统计学之抽样分布
统计学之抽样与抽样分布
的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差
•
有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体
•
称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。
统计学抽样分布
常见的样本统计量
X
X
i 1
n
i
Xf f
P n1 n
n
n
S2
X
i 1
i X
n 1
X X f
2
f 1
S S2
假如抽取30名,得到样本平均数、标准差和成数是
x 1554420 x
n 30 s ( x x) 2 n 1 p 19 / 30 0.63
p
(1 ) N n
n ( N 1
)
与样本均值分布的方差一样,对于无限总体进行不重复 抽样时,可以按重复抽样来处理。
附注:正态分布理论与中心极限定理
1、正态分布的密度函数
f ( x)
1
式中 x 为正态分布的平均数, 是它的标 准差。这两个参数决定正态分布密度函 ( x, 2 ) 数的形状。也可简记为N
1
2
3
4
1.0 1.5 2.0 2.5 3.0 3.5 4.0
X
= 2.5
σ2 =1.25
X 2.5
2 X 0.625
显然,不同的样本对应着不同的样本统计量,而由于 样本抽取的随机性,样本统计量即为一种随机变量。 一般地,样本统计量的可能取值及其取值概率,形成 其概率分布,统计上称为抽样分布(sampling distribution)。 ▲正是抽样分布及其特征使得用样本统计量估计总 体参数的“精确程度”能够给予概率上的描述。 ▲由于样本统计量的随机性及其抽样分布的存在,同 样可计算其均值、方差、标准差等数字特征来反映该 分布的中心趋势和离散趋势。
结论:
1、样本平均数的期望值
由于不同的样本可得到不同的样本均值,因此, 考察样本均值的期望就显得非常重要。 用 x 表示样本均值的期望值,X 表示总体均值, 可证明在简单随机抽样中。
统计学抽样与抽样分布ppt课件
精选
21
概率抽样(小结)
精选
22
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。 n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。 n优点:及时了解总体大致情况,总结经验教训,在进行 大规模抽样调查之前的试点。 n缺点:非随机抽样容易产生倾向性误差,并且误差不能 计算和控制 ,也就无法说明调查结果的可靠程度。
4. 特别是在标志值相差悬殊时,由于划分了类型,一
方面缩小了组内方差,另一方面也保证各组都能抽 取一定的样本单位,所以,分层抽样较之纯随机抽 样可以提高样本的代表性,能获得更为满意的效果
精选
16
分层抽样
(stratified sampling)续
Ü 优点:
Ü 除了可以对总体进行估计外,还可以对各层的子总 体进行估计
精选
23
概率抽样与非概率抽样
概率抽样
抽样类型
非概率抽样
简单随机抽样 分层随机抽样 整群抽样 系统抽样 多阶段抽样
方便抽样 判断抽样
其他非概率抽样
精选
24
重复抽样与非重复抽样
n重复抽样,又称回置抽样,是指从总体的N个
单位中,每次抽取一个单位后,再将其放回总 体中参加下一次抽选,连续抽n次,即得到一 个样本。
n重复:42=16个。它们是
n
AA AB AC AD; BA BB BC BD
n
抽样分布的概念及重要性
抽样分布的概念及重要性抽样分布是统计学中一个重要的概念,它描述了从总体中抽取样本的过程中,统计量的分布情况。
在统计学中,我们通常无法对整个总体进行研究,而是通过抽取样本来推断总体的特征。
抽样分布的概念帮助我们理解样本统计量的变异性,并为统计推断提供了理论基础。
本文将介绍抽样分布的概念及其重要性。
一、抽样分布的概念抽样分布是指在相同条件下,重复从总体中抽取样本,并计算样本统计量的分布情况。
在抽样过程中,每次抽取的样本可能不同,因此样本统计量也会有所不同。
抽样分布描述了这些样本统计量的分布情况。
常见的抽样分布包括正态分布、t分布和F分布。
其中,正态分布是最常见的抽样分布,它在大样本情况下逼近于正态分布。
t分布适用于小样本情况,它相对于正态分布具有更宽的尾部。
F分布用于比较两个样本方差是否相等。
二、抽样分布的重要性1. 参数估计抽样分布为参数估计提供了理论基础。
在统计学中,我们通常通过样本统计量来估计总体参数。
抽样分布告诉我们,样本统计量的分布情况,从而帮助我们确定参数估计的可靠性和精确度。
例如,通过样本均值来估计总体均值,我们可以利用抽样分布计算置信区间,从而确定估计值的范围。
2. 假设检验抽样分布在假设检验中起着重要的作用。
假设检验是统计学中常用的推断方法,用于判断总体参数是否满足某种假设。
抽样分布提供了计算检验统计量的分布情况,从而帮助我们确定拒绝域和计算p值。
通过与抽样分布进行比较,我们可以判断样本统计量是否显著,从而对总体参数进行推断。
3. 抽样方法选择抽样分布对于选择合适的抽样方法具有指导意义。
不同的抽样方法会对样本统计量的分布产生影响。
通过了解抽样分布的特点,我们可以选择合适的抽样方法,从而提高样本的代表性和可靠性。
例如,在总体分布未知的情况下,我们可以选择使用无偏估计的抽样方法,以减小抽样误差。
4. 统计模型建立抽样分布为统计模型的建立提供了基础。
在建立统计模型时,我们通常需要假设样本统计量服从某种分布。
统计学中抽样和抽样分布基础知识
样本均值的抽样分布
定义:样本均值的所有可能值的概率分布 样本均值的数学期望:对于简单随机样本时,样本均值的数学期望与总体均值相等 样本均值样本中具有感兴趣特征的个体个数/样本容量 样本比率的抽样分布:是样本比率的所有可能值的概率分布
样本比率的数学期望:样本比率的数学期望与总体比率相等 样本比率的标准差
有限总体:有限总体修正系数*无限总体样本比率的标准差 无限总体:根号下p(1-p)/n 样本比率的抽样分布的形态 当样本容量足够大,同时np≥5和n(1-p)大于等于5时,样本比率的抽样分布可以 用正态分布近似
统计学中抽样和抽样分布基础知识
抽样基本属于
抽样总体:抽取样本的总体 抽样框:用于抽选样本的个体清单 参数:总体的数字特征
抽样
从有限总体的抽样 建议采用概率抽样 简单随机样本:从容量为N的有限总体中抽取一个容量为n的样本,如果容量为n 的每一个可能的样本都以相等的概率被抽出,则称该样本为简单随机样本 无放回抽样和有放回抽样 无放回抽样:被抽取对象已经选入样本,不希望该对象被多次选入 有放回抽样:对已经出现过的随机数仍选入样本
点估计
样本统计量:为了估计总体参数,计算样本的特征 抽样总体和目标总体
目标总体是我们想要推断的总体 抽样总体是指实际抽取样本的总体 点估计的性质 无偏性:样本统计量是相应总体参数的无偏估计量 有效性:采用标准误差较小的点估计量,给出的估计值与总体参数更接近 一致性:大样本容量给出的点估计与总体均值更接近
其他抽样方法
分层随机抽样:总体中的个体首先被分成层,总体中的每一个体属于且仅属于某一 层,从每一层抽一个简单随机样本 整群抽样:总体中的个体首先被分成单个组,总体中的每一个个体属于且仅属于某 一群,有群为单位抽取一个简单随机样本 系统抽样:对容量很大的总体,第一个个体为随机抽样,总体个体排列时个体的随 机顺序 方便抽样:非概率抽样 判断抽样:对总体非常了解主观确定总体中认为最具代表性的个体组成样本
抽样分布知识点总结
抽样分布知识点总结抽样分布是统计学中一个重要的概念,它描述了在进行抽样时得到的样本统计量的分布情况。
抽样分布是统计推断的基础,它可以帮助我们理解抽样误差以及估计参数的可信度。
在本文中,我们将对抽样分布的基本概念、性质和相关理论进行总结和讨论。
一、基本概念1.1 抽样与总体在统计学中,总体是指我们想要研究的所有个体的集合,而抽样则是从总体中选取一部分个体作为样本,以获得对总体特征的估计。
抽样可以是随机抽样、分层抽样、系统抽样等方法,目的是代表性地反映总体的特征。
1.2 样本统计量在抽样中,对样本数据进行统计分析得到的统计量称为样本统计量,常见的样本统计量有均值、方差、标准差、比例等。
样本统计量能够提供有关总体参数的估计和推断。
1.3 抽样分布抽样分布是描述样本统计量的分布情况的统计学概念。
当我们从总体中抽取多个样本,并计算每个样本的统计量时,得到的这些统计量的分布就是抽样分布。
抽样分布可以反映出样本统计量的可变性、偏移和分布形态等特征。
二、性质2.1 中心极限定理中心极限定理是抽样分布理论中的重要定理,它描述了在一定条件下,样本均值的抽样分布近似服从正态分布。
中心极限定理对于理解抽样分布的性质和应用具有重要意义,也为许多统计推断方法提供了理论基础。
2.2 大数定律大数定律是另一个重要的抽样分布性质,它描述了当样本容量足够大时,样本均值会收敛于总体均值,即样本均值的抽样分布会集中在总体均值附近。
大数定律为我们理解样本统计量的稳定性和准确性提供了重要参考。
2.3 置信区间置信区间是根据抽样分布推断总体参数的一种方法,通过对抽样分布的分布情况进行分析,我们可以建立对总体参数的置信区间,从而对总体特征进行推断。
置信区间对于统计推断的可信度和精度有着重要的作用。
三、理论基础3.1 样本容量样本容量是影响抽样分布的一个重要因素,在实际抽样中,样本容量的大小对于样本统计量的分布情况有着重要的影响。
通常情况下,样本容量越大,抽样分布的稳定性和准确性越高。
统计学 抽样分布和理论分布
抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。
样本分布:样本中所有个体关于某个变量大的取值所形成的分布。
抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。
即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。
样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。
那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。
由样本平均数x 所构成的总体称为样本平均数的抽样总体。
它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。
统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μσ2x = σ2 /n 由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2σ)分布。
但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。
于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。
样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx e x f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。
相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。
2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。
统计学_抽样分布
统计学_抽样分布统计学——抽样分布在统计学的广袤天地中,抽样分布宛如一颗璀璨的明珠,散发着独特的光芒。
它不仅是理论研究的重要基石,更是实际应用中的得力工具。
那什么是抽样分布呢?简单来说,抽样分布就是从同一个总体中抽取多个样本,然后根据这些样本计算出某个统计量(比如均值、方差等)所形成的概率分布。
想象一下,我们有一个装满各种颜色球的大箱子,这就是我们的总体。
现在我们不能把所有的球都拿出来研究,只能随机抽取一部分球作为样本。
如果我们一次又一次地进行这样的抽样,并计算每次抽样的均值,那么这些均值所呈现出来的分布规律就是抽样分布。
抽样分布之所以重要,是因为它为我们提供了一种从样本推断总体的方法。
在实际情况中,我们往往很难直接研究总体的所有数据,而抽样分布则让我们能够通过对样本的分析来对总体的特征做出合理的估计和推断。
以均值的抽样分布为例。
假设总体的均值为μ,方差为σ²,从这个总体中抽取样本容量为 n 的简单随机样本。
根据中心极限定理,当样本容量足够大时(通常认为n ≥ 30),样本均值的抽样分布将近似服从正态分布,其均值等于总体均值μ,方差为总体方差σ²除以样本容量n 。
这意味着,如果我们知道了总体的均值和方差,以及样本的容量,就可以大致了解样本均值的分布情况。
这对于进行统计推断非常有帮助。
比如,我们可以根据抽样分布计算出某个样本均值出现的概率,从而判断这个样本是否具有代表性。
再来说说方差的抽样分布。
卡方分布在研究方差的抽样分布中起着关键作用。
假设从正态总体中抽取样本容量为 n 的简单随机样本,计算样本方差 s²,然后定义统计量(n 1)s²/σ²,它服从自由度为 n 1 的卡方分布。
抽样分布在实际生活中的应用广泛。
比如在质量控制中,工厂会从生产线上抽取一定数量的产品进行检测,通过样本的质量数据和抽样分布的知识,来判断整个生产线的产品质量是否符合标准。
在市场调查中,调查人员通过抽取一定数量的消费者进行问卷调查,然后利用抽样分布来推断全体消费者的偏好和需求。
统计学_抽样分布
统计学_抽样分布统计学——抽样分布在统计学的广袤领域中,抽样分布无疑是一个至关重要的概念。
它就像是一把神奇的钥匙,能够帮助我们从局部的样本数据中窥探到总体的特征和规律。
那么,究竟什么是抽样分布呢?想象一下,我们面前有一个巨大的“总体”,这个总体可以是某个城市所有居民的收入情况,也可以是某批产品的质量数据等等。
但由于总体太过庞大,我们无法对其进行全面的测量和分析。
这时候,抽样就派上用场了。
我们从这个总体中抽取一部分个体,这部分个体就构成了一个样本。
而抽样分布,简单来说,就是指从同一个总体中抽取相同大小的多个样本,这些样本统计量(比如均值、方差等)所形成的概率分布。
为了更直观地理解抽样分布,我们以一个简单的例子来说明。
假设我们要研究某个班级学生的考试成绩。
这个班级学生的成绩总体就是我们要研究的对象。
我们先随机抽取 10 名学生的成绩作为一个样本,计算这 10 名学生成绩的平均值。
然后,我们重复这个抽样过程,多次抽取 10 名学生的成绩,每次都计算平均值。
这些平均值就会形成一个分布,这就是抽样分布。
抽样分布有着不同的类型,其中最常见的就是样本均值的抽样分布和样本方差的抽样分布。
先来说说样本均值的抽样分布。
根据中心极限定理,如果总体的分布不论是什么形状,只要样本容量足够大(通常认为大于 30),那么样本均值的抽样分布就近似服从正态分布。
这意味着,我们可以利用正态分布的性质来进行很多统计推断。
比如说,我们可以计算出样本均值落在某个区间内的概率,从而对总体均值进行估计和推断。
再谈谈样本方差的抽样分布。
样本方差的抽样分布与自由度有关。
自由度这个概念可能有些抽象,但可以简单理解为在计算样本方差时能够自由取值的变量个数。
对于样本容量为 n 的样本,其自由度为 n 1。
了解抽样分布对我们有什么实际用处呢?它的作用可大了!首先,抽样分布能够帮助我们进行参数估计。
比如说,我们想要知道总体均值是多少,但又无法直接测量总体中的每一个个体。
抽样分布公式t分布卡方分布F分布
抽样分布公式t分布卡方分布F分布抽样分布公式:t分布、卡方分布、F分布抽样分布是统计学中的重要概念,用于推断总体参数以及进行假设检验。
本文将重点介绍三种常见的抽样分布公式:t分布、卡方分布和F分布。
一、t分布公式t分布是用于小样本情况下进行参数估计和假设检验的重要分布。
它的定义如下:假设有一个总体,样本容量为n,总体的均值和标准差未知。
如果从该总体中随机抽取一个样本,计算样本均值与总体均值的差异,用t 值来衡量。
那么,t值的概率分布就是t分布。
t分布的公式如下:t = (x - μ) / (s / √n)其中,x为样本均值,μ为总体均值,s为样本标准差,n为样本容量。
t分布的自由度为n-1。
在实际应用中,可以利用t分布表或统计软件来查找不同自由度下的t值对应的概率。
二、卡方分布公式卡方分布是应用于统计推断的重要分布,主要用于分析分类资料或定类变量的相关性。
它的定义如下:假设有一个总体,样本容量为n,比较观察值与理论值之间的差异。
我们将差异的平方进行求和,并除以理论值,得到统计量,称为卡方统计量。
卡方分布的公式如下:χ^2 = Σ((O - E)^2 / E)其中,O为观察值,E为理论值。
卡方分布的自由度取决于总体参数的个数减去估计的参数个数。
在实际应用中,同样可以利用卡方分布表或统计软件来查找不同自由度下的卡方值对应的概率。
三、F分布公式F分布是应用于统计推断的另一重要分布,主要用于比较两个或多个总体方差是否相等。
它的定义如下:假设有两个总体A、B,分别进行抽样,计算两个样本方差的比值,得到F统计量。
F分布的公式如下:F = (s1^2 / σ1^2) / (s2^2 / σ2^2)其中,s1^2和s2^2分别为样本A和样本B的方差,σ1^2和σ2^2分别为总体A和总体B的方差。
F分布的自由度取决于样本容量和总体个数。
在实际应用中,同样可以利用F分布表或统计软件来查找不同自由度下的F值对应的概率。
统计学中的抽样分布理论
统计学中的抽样分布理论统计学是一门研究数据收集、分析和解释的学科。
在统计学中,抽样分布理论是一个重要的概念。
抽样分布理论是指在特定的抽样方法下,样本统计量的分布情况。
本文将介绍抽样分布理论的基本概念、应用以及与推断统计学的关系。
一、抽样分布理论的基本概念抽样分布理论是统计学的基石之一,它是建立在大数定律和中心极限定理的基础上的。
大数定律指出,当样本容量趋向于无穷大时,样本均值会趋于总体均值。
中心极限定理则指出,当样本容量足够大时,样本均值的分布会接近于正态分布。
基于这些定理,抽样分布理论可以推导出许多重要的统计量的分布情况,如样本均值的分布、样本方差的分布等。
这些分布可以用来进行统计推断和假设检验,帮助我们对总体参数进行估计和推断。
二、抽样分布理论的应用抽样分布理论在实际统计分析中有着广泛的应用。
首先,它可以用来进行参数估计。
在抽样分布理论的指导下,我们可以利用样本统计量对总体参数进行估计。
例如,通过样本均值的抽样分布,我们可以估计总体均值的置信区间。
其次,抽样分布理论可以用于假设检验。
在假设检验中,我们需要根据样本数据判断总体参数的真实值是否在某个范围内。
抽样分布理论提供了关于样本统计量的分布情况,从而帮助我们进行假设检验。
例如,通过样本均值的抽样分布,我们可以判断总体均值是否与某个假设值相等。
此外,抽样分布理论还可以用于确定样本容量。
在实际调查中,我们往往需要确定样本容量以达到一定的置信水平和抽样误差。
通过抽样分布理论,我们可以计算出所需的样本容量,从而保证统计结果的可靠性。
三、抽样分布理论与推断统计学的关系抽样分布理论是推断统计学的基础。
推断统计学是利用样本数据对总体参数进行推断的一种方法。
而抽样分布理论则提供了关于样本统计量的分布情况,为推断统计学提供了理论依据。
推断统计学的核心是利用样本数据来推断总体参数的真实值。
通过抽样分布理论,我们可以得到样本统计量的分布情况,从而对总体参数进行估计和推断。
统计学中的抽样分布与中心极限定理
统计学中的抽样分布和中心极限定理是两个关键概念,对于统计学的理解和应用有着重要的意义。
抽样分布是指从总体中随机抽取样本所得到的各项统计量的分布。
而中心极限定理则是指在很多样本的情况下,样本均值的分布会趋于正态分布。
这两个概念的理解和应用对于进行有效的统计推断和参数估计至关重要。
抽样分布是统计学中非常重要的一个概念。
在实际应用中,我们往往无法获取全部的数据,而是通过抽样的方法获取部分样本进行分析。
抽样分布描述了从总体中抽取样本所得到的统计量的分布情况,比如样本平均数、样本方差等。
通过了解抽样分布的特点,我们可以对整个总体的特征进行推断和估计。
中心极限定理是统计学中的重要原理之一。
它指出,当样本容量较大时,各项样本的均值会呈现出近似正态分布的特点。
这意味着样本均值的分布会集中在总体均值附近,并且随着样本容量的增加,靠近总体均值的概率会越来越大。
中心极限定理的应用非常广泛,可以用于参数估计、假设检验以及构建置信区间等。
通过中心极限定理,我们可以对总体的均值和方差进行估计,并对统计量的分布进行推断。
抽样分布和中心极限定理的关系密切。
通过了解抽样分布,我们可以评估不同样本容量下的样本均值的分布情况。
而中心极限定理告诉我们,随着样本容量的增加,样本均值的分布会趋于正态分布。
这一定理对于统计推断的准确性提供了保证。
通过大量实验证据的支持,中心极限定理已经成为统计学中的核心原理之一。
抽样分布和中心极限定理的应用不仅仅局限于理论研究,也广泛应用于实际问题的解决中。
例如,在市场调研中,我们往往只能通过抽样调查获取少量数据。
通过抽样分布的分析和中心极限定理的应用,可以对大量样本数据进行推断和分析。
同时,在质量控制和现场实验中,通过抽样分布和中心极限定理的应用,可以对产品质量进行评估和改善。
总而言之,统计学中的抽样分布和中心极限定理是两个核心概念,对于理解和应用统计学具有重要的意义。
抽样分布描述了从总体中抽取样本所得到的统计量的分布情况,而中心极限定理则告诉我们样本均值的分布会趋于正态分布。
抽样分布公式的详细整理
抽样分布公式的详细整理抽样分布是统计学中的一个重要概念,它描述的是在特定条件下,从总体中抽取的样本所形成的样本统计量的分布情况。
在实际应用中,我们常常需要根据已知的总体参数来估计未知的总体参数。
此时,抽样分布公式能够帮助我们进行相应的推断统计。
以下是常见的抽样分布公式的详细整理:1. 抽样分布公式在统计学中,常见的抽样分布公式有以下几种:1.1. 正态分布如果总体近似服从正态分布,那么从中抽取的样本均值就近似服从正态分布。
抽样分布公式如下所示:\[ \bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}}) \]其中,\(\bar{X}\) 表示样本均值,\(\mu\) 表示总体均值,\(\sigma\)表示总体标准差,\(n\) 表示样本量。
1.2. t分布在实际应用中,当总体近似服从正态分布但总体标准差未知时,我们使用t分布进行推断统计。
抽样分布公式如下所示:\[ t = \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}} \]其中,\(\bar{X}\) 表示样本均值,\(\mu\) 表示总体均值,\(s\) 表示样本标准差,\(n\) 表示样本量。
1.3. 卡方分布在某些情况下,我们需要估计总体方差或总体标准差,此时可以使用卡方分布进行推断统计。
抽样分布公式如下所示:\[ \chi^2 = \frac{(n-1)s^2}{\sigma^2} \]其中,\(\chi^2\) 表示卡方统计量,\(s\) 表示样本标准差,\(\sigma^2\) 表示总体方差,\(n\) 表示样本量。
1.4. F分布在某些情况下,我们需要进行总体方差比较或回归分析,此时可以使用F分布进行推断统计。
抽样分布公式如下所示:\[ F = \frac{MSB}{MSW} \]其中,\(MSB\) 表示组间平均平方和,\(MSW\) 表示组内平均平方和。
2. 应用案例为了更好地理解抽样分布公式的应用,以下是一个具体的案例:假设我们从一批电子产品中随机抽取了20个样品,测得平均寿命为3000小时,样本标准差为200小时。
统计学中的抽样分布和抽样误差
统计学中的抽样分布和抽样误差统计学是一门研究数据收集、处理和分析的学科,而在进行统计分析时,抽样是一项重要的技术。
抽样分布和抽样误差是统计学中关键的概念,本文将具体介绍它们的定义、特点和应用。
一、抽样分布在统计学中,抽样分布指的是从总体中抽取样本的过程中得到的样本统计量的概率分布。
样本统计量可以是样本均值、样本方差等。
抽样分布是由大量不同的样本所形成的,它们具有一定的数学特性。
抽样分布的特点有:1. 抽样分布的中心趋向于总体参数。
当样本容量足够大时,抽样分布的中心会接近总体参数的真值。
2. 抽样分布的形状可能与总体分布相同,也可能近似于正态分布。
中心极限定理是解释抽样分布接近正态分布的重要定理。
3. 样本容量越大,抽样分布的方差越小。
样本容量增大,抽样误差减小。
抽样分布在实际应用中具有重要价值。
通过了解抽样分布的性质,我们可以进行假设检验、构建置信区间以及进行参数估计等统计推断。
二、抽样误差抽样误差是指由于从总体中抽取样本而导致的估计值与总体参数值之间的差异。
它是统计推断中常见的误差来源,也是统计分析中需要控制的重要因素。
抽样误差的大小受到多个因素的影响,包括样本容量、总体变异性以及抽样方法等。
通常情况下,样本容量越大,抽样误差越小,因为更大的样本容量能够更好地代表总体。
为了降低抽样误差,我们可以采取以下策略:1. 增加样本容量。
增大样本容量可以减小抽样误差,提高估计值的准确性。
2. 采用随机抽样方法。
随机抽样可以降低抽样误差,确保样本的代表性。
3. 控制变异性。
尽量减少总体的变异性,可以减小抽样误差。
抽样误差的存在对于统计推断的可靠性有着重要的影响。
在进行数据分析和解释时,我们需要正确理解抽样误差的概念,并将其考虑在内。
总结:统计学中的抽样分布和抽样误差是进行统计推断不可或缺的概念。
抽样分布是样本统计量的概率分布,具有一定的数学特性,可以用于进行假设检验和置信区间估计。
抽样误差是由于从总体中抽取样本而导致的估计值与总体参数值之间的差异,它的大小受到多个因素的影响。
抽样分布的名词解释
4.F分布:F分布是指F统计量的分布情况。F分布常用于F检验,用于比较两组样本的方差差异是否显著。
抽样分布的类型和使用场景不同,但都在统计学中扮演着重要的角色。通过对抽样分布的了解,可以帮助我们更加准确地进行统计分析,更好地掌握数据的分布情况。
抽样分布是指根据总体数据的抽样结果的分布情况。在统计学中,通过对样本的观察,可以推断出总体的分布情况。
常见的抽样分布包括正态分布、t分布、卡方分布、F分布等。
1.正态分布:正态分布是指数据呈现出高峰在中间,两侧逐渐递减的分布形态。正态分布常用于表示自然界中许多变量的分布情况,例如人群身高、体重等。
2.t分布:t分布是指在总体方差未知的情况下,样本方差的分布情况。t分布常用于统计分析中的t检验,用于比较两组样本的差异是否显著。
统计学之抽样与抽样分布
正确答案: d. n/N > 0.05
8. 从一个均匀分布的总体中抽取一个样本容量为45的样本, 从什么分布?
a. 指数分布 b. 正态分布 c. 均匀分布 d. 无法判断
正确答案: b. 正态分布
考察所有900个申请者
• 考试成绩
• 总体平均成绩
xi 990
900
• 总体标准差
(xi )2 80 900
考察所有900个申请者
• 无相同工作经验的申请者比例
• 总体比例
p 648 .72 900
使用随机数表随机选择30个申请者作为样本进行研 究,从书上随机数表第三列开始
统计学之抽样与抽样分 布
2021年7月19日星期一
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布
样本平均值x 的抽样分布 样本比例 p 的抽样分布
抽样方法
n = 100
n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参 数进行很好的估计
点估计
• x 作为 的点估计值 x xi 29,910 997
30 30
• s 作为 的点估计值
s
(xi x )2 163,996 75.2
29
29
• p 作为p 的点估计值
p 20 30 .68
值得注意的是,不同的随机数会导致不同的抽样,也就会 数的不同的点估计值
统计学中的抽样分布理论
统计学中的抽样分布理论统计学是一门深奥而又广泛应用的学科,其中抽样分布理论是其中一个重要支柱。
本文将从抽样、样本统计量和抽样分布三个方面进行论述,以便更好的理解其理论和应用。
一、抽样与样本统计量统计学的基本任务之一是推断总体特征。
但由于总体数据规模庞大,难以全面观察和分析,因此我们通常采用小样本的方式来代表总体。
这就是抽样的概念。
抽样是指从总体中随机抽取一部分数据,用这一部分数据代表总体,以此估计总体的特征。
常用的抽样包括简单随机抽样、分层抽样、整群抽样等。
在抽样中,一个样本统计量的重要性凸显出来,因为它可以帮助我们更好的估计总体的特征。
比如,一个数据集的均值和标准差就是两个重要的样本统计量。
二、抽样分布抽样分布是指在所有可能的样本中,某个样本统计量的分布情况。
这里需要区分参数(population)和统计量(sample statistic)之间的关系。
参数是总体参数,是我们想要研究的总体特征,比如总体均值、总体方差等。
统计量是在样本中计算出来的数值,比如样本均值、样本方差等。
样本统计量是对总体参数的估计,不同的样本统计量可能对总体参数的估计存在一定的差异。
抽样分布不同于总体分布。
总体分布是指总体中所有变量的分布,而抽样分布是指在所有可能的样本中,某个样本统计量的分布。
抽样分布是一个特殊的概率分布,其形状和参数取决于总体分布和样本大小。
这是因为在计算样本统计量时,会受到样本数量和样本变异的影响。
在实际使用中,我们通过抽样分布来推断总体参数。
具体方法是:首先,通过采样方法得到一个样本,计算该样本统计量的值。
然后,通过数学公式推算样本统计量的抽样分布,从而得到一个概率区间。
若该样本统计量恰好位于这个区间内,则认为该样本统计量的估计值与总体参数的差异可以用统计学上的概率来表示。
这个概率就是所谓的显著性水平(signicance level)。
三、中心极限定理中心极限定理是抽样分布理论中最为重要的定理之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•2020/4/29
•4.2.1 几种常见分布
二、正态分布
正态分布的重要意义
在随机理论中,正态分布是最重要的一种分布, 理由如下: ⑴ 它是最常见的一种分布,现实中许多随机变 量服从或近似服从正态分布。 ⑵ 在一定的条件下,正态分布是其他分布的近 似分布。 ⑶ 许多有用的分布,特别是小样本的精确分布 是由正态分布推导出来的。
•不重复抽样,抽样安排---对被抽到的单位登记后不再放回总 体的抽样方法。不重复抽样与重复抽样比较,每次抽样的条 件是不同的,前一次的抽取结果会对后一次的抽取产生影响, 统计中称这样的抽样为相互不独立的试验。
•2020/4/29
•4.1.3 简单随机抽样
• 简单随机抽样也称为纯随机抽样。它是对总体单 位不做任何分类或排队,直接从总体中按“随机原则”抽 取样本单位的调查方式。
•2020/4/29
•4.2.1 几种常见分布
三、小样本(n<30)的精确分布
1、 2分布
2、t分布 •均由正态分布导出的分布 3、F分布
•2020/4/29
•4.2.1 几种常见分布
• 三、小样本(n<30)的精确分布
•2020/4/29
•4.2.1 几种常见分布
二、性质
•2020/4/29
•4.2.1 几种常见分布
二、正态分布
标准正态分布及其重要意义
•2020/4/29
•4.2.1 几种常见分布
二、正态分布
标准化法
•2020/4/29
•4.2.1 几种常见分布
二、正态分布
统计学之抽样分布
2020年4月29日星期三
主要内容
4.1 抽样的一般问题 4.2 三种不同性质的分布 4.3 一个总体参数推断时样本统计量
的抽样分布 4.4 两个总体参数推断时样本统计量
的抽样分布 4.5 其他抽样方法
•2020/4/29
•█
4.1 抽样的一般问题
4.1.1 一个例子 4.1.2 统计抽样的几个基本概念 4.1.3 简单随机抽样
标准化法的几何意义
标准化变换实质上是作了一个坐标轴的平移和
尺度变换,使正态分布的平均数
,标准
差
。
•2020/4/29
•4.2.1 几种常见分布
二、正态分布
正态分布表及上侧分位数
•2020/4/29
•4.2.1 几种常见分布
二、正态分布
准则
•2020/4/29
•4.2.1 几种常见分布
二、正态分布
•2020/4/29
•4.1.3 简单随机抽样
•2020/4/29
•█
4.2 三种不同性质的分布
•这些内容与前面内
? 容有什么关系
4.2.1 几种常见分布 4.2.2 总体分布 4.2.3 样本分布 4.2.4 抽样分布 4.2.5 样本推断总体的理论依据
•2020/4/29
•4.2.1 几种常见分布
3、概率分布是关于总体的概念,有了概率 分布就等于知道了总体。
4、概率分布可以用各种图或表来表示,一 些可以用公式来表示。
•2020/4/29
•4.2.1 几种常见分布
二、正态分布
定义
•2020/4/29
•4.2.1 几种常见分布
二、正态分布
正态分布的密度函数图形是一条以均值为中心 的对称钟型曲线
一、分布的含义
1、在随机试验中,若X随着试验结果的不同 而随机地取各种不同的数值,并且对取每一 个数值或某一范围内的值都有相应的概率, 则称X为一个随机变量。
2、随机变量取一切可能值或范围与其相应 概率间一一对应的关系,称为概率分布 (probability distribution,简称分布)。
•2020/4/29
•4.1.2 统计抽样的几个基本概念
•1、总体和样本
•总体:研究对象全体,又称母体。容量用N表示。
•
具备惟一性。
•样本:按随机原则从总体中抽出的部分单位的全体 ,被抽出的每个单位称样本单位。样本容量用n表示
。样本不具惟一性。
• 当n<30时,为小样本。
• 当n≥30时,为大样本。
• 为了便于抽取样本单位,一般在明确抽样框的条 件下,对总体的每个单位都要编号,然后用抽签式或 利用《随机数字表》进行抽取。
•例如:N=500 n=10 编码从1-500号
• 在随机数表中随意选取二个数字,假如得到4行,43 列。则选取的号码从这个被选中的数开始,由于500是 个三位数,则小于500的连续三位数即为中选号码,见 表中所示。
•2020/4/29
•4.1.2 统计抽样的几个基本概念
•2、总体参数和样本统计量 • 根据全及总体各单位变量值计算的反映全及总 体某数量特征的综合指标,由于总体唯一确定,故称 总体参数。 • 如上例中的 • 根据样本各单位变量值计算的反映样本某方面 数量特征的综合指标,由于样本不具惟一性,故称为 样本统计量,它是一个随机变量。 • 如上例中的抽出100头肉猪的平均每头毛重
•2020/4/29
•4.1.2 统计抽样的几个基本概念
•3、重复抽样与不重复抽样 •从总体中抽取样本有两种方法:重复抽样和不重复抽样。
•重复抽样,抽样安排---对每次被抽到的单位经登记后再放回 总体,重新参与下一次抽选的抽样方法。在每次的抽取中样 本单位被抽中的概率都相等,统计中称这样的抽样为相互独 立的试验。
•2020/4/29
•4.1.1 一个例子
•[例] 某养猪厂共有存栏肉猪10000头,现欲了解这批肉猪平均 每头毛重(设为 ),如果将每头肉猪过称去获取数据将是不合 算的。我们可以按照“随机原则” 从中抽出100头称重量,计算 这100头的平均每头毛重,以达到我们期望的目的。
• 本例中存栏肉猪10000头组成的集合,则称为总体,它是指 在统计抽样中所要了解的研究对象全体,又称为母体,当确定 了研究目标时,它具有惟一性。一般总体的单位总数用N表示, 称作总体容量。本例中所抽出的100头肉猪组成的集合,则称为 样本,它是指在统计抽样中按照“随机原则” 从总体 N(10000)中抽出的部分单位(每个单位称作样本单位)所组成的 整体,又称子样。一般样本的单位总数用n(100)表示,称作样 本容量。样本不具惟一性,它的可能个数与N、n及抽样方法有 关。通常n<30称为小样本,n≥30称为大样本,在抽样调查中 取大或小样本会直接影响到抽样分布的特征。