关系),是初中应用广泛的数学工具,初中一元一次方程的解法与小学的方法有所区别。
培养的核心数学素养是学生的运算能力、抽象能力、推理能力等。
其实小学数学与初中数学实际上是有很多关联的。
只要从小六到初一的过度在老师的引导下,找出“数”与“式”之间的内在联系以及区别,在知识间架起衔接的桥梁,也为后面的更多内容打下坚实的基础,这样才能在初中众多的考试面前不乱阵脚,游刃有余。
题型探究题型1、字母表示数 (3)题型2、探究与表达规律 (3)题型3、等量代换 (5)题型4、等式与方程的概念辨析 (6)题型5、等式的性质及其运用 (7)题型6、方程的解及其运用 (8)题型7、解方程 (9)培优精练A组(能力提升) (11)B组(培优拓展) (12)1.用字母表示数、数量关系、计算公式和运算定律1)用字母表示数和数量关系(1)一班有男生a人,女生b人,一共有(a+b)人;(2)每袋面粉重25千克,x袋面粉共重25x干克;(3)路程=速度×时间,用字母表示s=vt;(4)正比例:y kx=(一定),反比例:x×y=k(一定)。
2)用字母表示计算公式及运算定理长方形周长:C=2(a+b);长方形面积:S=ab;长方体体积:V=abh或V=Sh。
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc注意:①数与字母、字母与字母相乘时,乘号可以记作简写为一个点或省略不写,但要注意,省略乘号后,数字要写在字母的前面;②两个相同的字母相乘时,可写成这个字母的平方,如a×a可以写作a2。
小升初数学衔接课程(精华版)-课题1 思法前言 通用版
课题1思法前言数学:人类离不开;人人都能学会!一、走进数学世界1.雪花的对称性就是大自然的杰作。
晶体(如冰糖)的表面对称极为精巧,并由此内含着深刻的物理性质。
2.天工造物,每每使人惊叹不已;生物进化提示的规律,有时几个世纪也难以洞悉其中的奥秘。
蜂房的构造,大概最令人折服的实例之一。
3.人类从蛮荒时代的结绳计数,到如今用电子计算机指挥宇宙飞船航行,任何时候都受到数学的恩惠和影响,到处都体现着人类数学智慧的结晶。
在天体运动着的星球遵循四种轨道,人造卫星、行星、彗星等依据运动速度的不同(即7.9千米/秒、11.2千米/秒、16.7千米/秒三种宇宙速度)顺从地运行在圆、椭圆、抛物线及双曲线的轨道中。
人造地球卫星要想发射成功,必须达到第一宇宙速度。
4.人类在进步、社会在发展。
随着市场经济的发展,成本、利润、投入、产出、贷款、股份、市场预测、风险评估等一系列经济词汇频繁使用,买卖与批发、存款与保险、股票与债券等,几乎每天都会碰到,而这些经济活动无一能离开数学。
5.数学是人类最伟大的精神产品之一。
每一个数学公式,就是一首诗,公式C=2πR就是其中一例。
司空见惯的图形——圆,内含的周长与半径有着异常简洁、和谐的关系,一个传奇的数π把她们紧紧相连。
6.比例的数量关系,以其天造地设的美感令人叹为观止。
把长为c的线段分为a(较长)、b (较短)两段,使之符合a︰b≈0.618。
这0.618是最美、最巧妙的比例,人们称之为“黄金分割”。
法国的圣母巴黎院、中国的故宫、埃及的金字塔的构图都融入了“黄金分割”的匠心。
二、回顾历程—数学伴我们成长1.现在让我们进入时空的隧道,回忆我们的成长历程:出生——学前——小学,我们每一天都在接触数学并不断学习它,相信吗?不妨从不同阶段来举出一些我们身边或亲身经历的例子,试一试。
2.进入小学,我们正式开始学习数学,回忆一下,在小学阶段我们学习的主要数学知识有哪些?(1)(2)3.数学知识的学习,不仅开阔了我们的视野,而且改变了我们的思维方式,使我们变得更加聪明了。
(完整版)小升初衔接数学讲义(共13讲)
小升初衔接专题讲义第一讲、【问题引入与归纳】数系扩张 --有理数(一)1、 正负数,数轴,相反数,有理数等概念。
2、 有理数的两种分类:3、 有理数的本质定义,能表成 m (n 0,m,n 互质)。
n4、 性质:① 顺序性(可比较大小);② 四则运算的封闭性(0不作除数);③ 稠密性:任意两个有理数间都存在无数个有理数5、绝对值的意义与性质:③非负数的性质:i )非负数的和仍为非负数ii )几个非负数的和为0,则他们都为0、【典型例题解析】:x 2 (a b cd)x (a b)2006 ( cd)2007 的值。
如果在数轴上表示a 、b 两上实数点的位置,汐.1 ,'r )如下图所示,那么|a b| |a b|化简的结果等于()A. 2aB. 2aC.0D. 2b已知(a 3)2 |b 2| 0,求a b 的值是()数学能力就是在练习中成长的——汤姆•杰瑞若abf 0,则罟詈的值等于多少?如果m 是大于1 的有理数,那么m —定小于它的(A.相反数B.倒数C.绝对值D.平方已知两数a 、b 互为相反数,d 互为倒数,x 的绝对值是2,求①|a|a(a 0)a(a 0)② 非负性(|a| 0,a 2 0)小升初衔接专题讲义1、绝对值的几何意义① |a| |a 0|表示数a 对应的点到原点的距离 ② |a b|表示数a 、b 对应的两点间的距离。
2、利用绝对值的代数、几何意义化简绝对值、【典型例题解析】:(1) 若 2 a 0,化简 |a 2| |a 2| (2) 若 xp 0,化简||x| 2x||x 3| |x|解答: 设ap0,且 x 高,试化简|x " |x 2| 解答:a 、b 是有理数,下列各式对吗?若不对,应附加什么条件?若|x 5| |x 2| 7,求x 的取值范围解答:不相等的有理数a,b,c 在数轴上的对应点分别为A 、B 、C ,如果| a b| | b c||a c|,那 么B 点在A 、C 的什么位置?解答:设 apbpcpd ,求 | x a | | x b | | x c | | x d | 的最小值。
小升初衔接数学讲义(共13讲)
小升初衔接数学讲义(共13讲)小升初衔接专题讲义第一讲数系扩张--有理数(一)一、问题引入与归纳1.正负数、数轴、相反数、有理数等概念。
2.有理数的两种分类。
3.有理数的本质定义,能写成 m/n (n≠0,m、n 互质)。
4.性质:①顺序性(可比较大小);②四则运算的封闭性(除数不能为零);③稠密性:任意两个有理数间都存在无数个有理数。
5.绝对值的意义与性质:① |a| = a(a≥0)或 |a| = -a(a<0)。
②非负性。
③非负数的性质:i)非负数的和仍为非负数。
ii)几个非负数的和为零,则它们都为零。
二、典型例题解析:例1:若ab ≠ 0,则 (a+b)/|ab| 的值等于多少?例2:如果 m 是大于 1 的有理数,那么 m 一定小于它的(D)。
A。
相反数 B。
倒数 C。
绝对值 D。
平方例3:已知两数 a、b 互为相反数,c、d 互为倒数,x 的绝对值是 2,求 x^2-(a+b+cd)x+(a+b)2006+(-cd)2007 的值。
例4:如果在数轴上表示 a、b 两个实数点的位置,如下图所示,那么 |a-b|+|a+b| 化简的结果等于()A。
2a B。
-2a C。
0 D。
2b例5:已知 (a-3)^2+|b-2|=9,求 ab 的值是()A。
2 B。
3 C。
9 D。
6例6:有 3 个有理数 a、b、c,两两不等,那么 a-b/b-c,c-a/a-b 中有几个负数?例7:设三个互不相等的有理数,既可表示为 1,a+b,a 的形式式,又可表示为 b/a,b 的形式,求 a^2006+b^2007.例8:三个有理数 a、b、c 的积为负数,和为正数,且 X = (abc/|ab|+|bc|+|ac|)+ab+bc+ac,则 ax^3+bx^2+cx+1 的值是多少?例9:若 a、b、c 为整数,且 |a-b|^2007+|c-a|^2007=1,试求 |c-a|+|a-b|+|b-c| 的值。
(完整word版)小升初冲刺名校复习讲义资料(精品)
小升初·数学·培粹讲义第一节整数和小数【例题1】有一个九位数,最高位上是最小的合数,千万位上是最小的质数,百位上是最小的奇数,其他各位上都是0,这个数写作,读作,把这个数改写成以“万”作单位的数是,省略亿后面的尾数约是。
【跟踪训练】1、一个数由50个亿、500个万和5005个一组成,这个数是位数,写作,读作,这个数最高位上的5是最低位上的5的倍。
2、一个九位数,最高位上的数字是2,千万位和万位上的数字都是最小的合数,百位上的数字是最大的一位数,其余各位上的数字都是0,这个数是,改写成以“万”为单位的数是万,省略亿后面的尾数约是亿。
【例题2】用最小的一位数、最小的质数、最小的合数和三个0组成六位数。
(1)一个“零”都不读出的最小六位数是。
(2)只读一个“零”的最大六位数是。
(3)读出二个“零”的六位数有。
【跟踪训练】1、用三个8和三个0组成满足下列要求的六位数。
(1)一个“零”都不读出的六位数有。
(2)只读一个“零”的六位数有。
(3)读出二个“零”的六位数有。
2、有三张数字卡片1、2、3,利用这三张卡片可排出多少个不同的三位数?请你试着把它们写下来。
如果把卡片2换成卡片0,那么又会是多少个呢?【例题3】一个三位小数保留一位小数后是3.8,则这个三位小数最大是最小是。
【跟踪训练】1、判断题。
(1)小数都比整数小。
()(2)大于0.3而小于0.5的小数只有0.4一个。
()(3)去掉小数40.50末尾的0后,小数的大小不变,计数单位也不变,()(4)把9.895用“四舍五入”的方法保留两位小数后是9.9。
()2、选择题。
(1)由8个千、4个十和5个百分之一组成的数是()。
A、8540B、8040.05C、8000.45D、8504(2)把59.9954精确到百分位是()。
A、59.995B、50C、60.0D、60.00(3)一个两位小数精确到十分位后是10.0,则这个小数一定在()之间。
(完整版)小升初数学衔接班讲义30课时
小升初衔接班讲义数学前言姓名:_____________第1课正数和负数✍知识网络1、大于0的数是正数。
2、在正数前面添上符号“﹣”(负)的数叫负数。
3、认识正号“+”,认识负号“-”,0既不是正数,也不是负数。
4、如果一个问题中出现相反意义的量,我们可以用正数和负数分别表示它们。
✍例题精选(1)一个月内,小明体重增加2KG,小华体重减少1KG,小强体重无变化,写出他们这个月的体重增长值?哪对反义词表示意义相反的量?(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4% 德国增长1.3%法国减少2.4% 英国减少3.5%意大利增长0.2% 中国增长7.5%写出这些国家这一年商品进出口总额的增长率?哪对反义词表示意义相反的量?✍课堂练习1.读下列各数,并指出其中哪些是正数,哪些是负数。
421,2.5,,0, 3.14,120, 1.732,-+---372.如果80m表示向东走80m,那么-60m表示向3.如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作水位不升不降时水位变化记作__________。
4.月球表面的白天平均温度零上126℃,记作________℃,夜间平均温度零下150℃,记作_______________℃。
1.某人存入银行1000元,记作+1000元,取出600元,则可以记为:。
2.向东走5米记作5米,那么向西走10米,记作:。
3.一潜水艇所在的高度是– 50米,一条鲨鱼在潜水艇的上方10米处,则鲨鱼所在的高度是米。
4.预测某地区人口到2005年将出现负增长,“负增长”的意义是:。
5.把下列各数分别填在对应的横线上:3,-0.01, 0,- 212, +3.333, -0.010010001…, +8, -101.1 ,+87, -100其中:正数有:负数有:6.在一种零件的直径在图纸上是 10 0.05(单位:㎜),表示这种零件的标准尺寸是㎜,加工要求最大不能超过㎜,最小不能超过㎜。
小升初数学衔接教材(优质)
课前快练1.把下列小数化为分数:0.2=0.3=0.4=0.5=0.125=0.75=0.25= 1.125=1.75=2.25=8.125= 5.75=2.把下列分数化为小数========3.把下列带分数化假分数3=4=2=4=4.快速写出对应的100的补数149738258549363782479474731966快速写出对应的1000的补数123786883257595580479489158942374372637297661 5.直接写出1到16的平方数,如22=46.直接写出1到6的立方数第一章:有理数第一节正数与负数、有理数的分类知识要点:1.定义:大于0的数叫做正数,小于0的数叫做负数.注:正数和负数分别表示一个问题中出现相反意义的量正数包括,.分数包括,.负数包括,.2.0既不是正数也不是负数;0是正数和负数的分界.3.有理数定义:和统称为有理数4.有理数的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数非正数:非负数:非正整数:非负整数:典型例题:1:判断:(1)0是正数…………………………()(2)0是自然数………………………()(3)0是非负数………………………()(4)0是非正数………………………()(5)0是整数…………………………()(6)0是有理数………………………()(7)在有理数中,0仅表示没有。
……………………()(8)0除以任何数,其商为0…………………………()(9)正数和负数统称有理数。
………………………()(10)―3.5是负分数…………………………………()(11)负整数和负分数统称负数………………………()(12)0.3既不是整数也不是分数,因此它不是有理数………………()(13)正有理数和负有理数组成全体有理数。
…………………………()例题2:下列说法正确的是①在+5与-6之间没有正数②在-1与0之间没有负数③在+5与+6之间有无数个正分数④在-1与0之间没有正分数例题3:如果零上5℃记作+5℃,那么零下7℃可记作()A.-7℃B.+7℃C.+12℃D.-12℃例题4:某运动员在东西方向的公路上练习跑步,跑步的情况记录如下:(向东为正,单位:m):1000,-1200,1100,-800,900.该运动员共跑的路程为_____m.例题5:在某地区,高度每升高100米,气温下降0.8℃.若在该地区的山脚测得气温为15℃,在山顶测得气温为-5℃,那么从山顶到山脚的高度是_______米.例题6:某食品包装袋上标有“净含量385±5”,这包食品的合格净含量范围是克~克.例题7:学校对初一男生进行立定跳远的测试,以能跳1.7m及以上为达标,超过1.7m的厘米数用正数表示,不足l.7m的厘米数用负数表示.第一组10名男生成绩如下(单位cm):+2-40+5+8-70+2+10-3问:(1)第一组有百分之几的学生达标?(2)第一组平均成绩为多少米及时巩固1、下列说法中正确的是()A、不带“-”的数都是正数B、不存在既不是正数,也不是负数的数C、如果a是正数,那么-a一定是负数D、0℃表示没有温度2、学校、家、书店,依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家的北边70米,小明从家出发,向北走了50米,接着又向南走了-20米,此时小明的位置是()A、在家B、在书店C、在学校D、在家的北边30米处3、巴黎与北京的时间差为-7时(正数表示同一时刻比北京时间早的时数),如果北京时间是7月2日14:00,那么巴黎时间是()A、7月2日21时B、7月2日7时C、7月1日7时D、7月2日5时4、如果仓库运进大米3t记为+3t,那么该仓库运出大米5t记为()A、-3tB、+3tC、-5tD、+5t5、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出12.5元,取出2元,这时银行现款增加了()A、12.25元B、-12.25元C、10元D、-12元6、某汽车厂上半年一月份生产汽车200辆,由于另有任务,每月上班人数不一定相等,上半年各月与一月份的生产量比较如下表(增加为正,减少为负).则上半年每月的平均产量为()月份二三四五六增减(辆)-5-9-13+8-11A、205辆B、204辆C、195辆D、194辆7.一种商品的标准价格是200元,随着季节的变化,商品的价格可浮动±10%,想一想.(1)±10%的含义是什么?(2)请你计算出该商品的最高价格和最低价格;第二节数轴知识要点:1.数轴的概念规定了原点、正方向和单位长度的直线叫做数轴2.数轴的三要素:________、__________、__________.3.数轴上的点与实数是___________的.4.数轴的画法:①画一条水平的直线;②在直线的适当位置选取一点作为原点,并用0表示这点;③确定向右为正方向,用箭头表示出来;④选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次为1,2,3,…;从原点向左,每隔一个单位长度取一点,依次为-1,-2,-3,….如图所示.注意:1)数轴的三要素:原点、正方向、单位长度。
小升初暑假班衔接教材数学
小升初暑假班衔接教材数学CKBOOD was revised in the early morning of December 17, 2020.暑期衔接学案专题一 小学阶段重难点积累课题1 数学形体计算公式集合一、基本公式:长方形的周长= ---- 长方形的面积= ---- 长方体的体积= ---- 正方形的周长= ----正方形的面积= ---- 正方体的体积= ----三角形的面积= --- 三角形的内角和= 。
平行四边形的面积= ----梯形的面积= --圆的直径= ---- 圆的半径= ---- 圆的周长= =- ---圆的面积= ---- 圆柱的侧面积= -- 或 或圆柱的体积= ---- 或 圆锥的体积=- --- 或二、分数的运算法则:1、同分母的分数相加减,只把分子相加减,分母不变。
2、异分母的分数相加减,先通分,然后再加减。
3、分数的乘法则:用分子的积做分子,用分母的积做分母。
4、分数的除法则:除以一个数等于乘以这个数的倒数。
三、单位换算1、1公里=千米 1千米=米1米=分米 1分米=厘米1厘米=毫米2、1平方米=平方分米1平方分米=平方厘米1平方厘米=平方毫米3、1立方米=立方分米1立方分米=立方厘米1立方厘米=立方毫米4、1吨=千克,1千克= 克= 公斤5、1公顷=平方米6、1升=立方分米=毫升1毫升=立方厘米四、数量关系计算公式方面1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、=路程=时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、 =商=除数=被除数6、=工作总量=工作时间=工作效率五、算术方面1、加法交换律:字母表示:2、加法结合律:字母表示:3、乘法交换律:字母表示:4、乘法结合律:字母表示:5、乘法分配律:字母表示:反过来6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
小升初数学衔接学习内容第10讲: 整式(二)
第9讲 整式(二)第1课时 整式运算去括号【学习目标】:能运用运算律探究去括号法则,并且利用去括号法则将整式化简。
【学习重点】去括号法则,准确应用法则将整式化简。
【学习难点】:括号前面是“-”号去括号时,括号内各项变号容易产生错误。
【导学指导】一、温故知新:1.合并同类项:(1)a a 37- (2)2224x x + (3)22135ab ab - (4)323299y x y x +-二、自主探究1. 利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?归纳去括号的法则:法则1: 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;法则2: 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3);即:法则1:括号前面是正号,去掉括号和前面的正号,括号里面各项都不变号;法则2:括号前面是负号,去掉括号和前面的负号,括号里面各项都变号;2.范例学习例4.化简下列各式:(1)8a+2b+(5a-b ); (2)(5a-3b )-3(a 2-2b );例5.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,•两船在静水中的速度都是50千米/时,水流速度是a 千米/时.(1)2小时后两船相距多远? (2)2小时后甲船比乙船多航行多少千米?去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,•括号内每一项都要变号.为了防止出错,可以先用分配律将数字2•与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号。
【课堂练习】1、计算:―2y 3+(3xy 2―x 2y)―2(xy 2―y 3)。
2、求整式y x 23-与y x 24-的差。
【要点归纳】:去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.【拓展训练】:1.下列各式化简正确的是()。