单片机之间双向通信

合集下载

51单片机串口设置及应用

51单片机串口设置及应用

51单片机串口设置及应用单片机的串口设置及应用是指通过单片机的串口功能来进行通信的一种方式。

串口通信是一种全双工通信方式,可以实现双向数据传输。

单片机通过串口可以与其他设备进行通信,如计算机、传感器、LCD显示屏等。

1. 串口设置:单片机的串口通信一般需要进行以下设置:(1)串口模式选择:要根据实际情况选择串口工作模式,一般有异步串口和同步串口两种。

(2)波特率设置:串口通信需要设置一个波特率,即数据传输速率。

常见的波特率有9600、19200、115200等,需要与通信的设备保持一致。

(3)数据位设置:设置传输的数据位数,常见的有8位、9位等。

(4)停止位设置:设置停止位的个数,常见的有1位、2位等。

(5)校验位设置:可以选择是否启用校验位,校验位主要用于检测数据传输的正确性。

2. 串口应用:串口通信在很多领域都得到广泛应用,下面列举几个常见的应用场景:(1)串口与计算机通信:通过串口可以实现单片机与计算机的通信,可以进行数据的读写、控制等操作。

例如,可以通过串口将传感器采集到的数据发送给计算机,由计算机进行进一步处理分析。

(2)串口与传感器通信:串口可以与各种传感器进行通信,可以读取传感器采集到的数据,并进行处理和控制。

例如,可以通过串口连接温度传感器,读取实时的温度数据,然后进行温度控制。

(3)串口与LCD显示屏通信:通过串口可以实现单片机与LCD显示屏的通信,可以将需要显示的数据发送给LCD显示屏进行显示。

例如,可以通过串口将单片机采集到的数据以数字或字符的形式显示在LCD上。

(4)串口与外部存储器通信:通过串口可以与外部存储器进行通信,可以读写存储器中的数据。

例如,可以通过串口读取SD卡中存储的图像数据,然后进行图像处理或显示。

(5)串口与其他设备通信:通过串口可以和各种其他设备进行通信,实现数据的传输和控制。

例如,可以通过串口与打印机通信,将需要打印的数据发送给打印机进行打印。

总结:单片机的串口设置及应用是一种实现通信的重要方式。

单片机通讯协议有哪些

单片机通讯协议有哪些

单片机通讯协议有哪些单片机通讯协议是指在单片机系统中,不同设备之间进行通讯时所遵循的规定和约定。

在实际的单片机应用中,通讯协议起着非常重要的作用,它决定了不同设备之间的数据交换方式和通讯流程。

下面我们将介绍一些常见的单片机通讯协议。

1. 串行通讯协议。

串行通讯协议是一种通过串行线路进行数据传输的通讯方式,常见的串行通讯协议包括UART、SPI和I2C。

UART(Universal Asynchronous Receiver/Transmitter)是一种异步串行通讯协议,它通过一根传输线路进行数据的串行传输,适用于中短距离通讯。

SPI(Serial Peripheral Interface)是一种同步串行通讯协议,它使用四根线路进行通讯,包括时钟线、数据线、主从选择线和从机输出线,适用于高速通讯和短距离通讯。

I2C(Inter-Integrated Circuit)是一种双向二线制串行总线,适用于多个设备之间的通讯,可以实现多主机和多从机的通讯。

2. 并行通讯协议。

并行通讯协议是一种通过并行线路进行数据传输的通讯方式,常见的并行通讯协议包括总线协议和并行接口协议。

总线协议是一种多设备共享同一总线进行通讯的协议,常见的总线协议包括ISA、PCI、USB等,适用于多设备之间的通讯和数据交换。

并行接口协议是一种通过并行接口进行数据传输的协议,常见的并行接口协议包括Centronics接口、IEEE-488接口等,适用于打印机、仪器设备等外部设备的通讯。

3. 网络通讯协议。

网络通讯协议是一种通过网络进行数据传输的通讯方式,常见的网络通讯协议包括TCP/IP、UDP、HTTP等。

TCP/IP是一种传输控制协议/因特网协议,它是互联网的核心协议,提供可靠的、面向连接的通讯服务,适用于大规模网络通讯。

UDP(User Datagram Protocol)是一种用户数据报协议,它是一种无连接的通讯协议,适用于实时性要求较高的通讯。

单片机与单片机之间的双向通信

单片机与单片机之间的双向通信

单片机与单片机之间的双向通信在现代电子技术领域,单片机扮演着至关重要的角色。

它们广泛应用于各种智能设备和控制系统中,从家用电器到工业自动化,从汽车电子到医疗设备,几乎无处不在。

而在很多复杂的应用场景中,常常需要多个单片机之间进行通信,以实现协同工作和数据共享。

其中,单片机与单片机之间的双向通信就是一种常见且关键的技术。

那么,什么是单片机之间的双向通信呢?简单来说,就是两个或多个单片机能够相互发送和接收数据。

想象一下,有两个单片机,就像是两个在对话的“小伙伴”,它们可以互相告诉对方自己的状态、采集到的数据或者发出控制指令,从而共同完成一个复杂的任务。

实现单片机之间双向通信的方式有多种,常见的包括串行通信和并行通信。

串行通信就像是单车道的公路,数据一位一位地按顺序传输。

它的优点是只需要少数几根线就能实现通信,节省了硬件资源,常见的串行通信方式有 UART(通用异步收发传输器)、SPI(串行外设接口)和 I2C(集成电路总线)等。

UART 是一种比较简单和常用的串行通信方式。

它不需要时钟信号,通过起始位、数据位、校验位和停止位来组成一帧数据进行传输。

在两个单片机之间使用 UART 通信时,需要分别设置好波特率、数据位长度、校验方式和停止位长度等参数,只有这些参数匹配,才能正确地收发数据。

SPI 则相对复杂一些,它需要四根线:时钟线(SCK)、主机输出从机输入线(MOSI)、主机输入从机输出线(MISO)和片选线(CS)。

SPI 通信速度较快,适合于高速数据传输的场景。

I2C 只需要两根线,即串行数据线(SDA)和串行时钟线(SCL),通过地址来区分不同的从设备,实现多设备通信。

并行通信则像是多车道的公路,可以同时传输多位数据。

它的传输速度快,但需要更多的引脚,硬件成本较高,并且在长距离传输时容易受到干扰。

在实际应用中,选择哪种通信方式取决于具体的需求。

如果对通信速度要求不高,而硬件资源有限,UART 或者I2C 可能是较好的选择;如果需要高速传输大量数据,SPI 或者并行通信可能更合适。

单片机中串行通信的三种类型

单片机中串行通信的三种类型

单片机中串行通信的三种类型在单片机的世界里,串行通信就像一条小小的高速公路,将各种数据在不同的部件之间传递。

它的基本任务就是让不同的设备能够互相“聊天”,共享信息。

想象一下,如果没有串行通信,单片机和外设之间就像被厚厚的墙隔开了,彼此难以沟通。

因此,了解串行通信的三种主要类型非常重要。

下面,我们就来聊聊这些串行通信的类型吧!1. 异步串行通信1.1 什么是异步串行通信?异步串行通信,顾名思义,就是在数据传输的时候,双方并不需要保持同步。

说白了,就是两头在做各自的事情,偶尔通过约定的信号来“打招呼”。

就像你和朋友在微信上聊天,不需要时时刻刻保持在线,偶尔发个消息就行了。

1.2 异步串行通信的工作原理在这种通信方式中,数据被拆分成一串串的字节,每个字节都会被加上一个起始位和一个停止位。

起始位告诉接收方:“嘿,数据来了!”而停止位则是“这条消息完了!”的信号。

这就像在你发短信时,在开始和结束的时候都留个标记,让对方知道你的信息什么时候开始和结束。

1.3 异步串行通信的应用这种通信方式应用非常广泛,比如我们常用的UART(通用异步收发传输器)就属于这个类别。

UART在我们的生活中几乎无处不在,从电脑的串口到一些简单的传感器都用得上它。

2. 同步串行通信2.1 什么是同步串行通信?同步串行通信和异步串行通信有点像“有组织的队伍”,双方在数据传输的过程中要保持同步。

就是说,你发数据的时候,对方也要准备好接收数据,这就像排队一样,大家都得按顺序来。

2.2 同步串行通信的工作原理在同步通信中,除了数据本身,还需要一个额外的时钟信号来确保数据的准确传输。

可以把时钟信号看作是“指挥棒”,它帮助双方协调一致地进行数据传输。

想象一下在舞台上表演的舞者,大家都得跟着同一个节拍才能跳得整齐划一。

2.3 同步串行通信的应用同步串行通信的速度通常比异步串行通信快,因为它减少了数据传输过程中的额外开销。

常见的同步串行通信协议包括SPI(串行外设接口)和I2C(集成电路间接口)。

单片机的双向通信工作原理

单片机的双向通信工作原理

单片机的双向通信工作原理
单片机的双向通信是指单片机与外部设备或其他单片机之间进行双向数据传输的过程。

其工作原理如下:
1. 初始化:首先,单片机需要设置通信口的工作模式和相应的参数。

这可以包括引脚的配置、波特率、数据位数、停止位数等。

2. 发送数据:当单片机需要发送数据时,首先将数据存储在发送缓冲区,然后根据通信口的工作模式,将数据按照一定的格式发送出去。

通常可以通过写入寄存器或者操作特定的寄存器位来触发数据发送。

3. 接收数据:在接收数据时,单片机将数据位从通信线上读取,并将其存储在接收缓冲区。

然后可以从接收缓冲区中读取数据,供单片机进行处理。

和发送数据一样,在某些情况下,需要特定的操作来触发接收过程。

4. 中断机制:为了提高单片机的处理能力和实时性,通常可以使用中断机制来处理双向通信。

通过中断,单片机可以在接收到数据或者完成数据发送等事件发生时,立即对其进行处理,而不需要等待。

总的来说,单片机的双向通信是通过配置通信口参数,将要发送的数据存储在发送缓冲区,然后按照特定的格式发送出去。

同时,在接收时,单片机会从通信口接收数据,并将其存储在
接收缓冲区。

通过中断机制,单片机可以实时地对数据进行处理,提高通信的实时性和可靠性。

双机间的串口双向通信设计

双机间的串口双向通信设计

单片机应用课程设计任务书单片机应用课程设计任务书学院名称:计算机与信息工程学院班级名称:学生姓名:学号:题目:双机间的串口双向通信设计指导教师:起止日期:目录一、绪论 (5)1.1设计背景 (5)二、相关知识 (5)2.1 双机通信简介 (5)2.2 单片机A T89C51介绍 (5)2.3串口通信 (6)三、总体设计 (7)3.1 设计要求 (7)四、硬件设计 (8)4.1.整体电路 (8)4.2复位电路 (8)4.3.控制电路 (9)五、软件设计 (9)5.1甲机软件设计 (10)5.2乙机软件设计 (11)六、测试及运行 (13)心得与感受 (15)参考文献 (16)指导教师评语 (17)附录:源程序 (18)一、绪论1.1设计背景随着电子技术的飞速发展,单片机也步如一个新的时代,越来越多的功能各异的单片机为我们的设计提供了许多新的方法与思路。

对于一些场合,比如:复杂的后台运算及通信与高实时性前台控制系统、软件资源消耗大的系统、功能强大的低消耗系统、加密系统等等。

如果合理使用多种不同类型的单片机组合设计,可以得到极高灵活性与性能价格比,因此,多种异型单片机系统设计渐渐成为一种新的思路,单片机技术作为计算机技术的一个重要分支,由于单片机体积小,系统运行可靠, 数据采集方便灵活,成本低廉等优点,在通信中发挥着越来越重要的作用。

但在一些相对复杂的单片机应用系统中,仅仅一个单片机资源是不够的,往往需要两个或多个单片机系统协同工作。

这就对单片机通信提出了更高要求。

单片机之间的通信可以分为两大类:并行通信和串行通信。

串行通信传输线少,长距离传输时成本低,且可以利用数据采集方便灵活,成本低廉等优点,在通信中发挥着越来越重要的作用。

所以本系统采用串行通信来实现单片机之间可靠的,有效的数据交换。

二、相关知识2.1 双机通信简介两台机器的通信方式可分为单工通信、半双工通信、双工通信,他们的通信原理及通信方式为:1.单工通信:是指消息只能单方向传输的工作方式。

单片机与单片机通信原理

单片机与单片机通信原理

单片机与单片机通信原理
单片机与单片机之间的通信原理是通过串行通信或并行通信进行的。

串行通信是指将数据按位顺序传输,而并行通信则是同时传输多个位。

在串行通信中,需要使用UART(通用异步收发器)进行通信。

UART将数据转换为适合传输的格式,并通过一个线路将数据发送到接收方。

在发送数据时,发送方将数据发送到UART
的发送缓冲区中,UART会按照设定的速率将数据按位发送。

接收方的UART会接收到发送方发送的数据,将其保存在接
收缓冲区中,然后应用程序可以从接收缓冲区中读取数据。

在并行通信中,通常使用I2C(双线串行总线)或SPI(串行
外围接口)进行通信。

I2C通信使用两根线路:数据线(SDA)和时钟线(SCL)。

发送方通过SDA线将数据发送给接收方,同时使用SCL线提供时钟信号。

接收方通过SCL线接收时钟
信号,并从SDA线上读取数据。

SPI通信需要至少四根线路:时钟线(SCK)、主设备输出(MOSI)、主设备输入(MISO)和片选线(SS)。

在SPI
通信中,主设备通过时钟线提供时钟信号,通过MOSI线发送数据给从设备,并通过MISO线接收从设备传输的数据。

片选线用于选择将要进行通信的从设备。

无论是串行通信还是并行通信,单片机之间的通信都需要事先约定好通信协议和参数设置,以确保数据的准确传输。

通信协
议可以包括数据格式、波特率等。

同时,通信的双方也需要进行数据的校验和错误处理,以防止数据传输中的错误或丢失。

单片机双机通信实验报告

单片机双机通信实验报告

单片机双机通信实验报告
实验目的:
1. 了解单片机之间的串口通信原理;
2. 掌握单片机之间的双机通信方法;
3. 实现单片机之间的数据互相传输。

实验器材:
1. 单片机开发板(两块);
2. USB转串口模块(两个);
3. 杜邦线若干;
4. 电脑。

实验步骤:
首先,将单片机开发板和USB转串口模块进行连接,具体的连接方法如下:
1. 将USB转串口模块的TXD引脚连接到单片机开发板的RXD引脚上;
2. 将USB转串口模块的RXD引脚连接到单片机开发板的TXD引脚上;
3. 将USB转串口模块的GND引脚连接到单片机开发板的GND引脚上;
4. 将USB转串口模块的VCC引脚连接到单片机开发板的VCC引脚上。

接下来的步骤如下:
1. 打开两台电脑上的串口调试助手软件,并分别将波特率设置为相同的数值(例如9600);
2. 在一台电脑上,发送数据给另一台电脑。

具体的操作是在串口调试助手软件上输入要发送的数据,然后点击发送按钮;
3. 在另一台电脑上,接收来自第一台电脑发送的数据。

具体的操作是在串口调试助手软件上点击接收按钮,然后可以看到接收到的数据。

实验结果:
通过实验可以看到,单片机之间成功地实现了数据的双向传输。

一台单片机发送的数据可以被另一台单片机接收到。

实验总结:
本实验通过串口通信的方式实现了单片机之间的双机通信。

通过这种方式,可以方便地实现单片机之间的数据互相传输,可以用于各种应用场景,如传感器与控制器之间的数据传输等。

同时要注意,串口通信的波特率要设置一致,否则数据将无法正确接收。

单片机的双机串口通信原理

单片机的双机串口通信原理

单片机的双机串口通信原理单片机的双机串口通信原理是通过串口连接两个单片机,使它们能够进行数据的传输和通信。

串口是一种常见的通信方式,它使用两条信号线进行数据的传输:一条是串行数据线(TXD),用于发送数据;另一条是串行接收线(RXD),用于接收数据。

通过串口通信,两个单片机可以进行双向的数据传输,实现信息的互相交流和共享。

在双机串口通信中,一台单片机充当主机(Master),另一台单片机充当从机(Slave)。

主机负责发起通信请求并发送数据,从机负责接收并响应主机发送的数据。

通信过程中,主机和从机需要遵守相同的协议和通信规则,以确保数据的正确和可靠传输。

双机串口通信的主要步骤如下:1. 端口初始化:在双机串口通信开始之前,两台单片机的串口端口需要初始化。

主机和从机需要设置相同的波特率(Baud Rate),数据位数(Data Bits)、停止位数(Stop Bits)和校验方式(Parity Bit),确保两台单片机之间的通信能够正常进行。

2. 数据发送:主机将要发送的数据写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给从机。

主机发送完所有数据位后,等待从机的响应。

3. 数据接收:从机通过串口接收线路接收主机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待从机的处理。

4. 数据处理:从机接收到主机发送的数据后,根据通信协议和通信规则进行数据处理。

从机可能需要对数据进行校验、解析和执行相应的操作,然后将处理结果写入到串口发送寄存器中,以供主机进行相应的处理。

5. 响应发送:从机将处理结果写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给主机。

从机发送完所有数据位后,等待主机的进一步操作。

6. 数据接收:主机通过串口接收线路接收从机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待主机的处理。

7. 数据处理:主机接收到从机发送的数据后,根据通信协议和通信规则进行数据处理。

PC机与单片机多机双向通信的设计应用

PC机与单片机多机双向通信的设计应用

制命 令 , 控制现场设备 。 而 在 工 业 现 场 经 常 要 实 现 多 点 分 布式 数 据采集或控制 , 因此 , 必 须 实 现 上 位 机 和 多 个 单 片机 之 间 的 双 向 通 信 。上 位 机 和 单 片 机 之 间 的 双 向通 信 涉 及 到 硬 件 和软 件 两 方
信。 第 6步 中 , 如 果 主机 收到 的数 据 错 误 , 则结束通信。 在 通 信 开 始以后 , 从 机 每 一 次 通 信 都 会 加 上 超 时处 理 , 避 免 通 信 错 误 导 致
通信的死锁。 2 P C 机 端软 件 通 信 接 口设 计 P C 机 端 程 序 主 要 处 理 来 自单 片 机 的 数 据 , 并 以 合 适 的 方 式 展示给用户 , 因此 用 户 体 验 非 常 重 要 。 为 了保 证 用 户 接 1 3 的响 应
n e s s o f s o f t war e .
K e y wo r d s : P C, MCU。 t wo - wa y c o mmu n i c a t i o n , a r c h i t e c t u r e
由 于 单 片 机 的处 理 能力 较 弱 ,适 合 通 过 各 类 传 感 器 采 集 数 据 或 向设 备 发送 控 制命 令 等 , 不适合做数据处理 , 因此 实 践 中通 常 由 单 片 机 与 上 位 机( 一般采用 P C机) 联合构成 完整的系统 , 单
面 的工 作 。 硬 件 方 面 主要 关 注 采 用 何 种 通 信 接 口。 常 用 的 接 口有 串行 口 、 F C接 口、 S P I 接 口及 以太 网接 口等 。实 践 中 , 根据 环 境 、 传输距离 、 实 现 成本 等 因 素选 择 接 口。 软 件 方 面 主 要 关 注 如 何 设 计 双 方 的高 层 通 信 协 议 以正 确 及 时 地 完 成 数 据 交换 。 硬 件 方 面 一 旦 确 定 了接 口类 型 , 则 相 应 的 电路 也 就 确 定 了 。 软件 可 通 过 合 理 的架 构 设 计 , 以 适 应 不 同 的接 口 , 为 系 统 提 供 更 多 的灵 活 性 。 1 通 信 协 议 设 计

51单片机双机通信原理(一)

51单片机双机通信原理(一)

51单片机双机通信原理(一)51单片机双机通信简介•什么是51单片机双机通信•双机通信的作用和应用场景基本原理•单片机串口通信原理–串口通讯协议–数据帧的构成•串口通信的硬件连接–引脚连接方式–串口信号格式设置单向通信实现•主从模式–主机发送数据–从机接收数据•编程实现–主机端程序设计–从机端程序设计双向通信实现•主从模式–主机发送数据–从机接收数据–主机接收数据–从机发送数据•编程实现–主机端程序设计–从机端程序设计通信协议的设计•自定义通信协议–协议的格式–数据的解析与封装高级功能扩展•多机通信实现•数据加密与解密•异常处理与误码纠错总结•51单片机双机通信的基本原理和实现方式•可能遇到的问题及解决方案•双机通信的进一步应用展望简介51单片机双机通信是指使用51系列单片机实现两台或多台单片机之间的数据传输和通信。

双机通信可以实现在多个单片机之间传递数据、完成控制指令的下发、数据的采集和处理等功能。

在各种电子设备和嵌入式系统中,双机通信被广泛应用,可以实现设备之间的互联和协同工作,提高系统的灵活性和智能化水平。

基本原理单片机串口通信原理串口通信是一种将数据通过串行线路进行传输的通信方式。

在51单片机的串口通信中,常用的是UART(通用异步收发传输器)通信协议。

UART通信采用的是异步传输方式,数据按照固定的数据帧格式进行传输。

串口通信的硬件连接在51单片机的串口通信中,需要将主机和从机的UART引脚连接起来。

常用的连接方式是通过一对直线的串行数据线(TXD和RXD)连接主从机,其中TXD是发送数据的引脚,RXD是接收数据的引脚。

为了确保数据的正确传输,还需要进行串口信号格式的设置,包括波特率、数据位数、停止位数和校验位等。

单向通信实现主从模式在单向通信中,主机负责发送数据,从机负责接收数据。

主机通过串口发送数据帧,从机通过串口接收数据帧,并进行相应的处理。

编程实现在主机端程序设计中,需要配置串口通信的参数,并使用串口发送数据的相关函数来发送数据。

单片机双向并口通信技术

单片机双向并口通信技术

乱 刚乱
()电路原理 图 a
() 4 b 7 Hc7 4的真值表
图2 7 H 7 4 C 4的 电路原 理图与真值 表
触 发器 的 Q 端 作 为 单 片 机 写 数 据 之 前
的检测信 号 ; 作 为另一 个单 片机读数 据 的 检 测 信 号 , 接 到 单 片 机 的 外 部 中 断 0 利 用 , 外 部 中 断 0 的边 沿 触 发 方 式 接 收 数 据 , 保 证 了通 信 的 实 时 性 和可 靠 性 ;CL 作 为 接 收 端 R 的 控 制 信 号 , CL 作 为 发 送 端 的 控 制 信 号 。 K 利 用 7 HC 4的双 D 触 发 器 ,2个 单 片机 分 别 4 7 有 一 套 收 发 控 制 信 号 , 控 制 2个 单 片 机 通 过

L H L H
L L

t t
X H( t l H N t I Noe ( o e 1
H H


X0
Q0
1设 计原 理
设 计 原 理 图 如 图 1 。
C P10 P1 1 4 P 2 P 3 P 4 n , P 16 . Pl 7 RX D N T0 NTl V DD 39 P 3 00 8 37 P0 2 . 36 P0 3 … 35 P0 5 3 4 P 3 O6 3 P 7 3 0. 2 #EA 3l ALE 3 0 PS EN 2 9 P 7 2 2. 8 P 2 26 7 P 5 2 2. 6 P 2 24 5 P 2 23 4
c?。 0 7P
l C3
P 3 22 . 2
P . 2 21 2

VCC 4 1
V S S

单片机课程设计-- 单片机之间的双向通信演示

单片机课程设计-- 单片机之间的双向通信演示

课程设计任务书课程单片机课程设计题目单片机之间的双向通信演示专业姓名学号一、任务以AT89C51单片机为控制核心,利用串行通信技术实现两个单片机之间的数据传输。

二、设计要求[1] 单片机甲机向单片机乙机发送控制命令符,甲机同时接收乙机发送的数字,并显示在数码管上[2] 基本电路包括:单片机最小系统,串口通信电路,LED显示电路等。

[3] 提交设计报告、电路图及程序源码。

三、参考资料[1] 万光毅.单片机实验与实践教程[M]. 北京:北京航空航天大学出版社.2005.1.[2] 张毅刚.单片机原理及应用[M]. 北京:高等教育出版社.2003:160-190.[3] 张小波, 徐航.基于MCS—51单片机的串行通信技术.[M].北京:北京航空航天大学出版社.2006[4] 胡汉才.单片机原理与其接口技术(第二版)[M].北京:清华大学出版社,2004.[5] 何文才,杜鹏.基于VB.NET的PC机和MCS-51单片机之间的串行通信 [J]. 北京电子科技学院学报. 2006.4期[6] 李秀忠.基于单片机的LED显示屏控制电路设计.[J].现代电子技术. 2010 .15期完成期限2012.6.29 至2012.7.8指导教师专业负责人2012年6月29 日目录第1章绪论 (1)1.1 单片机AT89C51概述......................... 错误!未定义书签。

1.2 LED显示屏控制技术状况 (2)1.3 MAX232概述 (2)1.4 本设计任务 (3)第2 章总体方案论证与设计......................... 错误!未定义书签。

2.1 LED驱动模块................................ 错误!未定义书签。

2.2 总体硬件组成框图........................... 错误!未定义书签。

第3章系统硬件设计.. (4)3.1 单片机最小系统硬件设计 (4)3.2 串行通信电路 (5)3.3 LED显示电路 (6)第4章系统的软件设计 (7)4.1 甲单片机程序设计 (7)4.2 乙单片机程序设计 (8)第5章系统调试与测试结果分析 (8)5.1 使用的仪器仪表 (9)5.2 系统调试 (9)5.3 测试结果 (9)结论 (9)参考文献 (11)附录1 程序 (12)附录2 仿真效果图 (17)第1章绪论随着科学技术的发展,单片机在各个领域的应用越来越广泛,计算机领域,航天领域,电子技术领域等,都离不开单片机的使用。

单片机的通信方式

单片机的通信方式

单片机的通信方式单片机通信是指单片机之间的数据传输方式,用于各种嵌入式应用。

通信方式有很多,常用的有串行通信方式和并行通信方式。

1. 串行通信串行通信方式是指在同一时刻只有一个数据位在传输的通信方式。

串行通信可以分为同步串行通信和异步串行通信。

异步串行通信通常用于短距离通信和低速通信,因为异步通信需要使用更多的数据位来描述数据,需要更长的时间来传输。

同步串行通信通常用于高速通信和长距离传输。

同步通信使用一个时钟信号来同步传输的数据,这样数据传输速度比异步通信快。

并行通信方式是指在同一时刻多个数据位同时传输的通信方式。

并行通信速度比串行通信速度快,但需要使用更多的线路。

并行通信通常用于高速通信和高速数据传输,如网络、计算机等系统。

3. I2C通信I2C通信是一种具有双向数据传输和同步时序的串行通信方式,常用于连接多个外设到单片机。

I2C通信采用两根线路和多个地址和设备来实现通信。

SPI通信是一种快速、高效、双向的串行通信方式。

SPI通信采用四根线路来实现通信,这些线路包括:时钟线、数据线、主从选择线和片选信号线。

SPI通信通常用于高速数据传输和控制数据的传输。

CAN通信是一种适用于工业控制和汽车控制等领域的串行通信协议。

CAN通信用于处理较大量的数据,通信速度较快,主要支持多个节点之间的独立通信。

CAN通信采用特定的通信协议来处理信息,保证通信正常。

CAN通信通常包括两个节点,即发送者和接收者。

总之,单片机通信是嵌入式系统中非常重要的功能,有多种不同的通信方式和协议,可以根据不同的应用场合和需求进行选择。

单片机中常见的接口类型及其功能介绍

单片机中常见的接口类型及其功能介绍

单片机中常见的接口类型及其功能介绍单片机(microcontroller)是一种集成了中央处理器、内存和各种外围接口的微型计算机系统。

它通常用于嵌入式系统中,用于控制和监控各种设备。

接口是单片机与外部设备之间进行数据和信号传输的通道。

本文就单片机中常见的接口类型及其功能进行介绍。

一、串行接口1. 串行通信口(USART):USART是单片机与外部设备之间进行串行数据通信的接口。

它可以实现异步或同步传输,常用于与计算机、模块、传感器等设备进行数据交换。

2. SPI(串行外围接口):SPI接口是一种全双工、同步的串行数据接口,通常用于连接单片机与存储器、传感器以及其他外围设备。

SPI接口具有较高的传输速度和灵活性,可以实现多主多从的数据通信。

3. I2C(Inter-Integrated Circuit):I2C接口是一种面向外部设备的串行通信总线,用于连接不同的芯片或模块。

I2C接口通过两条双向线路进行数据传输,可以实现多主多从的通信方式,并且占用的引脚较少。

二、并行接口1. GPIO(通用输入/输出):GPIO接口是单片机中最常见的接口之一,用于连接与单片机进行输入输出的外围设备。

通过设置相应的寄存器和引脚状态,可以实现单片机对外部设备进行控制和监测。

2. ADC(模数转换器):ADC接口用于将模拟信号转换为数字信号,常用于单片机中对模拟信号的采集和处理。

通过ADC接口,单片机可以将外部传感器等模拟信号转化为数字信号,便于处理和分析。

3. DAC(数模转换器):DAC接口用于将数字信号转换为模拟信号。

通过DAC接口,单片机可以控制外部设备的模拟量输出,如音频输出、电压控制等。

三、特殊接口1. PWM(脉冲宽度调制):PWM接口用于产生特定占空比的脉冲信号。

通过调节脉冲的宽度和周期,可以控制外部设备的电平、亮度、速度等。

PWM接口常用于控制电机、LED灯、舵机等设备。

2. I2S(串行音频接口):I2S接口用于在单片机和音频设备之间进行数字音频数据传输。

单片机双机通信课程设计报告

单片机双机通信课程设计报告

课程设计说明书课程设计名称:单片机课程设计课程设计题目:单片机与单片机之间的串行通讯学院名称:信息工程学院专业:电子信息科学与技术班级: 090431班学号: xxx 姓名: xxx 评分:教师: xxx 2012年6月25日电子信息工程专业课程设计任务书20 10 -20 11学年第2 学期第17 周-20 周注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。

2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档摘要串行通讯是单片机的一个重要应用。

本设计就是利用两块单片机来完成一个系统,实现单片机之间的串行通讯。

随着计算机的不断普及,在我们的周围可能会同时出现多台微型计算机,而且这些计算机的牌号,后型号不同,而且有的格式不兼容。

于是利用单片机串行口实现不同计算机之间的相互通信,以达到信息或程序的共享是非常有用的。

从智能家用电器到工业上的控制系统都采用了上位机与下位机基于串行通信的主从工作方式,这样就充分利用了微机分析处理能力强、速度快的特点及下位机(单片机)面向控制、使用灵活方便的优势。

由于AT09C52系列单片机具有性能稳定、工作可靠、价格低廉等可特点,因此其应用相当广泛。

AT09C52单片机中有异步通信串行接口,能方便的构成双机,多机通讯接口。

随着测量向自动化,智能化,网络化方向的发展。

利用多机通讯构成的分布式系统逐渐普及。

本实验就点对点的双机通信进行训练。

学习串口的工作方式,初始化编程,和单片机与单片机点对点通信的编程方法以及硬件电路的设计方法。

在此基础上可以进一步提高,实现多机通信以及单片机与PC机的通讯,手机通过蓝牙与单片机通讯,电脑通过蓝牙与单片机通讯等一系列功能扩展。

【关键字】双机串行通讯 AT89C52 异步通讯功能扩展目录前言 (1)第一章、系统功能 (2)1.1 设计要求和系统的组成及工作原理 (2)第二章、系统设计方案 (3)2.1硬件设计 (3)2.1.1 AT89C52和RS232说明 (3)2..12 双机通讯的方案选择 (7)2.1软件设计 (8)2.2.1 甲机程序的编写说明 (8)2.2.2 甲机程序的编写说明 (12)第三章、调试与操作 (19)3.1 开发板调试 (19)3.2 测试结果与分析 (20)第四章、结论 ........................ 错误!未定义书签。

单片机通信协议规范及选用原则详解

单片机通信协议规范及选用原则详解

单片机通信协议规范及选用原则详解在现代电子设备中,单片机的应用越来越广泛。

而单片机之间的通信协议则成为了设备间进行数据交换的关键。

本文将详细探讨单片机通信协议规范以及选用的原则,帮助读者更好地理解和选择适合自己项目的通信协议。

首先,我们需要明确什么是单片机通信协议。

单片机通信协议是一种规定了数据传输格式和通信流程的标准,不同的协议具有不同的操作特征,通过这些协议,单片机可以在数据交互的过程中实现信息的传输、交换和控制。

通信协议的选择对于整个系统的性能和稳定性非常重要。

接下来,我们将介绍一些常见的单片机通信协议,以及它们的特点和适用场景。

1. UART(通用异步收发传输)协议:UART是一种异步串行通信协议,它使用简单、成本低廉,并且能够在较长距离上进行可靠的通信。

UART协议的特点是发送和接收数据之间没有固定的时间间隔,而是通过起始位、数据位、校验位和停止位来传输数据。

这种协议适用于简单的点对点通信和中等速度的通信需求。

2. SPI(串行外设接口)协议:SPI协议是一种同步串行通信协议,它可以实现高速的数据传输,常用于外设和单片机之间的通信。

SPI协议使用四根线传输数据:时钟线、数据线、主从选择线和片选线。

SPI协议具有快速的数据传输速度和灵活的数据帧格式,适用于对速度要求较高的场景,如存储卡、传感器和显示器等。

3. I2C(串行双向通信总线)协议:I2C协议是一种串行双向通信协议,它可以实现多个设备之间的通信,并且占用的引脚比较少。

I2C协议使用两根线传输数据:时钟线和数据线。

I2C协议具有简单的硬件电路、可靠的错误检测和纠正机制,适用于多个设备之间的通信和控制,如传感器阵列和扩展模块等。

4. CAN(控制器局域网)协议:CAN协议是一种用于实时控制和数据传输的通信协议,特别适用于汽车、工业控制和航空等领域。

CAN协议使用差分信号进行数据传输,具有高可靠性、抗干扰性强和较长的通信距离等特点。

CAN协议还支持多主机通信、广播和多帧数据传输等功能。

android 单片机通信原理

android 单片机通信原理

android 单片机通信原理
Android和单片机通信是通过串口通信来实现的。

串口通信是
一种将数据按照一定的顺序逐个字节地传输的方式。

在Android上,可以通过USB连接单片机,将Android设备作为主机,而单片机则作为从机。

当Android设备检测到单片机
连接时,会通过USB驱动程序建立与单片机之间的串口通信。

在单片机端,需要借助串口模块来实现串口通信。

该模块通常包含数据收发电路、波特率发生器、数据缓冲器等。

通过设置波特率、数据位、校验位和停止位等参数来配置串口模块。

在单片机程序中,可以使用串口通信的API来发送和接收数据。

在Android端,可以使用Java语言的串口通信API来实现和
单片机的通信。

首先,需要获取和配置串口设备。

然后,可以通过串口通信API中的读取和写入方法来发送和接收数据。

在通信过程中,Android设备可以向单片机发送指令,比如读
取传感器数据、控制电机等。

单片机接收到指令后,执行相应的操作,并将结果返回给Android设备。

Android设备可以通
过监听串口的数据接收事件来获取单片机返回的数据。

总之,通过串口通信,Android设备可以与单片机进行双向的
数据传输和通信。

这种通信方式可以在嵌入式系统、物联网等领域发挥重要作用。

51单片机双机通信原理

51单片机双机通信原理

51单片机双机通信原理引言:随着科技的不断发展,人们对通信技术的需求也越来越高。

单片机作为一种小型、低功耗、功能丰富的微处理器,被广泛应用于各个领域。

而双机通信则是单片机应用中的一个重要方面。

本文将以51单片机双机通信原理为主题,探讨其工作原理及应用。

一、概述单片机双机通信是指两个或多个单片机之间通过某种通信方式进行数据传输和交互的过程。

通过双机通信可以实现数据的共享、协作和控制,从而提高系统的可靠性和性能。

二、通信方式1. 串行通信串行通信是指单片机之间通过串行接口进行数据传输的方式。

其中,常用的串行通信协议有RS232、I2C和SPI等。

RS232是一种基于串行通信的标准协议,常用于计算机与外设的数据传输;I2C是一种双线制的串行通信协议,常用于短距离的设备间通信;SPI是一种高速的串行通信协议,常用于单片机与外围设备的通信。

2. 并行通信并行通信是指单片机之间通过并行接口进行数据传输的方式。

在并行通信中,数据同时通过多条线路传输,速度较快。

然而,并行通信所需的引脚较多,布线复杂,限制了其在实际应用中的使用。

三、通信过程单片机之间的通信过程可以分为初始化、数据传输和结束三个步骤。

1. 初始化在进行通信之前,需要对通信接口进行初始化设置。

包括设置通信协议、波特率、数据位数、停止位数等参数。

通过正确的初始化设置,可以保证通信的稳定性和可靠性。

2. 数据传输数据传输是单片机通信的核心过程。

在通信过程中,发送端将要发送的数据通过通信接口发送给接收端,接收端接收到数据后进行处理。

数据传输可以是单向的,也可以是双向的。

在双向通信中,发送端和接收端可以同时发送和接收数据。

3. 结束通信结束后,需要对通信接口进行相应的清理工作,包括关闭通信接口、释放资源等。

通过正确的结束操作,可以保证通信的完整性和稳定性。

四、应用实例单片机双机通信广泛应用于各个领域,如智能家居、工业自动化、车载系统等。

以下是一个智能家居系统的应用实例:智能家居系统中,通过单片机双机通信可以实现各种设备之间的数据共享和控制。

基于RS485协议实现单片机与单片机之间的通讯

基于RS485协议实现单片机与单片机之间的通讯

基于RS-485协议实现单片机与单片机之间的通讯摘要:介绍以RS-485为通讯方式的两个单片机之间的通讯,同时给出单片机与单片机之间的通讯程序设计。

关键词:RS-485通讯单片机串行通讯0 引言随着工业化的发展,人们对现场仪表的要求越来越高,为了满足控制室对现场的实时监控,确保现场数据的实时获取,需要用一种方式将现场情况实时反映给控制室,我们研究了一种方便简单功、能优越的通讯方式:用RS-485实现现场单片机和控制室单片机的实时通讯。

通过操作控制室单片机就能实现对现场单片机的操作,节省了大量的时间以及相应的人力。

1、RS-485通讯协议RS-485采用平衡传输方式,连接时需要在传输线上接终接电阻。

RS-485可以采用二线与四线方式,二线制可实现真正的多点双向通信,采用四线连接时,即只能有一个主(Master)设备,其余为从设备,无论是四线还是二线连接方式总线上最多可接32个设备。

RS-485最大传输距离约为1219米,最大传输速率为10Mb/s。

平衡双绞线的长度与传输速率成反比,在100kb/s速率以下,才可能使用规定最长的电缆长度。

只有在很短的距离下才能获得最高速率传输。

一般100米长双绞线最大传输速率仅为1Mb/s。

RS-485需要2个终接电阻,其阻值要求等于传输电缆的特性阻抗,终接电阻接在传输总线的两端。

在短距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。

本设计中采用的485通讯元件是75LBC184,该器件带有内置高能量瞬变噪声保护装置,可提供可靠的低成本的直连(不带绝缘变压器)数据线接口,不需要任何外部元件。

2、单片机与单片机的通讯系统本设计中单片机选用C8051F020,该单片机有100个功能引脚,其中有64个通用I/O端口。

C8051F020内有2个增强型串行口:UARTO和UART1,这两个串行口都可以工作在全双工异步方式或半双工同步方式,并且支持多处理器通信。

75LBC184与单片机连接时只需将R和D端分别与单片机的RXD 和TXD 相连即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档