解线性方程组的矩阵三角分解法 共16页PPT资料
数值分析课程课件 直接三角分解方法
u22
u11
u2n
l n1 l n2
1
unn
即
a11 a12 a 21 a22
a1n
a2n
u11 l21u11
u12 l21u12 u22
u1n
l21u1n
u2n
a n1 a n2
ann
ln1u 11
由(5.3.1)- (5.3.4)求得L和U后,解方程组Ax=b 化为求解LUx=b,若记Ux=y,则有Ly=b。于是可分两部解 方程组LUx=b,只要逐次向前代入的方法即可求得y。第
二步求解Ux=y,只要逐次用向后回代的方法即可求得x。 设 x=(x1 ,x2, ···xn) T, y=(y1, y2, ···yn) T,
n
i1
lniuin
unn
第四章方程组的直接解法
由A的第1行和第1列可计算出U的第1行和L的第1列,即
u1 j a1 j , j 1, 2, , n,
(5.3.1)
lk1
ak1 u11
,k
2, 3,
, n.
(5.3.2)
如果U的第1至k-1列和L的第1至k-1列已经算出,则由
解 设 A=LU,即
l11 a11 1, l21 a21 2, l31 a31 0
u12
a12 l11
2, u13
a13 l11
1,
l22 a22 l21u12 3, l32 a32 l31u12 1
3.2矩阵三角分解,平方根
2014-12-29
北京信息科技大学
4
2 3 1 0 2 3 1 0 2 3 例如A= 4 1 2 1 0 5 2 3 0 5 / 3
这里有A的两种不同的三角分解,类似可举出很多,一般, 若A=LU是一个三角分解,任取与A同阶的非奇异对角矩阵D, 则
xn yn / unn xi ( yi i n 1,
k i 1
u
n
ik
xk ) / uii
, 2,1
2014-12-29
北京信息科技大学
23
例 用杜利特尔分解法求解方程组
2 x1 2 x2 3 x3 3 4 x1 7 x2 7 x3 1 2 x 4 x 5 x 7 1 2 3
, 则矩 , n 1 )
U 为上三角阵。 其中 L 为单位下三角阵,
其中
A LU
1 l21 1 L l31 l32 l n1 ln 2
1 ln ,n 1
u11 u12 u22 ,U 1
u1n u2 n unn
矩阵三角分解法
矩阵直接三角分解法是高斯消去法的变形方法。 高斯消去法 有多种变形,有的是高斯消去法的改进,有的是用于某种特殊系 数矩阵的化简。 分解原理 1.概述 高斯消去法解线性方程组先消元,然后再回代。当用矩阵描 述时,是对系数矩阵分解为一个上三角阵和一个下三角阵的乘 积,即 LU 分解。因此,高斯消去法与矩阵的 LU 分解是一致的。
2014-12-29 北京信息科技大学 15
紧凑格式
2 2 3 A 4 7 7 5 2 4 (2) 2 (4) 2 (-2) -1 (2) 2 (7) 3 (4) 2 (3) 3 (7) 1 (5) 6
用直接三角分解法解线性方程组
三角阵。等式左边是单位下三角阵,右边是上三角阵,要使等式
成则立L , L只1 ,能U等于U单1,位即矩此阵三I。角于分是解L唯1一L1。
UU
1 1
I,
1 2 1
1 2 1
例7 解:
设 A 3 7
1
,试将A进行三角分解。
1 1 3
由高斯消去法得到
m21
3 1
3,m31
1 1
1
m 32
L1
1 1
0 0 1 2
例:
求
0 1 2
0 1 0
3 0 1
103的PLU分 解 。
解:用1,2, ,n的排列表示n阶置换阵P,其中排列的第i个元素
j,表示P的i行非零元素位于j列。则分解过程如下:
1 0 0 1 2
3 1 1 0 1
3 1 1 0
2 0
43
1 2
0 1 0
3 0 1
0 1 3
Ux j y j
Ly
j
bj
n1
k
n(n 1)
n2
n 次乘法
k 1
2
22
Ux j y j n k n(n 1) n2 n 次乘除法
k 1
2
22
即共需n 2 次乘除法运算。
n 2 次 乘 除 法
三角分解法的存放元素的方法:
以A (a ij )33 为例,
a11 A a21
1 mk1,k 1
k,
Lk1
1 mk1,k 1
k
mnk
1
mn,k
1
A ( L11 L21
L1 n1
)U
LU,1
a (1) 11
线性代数方程组的解法
2 3 2 n O( n ) 3
mult a(i , j ) a( j, j ); for k j 1 : n a(i , k ) a(i , k ) mult * a( j , k ); end b(i ) b(i ) mult * b( j ); end
end
LU分解
求A的LU分解(L是下三角矩阵,U是上三角矩阵)
1 1 1 1 3 4 3 4
LU分解
性质1 设向量
, xn ) 且 xk 0 T 则存在唯一的下三角阵 Lk I lk ek ,满足 x ( x1 , x2 ,
T
Lk x ( x1 ,
第三章 线性方程组的直接解法
/*Direct Method for Solving Linear Systems*/
求解 A x b, A R
Cramer法则:
nn
det( A) 0
Di xi D
i 1, 2,
,n
所需乘除法的运算量大约为(n+1)!+n
n=20时,每秒1亿次运算速度的计算机要算30多万年!
Gauss消去法的消元过程算法
for for
j 1: n 1
i j 1: n
2 3 2 n O( n ) 3
mult a(i , j ) a( j, j ); for k j 1 : n a(i , k ) a(i , k ) mult * a( j , k ); end b(i ) b(i ) mult * b( j ); end
方程组可化为下面两个易求解的三角方程组
Ly b Ux y
二、 高斯消去法
5.3 矩阵的三角分解法
8
解: (1)分解A LU,令 2 5 6 1 4 13 19 l 21 6 3 6 l31 0 1 l32 0 u11 0 1 u12 u22 u13 u23 u33
24
由A L( DLT ) 1 l 21 l31 ... l n1 1 l32 ... ln 2 1 ... ... lnn 1 1 d1 ... d1l21 d2 ... d1l31 d 2 l32 d3 ... ... ... ... d1 l n1 d 2 ln2 d 3 ln 3 dn
25
由 i j时aij = l ik d k l jk l ij d j , 知
k =1
j -1
L, D元素计算公式
lij =
aij lik d k l jk
k =1
j -1
dj
j -1
( j 1, 2, ,i 1)
2 d i =aii l ik d k ( i 1, 2, , n) k =1
y1 b1 i -1 y y b l i ij i j j 1
i 2, 3, , n
( i n 1, , 1)
7
或 用 Doolittle 分解法
例:用矩阵的直接三角分解法解方程组
5 6 x1 10 2 4 13 19 x 19 2 6 3 6 30 x3
27
d1 a11
改进平方根法解方程组
1. 分解计算A=LDLT ,
d1 a11 对于i 2, 3, ..., n j 1 c a cik l jk ij ij k 1 cij ( j 1, 2, ..., i 1) lij dj i 1 d i aii cik l ik k 1
解线性方程组的三角分解法
⎛1 0 ⎛1 3 2 1 ⎞ ⎜3 1 ⎜ ⎟ ⎜ 3 13 12 9 ⎜ ⎟ = ⎜2 3 ⎜ 2 12 29 15 ⎟ ⎜ 2 ⎜ ⎟ ⎜ 1 9 15 34 3 ⎝ ⎠ ⎜1 ⎜ 2 ⎝ ⎛1 ⎜ ⎜3 =⎜ ⎜2 ⎜ ⎜ ⎜1 ⎝ 0 1 3 2 3 2 0⎞ ⎟ 0⎟⎛1 ⎜ ⎟⎜0 1 0⎟⎜ 0 ⎟⎜ 1 ⎟ 0 1⎟⎝ 4 ⎠ 0 0
⎛1⎞ 0 0 0 ⎞ ⎛ y1 ⎞ ⎛ 1 ⎞ ⎛ y1 ⎞ ⎜ 5 ⎟ ⎜ ⎟ ⎜ ⎟ ⎟⎜ ⎟ ⎜ ⎟ y 4 0 0 ⎟ ⎜ y2 ⎟ ⎜ 10 ⎟ 2 ⎟。 = ,得到 ⎜ 2 ⎟ = ⎜ ⎜ ⎜ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ y3 0 16 0 y3 24 3⎟ ⎜ ⎟ ⎜ ⎟ ⎟⎜ ⎟ ⎜ ⎟ 0 0 25 ⎠ ⎝ y4 ⎠ ⎝ 50 ⎠ ⎝ y4 ⎠ ⎜ 2 ⎟ ⎜2⎟ ⎝ ⎠
⎛ 1 0 0 0⎞ ⎜ ⎟ 6 ⎞ ⎜ 2 1 0 0⎟⎛3 ⎟ห้องสมุดไป่ตู้⎟⎜0 6 ⎟ ⎜3 ⎜ ⎟⎜ = 1 8⎟ ⎜ 0 1 0⎟⎜0 ⎟ ⎜3 ⎟⎜ 12 ⎠ ⎜ ⎟⎝0 4 1 0 1 ⎜ ⎟ ⎝3 ⎠
6 3 6⎞ ⎟ 1 0 2⎟ 0 2 6⎟ ⎟ 0 0 2⎠
解方程组
⎛ 1 0 0 0⎞ ⎜ ⎟ ⎜ 2 1 0 0 ⎟ ⎛ y1 ⎞ ⎛ 9 ⎞ ⎜3 ⎟⎜ y ⎟ ⎜ 7 ⎟ ⎜1 ⎟⎜ 2 ⎟ = ⎜ ⎟ 0 1 0 ⎟ ⎜ y3 ⎟ ⎜ 1 ⎟ ⎜ ⎜3 ⎟⎜ ⎟ ⎜ ⎟ ⎜4 ⎟ ⎝ y4 ⎠ ⎝13 ⎠ 1 0 1⎟ ⎜ ⎝3 ⎠
⎛3 ⎜ ⎜2 ⎜1 ⎜ ⎝4
6 3 5 2 2 3
6 6 8
1 0 0 0 1 0 0 0 1
9 4 12 0 0 0
2 3 1 0 2 6 − 3 4 1 0 4 − 3 1 0 2 −
三角分解法解线性方程组
三角分解法解线性方程组线性方程组是数学中一类重要的方程组,它包含了一系列线性方程。
在实际问题中,线性方程组有时需要通过三角分解法进行求解。
三角分解法是一种常用的线性方程组求解方法,它通过将方程组转化为上、下三角形矩阵进行分解,从而求解出未知数的值。
本文将详细介绍三角分解法的步骤及实际案例。
首先,我们来介绍三角矩阵的概念。
上三角矩阵是指除了主对角线上方的元素均为0的矩阵,下三角矩阵则是指除了主对角线下方的元素均为0的矩阵。
我们的目标是将线性方程组转化为上、下三角形矩阵进行求解。
步骤1:将线性方程组表示为矩阵形式,即AX=B,其中A为系数矩阵,X为未知数向量,B为常数向量。
步骤2:进行三角分解,将系数矩阵A分解为一个上三角矩阵U和一个下三角矩阵L,即A=LU。
其中L为下三角矩阵,U为上三角矩阵。
步骤3:将方程组AX=B进行变量代换,令Y=UX。
此时,方程组变为LY=B。
步骤4:解得矩阵Y,再通过回代法求解出未知数向量X。
下面我们通过一个实际案例来详细说明三角分解法的应用。
案例:有三个变量x,y,z的线性方程组:2x+y+z=4x+3y+2z=133x+2y+3z=15首先将该方程组表示为矩阵形式:⎛211⎛⎛x⎛⎛4⎛⎛132⎛⎛y⎛=⎛13⎛⎛323⎛⎛z⎛⎛15⎛然后进行三角分解,将系数矩阵A分解为上三角矩阵U和下三角矩阵L:A=⎛211⎛=⎛100⎛⎛211⎛⎛132⎛⎛110⎛⎛021⎛⎛323⎛⎛321⎛⎛001⎛接下来,将方程组AX=B进行变量代换,令Y=UX,即LY=B:⎛100⎛⎛Y₁⎞⎛4⎛⎛110⎛⎛Y₂⎟=⎛13⎛⎛021⎛⎛Y₃⎠⎝15⎛我们可以通过高斯消元法求解上述方程组,得到Y的解:Y₁=4Y₂=9Y₃=-2最后,通过回代法求解未知数向量X:X₃=Y₃=-2X₂=Y₂-2X₃=9-2(-2)=13X₁=Y₁-X₂=4-13=-9因此,该线性方程组的解为:x=-9,y=13,z=-2三角分解法是一种常用且有效的线性方程组求解方法。
三角分解解线性方程组的公式47页
8/30/2019
6
平方根法(Cholesky分解)
续1
AT ALT D R T D R T L T R T ( D T ) L ( D ) R
由Doolittle分解的唯一性有
R T L DLT DR
(D可逆)
L R
9
平方根法(Cholesky分解)
k1
aikk1lim lk m
l11 l21 ln1
l22
ln1
lnn
lnn
第一步 : a11l121l11 a11
ai1 l11li1li1 ai1/l11
i2,3 n
设L前k-1列元素已求出,则 第k步
n
k1
ak k lk m lk m lk2mlk2k
续2
L LD
这时 L 为一般的下三角矩阵,故 ALLT,若 L 的对角 元全为正时,由Doolittle分解的唯一性及上述分解 的推理过程,可以得到Cholesky分解的唯一性。
8/30/2019
8
平方根法(Cholesky分解): 分解公式
l11
Al21 l22
8/30/2019
5
平方根法(Cholesky分解) 定理证明
证明:因为 A对称正定,故其顺序主式 k0 k 1 ,2 , n,
1
u11 u1n
Al21
ln1 1
m1
m1
k1
lkk akk lk2m m1
i k n
a ik lim l km m 1
数值分析(09)用矩阵分解法解线性代数方程组ppt课件
l31
l32
1
j1
1
ln1 ln2 ln,n1 1 yn bn
数值分析 2
数值分析
第 二 步: 求 解 上 三 角 方 程 组Ux Y ,向 后 回 代 求 出x
xn yn unn
n
xk ( yk ukj x j ) ukk j k 1
(k n 1, n 2, ,1)
x(i)=(y(i)-LU(i,i+1:n)*x(i+1:n)')/LU(i,i); end
数值分析10
数值分析
三、用全主元的三角分解PAQT LU求解Ax b Ax b PAQT (Qx) Pb LU(Qx) Pb
lupqdsv.m
%功能:调用全主元三角分解函数[LU,p,q]=lupqd(A)
1 2 0
1
2 7
1
1 2 17 0 1
数值分析 6
数值分析
P为排列阵,在计算机中用向量表示
例 P (1 2 3 4)T , P1 (3 2 1 4)T ,
P2 (3 4 1 2)T ,
P (3 4 1 2)T
Ax b, PA LU ,
PAx Pb,
LUx Pb f
f (i) b(P(i))
1
2
0
1
数值分析 8
数值分析
lupdsv.m %功能:调用列主元三角分解函数 [LU,p]=lupd(A) % 求解线性方程组Ax=b。 %解法:PA=LU, Ax=b←→PAx=Pb % LUx=Pb, y=Ux % Ly=f=Pb, f(i)=b(p(i)) %输入:方阵A,右端项b(行或列向量均可) %输出:解x(行向量)
y1
num_2.3直接三角分解法
u 12 a 22 a 32 a 42 u 12 u 22 l 32 l 42
u 13 a 23 a 33 a 43 u 13 u 23 u 33 l 43
u 14 a 24 a 34 a 44 u 14 u 24 u 34 a 44
y1 b2 r 2 b3 b4 y1 y2 r4 y 3 b4
ai2
l
k 1
2
ik
uk2
→
a i 2 l i 1 u 12 l i 2 u 22
li 2
a i 2 l i 1 u 12 u 22
a 11 A ar1 a n1
a1r a rr a nr
a1n a rn a nn
u
jr1
n
rj
xj
r n 1 , n 2 , , 2 ,1
u rr
上述解线性方程组的方法称为 直接三角分解法的 Doolittle法( A=LU ) 例1. 用Doolittle法解方程组
2 3 1 4 10 4 2 14 0 12 3 9 3 13 4 13
T
ቤተ መጻሕፍቲ ባይዱ1 .5
0 .5
2
T
0
0
u 22
u 23
u 24 0
11
12
8 .5
u rj a rj
T
l
k 1
r1
rk
u kj
1
0
l 32
u 33
l 42
T
0
矩阵三角分解法
a11 a11 a11 1
a21
a22
a2n
l21
1
an1
an2
ann
ln1
ln2
1
u11 u12 u1n
u22
u
2n
u
nn
由矩阵乘法规则 a1i u1i
ai1 li1u11
i 1,2,, n
i 2,3,, n
由此可得U的第1行元素和L的第1列元素
求解 Ux=y , 即计算:
xn
yn u nn
yi
n
uik xk
x
i
k i1
uii
(i n 1,,2,1)
显然, 当 ukk 0(k 1,2,, n) 时, 解 Ax=b直接三角分解法计算才能完成。设A 为非奇异矩阵, 当 ukk 0 时计算将中断或者
当 ukk 绝对值很小时,按分解公式计算可
det(A1 )
a (1) 11
0
det(Ai )
a (1) 11
a
(2) 22
ai(ii
)
0(i
2,3,, k)
其中
a11 a1i
A1
(a11 ), Ai
(A的主子阵)
ai1 aii
反之,可用归纳法证明,如果A的顺序主子式
det(Ai )
a (1) 11
a (2) 22
ai(ii )
下三角阵,只需将 mik改为 mik (i k 1, k 2,, n) ,
就得到 Lk1 。即
1
1
Lk1
1
mk 1,k
1
mnk
1
mi1= a(1) i1/ a(1) 11
矩阵论4-1.三角分解
~ 思 L 和 U 的计算公式。 的计算公式。 路 通过比较法直接导出
a11 a12 a a 21 22 A= M M an1 an2
L a1n 1 u11 u12 L a2n l21 1 u22 = O M M M O L ann ln1 L L 1
其中, 其中
D为对角阵
定理:(Cholesky分解 ) 分解 定理 正定的Hermite矩阵 A 可唯一的分解为 矩阵 可唯一的分解为: 正定的
A = LL
H
其中, 为正线下三角,即对角线的元素均为正的 其中 L 为正线下三角 即对角线的元素均为正的
Department of Mathematics
∃L∈C
n×n
U ∈C
n× n
可以作三角分解 LU 称 A可以作三角分解
u11 u12 L u1n l11 u22 L u2n l21 l22 U= L= O M M M O L unn ln1 ln2 L lnn
由此: 由此 l11 = 1, l 21 = 1, l 31 = 2, l 41 = 1
l11u12 = 0 ⇒ u12 = 0 , u13 = 2, u14 = 1 l 21 u12 + l 22 = 2 ⇒ l 22 = 2 − l 21u12 = 2
4 − u13 l 21 u23 = =1 l 22
1 u12 1 ~ U=
L u1n L u2n O M L 1
Department of Mathematics
~ 则 A = L U 为 Crout 分解 ~ 而 A = L U 为 Doolittle 分解
矩阵三角分解法
矩阵三角分解法矩阵三角分解法是一种常用的矩阵分解方法,它可以将一个矩阵分解为一个上三角矩阵和一个下三角矩阵的乘积。
这种分解方法在数值计算、线性代数、统计学等领域都有广泛的应用。
矩阵三角分解法的基本思想是将一个矩阵分解为一个上三角矩阵和一个下三角矩阵的乘积。
这种分解方法可以用来求解线性方程组、矩阵求逆、特征值和特征向量等问题。
在实际应用中,矩阵三角分解法通常比直接求解更加高效和稳定。
矩阵三角分解法的具体实现方法有很多种,其中最常用的是高斯消元法和LU分解法。
高斯消元法是一种基本的线性方程组求解方法,它通过消元和回代的过程将一个线性方程组转化为一个上三角矩阵。
LU分解法是一种更加通用的矩阵三角分解方法,它可以将任意一个矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积。
在高斯消元法中,我们首先将线性方程组的系数矩阵进行初等变换,使其变为一个上三角矩阵。
这个过程可以通过矩阵的初等行变换来实现,例如将某一行乘以一个非零常数、将某一行加上另一行的若干倍等。
然后,我们可以通过回代的过程求解出线性方程组的解。
在LU分解法中,我们首先将矩阵A进行初等变换,使其变为一个下三角矩阵L和一个上三角矩阵U的乘积。
这个过程可以通过矩阵的初等行变换来实现,例如将某一行乘以一个非零常数、将某一行加上另一行的若干倍等。
然后,我们可以将线性方程组Ax=b转化为LUx=b,再通过回代的过程求解出线性方程组的解。
矩阵三角分解法的优点在于它可以将一个矩阵分解为两个三角矩阵的乘积,从而简化了计算过程。
这种分解方法可以大大提高计算效率和数值稳定性,特别是在求解大规模线性方程组时更加明显。
此外,矩阵三角分解法还可以用来求解矩阵的行列式、矩阵的秩、矩阵的特征值和特征向量等问题。
矩阵三角分解法是一种非常重要的矩阵分解方法,它在数值计算、线性代数、统计学等领域都有广泛的应用。
在实际应用中,我们可以根据具体问题的特点选择不同的矩阵三角分解方法,以提高计算效率和数值稳定性。
矩阵的三角分解
现在学习的是第24页,共54页
Cruou分解
令
a11 a12 ... a1n l11
a21
a22
...
a2n
l21
l22
1 u12 ... u1n
1 ... u2n
an1 an2 ... ann ln1 ln2 ... lnn
1
用比较等式两边方 元法 素逐 的行逐列L,求 U各解元素
由a23 l21u13 u23 得u23 a23 l21u13;
由a32 l31u12 l32u23
得l32
a32
l31u12 u22
k 3时:由a33 l31u13 l32u23 u33
得u33 a33 (l31u13 l32u23)
现在学习的是第9页,共54页
Doolittle分解 若矩阵A有分解:A=LU,其中L为单位下
三角阵,U为上三角阵,则称该分解为 Doolittle分解,可以证明,当A的各阶顺 序主子式均不为零时,Doolittle分解可以 实现并且唯一。
现在学习的是第10页,共54页
A的各阶顺序主子式均不为零,即
a11 ... a1k Ak ... ... ...0
ak1 ... akk
(k1,2,..n.)
l11 u12 ... u1n
l21
l22
...
u
2
n
ln1
ln2
...
lnn
现在学习的是第26页,共54页
3.2.3 对称正定矩阵的Cholesky分解
在应用数学中,线性方程组大多数的系数 矩阵为对称正定这一性质,因此利用对称 正定矩阵的三角分解式求解对称正定方程 组的一种有效方法,且分解过程无需选主 元,有良好的数值稳定性。
研究生数值分(8)直接三角分解法
(b) 对k+2,3,…,n 按计算公式(3),(4)依次
计算U的第k行元素 uki (i k, k 1, , n) 与L的第
k列元素 lik (i k 1, , n; k n)
20 求解三角形方程组LY=b,即按计算公
(i k, k 1, , n) (3)
k 1
lik (aik liju jk ) / ukk j 1
(i k 1, , n; k n) (4)
在我们利用杜利特尔矩阵分解解线性方程 组AX=b时,只要实现矩阵分解A=LU,依次解三角 形方程组LY=b与UX=Y即可。
计算公式:
y1
yk
对那些明确是1或是0的元素不再求。 由矩阵乘法规则与相等条件,
利用 aij 在上述计算过程中,
导出计算 lij 或 uij 的公式。
例如
第一步计算由 ai1 li1u11 得
u1i a1i (i 1,2, ,n)
第二步计算由 a1i u1i 得 li1 ai1 / u11 (i 2,3, ,n)
, n 1)
因此有 1 c1 / a1且0 1 1 由 a2 b2 a21 b2 a2 1 b2 a2 c2 0 有 2 c2 / a2且0 2 1
一般地,用归纳法可以证明
ai ci 0 (即0 i 1) (i 1, 2, , n 1)
因此我们从关系式(2)解出待定系数为
5 3 2, 2 3 5
3
2
3
4
b 7
1
0
2、用追赶法求方程组的解
4 1 0 0 x1 3
1
4
1
直接三角分解法
• 直接三角分解法简介 • 直接三角分解法的算法原理 • 直接三角分解法的实现过程 • 直接三角分解法的应用案例 • 直接三角分解法的优化与改进
01
直接三角分解法简介
定义与特点
定义
高效
直接三角分解法是一种线性代数中的方法 ,用于将一个矩阵分解为一个下三角矩阵 和一个上三角矩阵的乘积。
计算分解矩阵
根据所选方法计算出左奇 异矩阵、右奇异矩阵和奇 异值矩阵。
提取关键信息
从分解矩阵中提取关键信 息,如主成分或特征向量, 用于后续分析。
结果
可视化结果
将分解结果以图表、图像等形式呈现,便于直观 理解。
量化分析
对分解结果进行量化分析,如计算各主成分的贡 献率或方差解释率。
决策建议
根据分析结果提供决策建议,指导后续工作。
图像修复
通过直接三角分解法,可以将图像中的损坏或缺失部分进行修复或替 换,从而得到完整的图像。
05
直接三角分解法的优化与改进
算法优化
减少计算量
通过选择合适的算法和数据结构,减少不必要的计算和重复计算, 提高算法的效率。
并行化处理
将算法中的计算任务分解为多个子任务,并利用多核处理器或多 线程技术并行处理,加快计算速度。
利用三角分解法,可以方便地计算矩阵的逆和行列式,对于解决一些数学问题具有重要意义。
在机器学习中的应用
矩阵分解
在推荐系统和协同过滤等机器学习算法中,矩阵分解是一种常见的方法。通过直接三角分 解法,可以将矩阵分解成低秩矩阵和稀疏矩阵,从而更好地表示用户和物品之间的关系。
降维处理
在处理高维数据时,直接三角分解法可以用于降维处理,将高维数据投影到低维空间,保 留主要特征,降低计算复杂度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算 LU 分解
利用矩阵乘法直接计算 LU 分解
1 l21 ln1
u11 u121 源自u22 ln,n1 1
u1n a11 a12 u2na21 a22
unn an1 an2
a1n a2n
ann
LU =A
比较等式两边的第一行得:u1j = a1j ( j = 1,…, n )U 的第一行
1 AL D L T l21 1
d1
d2
ln 1
ln,n1 1
1l21 1 dn
ln 1 ln2
1
计算公式
n
j1
aij likdkljk likdkljklijdjljj
k1
k1
aij likdkljk likdkljklijdjljj
n
j1
aij likljk likljkljjlij
k1
k1
a1n a2n
ann
9
Cholesky 分解算法
算法 :(Cholesky 分解 )
for j = 1 to n
1
l jj
ajj
j1
l
2 jk
2
,
k1
j1
lij aij likljk ljj ,
8
计算 Cholesky 分解
Cholesky 分解的计算
直接比较等式两边的元素
l11 l21 ln1
l11 l21
l22
l22
ln,n1 lnn
计算公式
ln1 a11 a12 ln2a21 a22
lnn an1 an2
比较等式两边的第一列得:li1 ai1 u11 ( i = 2,…,Ln的) 第一列
比较等式两边的第二行得:u2j a2j l21u1j ( j =U2,…的,第n二) 行
比较等式两边的第二列得:li2ai2li1u 12 u 22 ( iL=的3,第…二, n列)
4
计算 LU 分解
j1
aikkm ka i x naik , Ip (k)ik
akj aik j , j = 1, 2, …, n
aik aik akk, i = k+1, …, n
k1
akj akj akiaij , j = k+1, …, n
i1
end
Matlab程序:上机练习 7
Cholesky 分解
第 k 步:此时 U 的前 k-1 行和 L 的前 k-1 列已经求出
比较等式两边的第 k 行得:
k 1
u k j a k jlk 1 u 1 j lk ,k 1 u k 1 ,j a k jlk iu ij
i 1
比较等式两边的第 k 列得:
( j = k, …, n )
i 1
lika ik li1 u 1 k li,k 1 u k 1 ,k u k k a ikliju jk u k k j 1
( i = k+1, …, n )
直到第 n 步,便可求出矩阵 L 和 U 的所有元素。
5
LU 分解算法
算法 :(LU 分解 )
12
改进的 Cholesky 分解
算法 :(改进的 Cholesky 分解 )
for j = 1 to n
j1
dj ajj
l
d 2
jk k
,
k1
j1
lij aij likdkljk dj ,
k1
end
i = j +1, …, n
优点:避免开方运算
n
j1
k1
end
i = j +1, …, n
n
j1
aij likljk likljkljjlij
k1
k1
10
平方根法
Ax b A 对称正定
算法 :(解对称正定线性方程组的平方根法 )
计算 A 的 Cholesky 分解 解方程:Ly = b 和 LTx = y
i1
对称正定矩阵的三角分解--Cholesky 分解
定理:设 A 是对称矩阵,若 A 的所有顺序主子式 都不为 0,则 A 可唯一分解为
A = LDLT
其中 L 为单位下三角阵,D 为对角矩阵
定理:(Cholesky分解)若 A 对称正定,则 A 可唯 一分解为
A = LLT
其中 L 为下三角实矩阵,且对角元素都大于 0
6
k -1
PLU 分解
ukj a kj lki uij i1
矩阵的 PLU 分解
k 1
lik aik liju jk ukk
j1
PALU
for k = 1 to n k-1
aik aik aijajk , i = k, k+1, …, n
y1b1 l11, yi bi likyk lii , i = 2, 3, …, n k1
xnynlnn, xi yin lkixk lii i = n-1, …, 2, 1
ki1
11
改进的 Cholesky 分解
改进的 Cholesky 分解
计算方法
第五章 解线性方程组的直接方法
—— 矩阵三角分解法
1
本讲内容
一般线性方程组 LU 分解与 PLU 分解
对称正定线性方程组 平方根法--Cholesky 分解
对角占优三对角线性方程组 追赶法
2
LU 分解
矩阵的三角分解
将一个矩阵分解成结构简单的三角形矩阵的乘积
矩阵的 LU(Doolittle) 分解 ALU 矩阵的 LDR 分解 ALDR 克洛脱 (Crout) 分解 A LU
for k = 1 to n
k-1
a kj
ukj akj lkiuij ,
i1
乘除法运算量:(n3 - n)/3
j = k, …, n
a ik
k1
lik aik lijujk ukk , i = k+1, …, n
j1
end
Matlab程序参见:ex51.m
为了节省存储空间,通常用 A 的绝对下三角部分来存放 L (对角线元素无需存储),用 A 的上三角部分来存放 U