差示扫描量热仪(DSC PPT
合集下载
差示扫描量热仪(DSC课件
为,可以评估聚合物的热稳定性。
在DSC曲线上,聚合物的热分解表现为一个明显的质 量损失峰。通过分析峰的位置和形状,可以了解聚合
物的热稳定性及其影响因素。
合金的熔点和结晶温度
合金是由两种或多种金属或非金属元素组成的混合物。合 金的熔点和结晶温度对其加工、使用和回收等过程具有重 要影响。
DSC可以用于研究合金的熔点和结晶温度。通过在程序控 温下对合金进行加热和冷却,观察其相变行为,可以测量 合金的熔点和结晶温度。
02
放置样品和参比物于样 品架上,确保样品和参 比物重量相等。
03
开始实验,记录实验数 据。
04
实验结束后,关闭仪器 电源,取出样品和参比 物。
实验后处理
数据处理
对实验数据进行处理和分析,提取所需的信息 。
仪器清洁
对仪器进行清洁和维护,确保仪器性能稳定和 延长使用寿命。
结果报告
根据实验结果编写报告,并给出相应的结论和建议。
确保仪器各部件连接牢固,特别是电源线和信号 线。
3
记录使用情况
每次使用后,应记录仪器使用情况,包括实验参 数、样品信息等,以便于后续数据分析。
常见故障排除
温度不上升
检查加热元件是否正常 工作,加热电源是否正 常供电。
温度波动大
检查恒温水浴是否正常 工作,水路是否畅通。
曲线漂移
检查仪器接地是否良好 ,周围是否存在干扰源 。
多功能化
未来的DSC将集成多种测量技术,如热重分析、红外光谱等,实现多 参数同时测量,提高实验效率和准确性。
环保节能
随着环保意识的提高,DSC将采用更加节能和环保的设计,如采用低 能耗的加热元件和传感器,降低实验过程中的能耗和排放。
2023 WORK SUMMARY
在DSC曲线上,聚合物的热分解表现为一个明显的质 量损失峰。通过分析峰的位置和形状,可以了解聚合
物的热稳定性及其影响因素。
合金的熔点和结晶温度
合金是由两种或多种金属或非金属元素组成的混合物。合 金的熔点和结晶温度对其加工、使用和回收等过程具有重 要影响。
DSC可以用于研究合金的熔点和结晶温度。通过在程序控 温下对合金进行加热和冷却,观察其相变行为,可以测量 合金的熔点和结晶温度。
02
放置样品和参比物于样 品架上,确保样品和参 比物重量相等。
03
开始实验,记录实验数 据。
04
实验结束后,关闭仪器 电源,取出样品和参比 物。
实验后处理
数据处理
对实验数据进行处理和分析,提取所需的信息 。
仪器清洁
对仪器进行清洁和维护,确保仪器性能稳定和 延长使用寿命。
结果报告
根据实验结果编写报告,并给出相应的结论和建议。
确保仪器各部件连接牢固,特别是电源线和信号 线。
3
记录使用情况
每次使用后,应记录仪器使用情况,包括实验参 数、样品信息等,以便于后续数据分析。
常见故障排除
温度不上升
检查加热元件是否正常 工作,加热电源是否正 常供电。
温度波动大
检查恒温水浴是否正常 工作,水路是否畅通。
曲线漂移
检查仪器接地是否良好 ,周围是否存在干扰源 。
多功能化
未来的DSC将集成多种测量技术,如热重分析、红外光谱等,实现多 参数同时测量,提高实验效率和准确性。
环保节能
随着环保意识的提高,DSC将采用更加节能和环保的设计,如采用低 能耗的加热元件和传感器,降低实验过程中的能耗和排放。
2023 WORK SUMMARY
差示扫描量热分析ppt课件
Crystallization
最常用的为10 ℃/min 调制热流型(Modulated Heat Flux)
功率补偿型(Power Compensation) 固态、液态、粘稠样品都可以测定,气体除外。
℃/min
功率补偿型(Power Compensation) 调制热流型(Modulated Heat Flux)
(2)放热反应(气体吸附、氧化降解、燃烧、爆炸、 发生的热效应大致可归纳为:
---在给予样品和参比品相同的功率下,测定样品和参比品两端的温差 T,然后根据热流方程,将 T(温差)换算成 Q(热量差)
再结晶) 作为信号的输出。
---在给予样品和参比品相同的功率下,测定样品和参比品两端的温差 T,然后根据热流方程,将 T(温差)换算成 Q(热量差)
2、升、降温速度 功率补偿型(Power Compensation)
在样品和参比品始终保持相同温度的条件下,测定为满足此条件样品和参比品两端所需的能量差,并直接作为信号 Q(热量差)输出 。
晶体熔融,吸热,吸热峰
一般的升,降温速度范围为5--20 发生的热效应大致可归纳为:
样品量多,分辨率低,但灵敏度高,峰温偏高。
不同升降温速度测 试样发生力学状态变化时(例如由玻璃态转变为高弹态),虽无吸热或放热现象,但比热有突变,表现在差热曲线上是基线的突然变
动。
Temperature
得的数据不具可比 试样:除气体外,固态,液态样品都可测定。
---在给予样品和参比品相同的功率下,测定样品和参比品两端的温差 T,然后根据热流方程,将 T(温差)换算成 Q(热量差)
参比物:必须具有热惰性,热容量和导热 率应和样品匹配。一般为 ,样品量少 时可放一空坩埚。
最常用的为10 ℃/min 调制热流型(Modulated Heat Flux)
功率补偿型(Power Compensation) 固态、液态、粘稠样品都可以测定,气体除外。
℃/min
功率补偿型(Power Compensation) 调制热流型(Modulated Heat Flux)
(2)放热反应(气体吸附、氧化降解、燃烧、爆炸、 发生的热效应大致可归纳为:
---在给予样品和参比品相同的功率下,测定样品和参比品两端的温差 T,然后根据热流方程,将 T(温差)换算成 Q(热量差)
再结晶) 作为信号的输出。
---在给予样品和参比品相同的功率下,测定样品和参比品两端的温差 T,然后根据热流方程,将 T(温差)换算成 Q(热量差)
2、升、降温速度 功率补偿型(Power Compensation)
在样品和参比品始终保持相同温度的条件下,测定为满足此条件样品和参比品两端所需的能量差,并直接作为信号 Q(热量差)输出 。
晶体熔融,吸热,吸热峰
一般的升,降温速度范围为5--20 发生的热效应大致可归纳为:
样品量多,分辨率低,但灵敏度高,峰温偏高。
不同升降温速度测 试样发生力学状态变化时(例如由玻璃态转变为高弹态),虽无吸热或放热现象,但比热有突变,表现在差热曲线上是基线的突然变
动。
Temperature
得的数据不具可比 试样:除气体外,固态,液态样品都可测定。
---在给予样品和参比品相同的功率下,测定样品和参比品两端的温差 T,然后根据热流方程,将 T(温差)换算成 Q(热量差)
参比物:必须具有热惰性,热容量和导热 率应和样品匹配。一般为 ,样品量少 时可放一空坩埚。
热分析技术简介—DSC ppt课件
14
温度和热焓校正
校正的方法 测定标准物质,使测定值等于理论值; 标准物质有高纯度的铟、锡、铅、锌等。 什么时候需要校正 样品池进行过清理或更换; 进行过基线最佳化处理后。
15
实验中的影响因素
扫描速度的影响:
灵敏度随扫描速度提高而增加; 分辨率随扫描速度提高而降低。
技巧:
增加样品量得到所要求的灵敏度; 低扫描速度得到所要求的分辨率。
淬火PET的调制信号及其平均值(总热流)
淬火PET的总热可流逆、热可流逆热流和非
31
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
ICTA 热分析方法
TG 质量 Thermogravimetry 温度
热量
尺寸 力学 声学
光学 电学 磁学
DSC
Differential Scanning Calorimetry
5
DSC204F1
6
主要内容
DSC的定义 基本原理 基线与仪器校正 实验的影响因素 应用实例 新功能扩展
More Cured
Temperature
DSC Tg As Function of Cure
29
固化过程的研究
固化度高的环氧树脂,固化热小。 环氧树脂完全固化时,观察不到固化热。 DSC是评估固化度的有力工具。
Less Cured More Cured Temperature
Decrease in Cure Exotherm As Resin Cure Increa3s0e
为满足此条件样品和参比品两端所需的能量差, 并直接作为信号Q(热量差)输出。
热流型(Heat Flux) 在给予样品和参比品相同的功率下,测定样品和参
温度和热焓校正
校正的方法 测定标准物质,使测定值等于理论值; 标准物质有高纯度的铟、锡、铅、锌等。 什么时候需要校正 样品池进行过清理或更换; 进行过基线最佳化处理后。
15
实验中的影响因素
扫描速度的影响:
灵敏度随扫描速度提高而增加; 分辨率随扫描速度提高而降低。
技巧:
增加样品量得到所要求的灵敏度; 低扫描速度得到所要求的分辨率。
淬火PET的调制信号及其平均值(总热流)
淬火PET的总热可流逆、热可流逆热流和非
31
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
ICTA 热分析方法
TG 质量 Thermogravimetry 温度
热量
尺寸 力学 声学
光学 电学 磁学
DSC
Differential Scanning Calorimetry
5
DSC204F1
6
主要内容
DSC的定义 基本原理 基线与仪器校正 实验的影响因素 应用实例 新功能扩展
More Cured
Temperature
DSC Tg As Function of Cure
29
固化过程的研究
固化度高的环氧树脂,固化热小。 环氧树脂完全固化时,观察不到固化热。 DSC是评估固化度的有力工具。
Less Cured More Cured Temperature
Decrease in Cure Exotherm As Resin Cure Increa3s0e
为满足此条件样品和参比品两端所需的能量差, 并直接作为信号Q(热量差)输出。
热流型(Heat Flux) 在给予样品和参比品相同的功率下,测定样品和参
差示扫描量热分析ppt课件
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
所要补偿的功率相当于样品热量的变化。 差示扫描量热曲线与差热分析基本相同,但定量更 准确、可靠。
DTA图中,温度上升曲线的斜率由于试样的吸热或放热而产生扰乱,而DSC 曲线却不受干扰,且峰形更规整(曲线上的三个吸热峰分别是CuSO4·5H2O 失去2分子、2分子和1分子水形成的)。
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
DSC:
DSC用于药 物品质分析
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
内容选择:
19.1 热分析法概述 19.2 热重与微分热重分析法 19.3 差热分析法 19.4 差示扫描量热分析法
结束
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
差示扫描量热分析法原理
试样和参比物各自独立加热,随时保持两者的温度 相同。
如果样品发ห้องสมุดไป่ตู้相变或失重,它与参比物间将产生温 度差时,系统提供功率补偿使两者再度保持平衡。
DSC课件
To
Tp Time
Actual Heat Flux Data
Sample: Indium +2°C/min Size: 1.7900 mg Comment: Multiple Heating and Cooling Rates 157.5
DSC
File: \\...\TA\Data\DSC\Shick\Indium 5.018 Operator: Caulfield Run Date: 08-Sep-2006 16:51 Instrument: DSC Q1000 V9.6 Build 290 157.5
Q-Series DSC
Base Surface Constantan Wire Chromel Wire Chromel Wire
Tf
Rs Ts Cs
To
RrTBiblioteka CrThe Tzero thermocouple provides an objective reference point so that those factors previously assumed can be directly measured.
Thermal Capacitance Imbalance
Q-Series DSC Schematic
Sample & Reference Platforms
Tzero™ Thermocouple
Q-Series Heat Flow Measurement
Sample Platform Chromel Area Detector Reference Platform Constantan Body Thin Wall Tube
差示扫描量热法DSC测试方法PPT演示课件
上海CDR-34P型
•6
三、DSC曲线及其影响因素
典型的差示扫描量热(DSC) 曲线以热流率(dH/dt)为纵 坐标、以温度(T)为横坐 标,即dH/dt-t(或T)曲线。 曲线离开基线的位移即代表 样品吸热或放热的速率 (mJ·s-1),而曲线中峰或 谷包围的面积即代表热量的 变化。 因而差示扫描量热法可以直 接测量样品在发生物理或化 学变化时的热效应。
•14
•4
补偿回路: 试样吸、放热与参比物产 生温差时及时进行功率补 偿,使ΔT→0,并记录补偿 的情况,即维持ΔT→0所 需要的能量差ΔW。
反应或转变热:
•5
DSC仪器(上海CDR-34P型) 同时兼备热流型和功补型的特点。
(1)保留均温块结构,以保持基线稳定和高灵敏度。 (2)配置功率补偿器,以便获得高分辨率。
典型的DSC曲线
•7
1.试样与参比物 试样:除气体外,固态,液态样品都可测定。 装样:尽量使样品薄而匀地平铺与坩埚底部,以 减少试样与器皿间的热阻。 坩埚:高聚物一般使用铝坩埚,使用温度低于 500℃, 参比物:必须具有热惰性,热容量和导热率应和 样品匹配。一般为Al2O3,样品量少时可放一空坩 埚。
•8
2.主要影响因素
(1) 样品 样品量:一般用量为5---10mg (10---20mg) 样品量少,分辨率高,但灵敏度低,峰温偏低。 样品量多,分辨率低,但灵敏度高,峰温偏高。
•9
(2) 升,降温速度 一般的升,降温速度范围为5----20 ℃/min
最常用的为10 ℃/min
不同升降温速度测得的数据不具 可比性用惰性气体,如N2,Ar,He等 主要是防止加热时样品的氧化, 减少挥发物对仪器的腐蚀. 必要时也可以压缩空气为气氛, 测定样品的氧化反应。
•6
三、DSC曲线及其影响因素
典型的差示扫描量热(DSC) 曲线以热流率(dH/dt)为纵 坐标、以温度(T)为横坐 标,即dH/dt-t(或T)曲线。 曲线离开基线的位移即代表 样品吸热或放热的速率 (mJ·s-1),而曲线中峰或 谷包围的面积即代表热量的 变化。 因而差示扫描量热法可以直 接测量样品在发生物理或化 学变化时的热效应。
•14
•4
补偿回路: 试样吸、放热与参比物产 生温差时及时进行功率补 偿,使ΔT→0,并记录补偿 的情况,即维持ΔT→0所 需要的能量差ΔW。
反应或转变热:
•5
DSC仪器(上海CDR-34P型) 同时兼备热流型和功补型的特点。
(1)保留均温块结构,以保持基线稳定和高灵敏度。 (2)配置功率补偿器,以便获得高分辨率。
典型的DSC曲线
•7
1.试样与参比物 试样:除气体外,固态,液态样品都可测定。 装样:尽量使样品薄而匀地平铺与坩埚底部,以 减少试样与器皿间的热阻。 坩埚:高聚物一般使用铝坩埚,使用温度低于 500℃, 参比物:必须具有热惰性,热容量和导热率应和 样品匹配。一般为Al2O3,样品量少时可放一空坩 埚。
•8
2.主要影响因素
(1) 样品 样品量:一般用量为5---10mg (10---20mg) 样品量少,分辨率高,但灵敏度低,峰温偏低。 样品量多,分辨率低,但灵敏度高,峰温偏高。
•9
(2) 升,降温速度 一般的升,降温速度范围为5----20 ℃/min
最常用的为10 ℃/min
不同升降温速度测得的数据不具 可比性用惰性气体,如N2,Ar,He等 主要是防止加热时样品的氧化, 减少挥发物对仪器的腐蚀. 必要时也可以压缩空气为气氛, 测定样品的氧化反应。
《示差扫描量热法》课件
应用领域拓展
随着技术的进步和应用需求 的增加,示差扫描量热法的 应用领域将进一步拓展,如 新能源、生物医学等领域。
标准化与规范化
未来示差扫描量热法将逐步 实现标准化和规范化,提高 测试结果的准确性和可比性 。
技术创新与改进建议
研发高精度、高灵敏度的设备
通过改进设备结构和材料,提高示差扫描量热法的测量精度和灵敏度 。
仪器校准
使用标准样品对差示扫描量热 仪进行校准,确保仪器准确性 。
装载样品
将坩埚装入差示扫描量热仪中 ,确保样品放置稳定。
数据整理
对实验数据进行处理和分析, 得出结论。
实验注意事项
仪器维护
实验结束后,及时清理仪器和周边环境,保 持仪器清洁。
样品代表性
选择的样品应具有代表性,能够反映所研究 材料的性质。
示差扫描量热法需要严格的测试环境,如 温度、湿度等,这增加了测试的复杂性和 成本。
未来发展方向与趋势
技术创新
随着科技的不断进步,示差 扫描量热法将不断涌现出新 的技术和方法,提高测量精 度和灵敏度。
智能化发展
未来示差扫描量热法将更加 智能化,通过引入人工智能 和机器学习等技术,实现自 动化和智能化分析。
引入人工智能和机器学习技术
利用人工智能和机器学习技术对数据进行自动化处理和分析,提高数 据处理效率和准确性。
优化测试环境
通过改进测试环境控制技术,降低测试环境对测量结果的影响,提高 测试结果的稳定性。
加强国际合作与交流
通过国际合作与交流,推动示差扫描量热法的技术创新和应用拓展, 促进该领域的共同发展。
在生物医学研究中的应用
药物释放研究
示差扫描量热法可以用于研究药物释放过程中的热量变化,有助于理解药物释放机制和 优化药物载体设计。
差示扫描量热仪DSC曲线解析PPT演示课件
复合型DSC
*
复合型DSC
通过外侧的加热器进行程序温控。热流从均温块底部中央通过热功率补偿感应器供给样品和参比物。热流差则由微加热器进行快速功率补偿并作为DSC信号输出,同时把检测的试样端温度作为试样温度进行输出。这种结构的仪器性能在宽广的温度范围内有稳定的基线,且兼备很高的灵敏度和分辨率。
*
结晶度的表征
u
测量样品的熔解热,测试值除以参比值得到高分子的结晶度信息。
u
%
结晶度
=
D
H
m
/
D
H
ref
*
u
两种不同结晶度的高密度聚乙烯DSC曲线,明显地看到吸热峰的不同。熔融点基本一样,但是峰面积相差很大。
结晶度的表征
可以通过DSC有效的表征高分子结晶度的变化。
u
*
增塑剂的影响
Effect of Plasticizer on Melting of Nylon 11
Heat Flow
100
Temperature (℃)
220
Plasticized
Unplasticized
增塑剂会极大的改变高分子的性能,因此有必要研究增塑剂对高分子玻璃态转化温度Tg和熔融温度Tm的影响。
u
一般,增塑剂的添加会降低高分子Tg和Tm。
u
*
固化过程的研究
u
Tg 、固化起点、 固化完成、 固化热
环氧树脂完全固化时,观察不到固化热。
DSC是评估固化度的有力工具。
*
高分子鉴别 热处理效应 晶区结构变化 物理老化过程
*
解析DSC曲线涉及的技术面和知识面较广。为了确定材料转变峰的性质,可利用DSC以外的其他热分析手段,如DSC-TG联用。同时,还可以与DSC-GC,DSC-IR等技术联用。
*
复合型DSC
通过外侧的加热器进行程序温控。热流从均温块底部中央通过热功率补偿感应器供给样品和参比物。热流差则由微加热器进行快速功率补偿并作为DSC信号输出,同时把检测的试样端温度作为试样温度进行输出。这种结构的仪器性能在宽广的温度范围内有稳定的基线,且兼备很高的灵敏度和分辨率。
*
结晶度的表征
u
测量样品的熔解热,测试值除以参比值得到高分子的结晶度信息。
u
%
结晶度
=
D
H
m
/
D
H
ref
*
u
两种不同结晶度的高密度聚乙烯DSC曲线,明显地看到吸热峰的不同。熔融点基本一样,但是峰面积相差很大。
结晶度的表征
可以通过DSC有效的表征高分子结晶度的变化。
u
*
增塑剂的影响
Effect of Plasticizer on Melting of Nylon 11
Heat Flow
100
Temperature (℃)
220
Plasticized
Unplasticized
增塑剂会极大的改变高分子的性能,因此有必要研究增塑剂对高分子玻璃态转化温度Tg和熔融温度Tm的影响。
u
一般,增塑剂的添加会降低高分子Tg和Tm。
u
*
固化过程的研究
u
Tg 、固化起点、 固化完成、 固化热
环氧树脂完全固化时,观察不到固化热。
DSC是评估固化度的有力工具。
*
高分子鉴别 热处理效应 晶区结构变化 物理老化过程
*
解析DSC曲线涉及的技术面和知识面较广。为了确定材料转变峰的性质,可利用DSC以外的其他热分析手段,如DSC-TG联用。同时,还可以与DSC-GC,DSC-IR等技术联用。
差示扫描量热法PPT
简单的DSC热谱图
热焓变化率, 热流率(heat flo加, 基线发生位移
结晶,放出热量,放热峰; 晶体熔融,吸热,吸热峰
向下的为样品的吸热峰(典型的吸热效应有熔融、解吸), 向上的为放热峰(典型的放热效应有结晶、氧化、固化), 曲线上的台阶状拐折(典型的比热变化效应为二级相变,包 括玻璃化转变、铁磁性转变等)。
功率补偿型DSC
内加热式,装样品和参比物的支持器是各自独立的元 件,在样品和参比物的底部各有一个加热用的铂热电阻 和一个测温用的铂传感器。它是采用动态零位平衡原理, 即要求样品与参比物温度,无论样品吸热还是放热时都 要维持动态零位平衡状态,也就是要保持样品和参比物 温度差趋向于零。DSC测定的是维持样品和参比物处于 相同温度所需要的能量差(ΔW=dH/dt,单位时间内的焓 变),反映了样品焓的变化。
2). 小心地将样品坩埚放在升起 平台的右前方,将参考坩埚放在 平台的左后方(如下图所示)。 居中坩埚可使结果更精确。
差示扫描量热法
(Differential Scanning Calorimeter,DSC)
目录
DSC定义与分类 DSC基本结构 DSC基本原理和热谱图 DSC实验 影响DSC因素 DSC曲线峰面积的确定及仪器校正 DSC的应用
差示扫描量热法
❖定义:在程序控制温度下,测量输给物质与参比物的功 率差与温度的一种技术。
❖ 分类:根据所用测量方法的不同 1. 功率补偿型DSC 2. 热流型DSC
❖DTA存在的两个缺点:
➢1)试样在产生热效应时,升温速率是非线性 的,从而使校正系数K值变化,难以进行定量 ;
➢2)试样产生热效应时,由于与参比物、环境 的温度有较大差异,三者之间会发生热交换, 降低了对热效应测量的灵敏度和精确度。
差示扫描量热法DSC的基本原理及应用 ppt课件
❖为了克服差热缺点,发展了DSC。该法 对试样产生的热效应能及时得到应有的 补偿,使得试样与参比物之间无温差、 无热交换,试样升温速度始终跟随炉温 线性升温,保证了校正系数K值恒定。 测量灵敏度和精度大有提高。
2020/12/15
7
1.功率补偿型DSC测量的基本原理
2020/12/15
8
功率补偿型DSC仪器的主要特点
980℃ 亚稳态高岭土 1200℃ γ-Al2O3
2020/12/15
45
➢热分析的联用技术,包括各种热分 析技术本身的同时联用,
如:TG-DTA,TG-DSC等。
➢热分析与其它分析技术的联用,如: TG-MS、TG-GC、TG-IR等。
2020/12/15
46
ICTA将热分析联用技术分为三类: ✓ 同时联用技术 ✓ 串接联用技术 ✓ 间歇联用技术
对干带静电的粉状试样,由于粉末颗粒 间的静电引力使粉状形成聚集体,也会 引起熔融热焓变大。
2020/12/15
21
3)试样的几何形状
在高聚物的研究中,发现试样几何形状 的影响十分明显。对于高聚物,为了获 得比较精确的峰温值,应该增大试样与 试样盘的接触面积,减少试样的厚度并 采用慢的升温速率。
2020/12/15
应易进行,可得到更尖锐的峰形和
较准确的峰温。只能折衷选择最佳 量。
2020/12/15
50
2020/12/15
51
根据物理或化学过程中所产生的重量和能量的变化 情况,TG和DTA对反应过程可作出大致的判断:
2020/12/15
52
2020测升/12/1试温5 条速件率:10K试/样mi量n,10气.1氛mg:,空参气比物:A12O3,53
差示扫描量热仪(DSC)PPT课件
DSC应用:熔融温度(熔点)的测定
是否所有物质都有熔点? 什么是熔点?
• 熔点是晶体将其物态由固态转变(熔化)为液态的过程中 固液共存状的温度。
• 结晶聚合物如尼龙、聚乙烯、聚丙烯、聚甲醛等材料.
熔融与结晶
表征熔融的四个参数: 1.吸热峰峰值 2.初始熔融温度 3.吸热峰面积 4.熔融结束温度
应用实例:熔融温度及热焓测试
金属铟的熔点,其DSC曲线近似一条垂直线,其熔点通常取外推起始温度,吸 收峰的面积为热焓
Sample: DSC-cal0224-In Size: 3.9900 mg
DSC
Method: ASTM E794-06
Comment: Nitrogen purging gas:50ml/min;Type of sample pan:Al
- higher viscosity
- more brittle
- lower enthalpy
Glass Transition is Detectable by DSC Because of a Step-Change in Heat Capacity
-0.6 -0.7 -0.8 -0.9
0.5 70
2
File: J:...\CAL\201202\DSC-In20120224‘ Operator: IR Run Date: 24-Feb-2012 13:30 Instrument: DSC Q200 V23.5 Build 72
Heat Flow (W/g)
0
156.70°C
28.54J/g
-2
• 当样品发生变化如熔融,提供给样品的热量都用来维持 样品的熔融,参比端温度仍按照炉体升温,参比端温度 会高于样品端温度从而形成了温度差。把这种温度差的 变化转变为热流差再以曲线记录下来,就形成了DSC的 原始数据。
差示扫描量热法(DSC)ppt课件
8
热流型DSC
外加热式,采取外加热的方式使均温块受热然 后通过空气和康铜做的热垫片两个途径把热传递给 试样杯和参比杯,试样杯的温度由镍铬丝和镍铝丝 组成的高灵敏度热电偶检测,参比杯的温度由镍铬 丝和康铜组成的热电偶加以检测。由此可知,检测 的是温差ΔT,它是试样热量变化的反映。
9
功率补偿式DSC因以两个独立炉体分别对试样 和参比物进行加热,故存在一个较大的缺陷即是使 用时间久了后加热参比物的炉体一直很新,而加热 试样的炉体因用久了有污染,这样导致两个炉体不 对称,进而致使基线漂移。目前,热流型DSC运用最 多。
❖ 分类:根据所用测量方法的不同 1. 功率补偿型DSC 2. 热流型DSC
3
❖ DTA存在的两个缺点: ➢ 1)试样在产生热效应时,升温速率是非线性
的,从而使校正系数K值变化,难以进行定量; ➢ 2)试样产生热效应时,由于与参比物、环境
的温度有较大差异,三者之间会发生热交换, 降低了对热效应测量的灵敏度和精确度。 →使得差热技术难以进行定量分析,只能进行定 性或半定量的分析工作。
➢ DSC是动态量热技术,对DSC仪器重要的校正就 是温度校正和量热校正。
➢ 为了能够得到精确的数据,即使对于那些精确 度相当高的DSC仪,也必须经常进行温度和量热 的校核。
29
1.峰面积的确定
一般来讲,确定DSC峰界限有以下四种方法: (1)若峰前后基线在一直线上,则取基线连线作为峰
底线(a)。 (2)当峰前后基线不一致时,取前、后基线延长线与
结晶度(%)
H f
H
* f
100%
ΔHf*:100%结晶度的熔融热焓
40
ΔHf*的测定
用一组已知结晶度 的样品作出结晶度 ΔHf图,然后外推 求出100%结晶度 ΔHf*。
热流型DSC
外加热式,采取外加热的方式使均温块受热然 后通过空气和康铜做的热垫片两个途径把热传递给 试样杯和参比杯,试样杯的温度由镍铬丝和镍铝丝 组成的高灵敏度热电偶检测,参比杯的温度由镍铬 丝和康铜组成的热电偶加以检测。由此可知,检测 的是温差ΔT,它是试样热量变化的反映。
9
功率补偿式DSC因以两个独立炉体分别对试样 和参比物进行加热,故存在一个较大的缺陷即是使 用时间久了后加热参比物的炉体一直很新,而加热 试样的炉体因用久了有污染,这样导致两个炉体不 对称,进而致使基线漂移。目前,热流型DSC运用最 多。
❖ 分类:根据所用测量方法的不同 1. 功率补偿型DSC 2. 热流型DSC
3
❖ DTA存在的两个缺点: ➢ 1)试样在产生热效应时,升温速率是非线性
的,从而使校正系数K值变化,难以进行定量; ➢ 2)试样产生热效应时,由于与参比物、环境
的温度有较大差异,三者之间会发生热交换, 降低了对热效应测量的灵敏度和精确度。 →使得差热技术难以进行定量分析,只能进行定 性或半定量的分析工作。
➢ DSC是动态量热技术,对DSC仪器重要的校正就 是温度校正和量热校正。
➢ 为了能够得到精确的数据,即使对于那些精确 度相当高的DSC仪,也必须经常进行温度和量热 的校核。
29
1.峰面积的确定
一般来讲,确定DSC峰界限有以下四种方法: (1)若峰前后基线在一直线上,则取基线连线作为峰
底线(a)。 (2)当峰前后基线不一致时,取前、后基线延长线与
结晶度(%)
H f
H
* f
100%
ΔHf*:100%结晶度的熔融热焓
40
ΔHf*的测定
用一组已知结晶度 的样品作出结晶度 ΔHf图,然后外推 求出100%结晶度 ΔHf*。
DSC(差示扫描量热仪)实验室教学课件
差示扫描量热仪
DSC
基本原理
DSC 原理
在程序温度(升/降/恒温及其组合)过程中,测量样品与参考物 之间的热流差,以表征所有与热效应有关的物理变化和化学变化。
应用:
• 玻璃化转变 • 熔融、结晶 • 熔融热、结晶热 • 共熔温度、纯度 • 物质鉴别 • 多晶型
• 相容性 • 热稳定性、氧化稳定性 • 反应动力学 • 热力学函数 • 液相、固相比例 • 比热
这是DSC和DTA技术最本质的区别。
特点
精更高 确快分 的的辨 温响率 度应 控时 制间 和和 测冷 量却
速 度
DSC 仪器校正 - 基本概念
温度校正
热电偶测量温度与样品实际温度之间存在一定偏离 其偏离程度取决于:
• 坩埚导热性能 • 气氛的导热性能 • 热电偶的老化程度
温度校正 • 多点拟合法 • 测试多个不同熔点的标准物质,将实测熔点(DSC, DTA, cDTA...)与相应理论熔点作比较,得到温度校正 曲线(△T~T) 。
气体:
两路吹扫气,一路保护气 可实现气体的自由切换
制冷方式:
空气制冷~室温 机械制冷~- 85℃ 液氮制冷~-180 ℃
气体出口
空气冷却 保护气氛 参比 样品 热流传感器 炉腔 吹扫气氛
机械冷却
液氮 / 气氮冷却
差热曲线峰的形成
DSC的前身是差热分析DTA
记录的是温差信号 峰面积没有热焓意义
DSC vs DTA
DSC/DTA峰形较小
NETZSCH Thermokinetics Decomposition of DPOP-PPV
Mass/% 100
90 80 70 60
450
10.3 K/min 5.2 K/min 2.6 K/min 1.0 K/min
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 当样品发生变化如熔融,提供给样品的热量都用来维持 样品的熔融,参比端温度仍按照炉体升温,参比端温度 会高于样品端温度从而形成了温度差。把这种温度差的 变化转变为热流差再以曲线记录下来,就形成了DSC的 原始数据。
DSC的基础公式
假设:
1, 传感器绝对对称,Tfs = Tfr, Rs = Rr = R 2, 样品和参比端的热容相等Cpr=Cps 3, 样品和参比的加热速率永远相同 4, 样品盘及参比盘的质量(热容)相等 5, 样品盘、参比盘与传感器之间没有热阻或者热阻相等
应用实例:混合物和共聚物的定性检测
Heat Flow (W/g)
1 1
0 2
3 -1
PE
PP
-2
差示扫描量热仪(DSC)
第一章 DSC基本原理
DSC定义
程序控温条件下,测量在升温、降温或恒0
DSC炉子
原理
• DSC监测样品和参比温度差(热流)随时间或温度变化 而变化的过程。
• 样品和参比处于温度相同的均温区,当样品没有热变化 的时候,样品端和参比端的温度均按照预先设定的温度 变化,温差ΔT=0。
2
File: J:...\CAL\201202\DSC-In20120224‘ Operator: IR Run Date: 24-Feb-2012 13:30 Instrument: DSC Q200 V23.5 Build 72
Heat Flow (W/g)
0
156.70°C
28.54J/g
-2
根据熔点,可以对结晶高分子进行定性鉴别
Heat Flow (W/g)
0.0
-0.5
-1.0
-1.5
-2.0 0
Exo Up
○
PA 6
220.13°C
PA 66
262.84°C
50
100
150
200
250
300
Temperature (°C)
Universal V4.3A TA Instruments
• 熔点是晶体将其物态由固态转变(熔化)为液态的过程中 固液共存状的温度。
• 结晶聚合物如尼龙、聚乙烯、聚丙烯、聚甲醛等材料.
熔融与结晶
表征熔融的四个参数: 1.吸热峰峰值 2.初始熔融温度 3.吸热峰面积 4.熔融结束温度
表征结晶的两个参数: 1.放热峰峰值 2.放热峰面积
Sample: GZMR-PA66 Size: 9.5000 mg Method: ASTM E794-06
单位为毫瓦(mW)
吸收热量,样品热容增加, 基线发生位移
结晶,放出热量,放热峰; 晶体熔融,吸热,吸热峰
一般在DSC热谱图中,吸热(endothermic)效应用凸起的峰 值来表征 (热焓增加),放热(exothermic)效应用反向的峰值 表征(热焓减少)。
DSC应用:熔融温度(熔点)的测定
是否所有物质都有熔点? 什么是熔点?
-4
157.77°C
-6 80
Exo Up
100
120
140
Temperature (°C)
160
180
Universal V4.3A TA Instruments
高分子聚合物熔融温度范围较为宽广,在整个熔融过程中可能伴有复杂 的熔融/重结晶/晶型调整过程,高分子的熔点通常取峰值温度
应用实例:一般物质的鉴定
料热历史 • 以10℃/min将温度降到预期的结晶温度Tefc以下30或50℃ • 再以10℃/min加热至熔融外推终止温度Tefm以上30或50℃测定Tm • 对比测定前后样品的重量,如发现有失重则重复以上过程 常用测试标准: ISO 11357-3-2011,ASTM E794-06(2012),ASTM
4
DSC
File: J:...\Thermo data\标 样 \DSC\DSC-PA66.002 Operator: Jenner Run Date: 09-Jul-2010 09:31 Instrument: DSC Q200 V23.5 Build 72
2
Heat Flow (W/g)
0
-2
-4 160
第二章 DSC在高分子材料的应用
应用
• 测量熔融温度、玻璃化转变、氧化诱导时间(温度) • 测相变热焓及结晶度、测研究结晶动力学 • 测化学反应热焓、研究固化反应及反应动力学 • 表征聚合物相容性
DSC典型综合图谱
玻璃化转 变
结晶
氧化 或分解
熔化
交联 (固化)
热流 -> 放热
温度
DSC曲线
热焓变化率, 热流率(heat flowing),
Exo Up
180
200
220
240
Temperature (°C)
260
280
300
Universal V4.3A TA Instruments
物质的性 质
决定
定性 定量
峰的形状 峰的数目 峰的位置 峰的面积
DSC测定熔点推荐程序
• 样品用量5~10mg • 以10℃/min加热至熔融外推终止温度Tefm以上30或50℃,以消除材
D3418-12ε1、GB 19466.3-2004
应用实例:熔融温度及热焓测试
金属铟的熔点,其DSC曲线近似一条垂直线,其熔点通常取外推起始温度,吸 收峰的面积为热焓
Sample: DSC-cal0224-In Size: 3.9900 mg
DSC
Method: ASTM E794-06
Comment: Nitrogen purging gas:50ml/min;Type of sample pan:Al
q--------热流, ΔT------样品参比温差,R-------热阻
实际测试过程
• 炉体把热量传到样品端和参比端,假设传到样品端的热阻 Rs小于传到参比端的热阻Rf,一定导致传到样品端的热多 于参比端的热从而导致一个ΔT的产生。或者相同热量传 到样品端和参比端,假设样品端热容Cs小于参比端热容Cf, 一定导致样品端温度高于参比端而产生一个ΔT,这些ΔT 都是由于系统引起,不是样品热反应引起,我们称之为热 阻热容的不平衡
热阻抗的不平 衡部分
热容量的不平 衡部分
加热速率的不平 衡部分
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
▪ 如上因素,我们需要测量仪器整个温度范围内,样品端和参比端 热阻和热容随温度变化的数值。并且要把这些不平衡因素消除。 我们把这种测量称之为T0校正,其实叫热阻热容测量更准确。
DSC的基础公式
假设:
1, 传感器绝对对称,Tfs = Tfr, Rs = Rr = R 2, 样品和参比端的热容相等Cpr=Cps 3, 样品和参比的加热速率永远相同 4, 样品盘及参比盘的质量(热容)相等 5, 样品盘、参比盘与传感器之间没有热阻或者热阻相等
应用实例:混合物和共聚物的定性检测
Heat Flow (W/g)
1 1
0 2
3 -1
PE
PP
-2
差示扫描量热仪(DSC)
第一章 DSC基本原理
DSC定义
程序控温条件下,测量在升温、降温或恒0
DSC炉子
原理
• DSC监测样品和参比温度差(热流)随时间或温度变化 而变化的过程。
• 样品和参比处于温度相同的均温区,当样品没有热变化 的时候,样品端和参比端的温度均按照预先设定的温度 变化,温差ΔT=0。
2
File: J:...\CAL\201202\DSC-In20120224‘ Operator: IR Run Date: 24-Feb-2012 13:30 Instrument: DSC Q200 V23.5 Build 72
Heat Flow (W/g)
0
156.70°C
28.54J/g
-2
根据熔点,可以对结晶高分子进行定性鉴别
Heat Flow (W/g)
0.0
-0.5
-1.0
-1.5
-2.0 0
Exo Up
○
PA 6
220.13°C
PA 66
262.84°C
50
100
150
200
250
300
Temperature (°C)
Universal V4.3A TA Instruments
• 熔点是晶体将其物态由固态转变(熔化)为液态的过程中 固液共存状的温度。
• 结晶聚合物如尼龙、聚乙烯、聚丙烯、聚甲醛等材料.
熔融与结晶
表征熔融的四个参数: 1.吸热峰峰值 2.初始熔融温度 3.吸热峰面积 4.熔融结束温度
表征结晶的两个参数: 1.放热峰峰值 2.放热峰面积
Sample: GZMR-PA66 Size: 9.5000 mg Method: ASTM E794-06
单位为毫瓦(mW)
吸收热量,样品热容增加, 基线发生位移
结晶,放出热量,放热峰; 晶体熔融,吸热,吸热峰
一般在DSC热谱图中,吸热(endothermic)效应用凸起的峰 值来表征 (热焓增加),放热(exothermic)效应用反向的峰值 表征(热焓减少)。
DSC应用:熔融温度(熔点)的测定
是否所有物质都有熔点? 什么是熔点?
-4
157.77°C
-6 80
Exo Up
100
120
140
Temperature (°C)
160
180
Universal V4.3A TA Instruments
高分子聚合物熔融温度范围较为宽广,在整个熔融过程中可能伴有复杂 的熔融/重结晶/晶型调整过程,高分子的熔点通常取峰值温度
应用实例:一般物质的鉴定
料热历史 • 以10℃/min将温度降到预期的结晶温度Tefc以下30或50℃ • 再以10℃/min加热至熔融外推终止温度Tefm以上30或50℃测定Tm • 对比测定前后样品的重量,如发现有失重则重复以上过程 常用测试标准: ISO 11357-3-2011,ASTM E794-06(2012),ASTM
4
DSC
File: J:...\Thermo data\标 样 \DSC\DSC-PA66.002 Operator: Jenner Run Date: 09-Jul-2010 09:31 Instrument: DSC Q200 V23.5 Build 72
2
Heat Flow (W/g)
0
-2
-4 160
第二章 DSC在高分子材料的应用
应用
• 测量熔融温度、玻璃化转变、氧化诱导时间(温度) • 测相变热焓及结晶度、测研究结晶动力学 • 测化学反应热焓、研究固化反应及反应动力学 • 表征聚合物相容性
DSC典型综合图谱
玻璃化转 变
结晶
氧化 或分解
熔化
交联 (固化)
热流 -> 放热
温度
DSC曲线
热焓变化率, 热流率(heat flowing),
Exo Up
180
200
220
240
Temperature (°C)
260
280
300
Universal V4.3A TA Instruments
物质的性 质
决定
定性 定量
峰的形状 峰的数目 峰的位置 峰的面积
DSC测定熔点推荐程序
• 样品用量5~10mg • 以10℃/min加热至熔融外推终止温度Tefm以上30或50℃,以消除材
D3418-12ε1、GB 19466.3-2004
应用实例:熔融温度及热焓测试
金属铟的熔点,其DSC曲线近似一条垂直线,其熔点通常取外推起始温度,吸 收峰的面积为热焓
Sample: DSC-cal0224-In Size: 3.9900 mg
DSC
Method: ASTM E794-06
Comment: Nitrogen purging gas:50ml/min;Type of sample pan:Al
q--------热流, ΔT------样品参比温差,R-------热阻
实际测试过程
• 炉体把热量传到样品端和参比端,假设传到样品端的热阻 Rs小于传到参比端的热阻Rf,一定导致传到样品端的热多 于参比端的热从而导致一个ΔT的产生。或者相同热量传 到样品端和参比端,假设样品端热容Cs小于参比端热容Cf, 一定导致样品端温度高于参比端而产生一个ΔT,这些ΔT 都是由于系统引起,不是样品热反应引起,我们称之为热 阻热容的不平衡
热阻抗的不平 衡部分
热容量的不平 衡部分
加热速率的不平 衡部分
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
▪ 如上因素,我们需要测量仪器整个温度范围内,样品端和参比端 热阻和热容随温度变化的数值。并且要把这些不平衡因素消除。 我们把这种测量称之为T0校正,其实叫热阻热容测量更准确。