函数单调性与奇偶性

合集下载

函数单调性奇偶性周期性

函数单调性奇偶性周期性

函数单调性、奇偶性、周期性◆知识点梳理 一函数的奇偶性:1、定义域关于原点对称 奇函数)(x f 在原点有定义,则0)0(=f ;2、)(x f 是奇函数⇔)()(x f x f -=-⇔)(x f 图像关于原点对称;3、)(x f 是偶函数)()(x f x f =-⇔⇔)(x f 图像关于y 轴对称;4、一些判断奇偶性的规律: ①奇±奇=奇,偶±偶=偶②奇×/÷奇=偶,奇×/÷偶=奇,偶×/÷偶=偶二函数的单调性 方法:①导数法; ②规律判断法;③图像法; 1、单调性的定义:)(x f 在区间M 上是增减函数,,21M x x ∈∀⇔当21x x <时)0(0)()(21><-x f x f2、采用单调性的定义判定法应注意:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断正负; 3、对于已知单调区间求参数范围,一般有以下两种方法: ①转化为恒成立问题,接着用求最值的视角去解决;②先求出该函数的完整单调区间,根据此区间比已知单调区间大去求解; 4、一些判断单调性的规律: ①减 + 减 =减,增 + 增 = 增;②1()()()f x f x f x -与、的单调性相反;三复合函数单调性的判定:定义域优先考虑1、首先将原函数)]([x g f y =分解为基本初等函数: )(x g u =与)(u f y =;2、分别研究两个函数在各自定义域内的单调性;3、根据“同增异减”来判断原函数在其定义域内的单调性; 四函数的周期性1、周期性的定义:若有)()(x f T x f =+,则称函数)(x f 为周期函数,T 为它的一个周期;如没有特别说明,遇到的周期都指最小正周期;2、三角函数的周期①π==T x y :tan ,||:tan ωπω==T x y ②||2:)cos(),sin(ωπϕωϕω=+=+=T x A y x A y 3、与周期有关的结论:①)()(a x f a x f -=+或(2)()f x a f x += ⇒)(x f 的周期为a 2; ②)()(x f a x f -=+⇒)(x f 的周期为a 2;③1()()f x a f x +=⇒)(x f 的周期为a 2;◆考点剖析一考查一般函数的奇偶性例1、 设函数fx 是定义在R 上的奇函数,若当x ∈0,+∞时,fx =lg x ,则满足fx >0的x 的取值范围是 .变式1、 若函数(1)()y x x a =+-为偶函数,则a = A .2- B .1- C .1 D .2变式2、 函数1()f x x x=-的图像关于A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称二考查函数奇偶性的判别例2、判断下下列函数的奇偶性122(1),0()(1),0x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩ 224()|3|3x f x x -=--变式3、已知函数0()(2≠+=x xax x f ,常数)a ∈R . 1讨论函数)(x f 的奇偶性,并说明理由; 变式4、判断下下列函数的奇偶性121()log 1x f x x -=+ 21,0()1,0x x f x x x ->⎧=⎨--≤⎩三考查抽象函数的奇偶性例3、已知函数fx,当x,y ∈R 时,恒有fx+y=fx+fy.求证:fx 是奇函数;变式5A 、若定义在R 上的函数fx 满足:对任意12,x x ∈R 有1212()()()1f x x f x f x +=++,则下列说法一定正确的是Afx 为奇函数 Bfx 为偶函数 C fx+1为奇函数 Dfx+1为偶函数变式5B 、已知函数()f x ,当,x y R ∈时,恒有()()()f x y xf y yf x +=+,求证()f x 是偶函数;三考查一般函数的单调区间暂不讲例4、 设函数1()(01)ln f x x x x x =>≠且,求函数()f x 的单调区间;变式6、函数x e x x f )3()(-=的单调递增区间是 A. )2,(-∞ B.0,3 C.1,4 D. ),2(+∞四考查复合函数的单调区间 例5、判断函数fx=12-x 在定义域上的单调性.变式7、求函数y=21log 4x-x 2的单调区间.五考查函数单调性的运用例6A 、定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则A (3)(2)(1)f f f <-<B (1)(2)(3)f f f <-<C (2)(1)(3)f f f -<<D (3)(1)(2)f f f <<-变式8、2008全国设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,例6B 、已知函数32()f x x ax ax =+-在区间(1,)+∞上递增,求a 的取值范围;变式9、已知函数0()(2≠+=x xa x x f ,常数)a ∈R . 1略 2若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.六考查函数周期性的应用例7、函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________;变式10、已知函数()f x 满足:()114f =,()()()()()4,f x f y f x y f x y x y R =++-∈,则()2010f =_____________.变式11、已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D2◆方法小结1、注意:单调区间一定要在定义域内,且不可以有“”,只能用“和”,“,”.2、含有参量的函数的单调性问题,可分为两类:一类是由参数的范围判定其单调性;一类是给定单调性求参数范围,其解法是由定义或导数法得到恒成立的不等式,结合定义域求出参数的取值范围.3、判断函数的奇偶性应首先检验函数的定义域是否关于原点对称,然后根据奇偶性的定义判断或证明函数是否具有奇偶性. 如果要证明一个函数不具有奇偶性,可以在定义域内找到一对非零实数a 与-a ,验证fa ±f -a ≠0.4、函数的周期性:第一应从定义入手,第二应结合图象理解.◆课后强化1.若函数2()()af x x a x=+∈R ,则下列结论正确的是A .a ∀∈R ,()f x 在(0,)+∞上是增函数B .a ∀∈R ,()f x 在(0,)+∞上是减函数C .a ∃∈R ,()f x 是偶函数D .a ∃∈R ,()f x 是奇函数2. 下列函数()f x 中,满足“对任意1x ,2x ∈0,+∞,当1x <2x 时,都有1()f x >2()f x 的是A .()f x =1xB. ()f x =2(1)x - C .()f x =x e D ()ln(1)f x x =+ 3.已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是A 13,23B 13,23C 12,23D 12,234.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是A. 0B. 21C. 1D. 255.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间0,2上是增函数,则 .A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<<6、已知()f x 在R 上是奇函数,且(4)(),f x f x +=2(0,2)()2,(7)x f x x f ∈==当时,则 A.—2 C.—987、设fx 为定义在R 上的奇函数,当x ≥0时,fx=2x +2x+bb 为常数,则f-1= A 3 B 1 C-1 D-38、给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间0,1上单调递减的函数序号是A ①②B ②③C ③④D ①④9、若函数fx =3x +3-x 与gx =3x -3-x 的定义域均为R,则A .fx 与gx 均为偶函数 B. fx 为偶函数,gx 为奇函数 C .fx 与gx 均为奇函数 D. fx 为奇函数,gx 为偶函数 10、11、设函数fx=xe x +ae -x x ∈R 是偶函数,则实数a =________________12、以下4个函数: ①12+=x )x (f ; ②11+-=x x )x (f ; ③2211x x )x (f -+=; ④xxlg )x (f +-=11. 其中既不是奇函数, 又不是偶函数的是 A.①② B. ②③ C. ③④ D. ①②③13、已知函数), x x ( lg x )x (f 122+++=若f a =M, 则f -a 等于A. M a -22B. 22a M -C. 22a M -D. M a 22-14、设y =f x 是定义在R 上的奇函数, 当x ≥0时, f x =x 2-2 x, 则在R 上f x 的表达式为A. )x (x 2--B. ) |x | (x 2-C. ) x (|x |2-D. ) |x | (|x |2- 15.函数1)(+-=x a x f )1,0≠>a a 是减函数,则a 的取值范围是 A .()1,0∈a B .(]+∞∈,1a C .R a ∈ D .+∈R a 16.函数)(x f 112+-=x x 的单调增区间是 A .(][)∞+--∞-11, B .(][)∞+--∞-1,1, C .(]1,-∞- D .()()+∞--∞-,11,17.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)718.若fx=-x 2+2ax 与1)(+=x ax g 在区间1,2上都是减函数,则a 的值范围是A .)1,0()0,1(⋃-B .]1,0()0,1(⋃-C .0,1D .]1,0(19.若函数)1,0( )(log )(3≠>-=a a ax x x f a 在区间)0,21(-内单调递增,则a 的取值范围是A .)1,41[B . )1,43[C .),49(+∞D .)49,1(20.函数)1lg()(2x x x f ++=是A .奇函数B .偶函数C .是奇函数也是偶函数D .非奇非偶函数 21.函数2222)(x x x f -+-=是A .奇函数B .偶函数C .是奇函数也是偶函数D .非奇非偶函数22.函数⎪⎩⎪⎨⎧>+<-=)0(,)0(,)(22x x x x x x x f 是A .奇函数B .偶函数C .是奇函数也是偶函数D .非奇非偶函数23.定义在R 上的偶函数fx 满足fx =fx +2,当x ∈3,5时,fx =2-|x -4|,则A .f sin 6π<f cos 6πB .f sin1>f cos1C .f cos 32π<f sin 32πD .f cos2>f sin224.定义在R 上的函数)(x f 既是偶函数又是周期函数.若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为A .21-B .21C .23-D .23 25.已知定义在R 上的奇函数fx 满足fx+3=-fx ,则,f 6的值为A -1B 0C 1 D226.)(x f 是定义在R 上的以3为周期的偶函数,且0)2(=f ,则方程)(x f =0在区间0,6内解的个数的最小值是A .5B .4C .3D .227.下列函数既是奇函数,又在区间[]1,1-上单调递减的是 A ()sin f x x =B ()1f x x =-+C ()1()2x x f x a a -=+D 2()ln 2xf x x-=+ 28.若函数fx=121+X , 则该函数在-∞,+∞上是A 单调递减无最小值B 单调递减有最小值C 单调递增无最大值D 单调递增有最大值 29.下列函数中,在其定义域内既是奇函数又是减函数的是A. R x x y ∈-=,3B. R x x y ∈=,sinC. R x x y ∈=,D. R x x y ∈=,)21(30.已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =A0 B1 C -1 D ±131.若函数fx 是定义在R 上的偶函数,在]0,(-∞上是减函数,且f 2=0,则使得fx <0的x 的取值范围是A -∞,2B 2,+∞C -∞,-2⋃2,+∞D -2,232.设()f x 是R 上的任意函数,则下列叙述正确的是 A ()()f x f x -是奇函数 B ()()f x f x -是奇函数 C ()()f x f x --是偶函数 D ()()f x f x +-是偶函数33.函数)2(log )(22--=x x x f 的单调增区间是___________,减区间是______________.34. 函数1231)(+--⎪⎭⎫⎝⎛=x x x f 的单调增区间是___________,减区间是______________.35.设fx 是定义在R 上的奇函数,且y=f x 的图象关于直线21=x 对称,则f 1+ f 2+ f 3+ f 4+ f 5=______________.36.若函数)2(log )(22a x x x f a ++=是奇函数,则a = . 37、函数fx =111122+++-++x x x x 的图象 A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称D.关于直线x =1对称38、函数fx 在R 上为增函数,则y =f |x +1|的一个单调递减区间是_________. 39、若fx 为奇函数,且在0,+∞内是增函数,又f -3=0,则xfx <0的解集为_________.40、如果函数fx 在R 上为奇函数,在-1,0上是增函数,且fx +2=-fx ,试比较f 31,f 32,f 1的大小关系______41、已知函数y =fx =cbx ax ++12 a ,b ,c ∈R ,a >0,b >0是奇函数,当x >0时,fx 有最小值2,其中b ∈N 且f 1<25.1试求函数fx 的解析式;2问函数fx 图象上是否存在关于点1,0对称的两点,若存在,求出点的坐标;若不存在,说明理由.42、已知函数()()1011且x x a f x a a a -=>≠+.1判断()f x 的奇偶性;2当1a >时,判断()f x 的单调性,并证明.43、已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,()30f =,则不等式()0f x ≥的解集是 .44、函数()()212log 23f x x x =-++的单调递减区间是 .45、若函数()11a f x x x a=+-+是奇函数,则实数a 的值为 . 46、若函数()2f x a x b =-+在[)0,+∞上为增函数,则实数a 、b 的取值范围分别是 . 47、已知对于任意实数x ,函数()f x 满足()()f x f x -=,若方程()0f x =有2009个实数解,则这2009个实数解之和为 .◆详细解析 例1、(1,0)(1,)-+∞ 变式1、C 变式2、C例2、解:12222(1),0(1),0()()(1),0(1),0x x x x x x f x f x x x x x x x ⎧⎧---≥-+≤⎪⎪-===⎨⎨--+-<->⎪⎪⎩⎩ 故()f x 为偶函数;2()f x 的定义域由240|3|30x x ⎧-≥⎨--≠⎩确定,解得2206x x x -≤≤⎧⎨≠≠⎩且∴定义域为[2,0)(0,2]-关于原点对称∴()f x x =-∵()()f x f x x-==- 故()f x 为奇函数 变式3、解:1当0=a 时,2)(x x f =,对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,,取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,,(1)(1)(1)(1)f f f f ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数.变式4、解:1由101x x ->+解得1,1x x <->或,则定义域关于原点对称; ∵222111()log log log ()111x x x f x f x x x x --+--===-=--+-+ ∴()f x 为奇函数 21,01,0()()1,01,0x x x x f x f x x x x x --->--<⎧⎧-===⎨⎨--≤-≥⎩⎩,故()f x 为偶函数;例3、证明: ∵函数定义域为R,其定义域关于原点对称.∵fx+y=fx+fy,令y=-x,∴f0=fx+f-x.令x=y=0, ∴f0=f0+f0,得f0=0.∴fx+f-x=0,得f-x=-fx, ∴fx 为奇函数. 变式5A 、C变式5B 、证明:令0x y ==,可得(0)0f =;令y x =-,可得()()()f x x xf x xf x -=--即(0)[()()]0f x f x f x =--= 又x R ∈ ∴()()f x f x -- ∴()f x 是偶函数例4、解:'22ln 1(),ln x f x x x +=-其中01x x >≠且若 '()0,f x < 则 1x e >,此时()f x 单调递减,故减区间为1(,1),(1,)e +∞;若 '()0,f x > 则 1x e <,此时()f x 单调递增,故增区间为1(0,)e;变式6、解析()()(3)(3)(2)x x x f x x e x e x e '''=-+-=-,令()0f x '>,解得2x >,故选D 例5、解: 函数的定义域为{x|x ≤-1或x ≥1},则fx=12-x ,可分解成两个简单函数.fx=)(,)(x u x u =x2-1的形式.当x ≥1时,ux 为增函数,)(x u 为增函数.∴fx=12-x 在1,+∞上为增函数.当x ≤-1时,ux 为减函数,)(x u 为减函数,∴fx=12-x 在-∞,-1上为减函数.变式7、解: 由4x-x 2>0,得函数的定义域是0,4.令t=4x-x 2,则y=21log t.∵t=4x-x 2=-x-22+4,∴t=4x-x 2的单调减区间是2,4,增区间是0,2.又y=21log t 在0,+∞上是减函数,∴函数y=21log 4x-x 2的单调减区间是0,2,单调增区间是2,4.例6、答案:A. 解析:由2121()(()())0x x f x f x -->等价,于2121()()0f x f x x x ->-则()f x 在1212,(,0]()x x x x ∈-∞≠上单调递增, 又()f x 是偶函数,故()f x 在1212,(0,]()x x x x ∈+∞≠单调递减.且满足*n N ∈时, (2)(2)f f -=, 03>21>>,得(3)(2)(1)f f f <-<,故选A. 变式8、D例6B 、解:∵32()f x x ax ax =+-在区间(1,)+∞上递增 ∴2()320f x x ax a '=+-≥在区间(1,)+∞上恒成立 即2(21)3x a x -≥-在区间(1,)+∞上恒成立 ∵210x ->∴2321x a x ≥--在区间(1,)+∞上恒成立 只要满足2max 3()21x a x ≥-- ∵23333334[(21)](2)321422142x x x x -=--++≤-⨯+=--- ∴3a ≥-变式9、2解:∵)(x f 在[2)x ∈+∞,上为增函数 ∴ ()0f x '≥在[2)x ∈+∞,上恒成立即32202a x a x x-≥≤即在[2)x ∈+∞,上恒成立,故只要满足3min (2)a x ≤显然33min (2)2216x =⋅= a ∴的取值范围是(16]-∞,. 例7、解析:由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+;变式10、解析:取x=1 y=0得21)0(=f 法一:通过计算)........4(),3(),2(f f f ,寻得周期为6 法二:取x=n y=1,有fn=fn+1+fn-1,同理fn+1=fn+2+fn 联立得fn+2= —fn-1 所以T=6 故()2010f =f0=21变式11、解析:由()()()()()x f x f x f x f x f =+-=+⇒-=+242由()x f 是定义在R 上的奇函数得()00=f ,∴()()()()002246=-==+=f f f f ,故选择B; 1、答案:C 解析对于0a =时有()2f x x =是一个偶函数2、解析依题意可得函数应在(0,)x ∈+∞上单调递减,故由选项可得A 正确;3、答案A 解析由于fx 是偶函数,故fx =f|x|∴得f|2x -1|<f 13,再根据fx 的单调性 得|2x -1|<13 解得13<x <234、答案A 解析若x ≠0,则有)(1)1(x f xx x f +=+,取21-=x ,则有: )21()21()21(21211)121()21(f f f f f -=--=---=+-= ∵)(x f 是偶函数,则)21()21(f f =- 由此得0)21(=f 于是, 0)21(5)21(]21211[35)121(35)23(35)23(23231)123()25(==+=+==+=+=f f f f f f f 5、解析:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数, 则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间0,2上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D.6、选A7、答案D8、答案:B9、D .()33(),()33()x x x x f x f x g x g x ---=+=-=-=-.10、11、解析 gx=e x +ae -x 为奇函数,由g0=0,得a =-1;12、A 13、A 14、B15、B 16、D 17、C 18、D30、A 33.()+∞,2;()1,-∞- 34.⎪⎭⎫ ⎝⎛+∞-,21;⎪⎭⎫ ⎝⎛-∞-21, 36.22 37、答案:C 解析:f -x =-fx ,fx 是奇函数,图象关于原点对称.38、解析:令t =|x +1|,则t 在-∞,-1]上递减,又y =fx 在R 上单调递增,∴y =f |x +1|在-∞,-1]上递减.答案:-∞,-1]39、答案:-3,0∪0,3 解析:由题意可知:xfx <0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或 ⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或∴x ∈-3,0∪0,3 40、答案:f 31<f 32<f 1 解析:∵fx 为R 上的奇函数∴f 31=-f -31,f 32=-f -32,f 1=-f -1,又fx 在-1,0上是增函数且-31> -32>-1. ∴f -31>f -32>f -1,∴f 31<f 32<f 1.41、解:1∵fx 是奇函数,∴f -x =-fx ,即c bx c bx cbx ax c bx ax -=+⇒+-+-=++1122 ∴c =0,∵a >0,b >0,x >0,∴fx =bx x b a bx ax 112+=+≥22b a ,当且仅当x =a1时等号成立,于是22ba =2,∴a =b 2,由f 1<25得b a 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴fx =x +x1.2设存在一点x 0,y 0在y =fx 的图象上,并且关于1,0的对称点2-x 0,-y 0也在y =fx 图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1y x x y x x 消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =fx 图象上存在两点1+2,22,1-2,-22关于1,0对称.42、解:1由()f x 的定义域为R ,关于原点对称()()1111x xx xa a f x f x a a -----===-++得()f x 为R 上的奇函数 2证明:12x x ∀<∈R ,则由1a >得12x x a a <()()()()()()()12121212122121101111x x x x x x x x a a a a f x f x f x f x a a a a ----=-=<⇒>++++ ∴当1a >时,()f x 在R 上单调递增 43、(][),33,-∞-+∞ 44、[)1,3 45、1 46、00且a b >≤ 47、0。

函数的奇偶性和单调性-课件

函数的奇偶性和单调性-课件

性质
偶函数的图像关于y轴对称 。
例子
$f(x)=x^2$,$f(-x)=(x)^2=x^2=f(x)$,所以 $f(x)=x^2$是偶函数。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
函数的单调性
单调增函数
定义
对于函数$f(x)$,如果在区间$I$上, 对于任意$x_1 < x_2$,都有$f(x_1) < f(x_2)$,则称$f(x)$在区间$I$上单 调增。
举例
应用
在经济学、生物学等领域中,单调增 函数常用于描述随着自变量增加,因 变量也增加的情况。
$f(x) = x^2$在区间$(0, +infty)$上 单调增。
单调减函数
定义
对于函数$f(x)$,如果在区间$I$ 上,对于任意$x_1 < x_2$,都有 $f(x_1) > f(x_2)$,则称$f(x)$在
通过已知的函数性质和函数关系,可以求 解未知的函数解析式。
利用奇偶性和单调性研究函数图 像
通过奇偶性和单调性,我们可以研究函数 的图像性质,如对称轴、单调区间等。
奇偶性与单调性的实际应用举例
经济领域应用
在经济学中,奇偶性和单调 性可以用于研究经济数据的 趋势和周期性变化,如GDP 、就业率等。
自然科学应用
如果对于函数$f(x)$的定 义域内任意$x$,都有$f(x)=-f(x)$,则称$f(x)$为 奇函数。
性质
奇函数的图像关于原点对 称。
例子
$f(x)=x^3$,$f(-x)=x^3=-f(x)$,所以 $f(x)=x^3$是奇函数。
偶函数
定义

函数的奇偶性与单调性

函数的奇偶性与单调性

函数的奇偶性与单调性函数的奇偶性与单调性是数学中的重要概念,它们能够帮助我们更好地理解和分析函数的特征和行为。

本文将介绍函数的奇偶性和单调性的基本概念,并探讨二者之间的关系。

一、函数的奇偶性在数学中,函数的奇偶性是指函数在对称轴上的性质。

一个函数可以是奇函数或偶函数,或者既不是奇函数也不是偶函数。

1. 奇函数如果对于函数f(x),对于任意x,有f(-x) = -f(x),则称该函数为奇函数。

简单来说,奇函数的特点是关于原点对称,即函数图像关于原点对称。

奇函数的典型例子是正弦函数sin(x)和正切函数tan(x)等:- sin(-x) = -sin(x)- tan(-x) = -tan(x)2. 偶函数如果对于函数f(x),对于任意x,有f(-x) = f(x),则称该函数为偶函数。

简单来说,偶函数的特点是关于y轴对称,即函数图像关于y轴对称。

偶函数的典型例子是余弦函数cos(x)和双曲余弦函数cosh(x)等:- cos(-x) = cos(x)- cosh(-x) = cosh(x)3. 既不是奇函数也不是偶函数对于一些函数,既不满足奇函数的特性,也不满足偶函数的特性,此时我们称该函数为既不是奇函数也不是偶函数。

二、函数的单调性函数的单调性是指函数在定义域上的取值变化趋势。

一个函数可以是单调递增的、单调递减的,或者既不是单调递增也不是单调递减。

1. 单调递增如果对于函数f(x),对于任意x1和x2,当x1 < x2时,有f(x1) ≤ f(x2),则称该函数在定义域上是单调递增的。

单调递增函数的典型例子是线性函数y = kx (k > 0)和指数函数y = a^x (a > 1)等。

2. 单调递减如果对于函数f(x),对于任意x1和x2,当x1 < x2时,有f(x1) ≥ f(x2),则称该函数在定义域上是单调递减的。

单调递减函数的典型例子是线性函数y = kx (k < 0)和指数函数y = a^x (0 < a < 1)等。

第3讲函数的奇偶性与单调性

第3讲函数的奇偶性与单调性

第3讲函数的奇偶性与单调性考点梳理一.奇、偶函数的概念一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.如果对于任意的x∈A都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.二.函数奇偶性的性质(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.(3)若f(x)为偶函数,则f(-x)=f(x)=f(|x|).(4)若奇函数f(x)定义域中含有0,则必有f(0)=0.但f(0)=0不能说f(x)为奇函数。

(5)复合函数的奇偶性特点是:“内偶则偶,内奇同外”.考点自测1.(2012·海安中学)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x +b(b为常数),则f(-1)的值是________.解析由f(0)=0,得b=-1,所以f(-1)=-f(1)=-(2+2-1)=-3.答案-32.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是________.解析由f(x)是偶函数知,f(x)=f(-x),即ax2+bx=a(-x)2-bx,∴2bx=0,∴b=0.又f(x)的定义域应关于原点对称,即(a-1)+2a=0,∴a=13,故a+b=1 3.答案1 33.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是________.解析 f (x )是偶函数,其图象关于y 轴对称,又f (x )在[0,+∞)上递增, ∴f (2x -1)<f ⎝ ⎛⎭⎪⎫13⇔|2x -1|<13⇔13<x <23.答案 ⎝ ⎛⎭⎪⎫13,23三.函数的单调性 (1)单调函数的定义设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,①若f (x 1)<f (x 2),则f (x )在区间D 上是增函数; ②若f (x 1)>f (x 2),则f (x )在区间D 上是减函数. (2)单调性、单调区间的定义若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.四. 函数单调性的四种判断方法(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:(复合函数中)同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数.(3)导数法:利用导数研究函数的单调性.(高二内容) (4)图象法:利用图象研究函数的单调性.考点自测1.(2013·南京鼓楼模拟)函数f (x )=1+x -1-x 的最大值为M ,最小值为m ,则Mm =________.解析 由⎩⎨⎧1+x ≥0,1-x ≥0得-1≤x ≤1.因为f (x )在[-1,1]上是单调增函数,所以M=f (1)=2,m =f (-1)=-2,所以Mm =-1. 答案 -12.(2012·连云港模拟)已知函数f (x )=x -kx (k >0,x >0),则f (x 2+1)与f (x )的大小关系是________.解析 因为f (x )在(0,+∞)上单调递增,且x 2+1≥2x >x (x >0),所以f (x 2+1)>f (x ). 答案 f (x 2+1)>f (x )3.(2013·济南外国语学校检测)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.解析 f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a 的取值范围是0<a ≤1. 答案 (0,1]考向一 函数单调性的判断【例1】 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 审题视点 可利用定义或导数法讨论函数的单调性. 解 设-1<x 1<x 2<1, f (x )=a x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a x 2-x 1(x 1-1)(x 2-1)当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上递增.[方法总结] 证明函数的单调性用定义法的步骤:取值—作差—变形—确定符号—下结论.【训练1】 已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. (1)证明 任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则 f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ), ∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.考向二 函数单调性的应用【例2】 (2013·鞍山模拟)已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b >0成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f ⎝ ⎛⎭⎪⎫x +12<f ⎝ ⎛⎭⎪⎫1x -1;(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解 (1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2) =f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2),由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增,∴⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1.∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增. ∴在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立. 下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1)≥0, ∴m ≤-2,或m ≥2.∴m 的取值范围是m =0或m ≥2或m ≤-2.[方法总结] 函数单调性的应用,主要有两个方面,即应用单调性求字母取值范围,二是应用单调性比较数值大小或解函数不等式.【训练2】 (1)已知函数f (x )=⎩⎨⎧x 2+4x ,x ≥0,2x -x 2,x <0,若f (1-a 2)>f (a ),则实数a 的取值范围是________.(2)已知函数f (x )=2-axa -1(a ≠1)是区间(0,1]上的减函数,则实数a 的取值范围为________.解析 (1)画图象或求导,可知函数f (x )是R 上的增函数,于是由f (1-a 2)>f (a ),得1-a 2>a ,即a 2+a -1<0,解得-1-52<a <-1+52. (2)由题意,当x =1时,2-ax =2-a ≥0,所以a ≤2且a ≠1,a ≠0. 若a <0,则2-ax 是增函数,要使f (x )是区间(0,1]上的减函数,必有a -1<0,即a <1.所以a <0.若a >0,则2-ax 是减函数,要使f (x )是区间(0,1]上的减函数,必有a -1>0,即a >1.所以1<a ≤2.综上,得a 的取值范围是(-∞,0)∪(1,2]. 答案 (1)⎝ ⎛⎭⎪⎫-1-52,-1+52 (2)(-∞,0)∪(1,2]高考经典题组训练1.(2012·陕西卷改编)下列函数:①y =x +1;②y =-x 3;③y =1x ;④y =x |x |,其中既是奇函数又是增函数的序号是________.解析 y =-x 3;y =1x ,y =x |x |是奇函数,仅y =x |x |是增函数. 答案 ④3.(2012·上海卷)已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.解析 因为y =e x 是增函数,所以由题意,y =|x -a |在区间[1,+∞)上是增函数,所以a ≤1. 答案 (-∞,1]4.(2010·天津卷改编)设f (x )=x 2-1,对任意x ∈⎣⎢⎡⎭⎪⎫32,+∞,f ⎝ ⎛⎭⎪⎫x m -4m 2f (x )≤f (x-1)+4f (m )恒成立,求实数m 的取值范围.解 由题意,得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立,即1m 2-4m 2≤-3x 2-2x +1在⎣⎢⎡⎭⎪⎫32,+∞上恒成立.因为y =-3x 2-2x +1在⎣⎢⎡⎭⎪⎫32,+∞上单调递增,所以当x =32时,y min =-53,所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0,解得m ≤-32或m ≥32.层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.(2013·南京金陵中学检测)下列函数中:①f (x )=1x ;②f (x )=(x -1)2;③f (x )=e x ;满足“对任意x 1x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的函数序号是________.解析 由题意,即判断哪些函数是(0,+∞)内的减函数.仅f (x )=1x 符合题意. 答案 ①2.下列函数中:①y =-x +1;②y =x ;③y =x 2-4x +5;④y =2x ,在区间(0,2)上为增函数的是________(填所有正确的编号).解析 y =-x +1在R 上递减;y =x 在R +上递增;y =x 2-4x +5在(-∞,2]上递减,在[2,+∞)上递增,y =2x 在R +上递减. 答案 ②3.(2012·镇江调研)若函数f (x )=x 2+(a 2-4a +1)x +2在区间(-∞,1]上是减函数,则a 的取值范围是________. 解析 因为f (x )是二次函数且开口向上, 所以要使f (x )在(-∞,1]上是单调递减函数,则必有-a 2-4a +12≥1,即a 2-4a +3≤0,解得1≤a ≤3.答案 [1,3]4.(2011·新课标全国卷)下列函数:①y =x 3;②y =|x |+1;③y =-x 2+1;④y = 2-|x |.既是偶函数又在(0,+∞)单调递增的函数序号是________.解析 y =x 3是奇函数,y =-x 2+1与y =2-|x |在(0,+∞)上是减函数. 答案 ②5.已知f (x )是定义在(-1,1)上的奇函数,且f (x )在(-1,1)上是减函数,则不等式f (1-x )+f (1-x 2)<0的解集为________. 解析 由f (x )是定义在(-1,1)上的奇函数, 及f (1-x )+f (1-x 2)<0, 得f (1-x )<-f (1-x 2), 所以f (1-x )<f (x 2-1).又因为f (x )在(-1,1)上是减函数, 所以⎩⎨⎧-1<1-x <1,-1<1-x 2<1,解得0<x <1.1-x >x 2-1.故原不等式的解集为(0,1). 答案 (0,1)6.(2012·南师附中检测)已知函数y =f (x )是定义在R 上的偶函数,当x ≤0时,y =f (x )是减函数,若|x 1|<|x 2|,则结论:①f (x 1)-f (x 2)<0;②f (x 1)-f (x 2)>0;③f (x 1)+f (x 2)<0;④f (x 1)+f (x 2)>0中成立的是________(填所有正确的编号). 解析 由题意,得f (x )在[0,+∞)上是增函数,且f (x 1)=f (|x 1|),f (x 2)=f (|x 2|),从而由0≤|x 1|<|x 2|,得f (|x 1|)<f (|x 2|),即f (x 1)<f (x 2),f (x 1)-f (x 2)<0,只能①是正确的. 答案 ①二、解答题(每小题15分,共30分) 7.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数.(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.(1)证明 法一 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0.因为f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,所以f (x 2)>f (x 1),因此f (x )在(0,+∞)上是增函数. 法二 因为f (x )=1a -1x , 所以f ′(x )=⎝ ⎛⎭⎪⎫1a -1x ′=1x 2>0,所以f (x )在(0,+∞)上为增函数.(2)解 因为f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又f (x )在⎣⎢⎡⎦⎥⎤12,2上单调递增,所以f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,故a =25.8.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数.(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明法一因为函数f(x)对于任意x,y∈R总有f(x)+f(y)=f(x+y),所以令x=y=0,得f(0)=0.再令y=-x,得f(-x)=-f(x).在R上任取x1>x2,则x1-x2>0,f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2).又由x>0时,f(x)<0,而x1-x2>0,所以f(x1-x2)<0,即f(x1)<f(x2).因此f(x)在R上是减函数.法二设x1>x2,则f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)+f(x2)-f(x2)=f(x1-x2).又由x>0时,f(x)<0,而x1-x2>0,所以f(x1-x2)<0,即f(x1)<f(x2),所以f(x)在R上为减函数.(2)解因为f(x)在R上是减函数,所以f(x)在[-3,3]上也是减函数,所以f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).而f(3)=3f(1)=-2,f(-3)=-f(3)=2.所以f(x)在[-3,3]上的最大值为2,最小值为-2.。

函数的奇偶性与单调性

函数的奇偶性与单调性

函数的奇偶性与单调性一、基本概念(1)函数的奇偶性:前提:函数的定义域原点对称..........。

()()()(),x D f x f x f x f x ∈-=-=-任意则为偶函数;若,则为奇函数。

变式:()()()()()()0;10f x f x f x f x f x --±==±=的情况单独验证(整体性质)(2)函数的单调性:(局部性质)()()()()()12121212,,,x x D x x f x fx f x D f x fx D ∈<<>任意若能得到,则在上为增函数;得到,则在上为减函数。

()()()()1212121200f x f x fx f x D D x x x x --><--变式:,函数在上为增函数,,则函数在上为减函数。

y f x ±±⨯⨯⨯±=注:1.关于奇偶性,两函数的公共定义域存在且关于原点对称的前提下奇奇=奇函数,偶偶=偶函数,奇奇=偶函数,偶偶=偶函数,奇偶=奇函数奇偶=非奇非偶函数2.关于单调性:增+增=增函数,减+减=减函数,增-减=增函数,减-增=减函数;在的函数值全为正数(全为负数)的前提下,=减函数,=增函数增减()113.复合函数奇偶性与单调性的结论:()()()()()()(),,y fx y g x y g x y f x yf g x y fx y g x =====⎡⎤⎣⎦==的值域与的定义域有公共部分,则函数存在,其中是外层函数,是内层函数。

内偶外偶、内偶外奇、内奇外偶均为偶函数,只有内奇外奇才为奇函数。

内增外增、内减外减均为增函数,内增外减、内减外增均为减函数。

(3)函数的凹凸性(局部性质):()[]()()()[]()[]()121212,,,,,,22,f x f x x x y f x x a b x x f y f x a b a b ++⎛⎫=∈≠<= ⎪⎝⎭若任意都有则称在上为凹函数如图1,2;反之则称它在上为凸函数如图3,4。

函数的单调性和奇偶性

函数的单调性和奇偶性

函数的单调性知识要点1、函数单调性定义:如果对于任意的 x 1、x 2∈(a,b),当x 1<x 2时,都有f (x 1)<f (x 2)〔或f (x 1)>f (x 2)〕,那么就说f (x )在这个区间(a,b)上是增函数(或减函数),(a,b)叫这个函数的单调递增(或递减)区间,说f (x )在这一区间上具有(严格的)单调性。

2、函数单调性指的是某个区间上的性质,是定义域中的一部分;要说函数是增函数则必须在整个定义域内递增;函数在每个区间上递增也未必是增函数,如正切函数,y = -1/x 等;3、复合函数单调性:同增异减4、判断函数单调性的方法:①定义法,即比较法;②图象法;③复合函数单调性判断法则;6、一些常用的结论:①在公共定义域内:增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数②函数(0)k y x k x=+>是奇函数,在(,-∞和)+∞上递增;在)⎡⎣和(0上是递减,进而可确定k y ax x =+型函数的的单调区间。

题型归类题型一:判断或证明函数的单调性例1 利用单调性的定义证明函数3()1f x x =-+在(-∞,+∞)上是减函数。

变式训练:讨论函数y =x +a x,(a >0)的单调性。

题型二:利用单调性求参数的值或取值范围例2(2004湖南)若f (x )= -x 2+2ax 与1)(+=x a x g 在区间[1,2]上都是减函数,则a 的值范围是题型三:函数单调性的应用例3 已知函数)(x f 的定义域是),0(+∞。

当1>x 时,,0)(>x f 且).()()(y f x f xy f +=(1) 求)1(f ;(2)证明)(x f 在定义域上是增函数;(3)如果1)31(-=f ,求满足不等式2)21()(≥--x f x f 的x 的取值范围。

高一寒假 第2,3讲 函数单调性与奇偶性

高一寒假 第2,3讲 函数单调性与奇偶性

函数单调性与奇偶性要点一、函数的单调性1.增函数、减函数的概念一般地,设函数f(x)的定义域为A,区间如果对于内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间上是增函数;如果对于内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在区间上是减函数.要点诠释:[1]属于定义域A内某个区间上;[2]任意两个自变量且;[3]都有;[4]图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.2.单调性与单调区间(1)单调区间的定义如果函数f(x)在区间D上是增函数或减函数,那么就说函数f(x)在区间D上具有单调性,D称为函数f(x)的单区间. 函数的单调性是函数在某个区间上的性质.要点诠释:[1]单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集;[2]单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的;[3]不能随意合并两个单调区间;[4]有的函数不具有单调性.(2)已知解析式,如何判断一个函数在所给区间上的单调性?基本方法:观察图形或依据定义.3.函数的最大(小)值一般地,设函数的定义域为,如果存在实数满足:①对于任意的,都有(或);②存在,使得,那么,我们称是函数的最大值(或最小值).要点诠释:[1]最值首先是一个函数值,即存在一个自变量,使等于最值;[2]对于定义域内的任意元素,都有(或),“任意”两字不可省;[3]使函数取得最值的自变量的值有时可能不止一个;[4]函数在其定义域(某个区间)内的最大值的几何意义是图象上最高点的纵坐标;最小值的几何意义是图象上最低点的纵坐标.4.证明函数单调性的步骤(1)取值.设是定义域内一个区间上的任意两个量,且;(2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形;(3)定号.判断差的正负或商与1的大小关系;(4)得出结论.5.函数单调性的判断方法(1)定义法;(2)图象法;(3)对于复合函数,若在区间上是单调函数,则在区间或者上是单调函数;若与单调性相同(同时为增或同时为减),则为增函数;若与单调性相反,则为减函数。

函数的单调性与奇偶性

函数的单调性与奇偶性

函数的单调性与奇偶性一、函数的单调性初中时我们学过,对于一次函数y=x+1,y随着x的增大而增大,我们称之为增函数;y=-x+l,y随着x的增大而减小,我们称之为减函数。

那么如何定义呢?用数学符号语言如何叙述呢?1.定义:一般地,设函数f(x)的定义域为D:在定义域内的某个区间上任取x1,x2,且x1<x2,若都有f(x1)<f(x2),则称f(x)是单调增函数;在定义域内的某个区间上任取x1,x2,且x1<x2,若都有f(x1)>f(x2),则称f(x)是单调减函数;若函数y=f(x)在某个区间上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有单调性,这一区间叫做y=f(x)的单调区间。

理解:初中的说法是描述性的语言,通俗易懂;而高中的定义体现了自变量的变化关系决定因变量的变化关系。

分为两个层次,一是在哪个范围上研究,二是符号语言是怎么样的。

今后学习奇偶性,周期性都是这样定义的。

注:(1)单调函数是对整个定义域而言的,单调性是一个局部概念,是针对定义域内某个区间而言的,通常谈到单调性都会注明单调区间。

(2)单调区间能写闭区间的最好写闭区间,若在区间的端点处没有定义,则写成开区间。

比如,反比例函数不是单调函数,但是它在(-∞,0)上是减函数,在(0,+∞)上也是减函数。

我们把(-∞,0)和(0,+∞)叫的单调减区间。

若表示为(-∞,0)∪(0,+∞)是不对的。

如右图所示的函数,单调区间是R,它是单调函数。

若去掉点(0,1),则单调区间是(-∞,0)∪(0,+∞)。

例1.证明函数在[0,+∞)上是增函数。

分析:判断函数在某一区间上的单调性,从图象上观察是一种常用而又较为粗略的方法,严格证明,需要从单调函数的定义入手。

证明:设x1≥0,x2>0,且x1<x2,则,∵0≤x1<x2, ∴x1-x2<0,∴f(x1)-f(x2)<0 即f(x1)<f(x2)由定义知,在[0,+∞)上是增函数。

函数的奇偶性与单调性

函数的奇偶性与单调性

减↓ 增↑ 减↓ 减↓ 增↑
对于复合函数f[g(x)]:“同号得增,异号得减”
三、函数的奇偶性
1、如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x), 那么f(x)叫做奇函数.
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),
那么f(x)叫做偶函数.
2、奇函数的图像关于原点对称;偶函数的图像关于y 轴对称.
函数图像能直观地显示函数的单调性.在单调区间上的增函 数,它的图像是沿x轴正方向逐渐上升的;在单调区间上的减 函数,它的图像是沿x轴正方向逐渐下降的.
单调性性质规律: 若函数f(x),g(x)在给定的区间上具有单调性,利用增(减)函数的定 义容易证得,在这个区间上:
(1)函数f(x)与f(x)+C(C为常数)具有相同的单调性.
1 ],单增区间是[2,+∞) 2
单减区间是(-∞,-
例5: 求函数y=f(x)在R上是减函数, 求y=f(|1 - x|)的单调递增区间。
单调递增区间是( -∞,1] 例6: 求函数y=18+2(2-x2)-(2-x2)2的单调区间 单增区间是(-∞,- 1],[ 0,1) 单减区间是(-1,0), [ 1,+∞)
(3)f(x)= (x-1) .
1 x 1 x
评析 用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)
之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查其
3、奇函数
4、奇函数
5、定义在实数集上的函数f(x),对任意x,y∈R,有 f(x+y)+f(x-y)=2f(x)f(y),且f(x)不等于0 求证:f(0)=1;f(x)为偶函数

函数的单调性和奇偶性

函数的单调性和奇偶性

一 、函数的单调性1、函数的单调性定义:设函数)(x f y =的定义域为A ,区间A I ⊆,如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I上是单调增函数,I 称为)(x f y =的单调增区间;如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I上是单调减函数,I 称为)(x f y =的单调减区间。

2、确定函数的单调性或单调区间的常用方法: (1)①定义法(取值――作差――变形――定号);(2)在选择填空题中还可用数形结合法、特殊值法等等,特别要注意(0by ax a x=+>,0)b >型函数的图象和单调性在解题中的运用:增区间为(,)-∞+∞,减区间为[. 例如:(1)若函数2)1(2)(2+-+=x a x x f在区间(-∞,4] 上是减函数,那么实数a 的取值范围是______ (答:3-≤a));(2)已知函数1()2ax f x x +=+在区间()2,-+∞上为增函数,则实数a 的取值范围_____(答:1(,)2+∞)(3)复合函数法:复合函数单调性的特点是同增异减 (4)若)(x f 与)(x g 在定义域内都是增函数(减函数),那么)()(x g x f +在其公共定义域内是增函数(减函数)。

3、单调性的说明:(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域; (2)函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即)(2121x x x x <<;三是同属于一个单调区间,三者缺一不可; (3)函数的单调性是对某个区间而言的,所以受到区间的限制,如函数xy 1=分别在)0,(-∞和),0(+∞内都是单调递减的,但是不能说它在整个定义域即),0()0,(+∞-∞ 内是单调递减的,只能说函数xy 1=的单调递减区间为)0,(-∞和),0(+∞。

函数的单调性与奇偶性

函数的单调性与奇偶性

函数的单调性与奇偶性①增函数的定义:如果函数f(x)在区间(a,b )上有定义,对于任意的x 1,x 2(a,b ),当x 1<x 2时,都有f(x 1)<f(x 2),那么函数f(x)在区间(a,b )上严格递增。

即函数f(x)在区间(a,b )上是增函数。

函数f(x)在区间(a,b )上严格递增,其图像是上升的。

②减函数的定义:如果函数f(x)在区间(a,b )上有定义,对于任意的x 1,x 2(a,b ),当x 1<x 2时,都有f(x 1)>f(x 2),那么函数f(x)在区间(a,b )上严格递减。

即函数f(x)在区间(a,b )上是减函数。

函数f(x)在区间(a,b )上严格递减,其图像是下降的。

注意:(1)函数的单调性离不开区间。

(2)单调函数是指在定义域上单调递增或单调递减的函数例1、用函数单调性的定义证明(1)在上是增函数。

(2)在上是减函数。

【课堂练习】1、证明在上是增函数。

∈∈32)(2++-=x x x f )41,(-∞1)(3+-=x x f ,0)(-∞x x xf 4)(+=),2(+∞2、证明在上是减函数。

例2、指出下列函数的单调区间(先考虑函数的定义域,再确定要研究的区间)(1) (2)例3、求复合函数的单调性(1) (2)X k b 1 . c o m注意某些判断函数单调性的逆向思维例4:已知函数在上是减函数,求实数的取值范围。

问题:如果该函数的递增区间是,怎样求解。

4)(2-=x xx f ,2)2(-11+=x y 123+-=x x y 245x x y --=1||-=x y 122--=ax x y )41,(-∞a )41,(-∞例5、求对勾函数)0k (>+=x k x y 的单调区间,画这些函数的图象。

问题:已知函数在上是增函数,求实数的取值范围。

奇函数、偶函数的定义: 奇函数:如果函数f(x)对于定义域内的任意x 的值,都有f(-x)=-f(x),那么函数f(x)是奇函数。

函数的奇偶性与单调性

函数的奇偶性与单调性

函数的奇偶性与单调性1.函数的奇偶性的定义: 如果对于函数f(x)的定义域内任意一个x, (1)都有f(-x)= ,那么称函数f(x)为奇函数;{或f(-x)+f(x)=0} (2)都有f(-x)= ,那么称函数f(x)为偶函数.{或f(-x)-f(x)=0}2.函数的奇偶性的性质:(1)奇、偶函数的定义域关于 对称; (2)若奇函数的定义域包含数0,则f(0)= (3)奇函数的图象关于 对称; (4)偶函数的图象关于 对称. 3.函数单调性的定义:如果函数f(x)对区间D 内的任意,,当<时, (1)都有f()<f(),则称f(x)是区间D 上的 函数; (2)都有f()>f(),则称f(x)是区间D 上的 函数.1、下列函数中,在其定义域上既是奇函数又是增函数的为( )A. B. C. D.2、下列函数既不是奇函数,也不是偶函数,且在上单调递增的是( )A. B. C. D.3、下列函数中,既是偶函数又在上单调递增的是( )A .B .C .D .1x 2x 1x 2x 1x 2x 1x 2x (0,)+∞1y x =+21y x =-+||1y x =+12xy =-4、 函数的递减区间是__________.5、 函数,设,则有( ) A. B. C.D. 6、已知偶函数在上单调递增,且,则满足的的取值范围是( ) A.B. C. D.7、已知f (x )是定义在R 上的奇函数,当x≥0时,f (x )=+2x ,若f ()>f (a ),则实数a 的取值范围是( )A. (﹣∞,﹣1)∪(2,+∞)B. (﹣2,1)C. (﹣1,2)D. (﹣∞,﹣2)∪(1,+∞)8当 时,,则的取值范围是( )9且满足对任意的实数成立,则实数的取值范围是( ) A. B. C. D.10、 函数 在上是增函数,则的范围是_____.2x 22a -12x x ≠a 12x x ≠a ()48,[)48,()1+∞,()18,。

函数的单调性和奇偶性

函数的单调性和奇偶性

函数的单调性和奇偶性一、单调性一般地,设函数y=f(x)的定义域为A ,区间I ⊆A 如果对于区间I 内的任意两个值x1,x2,当x1<x2时,都有f(x1 )<f(x2 ),那么就说y=f(x)在区间I 上是增函数。

I 称为y=f(x)的单调增区间。

如果对于区间I 内的任意两个值x1,x2,当x1<x2时,都有f(x1 )>f(x2 ),那么就说在这个区间I 上是减函数。

I 称为y=f(x)的单调减区间。

●作差法证明单调性(作差法的基本步骤:设元→作差→化简→判断符号→下结论)例 证明函数x x x f 2)(+=在),2(+∞上是增函数.●(重点)二次函数单调性判断(关键是看准对称轴) ① 定区间,定对称轴例 说明函数242-+-=x x y 在区间]3,0[的单调性及最值.② 定区间,动对称轴例 已知函数3)24(2-++=x a x y 在区间]3,1[单调递增,求a 的取值范围.③ 定对称轴,动区间 例 已知22)(2++=x x x f ,当],2[a a x -∈时,讨论该函数的单调性.④ 动区间,动对称轴例 已知函数4)13(2+--=x a x y ,讨论函数在区间]1,[+a a 的单调性.(难点)复合函数的单调性判断复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”① 外层函数单调性确定例 求下列函数的单调性y=log4(x 2-4x+3)② 外层函数调性不确定例 已知函数g(x)=(log a x)2+(log a 2-1)log a x 在[1/2,2]上为增函数,求a 的取值范围?课后练习1.下述函数中,在)0,(-∞上为增函数的是( )A .y=x2-2B .y=x 3C .y=x --21D .2)2(+-=x y2.下述函数中,单调递增区间是]0,(-∞的是( )A .y=-x 1B .y=-(x -1)C .y=x 2-2D .y=-|x|3.函数)(2∞+-∞-=,在x y 上是( ) A .增函数 B .既不是增函数也不是减函数 C .减函数 D .既是减函数也是增函数4.若函数f(x)是区间[a,b )上的增函数,也是区间(b,c]上的增函数,则函数f(x)在区间[a,c]上是( )A .增函数B .是增函数或减函数C .是减函数D .未必是增函数或减函数5.已知函数f(x)=8+2x-x 2,如果g(x)=f(2-x 2),那么g(x) ( ) A.在区间(-1,0)上单调递减 B.在区间(0,1)上单调递减C.在区间(-2,0)上单调递减 D 在区间(0,2)上单调递减6.函数),2[,32)(2+∞-∈+-=x mx x x f 当时是增函数,则m 的取值范围是( ) A . [-8,+∞) B .[8,+∞) C .(-∞,- 8] D .(-∞,8] 7.如果函数f(x)=x 2+bx+c 对任意实数t 都有f(4-t)=f(t),那么( )A .f(2)<f(1)<f(4)B .f(1)<f(2)<f(4)C .f(2)<f(4)<f(1)D .f(4)<f(2)<f(1) 8.(11年真题)已知二次函数2()1f x ax bx =++ 是偶函数,且(1)0f =.(1)求a ,b 的值;(2)设()(2)g x f x =+.若()g x 在区间[2,]m - 上的最小值为3-,求实数m 的值. .二、奇偶性一般地,如果对于函数的定义域内任意一个x ,都有,)()(x f x f =-,那么函数)(x f 就称偶函数;偶函数的图像关于Y 轴对称,且对称轴左右两边的单调性相反(常数函数除外)。

函数的单调性与奇偶性

函数的单调性与奇偶性

函数的单调性与奇偶性【知识要点】1、 函数的单调性定义:一般的,设函数)(x f 的定义域为I ,如果对定义域内某个区间D 上的任意两个自变量的值时当2121,,x x x x <,若),()(21x f x f <则)(x f 在区间D 上是增函数;若),()(21x f x f >则)(x f 在区间D 上是减函数.2、函数单调性的判定方法.(1)定义法⎪⎪⎩⎪⎪⎨⎧--<定义得出结论第四步:判断,即根据,分类讨论的正负,当符号不定时第三步:定号,即确定积的形式并变形成若干个因式的差第二步:作差变形,作,令是该区间内任意两个值第一步:取值,即设)()(),()(,21212121x f x f x f x f x x x x (2)综合法:①函数)(x f y -=与函数)(x f y =的单调性相反;②当)(x f 恒为正或恒为负时,函数)()(1x f x f y 与=的单调性相反; ③在公共区间内:增函数+增函数=增函数,增-减=增等.(2)图像法.即根据函数的图像直接判断函数在区间上的单调性.1、函数奇偶性的定义:若函数()f x 的定义域D 关于原点对称,对于函数()f x 的定义域D 内任意一个自变量x ,如果都有()f x -=-()f x (或()f x +()f x -=0)则称()f x 为奇函数;对于函数()f x 的定义域内D 任意一个自变量x ,如果都有()f x -= ()f x 〔或()f x -()f x -=0〕,则称()f x 为偶函数.2、注意:函数的定义域关于原点对称是判断该函数的奇偶性的前提.3、奇偶函数图像的性质(1)奇函数的图像关于原点对称。

反过来,如果一个函数的图像关于原点对称,那么这个函数为奇函数. 奇函数在关于原点对称的区间上单调性相同(2)偶函数的图像关于y 轴对称。

反过来,如果一个函数的图像关于y 轴对称,那么这个函数为偶函数. 偶函数在关于原点对称的区间上单调性相反.(3)若奇函数的定义域包含数0,则)0(f =0.【典型例题】例1、函数2()2f x x t x =-+在[1,2]上是单调递增函数,则实数的取值范围是_________ 例2、已知2()3f x ax bx a b =+++是偶函数,且其定义域为[]1,2a a -,求b ax y +=在坐标轴上的截距例3、试判断函数x x x f 2)(+=在[2,+∞)上的单调性.例4、若函数)0()(2≠++=a c bx ax x f 是偶函数,试判断cx bx ax x g ++=23)(的奇偶性.例5、设)(x f 、)(x g 都是单调函数,有如下四个命题:①若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增;②若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增;③若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减;④若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减;其中正确的命题是 ( )A .① ③B 。

函数的单调性和奇偶性

函数的单调性和奇偶性
有效地求解方程
20XX
感谢您的聆听
ADD YOUR TITLE ADD YOUR TБайду номын сангаасTLE HERE.ADD YOUR TITLE.ADD YOUR TITLE. HERE.ADD YOUR TITLE.ADD YOUR TITLE
例如,考虑函数$f(x) = x^2$,我们可以看到,对于任意的$x_1 < x_2$,有$f(x_1) < f(x_2)$,因此,函数$f(x) = x^2$在其定义域内是增函数
2
函数的奇偶性是函数的另一重要 特性,它描述了函数图像关于原 点的对称性。如果一个函数的图 像关于原点对称,即对于定义域 内的任意$x$,都有$f(-x) = f(x)$,则称这个函数为奇函数; 如果一个函数的图像关于y轴对 称,即对于定义域内的任意$x$, 都有$f(-x) = f(x)$,则称这个 函数为偶函数
判断函数奇偶性的常用方法有定 义法和图像法。定义法是通过比 较$f(-x)$和$f(x)$的关系来判 断函数的奇偶性;图像法则是通 过观察函数的图像来判断其奇偶 性
例如,考虑函数$f(x) = x^3$, 我们可以看到,对于任意的$x$, 都有$f(-x) = -x^3 = -f(x)$, 因此,函数$f(x) = x^3$是奇函

3
T
函数的单调性和奇偶性虽然描 述的是不同的性质,但它们之 间也存在一定的关系。首先, 对于奇函数和偶函数,它们的 单调性在不同的区间上可能会 有所不同。例如,函数$f(x) = x^2$在$(-\infty, 0]$上
是增函数,在$
Markdig.Syntax.Inlines.Li nkDelimiterInline
1
函数的单调性

第11讲-函数的单调性与奇偶性

第11讲-函数的单调性与奇偶性

第11讲 函数的单调性与奇偶性姓姓名: 学校: 年级:【知识要点】1.函数单调性的判定方法.(1)定义法:第一步:取值,即设21,x x 是该区间内的任意两个值,是21x x <第二步:作差变形,即作差)()(21x f x f -,并向利于判断符号的方向变形第三步:定号,即确定)()(21x f x f -的符号,当符号不定时,再分类讨论.第四步:判断,即根据定义做出结论常用结论:①函数)(x f y -=与函数)(x f y =的单调性相反;②当)(x f 恒为正或恒为负时,函数)()(1x f x f y 与=的单调性相反;③在公共区间内:增函数+增函数=增函数,增-减=增等.(2)图像法.即根据函数的图像判断函数在某区间的单调性.2、用定义判断函数奇偶性的步骤:(1)奇函数:对于函数()f x 的定义域内任意一个x ,都有()f x -=-()f x 或()f x + ()f x -=0则称()f x 为奇函数.(2)偶函数:对于函数()f x 的定义域内任意一个x ,都有()f x -= ()f x 〔或()f x -()f x -=0〕,则称()f x 为偶函数. 3、奇偶函数图像的性质(1)、奇函数的图像关于原点对称,反过来,如果一个函数的图像关于原点对称,那么这个函数为奇函数. 奇函数在关于原点对称的区间上单调性相同(2)、偶函数的图像关于y 轴对称,反过来,如果一个函数的图像关于y 轴对称,那么这个函数为偶函数. 偶函数在关于原点对称的区间上单调性相反(3)若奇函数的定义域包含数0,则f (0)=0【典型例题】例1、函数2()2f x x t x =-+在[1,2]上是单调递增函数,则实数的取值范围是_________例2、判断下列函数的奇偶性1、2()1f x x =-2、()2f x x =3、2()f x x =,[1,3]x ∈-例5、已知()y f x =是定义()1,1-上的增函数,且2(2)(4)0f a f a ---<,求a 的取值范围例6、定义在R 上的奇函数()f x 在(0,+∞)上是增函数,又f (-3)=0,则不等式 ()0xf x <的解集为A 、(-3,0)∪(0,3)B 、(-∞,-3)∪(3,+∞)C 、(-3,0)∪(3,+∞)D 、(-∞,-3)∪(0,3) 2、函数2()23f x x ax =--在区间[1,2]上是单调函数的条件是 ( )A. (,1]a ∈-∞B.[2,)a ∈+∞C.[1,2]a ∈D.(,1][2,)a ∈-∞⋃+∞【经典练习】1、若)(x f y =为偶函数,则下列点的坐标在函数图像上的是 ( )A.))(,(a f a --B. ))(,(a f a -C. ))(,(a f a -D. ))(,(a f a ---2、下列函数中,在区间(0,1)上是增函数的是 ( ) A. x y = B. x y -=3 C. x y 1= 42+-=x y3、奇函数()f x 在区间[,]a b 上是减函数且有最小值m ,那么()f x 在[,]b a --上是( )A 、减函数且有最大值m -B 、减函数且有最小值m -C 、增函数且有最大值m -D 、增函数且有最小值m -4、若函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,则实数a 的取值范围是_________5、若函数2()(2)(1)3f x m x m x =-+-+是偶函数,则实数m 的值_________6、已知,13)5(,18)(357=++++=f dx cx bx ax x f 则._______)5(=-f7、函数3()1f x x =-+在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是 减函数?试证明你的结论【课后作业】1、设)(x f 、)(x g 都是单调函数,有如下四个命题:①若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增②若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增③若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减④若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减其中正确的命题是 ( )A .① ③B 。

函数的单调性和奇偶性精品讲义

函数的单调性和奇偶性精品讲义

第三讲 函数的单调性、奇偶性一、知识点归纳函数的单调性〔1〕定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)〔f (x 1)>f (x 2)〕,那么就说f (x )在区间D 上是增函数〔减函数〕,区间D 为函数y =f (x )的增区间〔减区间〕概括起来,即1212121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ⎧⎧<>⎧⎪⎪⎨⎨<>⎪⎩⎪⎩⎨⎧<>⎧⎪⎪⎨⎨⎪><⎪⎩⎩⎩增函数或“同增异减”减函数或 〔2〕函数单调性的证明的一般步骤:①设1x ,2x 是区间D 上的任意两个实数,且12x x < ②作差12()()f x f x -,并通过因式分解、配方、通分、有力化等方法使其转化为易于判断正负的式子;③确定12()()f x f x -的符号;④给出结论证明函数单调性时要注意三点:①1x 和2x 的任意性,即从区间D 中任取1x 和2x ,证明单调性时不可随意用量额特殊值代替;②有序性,即通常规定12x x <;③同区间性,即1x 和2x 必须属于同一个区间。

〔3〕设复合函数()[]x g f y =是定义区间M 上的函数,假设外函数f(x)与内函数g(x)的单调性相反,那么()[]x g f y =在区间M 上是减函数;假设外函数f(x)与内函数g(x)的单调性相同,那么()[]x g f y =在区间M 上是增函数。

概括起来,即“同增异减II 号〞 〔4〕简单性质: ①()f x()f x 与()f x -及1()f x 单调性相反 ②在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。

函数的单调性与奇偶性

函数的单调性与奇偶性

函数的单调性与奇偶性一、函数单调性: 一些基本函数的单调性: (1)一次函数b kx y +=,当0>k时,在 上是增函数,当0<k时,在上是减函数。

(2)反比例函数xk y=,当0>k时,在 和 上都是减函数,当0<k时,在 和 上都是增函数。

(3)二次函数cbx ax y ++=2①0>a时,在 为减函数;在 为增函数②0<a 时,在 为减函数;在 为增函数。

⑷当1>a时x a y =和xy alog=在其定义域内均为当10<<a 时xay =和xyalog =在其定义域均为⑸形如xa x y +=①当0>a时,在 为增函数;在 为减函数②当0<a 时,在 和 为增函数 二、函数奇偶性 函数的奇偶性与单调性①定义域含零的奇函数有0)0(=f (应用于求参数)。

若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。

②奇函数在对称的两个单调区间内有相同的单调性;偶函数在对称的两个单调区间内有相反的单调性。

③确定函数的单调性或单调区间,在解题中常用定义法、导数法;在填空题中还常用数形结合法、特殊值法等。

基础训练:1.已知f(x)为R 上的增函数,则满足f(x 2)≤f(1)的实数x 的取值范围是2.函数f(x)是定义在(-2,2)上的奇函数,当x ∈(0,2)时f(x)=2x -1 则f(-1)的值为3.已知f(x)=a+142+x是奇实数a=4.函数f(x)=(x-1)1-的单调 区间为5.已知f(x)为奇函数,在x ∈(0,+∞)时的解析式是f(x)=-x 2+2x 则x ∈(-∞,0)时f(x)=6.已知f(x)为R 上的偶函数,且方程2 f(x)+1=0有三个不同的实根,则x 1+x 2+x 3= 例题讲解:例1.判断下列各函数的奇偶性 ①f(x)=(x-1)xx -+11 ②f(x)=22)1lg(22---x x③f(x) =⎪⎩⎪⎨⎧>+-≤-<+)1(,2)1(,0)1(,2x x x x x ④)1lg(2++x x例2.求证 函数f(x)=x 3+x 在(-∞,+∞)上是增函数单调性例3.设f(x) =cbx ax++22是奇函数(a b c ∈Z )且f(1)=3 f(2)=4(1)求f(x),(2)讨论f(x)在区间(-∞,0)上的单调性例4 已知)(x f 是定义在(-1,1)上的偶函数,且在[)1,0上为增函数。

函数的奇偶性与单调性

函数的奇偶性与单调性

函数的奇偶性与单调性一.知识总结1.函数的奇偶性(首先定义域必须关于原点对称)(1)为奇函数;为偶函数;(2)奇函数在原点有定义(3)任一个定义域关于原点对称的函数一定可以表示成一个奇函数和一个偶函数之和即(奇)(偶).2.函数的单调性(注:①先确定定义域;②单调性证明一定要用定义)(1)定义:区间上任意两个值,若时有,称为上增函数,若时有,称为上减函数.(2)奇函数在关于原点对称的区间上单调性相同;偶函数在关于原点对称的区间上单调性相反.判断函数单调性的方法:①定义法,即比差法;②图象法;③单调性的运算性质(实质上是不等式性质);④复合函数单调性判断法则.3.周期性:周期性主要运用在三角函数及抽象函数中,是化归思想的重要手段.求周期的重要方法:①定义法;②公式法;③图象法;④利用重要结论:若函数f(x)满足f(a-x)=f(a+x),f(b-x)=f(b+x),a≠b,则T=2|a-b|.二.例题精讲【例1】已知定义域为的函数是奇函数.(Ⅰ)求的值;(Ⅱ)若对任意的,不等式恒成立,求的取值解析:(Ⅰ)因为是奇函数,所以=0,即又由f(1)= -f(-1)知(Ⅱ)由(Ⅰ)知.又由题设条件得:,即:,整理得上式对一切均成立,从而判别式【例2】设函数在处取得极值-2,试用表示和,并求的单调区间.解:依题意有而故解得从而。

令,得或。

由于在处取得极值,故,即。

(1)若,即,则当时,;(2)当时,;当时,;从而的单调增区间为;单调减区间为若,即,同上可得,的单调增区间为;单调减区间为【例3】(理)设函数,若对所有的,都有成立,求实数的取值范围. (文)讨论函数的单调性(理)解法一:令g(x)=(x+1)ln(x+1)-ax,对函数g(x)求导数:g′(x)=ln(x+1)+1-a令g′(x)=0,解得x=e a-1-1,(i)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数,又g(0)=0,所以对x≥0,都有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax.(ii)当a>1时,对于0<x<e a-1-1,g′(x)<0,所以g(x)在(0,e a-1-1)是减函数,又g(0)=0,所以对0<x<e a-1-1,都有g(x)<g(0),即当a>1时,不是对所有的x≥0,都有f(x)≥ax成立.综上,a的取值范围是(-∞,1].解法二:令g(x)=(x+1)ln(x+1)-ax,于是不等式f(x)≥ax成立即为g(x)≥g(0)成立.对函数g(x)求导数:g′(x)=ln(x+1)+1-a令g′(x)=0,解得x=e a-1-1,当x>e a-1-1时,g′(x)>0,g(x)为增函数,当-1<x<e a-1-1,g′(x)<0,g(x)为减函数,所以要对所有x≥0都有g(x)≥g(0)充要条件为e a-1-1≤0.由此得a≤1,即a的取值范围是(-∞,1].(文)解:设,则∵∴,,,当时,,则为增函数当时,,则为减函数当时,为常量,无单调性【例4】(理)已知函数,其中为常数.(Ⅰ)若,讨论函数的单调性;(Ⅱ)若,且=4,试证:.(文)已知为定义在上的奇函数,当时,,求的表达式.(理)(文)解:∵为奇函数,∴当时,∵为奇函数∴∴∴三.巩固练习1.已知是上的减函数,那么的取值范围是( ) A. B. C. D.2.已知是周期为2的奇函数,当时,,设则( ) A. B.C. D.3.下列函数中,在其定义域内既是奇函数又是减函数的是( )A. B. C. D.4.若不等式对于一切 (0,)成立,则的取值范围是( ) A.0 B. –2 C.- D.-35.设是上的任意函数,则下列叙述正确的是( )A.是奇函数B.是奇函数C.是偶函数D.是偶函数6.已知定义在上的奇函数满足,则的值为( ) A.-1 B.0 C.1 D.27.已知函数的图象与函数(且)的图象关于直线对称,记.若在区间上是增函数,则实数的取值范围是( )A. B. C. D.8.(理)如果函数在区间上是增函数,那么实数的取值范围是( ) A.B.C.D.9.对于上可导的任意函数,若满足,则必有( )A. B. C.D.10.已知,则( )A. B. C. D.11.已知函数,若为奇函数,则 .12.已知函数是定义在上的偶函数. 当时,,则当时, .13.是定义在上的以3为周期的偶函数,且,则方程=0在区间(0,6)内解的个数的最小值是( ) A.5 B.4 C.3 D.214.下列函数既是奇函数,又在区间上单调递减的是( )A. B. C. D.15.若函数, 则该函数在上是( )A.单调递减无最小值B.单调递减有最小值C.单调递增无最大值D.单调递增有最大值16.若函数在区间内单调递增,则的取值范围是( )A. B. C. D.17.设是定义在上的奇函数,且的图象关于直线对称,则______.18.设函数在上满足,,且在闭区间[0,7]上,只有.(Ⅰ)试判断函数的奇偶性;(Ⅱ)试求方程=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.19. (理)已知,函数(1)当为何值时,取得最小值?证明你的结论;(2)设在[ -1,1]上是单调函数,求的取值范围.(文)已知为偶函数且定义域为,的图象与的图象关于直线对称,当时,,为实常数,且.(1)求的解析式;(2)求的单调区间;(3)若的最大值为12,求.20.已知函数的图象过点(0,2),且在点处的切线方程为.(1)求函数的解析式;(2)求函数的单调区间.21.已知向量若函数在区间(-1,1)上是增函数,求的取值范围.22. (理)已知函数,,.若,且存在单调递减区间,求的取值范围.(文)已知函数在区间上是减函数,且在区间上是增函数,求实数的值巩固练习参考答案1. C2. D3. A4. C5. D6. B7. D8.B 9.C 10. A 11. a=12. -x-x4 13. B 14.D 15.A 16.B 17. 018 .解:由f(2-x)=f(2+x),f(7-x)=f(7+x)得函数的对称轴为,从而知函数不是奇函数,由,从而知函数的周期为又,故函数是非奇非偶函数;(II)由(II) 又故f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数在[0,2005]上有402个解,在[-2005.0]上有400个解,所以函数在[-2005,2005]上有802个解.19. (理) 解:(I)对函数求导数得令得[+2(1-)-2]=0从而+2(1-)-2=0解得当变化时,、的变化如上表∴在=处取得极大值,在=处取得极小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
今天学
高中数学 函数单调性与奇偶性
让课堂无处不在
今天学什么?
一.知识梳理 二.讲练结合 三.方法规律 四.课堂总结 五.反思提升
1.函数的单调性
(1)单调函数的定义
增函数
减函数
一般地,设函数 f(x)的定义域为 I:如果对于定义域 I
内某个区间 D 上的任意两个自变量的值 x1,x2
定义 当 x1<x2 时,都 有

①fxx11--xf2x2>0⇔f(x)在[a,b]上是增函数;
与 技
fxx11--xf2x2<0⇔f(x)在[a,b]上是减函数.

②(x1-x2)[f(x1)-f(x2)]>0⇔f(x))[f(x1)-f(x2)]<0⇔f(x)在[a,b]上是减函数.
成两个基本初等函 数;
(3)分别确定两基本 初等函数的单调性;
∴y= x2+x-6的单调减区间为(-∞,-3], (4)按“同增异减”
的原则,确定原函
单调增区间为[2,+∞).
数的单调区间.
如何确定函数
f
(
x)

x

4, x
x[1,5]的单调区间?
2.求函数的单调区间

首先应注意函数的定义域,函数的单调区间都
所以函数 f(x)在(0, a]上是减函数; 当 a≤x1<x2 时,x1x2>a,又 x1-x2<0, 所以 f(x1)-f(x2)<0,即 f(x1)<f(x2), 所以函数 f(x)在[ a,+∞)上是增函数.
1.利用定义判断或证明函数的单调性

设任意 x1,x2∈[a,b]且 x1<x2,那么
有 f(x1)<f(x2)
,那 当 x1<x2 时,都有 f(x1)>f(x2) ,
那么就说函数 f(x)在区间 D 上是
么就说函数 f(x)在区
减函数
间 D 上是增函数
图象 描述
自左向右看图象是
自左向右看图象是
图象 描述
自左向右看图象是
上升的
自左向右看图象是
下降的
(2)单调区间的定义
如果函数 y=f(x)在区间 D 上是
,那 当 x1<x2 时,都有

那么就说函数 f(x)在区间 D 上是
么就说函数 f(x)在区
减函数
间 D 上是增函数
1.函数的单调性
(1)单调函数的定义
增函数
减函数
一般地,设函数 f(x)的定义域为 I:如果对于定义域 I
内某个区间 D 上的任意两个自变量的值 x1,x2
定义 当 x1<x2 时,都

函数 y=f(x)在这一区间具有(严格的)单调性,
函数 y=f(x)的单调区间.
,那么就说 叫做
(2)单调区间的定义
如果函数 y=f(x)在区间 D 上是 增函数 或减函数,那么就说 函数 y=f(x)在这一区间具有(严格的)单调性, 区间D 叫做
函数 y=f(x)的单调区间.
突破5个考点
考点一 单调性判断 考点二 求单调区间 考点三 比较大小 考点四 求函数最值 考点五 含参讨论
(1)证明 设 x1,x2 是任意两个正数,且 0<x1<x2, 则 f(x1)-f(x2)=x1+xa1-x2+xa2 =x1x-1x2x2(x1x2-a). 当 0<x1<x2≤ a时,0<x1x2<a,又 x1-x2<0, 所以 f(x1)-f(x2)>0,即 f(x1)>f(x2),

的单调性相同(同时为增或减),则 y=f[g(x)]为增

函数;若 t=g(x)与 y=f(t)的单调性相反,则 y=
f[g(x)]为减函数.
简称:同增异减.
考点三 比较大小 典例:(12 分)函数 f(x)对任意的 m、n∈R,都有 f(m+n)=f(m) +f(n)-1,并且 x>0 时,恒有 f(x)>1. (1)求证:f(x)在 R 上是增函数; (2)若 f(3)=4,解不等式 f(a2+a-5)<2.


是其定义域的子集;其次掌握一次函数、二次

函数等基本初等函数的单调区间.常用方法:

根据定义、利用图象和单调函数的性质、利用
导数的性质.
3.复合函数的单调性
对于复合函数 y=f[g(x)],若 t=g(x)在区间(a,b)


上是单调函数,且 y=f(t)在区间(g(a),g(b))或者

(g(b),g(a))上是单调函数,若 t=g(x)与 y=f(t)
考点三 比较大小
典例:(12 分)函数 f(x)对任意的 m、n∈R,都有 f(m+n)=f(m)
考点一 单调性判断
跟踪训练 1 (1)已知 a>0,函数 f(x)=x+ax (x>0),证明:函 数 f(x)在(0, a]上是减函数,在[ a,+∞)上是增函数;
跟踪训练 1 (1)已知 a>0,函数 f(x)=x+ax (x>0),证明:函 数 f(x)在(0, a]上是减函数,在[ a,+∞)上是增函数;
考点三 比较大小
典例:(12 分)函数 f(x)对任意的 m、n∈R,都有 f(m+n)=f(m) +f(n)-1,并且 x>0 时,恒有 f(x)>1. (1)求证:f(x)在 R 上是增函数; (2)若 f(3)=4,解不等式 f(a2+a-5)<2.
(1)证明 设 x1,x2∈R,且 x1<x2,∴x2-x1>0, ∵当 x>0 时,f(x)>1,∴f(x2-x1)>1. f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1, ∴f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2), ∴f(x)在 R 上为增函数.
函数的单调性是对某个区间而言的.
考点二 求单调区间
【方法锦囊】
求复合函数y= f(g(x))的单调区间的 步骤: (1)确定定义域; (2)将复合函数分解 成两个基本初等函 数; (3)分别确定两基本 初等函数的单调性; (4)按“同增异减” 的原则,确定原函 数的单调区间.
考点二 求单调区间
【例 2】►求函数 y= x2+x-6的单调区间.
【方法锦囊】
解 令 u=x2+x-6,y= x2+x-6可以看作有 求复合函数y=
y= u与 u=x2+x-6 的复合函数. 由 u=x2+x-6≥0, 得 x≤-3 或 x≥2.
f(g(x))的单调区间的 步骤:
(1)确定定义域; (2)将复合函数分解
∵u=x2+x-6 在(-∞,-3]上是减函数, 在[2,+∞)上是增函数, 而 y= u在(0,+∞)上是增函数.
相关文档
最新文档