初中数学二次函数复习专题
2024年初中升学考试九年级数学专题复习待定系数法求二次函数解析式
![2024年初中升学考试九年级数学专题复习待定系数法求二次函数解析式](https://img.taocdn.com/s3/m/23edd27d7275a417866fb84ae45c3b3566ecdd7d.png)
待定系数法求二次函数解析式19.(2023•绍兴)已知二次函数y=﹣x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标;②当﹣1≤x≤3时,求y的取值范围;(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.【答案】(1)(2,7);(2)﹣2≤y≤7;(3)y=﹣x2+2x+2.【分析】(1)先把解析式进行配方,再求顶点;(2)根据函数的增减性求解;(3)根据函数的图象和系数的关系,结合图象求解.【解答】解:(1)①∵b=4,c=3 时,∴y=﹣x2+4x+3=﹣(x﹣2)2+7,∴顶点坐标为(2,7).②∵﹣1≤x≤3中含有顶点(2,7),∴当x=2 时,y有最大值7,∵2﹣(﹣1)>3﹣2,∴当x=﹣1 时,y有最小值为:﹣2,∴当﹣1≤x≤3时,﹣2≤y≤7.(2)∵x≤0时,y的最大值为2;x>0时,y的最大值为3,∴抛物线的对称轴x=b2在y轴的右侧,∴b>0,∵抛物线开口向下,x ≤0时,y 的最大值为2,∴c =2,又∵4×(−1)×c−b 24×(−1)=3,∴b =±2,∵b >0,∴b =2.∴二次函数的表达式为 y =﹣x 2+2x +2.【点评】本题考查了二次函数的性质,掌握数形结合思想是解题的关键.待定系数法求二次函数解析式33.(2023•宁波)如图,已知二次函数y =x 2+bx +c 图象经过点A (1,﹣2)和B (0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y ≤﹣2时,请根据图象直接写出x 的取值范围.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数的性质;二次函数图象上点的坐标特征.【分析】(1)用待定系数法求出函数表达式,配成顶点式即可得顶点坐标;(2)求出A 关于对称轴的对称点坐标,由图象直接可得答案.【解答】解:(1)把A (1,﹣2)和B (0,﹣5)代入y =x 2+bx +c 得:{1+b +c =−2c =−5, 解得{b =2c =−5,∴二次函数的表达式为y=x2+2x﹣5,∵y=x2+2x﹣5=(x+1)2﹣6,∴顶点坐标为(﹣1,﹣6);(2)如图:∵点A(1,﹣2)关于对称轴直线x=﹣1的对称点C(﹣3,﹣2),∴当y≤﹣2时,x的范围是﹣3≤x≤1.【点评】本题考查二次函数图象及性质,解题的关键是掌握待定系数法,求出函数表达式.。
二次函数专题复习
![二次函数专题复习](https://img.taocdn.com/s3/m/2505a185970590c69ec3d5bbfd0a79563c1ed431.png)
(5) y=2x2向左平移2个单位,再向下平移3个单位得到
函数解析式是 y=2(x+2)2-3。
(6)已知二次函数y=x2-4x-5 , 求下列问题
△PAB,求P的坐标;
(4)第(3)题改为在直线y= -x+3上是否存在 点坐P标,;使若S不△PA存C=在,12说S明△P理AB?由若。存答在案,一求样出吗点?P的
P
y
(0,3) C
A
Q
o
y
(0,3) CP
B(3,0) A
x
oQ
(B 3,0) x
再见
得的图象解析式是 y=3x2
。
4、已知二次函数y=a(x-h)2+k的图象过原点, 最小值是-8,且形状与抛物线y=0.5x2-3x-5的形
状相同,其解析式为 y=0.5(x-16。)2-8
5、若x为任意实数,则二次函数y=x2+2x+3的函
数值y的取值范围是 y≥2 。
6、抛物线y=2x2-4x-1是由抛物线y=2x2-bx+c向
1.已知一个二次函数的图象经过点 (0,0),(1,﹣3),(2,﹣8)。
2.已知二次函数的图象的顶点坐标为 (-2,-3),且图象过点(-3,-2)。
3.已知二次函数的图象的对称轴是直线x=3, 并且经过点(6,0),和(2,12)
4.矩形的周长为60,长为x,面积为y,则y关于
x的函数关系式
。
如何判别a、b、c、b2-4ac,2a+b,a+b+c的符 号
二次函数核心考点初中数学经典课件
![二次函数核心考点初中数学经典课件](https://img.taocdn.com/s3/m/26bc776c78563c1ec5da50e2524de518964bd33f.png)
y=x2-1
口诀
左加右减,上加下减
核心考点
3.如图,已知二次函数y=x2+ax+a+1的图象经过 点P(-2,3).
(1)求a的值和该函数图象的顶点坐标. (2)点Q(m,n)在该二次函数图象上. ①当m=2时,求n的值; ②当m≤x≤m+3时,该二次函数有最小值11,请根据 图象求出m的值.
核心考点
期末复习专题4
二次函数核心考点
九年级上册
专题目录
核心考点
考点1 二次函数的图象与性质
1.(郴州)关于二次函数y=(x-1)2+5,下列说法正确的是( )
D
A.函数图象的开口向下 B.函数图象的顶点坐标是(-1,5)
a>0,开口向上
C.该函数有最大值,最大值是5 D.当x>1时,y随x的增大而增大
点P(-2,3).
y=x2+2x+3
(2)点Q(m,n)在该二次函数图象上.
①当m=2时,求n的值;n=22+2×2+3=11
②当m≤x≤m+3时,该二次函数有最小值11,请根据
图象求出m的值.
11
m=2 或m+3=-4
∴m的值为2或-7
-4 2
核心考点
考点2 用待定系数法确定二次函数的解析式
4.已知抛物线y=ax2+bx+c经过A(3,0),B(2,-3),C(0,- 3)三点.
PA2=PB2
3
2 1
(1-3)2+(yP-0)2 = (1-2)2+(yP+3)2
x
解得y =-1 A –5 –4 –3 –2 –1 O 1 2 3 4 5 –1
P
–2
C–3
B
∴点P的坐标为(1,-1)
初中数学中考复习二次函数知识点总结归纳整理
![初中数学中考复习二次函数知识点总结归纳整理](https://img.taocdn.com/s3/m/71335fc9d1d233d4b14e852458fb770bf78a3bb9.png)
初中数学中考复习二次函数知识点总结归纳整理二次函数是指形如y=ax²+bx+c的函数,其中a、b、c为常数且a ≠ 0。
二次函数是初中数学中的重要内容,掌握了二次函数的知识,能够帮助我们理解函数的基本概念、图像和性质,同时也是后续学习函数、解析几何和微积分等内容的基础。
一、二次函数的定义和基本性质1.二次函数是一个以抛物线形状为特征的函数,其图像在平面直角坐标系中呈现出对称轴和顶点。
2.对于任意的a、b、c,二次函数的图像都存在对称轴,并且过对称轴的顶点。
3.当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
4. 当Δ=b²-4ac>0时,二次函数的图像与x轴有两个不同的交点,即该二次函数的解存在两个不同的实根;当Δ=0时,二次函数的图像与x轴有一个交点,即该二次函数的解存在一个实根;当Δ<0时,二次函数的图像与x轴没有交点,即该二次函数无实根。
5. 二次函数的顶点坐标为(-b/2a, f(-b/2a)),其中f(x) =ax²+bx+c。
二、二次函数的图像与平移1. 对于y=ax²+bx+c,当a>0时,整个二次函数图像上移a个单位;当a<0时,整个二次函数图像下移a个单位。
2. 对于y=ax²+bx+c,当c>0时,整个二次函数图像上移c个单位;当c<0时,整个二次函数图像下移c个单位。
3. 对于y=ax²+bx+c,当b>0时,整个二次函数图像向左平移b个单位;当b<0时,整个二次函数图像向右平移b个单位。
三、二次函数的解和性质1.根据二次函数的定义,可以用求根公式计算二次函数的解,即x=(-b±√Δ)/(2a)。
2.根据二次函数的判别式Δ的大小,可以判断二次函数的解的情况,进而判断图像的开口方向和顶点的位置。
3.根据二次函数的顶点坐标和开口方向,可以确定二次函数的整个图像。
初中数学专题复习(二次函数的极值)
![初中数学专题复习(二次函数的极值)](https://img.taocdn.com/s3/m/ad0a02dfa0c7aa00b52acfc789eb172ded6399d7.png)
初中数学专题复习(二次函数的极值)1.二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关解:∵二次函数y=x2+px+q=(x+)2+,∴该抛物线的对称轴为x=﹣,且a=1>0,当x=﹣<0,∴当x=0时,二次函数有最小值为:q,∴当x=1时,二次函数有最大值为:1+p+q,∴函数最大值与最小值的差为1+p;当x=﹣>1,∴当x=0时,二次函数有最大值为:q,∴当x=1时,二次函数有最小值为:1+p+q,∴函数最大值与最小值的差为﹣1﹣p;当0≤x=﹣,此时当x=1时,函数有最大值1+p+q,当x=﹣时,函数有最小值q﹣,差为1+p+,<x=﹣≤1,当x=0时,函数有最大值q,当x=﹣时,函数有最小值q﹣,差为,x=﹣=,当x=0或1时.函数有最大值q,当x=﹣时,函数有最小值q﹣,差为,综上所述,此函数最大值与最小值的差与p有关,但与q无关,答案:D.2.已知非负数a,b,c满足a+b=2,c﹣3a=4,设S=a2+b+c的最大值为m,最小值为n,则m﹣n的值为()A.9B.8C.1D.解:∵a+b=2,c﹣3a=4,∴b=2﹣a,c=3a+4,∵b,c都是非负数,∴,解不等式①得,a≤2,解不等式②得,a≥﹣,∴﹣≤a≤2,又∵a是非负数,∴0≤a≤2,S=a2+b+c=a2+(2﹣a)+3a+4,=a2+2a+6,∴对称轴为直线a=﹣=﹣1,∴a=﹣1时,最小值n=6,a=2时,最大值m=22+2×2+6=14,∴m﹣n=14﹣6=8.答案:B.3.已知关于x的二次函数y=x2﹣4x+m在﹣1≤x≤3的取值范围内最大值7,则该二次函数的最小值是()A.﹣2B.﹣1C.0D.1解:∵y=x2﹣4x+m=(x﹣2)2+m﹣4,∴对称轴为直线x=2,抛物线开口向上,∵二次函数在﹣1≤x≤3的取值范围内最大值7,当x=﹣1时,y=7,∴7=(﹣1)2﹣4×(﹣1)+m,解得:m=2,∴当x=2时,该二次函数有最小值,最小值为0+2﹣4=﹣2.答案:A.4.已知关于n的函数s=an2+bn(n为自然数),当n=9时,s<0;当n=10时,s>0.则n取()时,s的值最小.A.3B.4C.5D.6解:∵函数s=an2+bn(n为自然数),当n=9时,s<0;当n=10时,s>0,∴a>0,该函数图象开口向上,∴当s=0时,9<n<10,∵n=0时,s=0,∴该函数的对称轴n的值在4.5~5之间,∴各个选项中,当n=5时,s取得的值最小,答案:C.5.已知二次函数y=(x﹣m+3)(x+m﹣5)+n,其中m,n为常数,则()A.m>1,n<0时,二次函数的最小值大于0B.m=1,n>0时,二次函数的最小值大于0C.m<1,n>0时,二次函数的最小值小于0D.m=1,n<0时,二次函数的最小值小于0解:∵二次函数y=(x﹣m+3)(x+m﹣5)+n,∴当m=1时,y=(x﹣1+3)(x+1﹣5)+n=(x+2)(x﹣4)+n=x2﹣2x﹣8+n=(x﹣1)2﹣9+n∴当m=1,n>0时,二次函数的最小值为y=﹣9+n,当0<n≤9时,﹣9+n≤0,故B错误;当m=1,n<0时,二次函数的最小值为y=﹣9+n<0,故D正确;选项A:当m>1,n<0时,不妨取m=3,则y=x(x﹣2)+n=x2﹣2x+n=(x﹣1)2﹣1+n,此时二次函数的最小值为﹣1+n,小于0,故A错误;选项C:当m<1,n>0时,不妨取m=0,则y=(x+3)(x﹣5)+n=x2﹣2x﹣15+n=(x﹣1)2﹣16+n,此时二次函数的最小值为﹣16+n,当n≥16>0时,﹣16+n≥0,故C错误;综上,只有D正确.答案:D.6.如图,正方形纸片ABCD的边长为2,翻折∠ABC、∠ADC,使两个直角顶点重合于对角线BD上一点P,EF、GH分别是折痕,设AE=x(0<x<2),给出下列判断:①当x=1时,点P是正方形ABCD的中心;②当x=时,EF+GH>AC;③当0<x<2时,六边形AEFCHG面积的最大值是;④当0<x<2时,六边形AEFCHG周长的值不变.其中错误的是()A.②③B.③④C.①④D.①②解:(1)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,∴△BEF和△DGH是等腰直角三角形,∴当AE=1时,重合点P是BD的中点,∴点P是正方形ABCD的中心;故①结论正确,(2)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,∴△BEF∽△BAC,∵x=,∴BE=2﹣=,∴,即,∴EF=,同理,GH=,∴EF+GH=2=AC故②错误.(3)六边形AEFCHG面积=正方形ABCD的面积﹣△EBF的面积﹣△GDH的面积.∵AE=x,∴六边形AEFCHG面积=22﹣•BE•BF﹣•GD•HD=4﹣×(2﹣x)•(2﹣x)﹣•x•x=﹣x2+2x+2=﹣(x ﹣1)2+3,∴六边形AEFCHG面积的最大值是3,故③结论错误,(4)∵EF+GH=AC,六边形AEFCHG周长=AE+EF+FC+CH+HG+AG=(AE+CH)+(FC+AG)+(EF+GH)=2+2+2=4+2.故六边形AEFCHG周长的值不变,故④结论正确.答案:A.7.关于x的分式方程+=1的解为非负数,则二次函数y=a2﹣12a+39的最小值是()A.4B.3C.﹣4D.﹣3解:解关于x的分式方程+=1,得,x=5﹣a,∵解为非负数,∴x=5﹣a≥0,且5﹣a≠2,解得:a≤5且a≠3,∵二次函数y=a2﹣12a+39=(a﹣6)2+3,∴当a<6时,y随a的增大而减小,∵a≤5且a≠3,∴a=5时,二次函数y=a2﹣12a+39=4最小,答案:A.8.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3<x1<x2<0,则下列结论正确的是()A.y2<y1B.y1<y2C.函数的最小值是﹣3D.函数的最小值是﹣4解:y=x2+2x﹣3=(x+3)(x﹣1),则该抛物线与x轴的两交点坐标分别是(﹣3,0)、(1,0).又y=x2+2x﹣3=(x+1)2﹣4,∴该抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.A、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;B、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;C、y的最小值是﹣4,故本选项错误;D、y的最小值是﹣4,故本选项正确.答案:D.9.若点M(m,n)是抛物线y=﹣2x2+2x﹣3上的点,则m﹣n的最小值是()A.0B.C.D.﹣3解:∵点M(m,n)是抛物线y=﹣2x2+2x﹣3上的点,∴n=﹣2m2+2m﹣3,∴m﹣n=m﹣(﹣2m2+2m﹣3)=2m2﹣m+3=2(m﹣)2+,∴m﹣n的最小值是,答案:C.10.对于题目“当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,求实数m的值.”:甲的结果是2或,乙的结果是﹣或﹣,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.所以甲、乙的结果合在一起也不正确,答案:D.11.对某一个函数给出如下定义:如果存在常数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数;在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数y=﹣(x+1)2+2,y≤2,因此是有上界函数,其上确界是2,如果函数y=﹣2x+1(m≤x≤n,m<n)的上确界是n,且这个函数的最小值不超过2m,则m的取值范围是()A.m≤B.m C.D.m解:∵在y=﹣2x+1中,y随x的增大而减小,∴上确界为﹣2m+1,即﹣2m+1=n,∵函数的最小值是﹣2n+1≤2m,解得m≤,∵m<n,∴m<﹣2m+1.解得m<,综上,m<答案:B.12.如图,约定:三角形下方的数等于上方两数之和,则y的最小值为﹣1.解:由题意得:y=a+b=x2+2x+2x+3=x2+4x+3=(x+2)2﹣1,∴当x=﹣2时,y有最小值﹣1.故答案为:﹣1.13.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是s≥9.解:由x+y2=3,得:y2=﹣x+3≥0,∴x≤3,代入s=x2+8y2得:s=x2+8y2=x2+8(﹣x+3)=x2﹣8x+24=(x﹣4)2+8,当x=3时,s=(3﹣4)2+8=9,∴s≥9;故答案为:s≥9.14.如图,已知正方形ABCD的边长为8,点E、F分别在边AD、BC上,AE=CF=3,点G、H在正方形ABCD 的内部或边上,若四边形EGFH是菱形,则菱形EGFH的最大面积为34.解:根据题意可得,由勾股定理可得EF=;∵四边形EGFH为菱形,根据菱形面积公式,S EGFH=,∴若要菱形EGFH的面积最大,只需GH值最大,∴根据题意可得G,H在图象上的位置为:过点E作EM⊥BC,垂足为M;过点G作GN⊥CD,垂足为N;又∵EF⊥GH,∴∠MEF=∠NGH,又∵∠EMF=∠GNH,EM=GN,∴△EMF≌△GNH(AAS),∴GH=EF=2,∴=34.15.当﹣7≤x≤a时,二次函数y=﹣(x+3)2+5恰好有最大值3,则a=﹣5.解:∵y=﹣(x+3)2+5,∴该抛物线的开口方向向下,且顶点坐标是(﹣3,5).∴当x<﹣3时,y随x的增大而增大,∴当x=a时,二次函数y=﹣(x+3)2+5恰好有最大值3,把y=3代入函数解析式得到3=﹣(x+3)2+5,解得x1=﹣5,x2=﹣1.∴a=﹣5.故答案是:﹣5.16.如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上动点(点M不与A,B重合),且MQ⊥BC,MN∥BC交AC于点N.联结NQ,设BQ=x.则当x=.时,四边形BMNQ的面积最大值为.解:∵∠A=90°,AB=3,AC=4,∴BC=5,∵△QBM∽△ABC,∴==,即==,∴QM=x,BM=x,∵MN∥BC,∴=,即=,∴MN=5﹣x,∴四边形BMNQ的面积为:(5﹣x+x)×x=﹣+,∴当x=时,四边形BMNQ的面积最大,最大值为.故答案为:,.17.已知二次函数y=ax2+bx+c(a、b、c为常数且a>0),当t≤x≤t+1时,函数的最大值为M,最小值为m,记h=M﹣m是关于t的函数,若函数h的图象经过点(0,1)和(,1),且函数h的最小值等于函数y的最小值,则函数y的表达式为y=16x2﹣8x+1或y=16x2﹣40x+25.解:∵a>0,∴抛物线的开口方向向上,∵二次函数y=ax2+bx+c的对称轴直线为x=﹣,∴当x<﹣时,y随x的增大而减少,当x>﹣时,y随x的增大而增大,①当t+1<﹣时,当x=t+1时,m=y=a(t+1)2+b(t+1)+c,当x=t时,M=y=at2+bt+c,∴h=M﹣m=[a(t+1)2+b(t+1)+c]﹣(at2+bt+c)=2at+a+b,此函数是一次函数,∵函数h的图象经过点(0,1)和(,1),∴此种情况不存在,②当t>﹣时,同①的方法得,h=﹣2at﹣a﹣b,此函数是一次函数,∵函数h的图象经过点(0,1)和(,1),∴此种情况不存在,③当t≤﹣≤t+1时,Ⅰ、当t≤﹣<t+时,M=y=at2+bt+c,m=,∴h=M﹣m=at2+bt+c﹣=at2+bt+=a(t+)2,∴函数h的最小值等于0,∵函数h的最小值等于函数y的最小值,∴函数y的最小值为0,即=0,∴b2=4ac,∵函数h的图象经过点(0,1)和(,1),∴,∴,将a=16,b=﹣8代入b2=4ac中,64=4×16c,∴c=1,∴二次函数y的表达式为y=16x2﹣8x+1,Ⅱ、当t+≤﹣<t+1时,M=y=a(t+1)2+b(t+1)+c,m=,∴h=M﹣n=a(t+1)2+b(t+1)+c﹣=a(t+1)2+b(t+1)+=a(t+1+)2,∴函数h的最小值等于0,∵函数h的最小值等于函数y的最小值,∴函数y的最小值为0,即=0,∴b2=4ac,∵函数h的图象经过点(0,1)和(,1),∴,∴,将a=16,b=﹣40代入b2=4ac中,64=4×16c,∴c=25,∴二次函数y的表达式为y=16x2﹣40x+25,故答案为y=16x2﹣8x+1或y=16x2﹣40x+25.18.如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为10.解:设P(x,x2﹣x﹣4),四边形OAPB周长=2PA+2OA=﹣2(x2﹣x﹣4)+2x=﹣2x2+4x+8=﹣2(x﹣1)2+10,当x=1时,四边形OAPB周长有最大值,最大值为10.故答案为10.。
初中数学《二次函数》重难点题型汇编含解析
![初中数学《二次函数》重难点题型汇编含解析](https://img.taocdn.com/s3/m/3bf4b8866e1aff00bed5b9f3f90f76c660374c12.png)
二次函数重难点题型汇编【题型01:二次函数的概念】【题型02:二次函数的条件】【题型03:列处二次函数关系式】【题型04:特殊二次函数的图像和性质】【题型05:与特殊二次函数有关的几何知识】【题型06:二次函数y=ax2+bx+c的图像和性质】【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】【题型09:二次函数的平移变换】【题型10:二次函数的交点个数问题】【题型01:二次函数的概念】1下列函数是关于x的二次函数的是()A.y=x2+1x2B.y=x1-xC.y=x+12-x2 D.y=ax2+bx+c【答案】B【分析】本题考查了二次函数的定义,根据形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数是二次函数,判断即可,熟练掌握二次函数的一般形式是解题的关键.【详解】解:A、y=x2+1x2的分母含有自变量,不是y关于x的二次函数,故A不符合题意;B、y=x1-x=-x2+x,是y关于x的二次函数,故B符合题意;C、y=x+12-x2=2x+1,不是y关于x的二次函数,故C不符合题意;D、y=ax2+bx+c,当a=0时不是二次函数,故D不符合题意;故选:B.2下列各式中,是二次函数的是()A.y=2x+1B.y=-2x+1C.y=x2+2D.y=2x2-1x【答案】C【分析】本题主要考查了二次函数的定义,解题的关键是掌握一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.【详解】解:A、y=2x+1,是一次函数,故本选项不合题意;B、y=-2x+1,是一次函数,故本选项不合题意;C、y=x2+2,是二次函数,故本选项符合题意;D、y=2x2-1x,右边中-1x不是整式,不是二次函数,故本选项不合题意.故选:C.3下列函数解析式中,y是x的二次函数的是()A.y=ax2+bx+cB.y=-5x+1C.y=-23x2+x-34D.y=2x2-1x【答案】C【分析】根据:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,进行判断即可.【详解】解:A、当a=0时,y=ax2+bx+c不是二次函数,不符合题意;B、y=-5x+1,是一次函数,不是二次函数,不符合题意;C、y=-23x2+x-34,是二次函数,符合题意;D、y=2x2-1x,不是二次函数,不符合题意;故选C.4如图,分别在正方形ABCD边AB、AD上取E、F点,并以AE、AF的长分别作正方形.已知DF= 3,BE=5.设正方形ABCD的边长为x,阴影部分的面积为y,则y与x满足的函数关系是()A.一次函数关系B.二次函数关系C.正比例函数关系D.反比例函数关系【答案】A【分析】本题考查函数关系的识别,完全平方公式,列函数关系式,根据题意表示出AE、AF的长度,再结合阴影部分的面积等于以AE、AF的长的正方形的面积之差可得y=4x-16,理解题意,列出函数关系式是解决问题的关键.【详解】解:由题意可得:AE=AB-BE=x-5,AF=AD-DF=x-3,则阴影部分的面积为y=x-32-x-52=x2-6x+9-x2+10x-25=4x-16,即:y=4x-16,为一次函数,故选:A.【题型02:二次函数的条件】5抛物线y=ax2+a-2x-a-1经过原点,那么a的值等于()A.0B.1C.-1D.35【答案】C【分析】本题考查了抛物线与点的关系,熟练掌握把(0,0)代入函数解析式,求解关于a的一元一次方程是解题的关键.【详解】解:∵抛物线y=ax2+a-2x-a-1经过原点,∴a≠0-a-1=0,解得:a=-1,故选C.6已知y=m-1x m2+1-2x+5是二次函数,则m的值为()A.1或-1B.1C.-1D.0【答案】C【分析】本题考查了二次函数的定义,根据二次函数y=ax2+bx+c的定义条件是:a、b、c为常数,a≠0,自变量最高次数为2即可求解.【详解】解:根据二次函数的定义:m2+1=2,且m-1≠0,解得:m=1或m=-1,又∵m≠1,∴m=-1,故选:C.7已知二次函数y=m-2x m2-2+3x+1,则m=.【答案】-2【分析】此题考查了二次函数的定义,根据二次函数的定义:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,得到m-2≠0,m2-2=2,进行求解即可.解题的关键是熟练掌握二次函数的定义.【详解】解:∵函数y=m-2x m2-2+3x+1是二次函数,∴m-2≠0,m2-2=2,∴m=-2.故答案为:-2.【题型03:列处二次函数关系式】8某厂今年一月份新产品的研发资金为9万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为()A.y=91+x2 B.y=9+9x+x2C.y=9+91+x+91+x2 D.y=91+x2【答案】C【分析】此题主要考查了根据实际问题抽象出二次函数解析式.根据题意得到二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,再求和即可,正确表示出三月份的研发资金.【详解】解:根据题意可得二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,今年一季度新产品的研发资金y=9+91+x+91+x2,故选:C.9已知一正方体的棱长是3cm,设棱长增加xcm时,正方体的表面积增加ycm2,则y与x之间的函数关系式是()A.y=6x2-36xB.y=-6x2+36xC.y=x2+36xD.y=6x2+36x【答案】D【分析】本题考查了二次函数的应用,根据题意直接列式即可作答.【详解】根据题意有:y=6x+32-6×32=6x2+36x,故选:D.10某商店购进某种商品的价格是7.5元/件,在一段时间里,单价是13.5元,销售量是500件,而单价每降低1元就可多售出200件,当销售价为x元/件(7.5<x<13.5)时,获取利润y元,则y与x的函数关系为()A.y=x-7.5500+xB.y=13.5-x500+200xC.y=x-7.5500+200xD.以上答案都不对【答案】D【分析】当销售价为x元/件时,每件利润为(x-7.5)元,销售量为[500+200×(13.5-x)],根据利润=每件利润×销售量列出函数关系式即可.【详解】解:由题意得w=(x-7.5)×[500+200×(13.5-x)],故选:D.【点睛】题考查了根据实际问题列二次函数关系式,用含x的代数式分别表示出每件利润及销售量是解题的关键.11正方形边长3,若边长增加x,增加后正方形的面积为y,y与x的函数关系式为.【答案】y=x+32/y=3+x2【分析】本题考查了列二次函数关系式,根据正方形面积等于边长的平方,即可求解.【详解】解:依题意,y=x+32,故答案为:y=x+32.【题型04:特殊二次函数的图像和性质】12已知函数y=-(x-2)2的图象上有A-32,y1,B3,y2,C4,y3三点,则y1,y2,y3的大小关系是()A.y 1<y 2<y 3B.y 2<y 1<y 3C.y 1<y 3<y 2D.y 2<y 3<y 1【答案】C【分析】本题考查二次函数的性质,当开口向上时,距离对称轴越近,函数值越小;当开口向下时,距离对称轴越近,函数值越大,解题的关键是熟练掌握二次函数的图象与性质.先找到对称轴和开口方向,根据点到对称轴的距离比较函数值的大小即可.【详解】解:∵函数y =-(x -2)2,∴图象开口向下,对称轴为直线x =2,∴图象上的点距离对称轴越近,函数值越大,2--32=72,3-2 =1,4-2 =2,∵1<2<72,∴y 1<y 3<y 2,故选:C .13对于二次函数y =2x -1 2+3,下列说法正确的是()A.开口方向向下B.顶点坐标(1,-3)C.对称轴是y 轴D.当x =1时,y 有最小值【答案】D【分析】本题考查了二次函数的性质:根据抛物线的性质,由a =2得到图象开口向上,根据顶点式得到顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3,再进行判断即可.【详解】解:二次函数y =2(x -1)2+3的图象开口向上,顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3.故选项D 正确,故选:D14下列抛物线中,对称轴为直线x =12的是()A.y =x -122B.y =12x 2C.y =x 2+12D.y =x +122-3【答案】A【分析】本题考查了抛物线求对称轴方程的公式:x =-b2a.利用抛物线对称轴的公式即可确定每一个函数的对称轴,然后即可确定选项.【详解】解:A 、y =x -122的对称轴为直线x =12,故选项符合题意.B 、y =12x 2的对称轴为直线x =0,故选项不符合题意.C 、y =x 2+12的对称轴为直线x =0,故选项不符合题意.D、y=x+122-3的对称轴为直线x=-12,故选项不符合题意.故选:A.15在二次函数y=-x-12+3的图象中,若y随x的增大而减小,则x的取值范围是()A.x>-1B.x<-1C.x>1D.x<1【答案】C【分析】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键;由题可知,函数图象开口向下,对称轴为x=1,在对称轴右侧,y随x的增大而减小;在对称轴左侧,y随x 的增大而增大,据此即可得到答案.【详解】解:由二次函数的解析式得,抛物线开口向下,对称轴为x=1,当x>1时,y 随 x 的增大而减小.故选:C .16抛物线y=-2x+12+2的顶点的坐标是.【答案】(-1,2)【分析】本题考查了二次函数的性质,根据顶点式y=a(x-h)2+k的顶点坐标为h,k,即可求解.【详解】解:抛物线y=-2x+12+2的顶点坐标是(-1,2),故答案为:(-1,2).17点A-3,y1,B2,y2均在二次函数y=-x2+2的图象上,则y1y2.(填“>”或“<”)【答案】<【分析】本题主要考查了二次函数的图象和性质.根据开口向下的二次函数,离对称轴越远函数值越小进行求解即可.【详解】解:∵二次函数解析式为y=-x2+2,∴二次函数开口向下,对称轴为y轴,∴离对称轴越远函数值越小,∵0--3=3>2-0=2,∴y1<y2,故答案为:<.【题型05:与特殊二次函数有关的几何知识】18如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则阴影部分的面积是()A.4πB.2πC.πD.无法确定【答案】B【分析】据函数y =12x 2与函数y =-12x 2的图象关于x 轴对称,得出阴影部分面积即是半圆面积求出即可.【详解】解:∵C 1是函数y =-12x 2的图象,C 2是函数y =-12x 2的图象,且当x 相等时,两个函数的函数值互为相反数,∴函数y =12x 2的图象与函数y =-12x 2的图象关于x 轴对称,∴阴影部分面积即是半圆面积,∴面积为:12π×22=2π.故选:B .【点睛】此题主要考查了二次函数的图象,根据已知得出阴影部分面积即是半圆面积是解题关键.19如图,已知点A 1,A 2,...,A 2024在函数y =2x 2位于第二象限的图像上,点B 1,B 2,...,B 2024在函数y =2x 2位于第一象限的图像上,点C 1,C 2,...,C 2024在y 轴的正半轴上,若四边形O 1A 1C 1B 1,C 1A 2C 2B 2,...,C 2023A 2024C 2024B 2024都是正方形,则正方形C 2023A 2024C 2024B 2024的边长为()A.1012B.10122C.20232D.202322【答案】B【分析】根据正方形对角线平分一组对角可得OB 1与y 轴的夹角为45°,然后表示出OB 1的解析式,再与抛物线解析式联立求出点B 1的坐标,然后求出OB 1的长,再根据正方形的性质求出OC 1,表示出C 1B 2的解析式,与抛物线联立求出B 2的坐标,然后求出C 1B 2的长,再求出C 1C 2的长,然后表示出C 2B 3的解析式,与抛物线联立求出B 3的坐标,然后求出C 2B 3的长,从而根据边长的变化规律解答即可.【详解】解:∵OA 1C 1B 1是正方形,∴OB 1与y 轴的夹角为45°,∴OB 1的解析式为y =x ,联立方程组得:y =xy =2x 2 ,解得x 1=0y 1=0 ,x 2=12y 2=12.∴B 点的坐标是:12,12,∴OB 1=122+122=22=1×22;同理可得:正方形C 1A 2C 2B 2的边长C 1B 2=2×22;⋯依此类推,正方形C 2023A 2024C 2024B 2024的边长是为2024×22=10122.故选B .【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.20如图,正方形OABC 有三个顶点在抛物线y =14x 2上,点O 是原点,顶点B 在y 轴上则顶点A 的坐标是()A.2,2B.2,2C.4,4D.22,22【答案】C【分析】连接AC 交y 轴于点D ,设点B 坐标为0,m ,根据正方形的性质可得OD =12m ,AD =12m ,从而得到A 12m ,12m,再代入y =14x 2,即可求解.【详解】解:如图,连接AC 交y 轴于点D ,设点B 坐标为0,m ,∵四边形OABC 是正方形,∴OD =12OB ,CD =AD ,AC ⊥y 轴,∴OD =12m ,AD =12m ,∴A 12m ,12m,∵A 在抛物线y =14x 2上,∴12m =14×12m 2,解得m =0(舍去)或8,∴点A 的坐标为4,4 .故选:C .【点睛】本题主要考查了二次函数的性质,正方形的性质,利用数形结合思想解答是解题的关键.21如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .若抛物线y =ax 2的图象与正方形ABCD 有公共点,则a 的取值范围是.【答案】116≤α≤4【分析】本题考查二次函数图象与系数的关系,二次函数图象上的点的坐标特征等知识,求出抛物线经过两个特殊点时的a 的值即可解决问题.【详解】解:∵正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .∴D 4,1 ,当抛物线经过点B 1,4 时,则a =4,当抛物线经过D4,1时,a=1 16,观察图象可知,抛物线y=ax2的图象与正方形ABCD有公共点,则a的取值范围是116≤α≤4,故答案为:116≤α≤4.【题型06:二次函数y=ax2+bx+c的图像和性质】22将抛物线y=x2-4x+3绕原点O顺时针旋转180°,则旋转后的函数表达式为()A.y=x2+4x-3B.y=-x2+4x+3C.y=-x2-4x-3D.y=-x2+4x-3【答案】C【分析】本题考查了二次函数的旋转变换,熟练掌握二次函数的性质和旋转的性质是解题的关键.设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,则P 是在旋转后的抛物线上,然后代入化简即可解答.【详解】解:设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,由题意可知:P -x,-y是在抛物线y=x2-4x+3上,即:-y=x2+4x+3,化简得:y=-x2-4x-3.故选C.23直线y=ax+b与抛物线y=ax2+bx+b在同一坐标系里的大致图象正确的是()A. B. C. D.【答案】D【分析】本题考查二次函数的图象、一次函数的图象,根据题意和各个选项中的函数图象,可以得到一次函数中a和b的正负情况和二次函数图象中a、b的正负情况,然后即可判断哪个选项中的图象符合题意,解题的关键是明确题意,利用数形结合的思想解答.【详解】解:A、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;B、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;C、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,ab>0,而抛物线对称轴位于y轴右侧,则ab<0,故选项不符合题意;D、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,对称轴位于y轴左侧,则ab>0,故选项符合题意;故选:D.24已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表,x⋯-4-2035⋯y ⋯-24-80-3-15⋯则下列关于这个二次函数的结论正确的是()A.图象的开口向上B.当x >0时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线x =1【答案】D【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可.【详解】解:由题意得4a -2b +c =-8c =09a +3b +c =-3 ,解得a =-1c =0b =2,∴二次函数的解析式为y =-x 2+2x =-x -1 2+1,∵a =-1<0,∴图象的开口向下,故选项A 不符合题意;图象的对称轴是直线x =1,故选项D 符合题意;当0<x <1时,y 的值随x 的值增大而增大,当x >1时,y 的值随x 的值增大而减小,故选项B 不符合题意;∵顶点坐标为1,1 且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C 不符合题意;故选:D .25如图,平面直角坐标系中有两条抛物线,它们的顶点P ,Q 都在x 轴上,平行于x 轴的直线与两条抛物线相交于A ,B ,C ,D 四点,若AB =10,BC =5,CD =6,则PQ 的长度为()A.7B.8C.9D.10【答案】B【分析】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,得四边形PMNQ 是矩形,利用抛物线的对称性计算即可.本题考查了抛物线的性质,矩形的性质,熟练掌握抛物线的性质是解题的关键.【详解】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,∴四边形PMNQ 是矩形,∴MN =PQ ,∵AB=10,BC=5,CD=6,∴MA=MC=12AC=12AB+BC=152,BN=ND=12BD=12CD+BC=112,∴MN=AD-AM-ND=AB+BC+CD-AM-ND,=21-112-152=8,∴PQ=8,故选B.26二次函数y=ax2+bx+c的图象如图所示,则关于x的一元二次方程x2-bx+a=0的根的情况是()A.只有一个实数根B.没有实数根C.有两个不相等的实数根D.有两个相等的实数根【答案】C【分析】此题考查了二次函数的图象和性质,一元二次方程的判别式,首先根据二次函数的图象得到a<0,b>0,然后判断一元二次方程的判别式求解即可.【详解】∵二次函数图象开口向下,对称轴大于零,∴a<0,-b2a>0∴b>0∴方程x2-bx+a=0的判别式Δ=b2-4ac=-b2-4×1×a=b2-4a>0∴关于x的一元二次方程x2-bx+a=0的根的情况是有两个不相等的实数根.故选:C.27抛物线y=x2+14x+54的顶点坐标是()A.7,5B.7,-5C.-7,5D.-7,-5【答案】C【分析】依据题意,由抛物线为y=x2+14x+54=(x+7)2+5,从而可以判断得解.本题主要考查了二次函数图象与性质,解题时要熟练掌握并能利用顶点式进行判断是关键.【详解】解:由题意,∵抛物线为y=x2+14x+54=(x+7)2+5,∴顶点为-7,5.故选:C.28用配方法将二次函数y=-x2-2x-3化为y=a x-h2+k的形式为()A.y=-x-12-2 D.y=x-12+22-4 C.y=-x+12+3 B.y=x+1【答案】C【分析】本题考查了二次函数的三种表达形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.运用配方法即可将其化为顶点式.【详解】解:y=-x2-2x-3=-x2+2x+1-2=-x+12-2故选:C.29如图,抛物线y=ax2+bx+c的对称轴为x=1,点P、点Q是抛物线与x轴的两个交点,若点P的坐标为-1,0,则点Q的坐标为()A.0,-1D.3,0C.4,0B.2,0【答案】D【分析】本题考查二次函数的图象和性质,由题意可得点P、点Q关于对称轴对称即可求解.【详解】解:由题意得:点P、点Q关于对称轴对称,∴点Q的坐标为3,0,故选:D.【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】30已知抛物线y=-x2+2x+1在自变量x的值满足t≤x≤t+2时,与其对应的函数值y的最小值为-7,求此时t的值为()A.1或-2B.2或-2C.3或-1D.-1或-2【答案】B【分析】本题考查二次函数的图象和性质,根据二次函数的性质,分2种情况进行讨论求解即可.【详解】解:∵y=-x2+2x+1=-x-12+2,∴抛物线的开口向下,对称轴为直线x=1,∴抛物线的上的点离对称轴越远,函数值越小,∵t≤x≤t+2时,与其对应的函数值y的最小值为-7,分两种情况:①当t-1≤t+2-1时,即:t≥0时,当x=t+2时,y=-t+22+2t+2+1=-7,解得:t=-4(舍去)或t=2;②当t-1>t+2-1时,即:t<0时,当x=t时,y=-t2+2t+1=-7,解得:t=4(舍去)或t=-2;综上:t的值为2或-2;故选B.31已知二次函数y=x2-2x-1≤x≤t-1,当x=-1时,函数取得最大值;当x=1时,函数取得最小值,则t的取值范围是()A.0<t≤2B.0<t≤4C.2≤t≤4D.t≥2【答案】C【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由y=x2-2x=x-12-1,可知图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y =3,即-1,3关于对称轴对称的点坐标为3,3,由当x=-1时,函数取得最大值;当x=1时,函数取得最小值,可得1≤t-1≤3,计算求解,然后作答即可.【详解】解:∵y=x2-2x=x-12-1,∴图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y=3,∴-1,3关于对称轴对称的点坐标为3,3,∵当x=-1时,函数取得最大值;当x=1时,函数取得最小值,∴1≤t-1≤3,解得,2≤t≤4,故选:C.32已知抛物线y=x2+(2a-1)x-3,当-1≤x≤3时,函数最大值为1,则a值为()A.-12B.-13C.-12或-13D.-1或-13【答案】D【分析】根据顶点的位置分两种情况讨论即可.【详解】解:∵y=x2+(2a-1)x-3,∴图象开口向上,对称轴为直线x=-2a-12,∵-1≤x≤3,∴当-2a-12≤1时,即a≥-12,x=3时有最大值1,∴9+(2a-1)×3-3=1,∴a=-13,当-2a-12≥1时,即a≤-12,x=-1时有最大值1,∴1+(2a-1)×(-1)-3=1,∴a=-1,∴a=-1或-13,故选:D.【点睛】本题考查了二次函数性质以及二次函数的最值,分类讨论是解题的关键.33已知二次函数y=x-m2-1(m为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y 的最小值为3,则m的值为()A.0或3B.0或7C.3或4D.4或7【答案】B【分析】利用二次函数的性质,分三种情况求解即可.【详解】解:∵y=x-m2-1,∴当x=m时,y的最小值为-1.当m<2时,在2≤x≤5中,y随x的增大而增大,∴2-m2-1=3,解得:m1=0,m2=4(舍去);当2≤m≤5时,y的最小值为-1,舍去;当m>5时,在2≤x≤5中,y随x的增大而减小,∴5-m2-1=3,解得:m1=3(舍去),m2=7.∴m的值为0或7.故选:B.【点睛】本题考查了二次函数的性质,以及二次函数图象上点的坐标特征,分三种情况求解是解题的关键.34已知二次函数y=mx2-2mx+2(m≠0)在-2≤x≤2时有最小值-2,则m=()A.-4或-12B.4或-12C.-4或12D.4或12【答案】B【分析】本题考查了二次函数的性质,根据解析式可得对称轴为直线x=1,进而分m>0和m<0两种情况讨论,根据二次函数的性质,即可求解.【详解】解:∵二次函数解析式为y=mx2-2mx+2(m≠0),∴二次函数对称轴为直线x=-2m-2m=1,当m>0时,∵在-2≤x≤2时有最小值-2,∴当x=1时,y=m-2m+2=-2,∴m=4;当m<0时,∵在-2≤x≤2时有最小值-2,∴当x=-2时,y=4m+4m+2=-2,∴m=-12;综上所述,m=4或m=-1 2,故选:B.35已知二次函数y=-x2-2x+2,当m≤x≤m+2时,函数y的最大值是3,则m的取值范围是()A.m≥-1B.m≤2C.-3≤m≤-1D.0≤m≤2【答案】C【分析】本题主要考查二次函数的性质,依据题意,由y=-x2-2x+2=-x+12+3,可得当x=-1时,y取最大值是3,又当m≤x≤m+2时,函数y的最大值是3,故m≤-1≤m+2,进而计算可以得解.【详解】解:由题意,∵y=-x2-2x+2=-x+12+3,∴当x=-1时,y取最大值是3.又当m≤x≤m+2时,函数y的最大值是3,∴m≤-1≤m+2.∴-3≤m≤-1.故选:C.【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】36已知二次函数y=ax2+bx+c a≠0的图象如图所示,对称轴为x=32,且经过点-1,0,下列结论:①ab<0;②8b-3c=0;③若y≤c,则0≤x≤3.其中正确的有()A.0个B.1个C.2个D.3个【答案】C【分析】本题考查了二次函数的性质及二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.由对称轴为x =32即可判断①,由抛物线经过点-1,0 ,得出a -b +c =0,对称轴x =-b 2a =32,得出a =-13b ,代入即可判断②;根据二次函数的性质以及抛物线的对称性即可判断③.【详解】解:∵对称轴x =-b 2a =32,∴b =-3a ,∴ab =-3a 2<0,①正确;∵经过点-1,0 ,∴a -b +c =0,∵对称轴x =-b 2a =32,∴a =-13b ,∴-13b -b +c =0,∴3c =4b ,∴4b -3c =0,故②错误;∵对称轴x =32,∴点0,c 的对称点为3,c ,∵开口向上,∴y ≤c 时,0≤x ≤3.故③正确;综上所述,正确的有2个.故选:C .37二次函数y =ax 2+bx +c 的图像如图所示,下列结论错误的是()A.y有最小值B.当-1<x<2时,y<0C.a+b+c>0D.当x<-1时,y随x的增大而减小【答案】C【分析】本题考查了抛物线的图像及其性质,根据性质,结合图像判断解答即可.【详解】解:A、由图像可知函数有最小值,故正确;B、由抛物线可知当-1<x<2时,y<0,故正确;C、当x=1时,y<0,即a+b+c<0,故错误;D、由图像可知在对称轴的左侧y随x的增大而减小,故正确.故选:C.38二次函数y=ax2+bx+c的图象如图所示,与x轴左侧交点为-1,0,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③a+c2-b2<0;④a+b≤m am+b(m为实数).其中结论正确的为()A.①④B.②③④C.①②④D.①②③④【答案】A【分析】本题考查了二次函数图象与系数的关系,掌握二次函数的性质是解题关键.根据抛物线开口方向,对称轴位置,以及与y轴交点位置,可判断①结论;由抛物线对称轴得到b=-2a,再结合当x=-1时,y= 0,可判断②结论;根据平方差公式展开,可判断③结论;根据抛物线的最小值,可判断④结论.【详解】解:由图象可知,抛物线开口向上,对称轴在y轴右侧,与y轴交点在负半轴,∴a>0,a、b异号,c<0,∴b<0,∴abc>0,①结论正确;∵抛物线对称轴是直线x=1,=1,∴-b2a∴b=-2a,由图象可知,当x=-1时,y=0,∴a-b+c=a--2a+c=3a+c=0,②结论错误;由图象可知,当x=1时,y<0,∴a+b+c<0,又∵a-b+c=0,∴a+ca+c-b=0,③结论错误;2-b2=a+c+b∵当x=1时,y=a+b+c为最小值,∴a+b+c≤am2+bm+c,∴a+b≤m am+b,④结论正确,故选:A.39已知二次函数y=ax2+bx+c的部分图象如图所示,则下列结论正确的是()A.abc>0B.关于x的一元二次方程ax2+bx+c=0的根是x1=-2,x2=3C.a+b=c-bD.a+4b=3c【答案】C【分析】本题考查了二次函数的图象和性质;熟练掌握二次函数的图象和性质是解题的关键.根据二次函数的图象先判定a,b,c的符号,再结合对称轴求解抛物线与x轴的交点坐标,再进一步逐一分析即可.【详解】解:由函数图像可知开口向下,与y轴交于正半轴,∴a<0,c>0,∵对称轴为x=-b=1,2a∴b>0,∴abc <0,故A 不符合题意;∵抛物线与x 轴交于3,0 ,对称轴为直线x =1,∴抛物线与x 轴的另一个交点为-1,0 ,∴关于x 的一元二次方程ax 2+bx +c =0的根是x 1=-1,x 2=3;故B 不符合题意;∵抛物线与x 轴交于3,0 ,-1,0 ,对称轴为直线x =1,∴b =-2aa -b +c =09a +3b +c =0,解得:b =-2ac =-3a ,∴∵a +b =a -2a =-a ,c -b =-3a --2a =-a ∴a +b =c -b ,故C 符合题意;∴a +4b =a +-8a =-7a ≠-9a ;∴a +4b =3c 错误,故D 不符合题意;故选:C .40如图,二次函数y =ax 2+bx +c a ≠0 的图象与x 轴交于点A 3,0 ,与y 轴交于点B ,对称轴为直线x =1,下列四个结论:①bc <0;②3a +2c <0;③ax 2+bx ≥a +b ;④若-2<c <-1,则-83<a +b +c <-43,其中正确结论的个数为()A.1个B.2个C.3个D.4【答案】C【分析】此题考查了二次函数的图象和性质,数形结合是解题的关键,利用开口方向和对称轴的位置即可判断①,利用对称轴和特殊点的函数值即可判断②,利用二次函数的最值即可判断③,求出c =-3a ,进一步得到13<a <23,又根据b =-2a 得到a +b +c =a -2a -3a =-4a ,即可判断④.【详解】解:①∵函数图象开口方向向上,∴a >0;∵对称轴在y 轴右侧,∴a 、b 异号,∴b <0,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴bc>0,故①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于点A3,0,与y轴交于点B,对称轴为直线x=1,∴-b2a=1,∵b=-2a,∴x=-1时,y=0,∴a-b+c=0,∴3a+c=0,∴3a+2c<0,故②正确;③∵对称轴为直线x=1,a>0,∴y=a+b+c最小值,ax2+bx+c≥a+b+c,∴ax2+bx≥a+b,故③正确;④∵-2<c<-1,∴根据抛物线与相应方程的根与系数的关系可得x1x2=-1×3=-3=c a,∴c=-3a,∴-2<-3a<-1,∴1 3<a<23,∵b=-2a,∴a+b+c=a-2a-3a=-4a,∴-83<a+b+c<-43,故④正确;综上所述,正确的有②③④,故选:C【题型09:二次函数的平移变换】41将抛物线y=2(x+1)2-3向右平移2个单位,再向上平移1个单位得到的抛物线解析式为()A.y=2(x+3)2-4B.y=2(x+3)2-2C.y=2(x-1)2-2D.y=2x-1【答案】C【分析】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=2(x+1)2-3向右平移2个单位,向上平移1个单位得到的抛物线解析式是:y=2 (x+1-2)2-3+1,即y=2(x-1)2-2.故选:C.42将抛物线y=-3x2+2向左平移1个单位,再向下平移3个单位后所得到的抛物线为()A.y=-3(x-1)2-3B.y=-3(x-1)2-1C.y=-3(x+1)2-3D.y=-3(x+1)2-1【答案】D【分析】此题主要考查了二次函数图象的平移,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-3x2+2向左平移1个单位所得直线解析式为:y=-3(x+1)2+2;再向下平移3个单位为:y=-3(x+1)2+2-3,即y=-3(x+1)2-1.故选:D.【题型10:二次函数交点的个数问题】43如图所示,已知函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点,则b的取值范围是()A.-14≤b≤2 B.b>-14C.-14≤b<2 D.-14<b<2【答案】D【分析】此题考查了一次函数和二次函数图象交点问题,一元二次方程的判别式,首先根据题意画出图象,然后求出A2,4,代入y2=x+b求出b=2;然后得到当一次函数y2=x+b的图象与y=x2相切时,得到x2-x-b=0的Δ=b2-4ac=0,进而求出b=-14,然后根据图象求解即可.【详解】解:如图所示,当x=2时,函数y=x2=22=4,∴A2,4,当一次函数y2=x+b的图象经过点A时,∴4=2+b,解得b=2;当一次函数y2=x+b的图象与y=x2相切时,∴x2=x+b,即x2-x-b=0,∴Δ=b2-4ac=0,∴-12-4×1×-b=0,解得b=-1 4,∴由图象可得,当-14<b<2时,函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点.故选:D.44如图,二次函数y=-x2+x+2及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=x+m与新图象有4个交点时,m的取值范围是()A.14<m<-3 B.254<m≤1 C.-2<m<1 D.-3<m<-2【答案】D【分析】如图所示,过点B作直线y=x+m,将直线向下平移到恰在点C处相切,则一次函数y=x+m在两条直线之间时,两个图象有4个交点,即可求解【详解】解:在y=-x2+x+2中,当y=0,0=-x2+x+2,解得x1=-1,x2=2,A-1,0,B2,0,当x=0时,y=2,∴原抛物线与y轴交点坐标为0,2,∴翻折后与y轴的交点坐标为0,-2,如图,当直线y=x+m经过点B时,直线y=x+m与新图有3个交点,把B2,0代入y=x+m中,得m=-2,∵抛物线y=-x2+x+2翻折到x轴下方的部分的解析式为:-y=-x2+x+2,∴翻折后的部分解析式为:y=x2-x-2-1<x<2,当直线y=x+m与抛物线y=x2-x-2-1<x<2只有一个交点C时,直线y=x+m与图象有3个交点,把y=x+m代入y=x2-x-2-1<x<2中,得到方程x+m=x2-x-2有两个相等的实数根,整理得x2-2x-2-m=0,∴Δ=-22-4×1×-2-m=0,解得m=-3,∴当直线y=x+m与新图象有4个交点时,m的取值范围是-3<m<-2.故选:D.【点睛】本题主要考查了二次函数与一次函数综合应用,理解题意,找准临界点是解题关键.45抛物线y=-x2+kx+k-54与x轴的一个交点为A(m,0),若-2≤m≤1,则实数k的取值范围是()A.-214≤k≤1 B.k≤-214或k≥1 C.-5≤k≤98D.k≤-5或k≥98【答案】B【分析】根据抛物线有交点,则-x2+kx+k-54=0有实数根,得出k≤-5或k≥1,分类讨论,分别求得当x=-2和x=1时k的范围,即可求解.。
初中数学二次函数知识点总复习附答案解析
![初中数学二次函数知识点总复习附答案解析](https://img.taocdn.com/s3/m/0e63f914bceb19e8b9f6ba4d.png)
初中数学二次函数知识点总复习附答案解析一、选择题1.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( ) ①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ; ②c =a+3; ③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确; 由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a-=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确. 故选C .考点:二次函数的图像与性质2.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( ) A .-12<t ≤3 B .-12<t <4C .-12<t ≤4D .-12<t <3【答案】C 【解析】 【分析】根据给出的对称轴求出函数解析式为y =-x 2−2x +3,将一元二次方程-x 2+bx +3−t =0的实数根看做是y =-x 2−2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解.【详解】解:∵y =-x 2+bx +3的对称轴为直线x =-1, ∴b =−2, ∴y =-x 2−2x +3,∴一元二次方程-x 2+bx +3−t =0的实数根可以看做是y =-x 2−2x +3与函数y =t 的交点,∵当x =−1时,y =4;当x =3时,y =-12,∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4, ∴-12<t≤4, 故选:C . 【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.3.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】 【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2ba=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断. 【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y >0, 即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2ba=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误; ∵抛物线的顶点坐标为(1,n ),∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确; ∵抛物线与直线y=n 有一个公共点, ∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确. 故选C . 【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.4.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .BC .32D .52【答案】D 【解析】 【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形, ∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D . 【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.5.在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点(x 1,m )、(x 2,m )、(x 3,m ),则x 1+x 2+x 3的结果是( )A .3122m -+B .0C .1D .2【答案】D 【解析】 【分析】根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.【详解】解:如图,在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点A (x 1,m )、B (x 2,m )、C (x 3,m ), ∵y =a (x ﹣m ﹣1)2+c (a≠0) ∴抛物线的对称轴为直线x =m+1,∴232x x +=m+1, ∴x 2+x 3=2m+2,∵A (x 1,m )在直线y =﹣12x 上, ∴m =﹣12x 1, ∴x 1=﹣2m ,∴x 1+x 2+x 3=﹣2m+2m+2=2, 故选:D .【点睛】本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结合思想画出函数图形.6.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C 【解析】 【分析】 【详解】解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误; 根据函数对称轴可得:-2ba=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.7.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表: t 0 1 2 3 4 5 6 7 … h8141820201814…下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( ) A .1 B .2C .3D .4【答案】B【分析】 【详解】解:由题意,抛物线的解析式为y =ax (x ﹣9),把(1,8)代入可得a =﹣1, ∴y =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误, ∴抛物线的对称轴t =4.5,故②正确,∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确, ∵t =1.5时,y =11.25,故④错误,∴正确的有②③, 故选B .8.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D 【解析】 【分析】根据抛物线开口方向得到a 0>,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b c ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确. ②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
初中数学《二次函数》知识点 总结
![初中数学《二次函数》知识点 总结](https://img.taocdn.com/s3/m/1d2ac13ca517866fb84ae45c3b3567ec102ddc00.png)
二次函数考点一、二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。
将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。
由C 、M 、D 三点可粗略地画出二次函数的草图。
如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。
考点二、二次函数的解析式 1、二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标) 2、二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:(1) 已知抛物线上三点的坐标,一般选用一般式;(2) 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;(4) 已知抛物线上纵坐标相同的两点,常选用顶点式. 考点三、二次函数的性质 1、二次函数的性质函数二次函数)0,,(2≠++=a c b a c bx ax y 是常数,图像a>0a<0性质(1)抛物线开口向上,并向上无限延伸; (2)对称轴是x=ab2-,顶点坐标是(ab2-,a b ac 442-);(3)在对称轴的左侧,即当x<ab2-时,y 随x 的增大而减小;在对称轴的右侧,即当x>ab 2-时,y 随x 的增大而增大,简记左减右增;(4)抛物线有最低点,当x=ab2-时, y 有最小值,ab ac y 442-=最小值(1)抛物线开口向下,并向下无限延伸; (2)对称轴是x=ab2-,顶点坐标是(ab2-,a b ac 442-);(3)在对称轴的左侧,即当x<ab2-时,y 随x 的增大而增大;在对称轴的右侧,即当x>ab2-时,y 随x 的增大而减小,简记左增右减;(4)抛物线有最高点,当x=ab2-时, y 有最大值,ab ac y 442-=最大值2、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义:a 表示开口方向:a >0时,抛物线开口向上;a <0时,抛物线开口向下b 与对称轴有关:对称轴为x=ab 2-c 表示抛物线与y 轴的交点坐标:(0,c ) 3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点坐标。
初中数学二次函数复习专题及训练
![初中数学二次函数复习专题及训练](https://img.taocdn.com/s3/m/70eee8d084254b35eefd34e4.png)
初中数学二次函数复习专题知识点 二次函数、抛物线的顶点、对称轴和开口方向 大纲要求1. 理解二次函数的概念;2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3. 会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(ax +m)2+k 的图象,了解特殊与一般相互联系和转化的思想; 4. 会用待定系数法求二次函数的解析式; 5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容(1)二次函数及其图象如果y=ax 2+bx+c(a,b,c 是常数,a ≠0),那么,y 叫做x 的二次函数。
二次函数的图象是抛物线,可用描点法画出二次函数的图象。
(2)抛物线的顶点、对称轴和开口方向抛物线y=ax 2+bx+c(a ≠0)的顶点是)44,2(2ab ac a b --,对称轴是a b x 2-=,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
抛物线y=a (x+h )2+k(a ≠0)的顶点是(-h ,k ),对称轴是x=-h. 〖考查重点与常见题型〗1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数y =(m -2)x 2+m 2-m -2额图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y =kx +b 的图像在第一、二、三象限内,那么函数y =kx 2+bx -1的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =53,求这条抛物线的解析式。
初中数学二次函数知识点整理
![初中数学二次函数知识点整理](https://img.taocdn.com/s3/m/9ede266b580102020740be1e650e52ea5518ce37.png)
对于可以因式分解的一元二次方程,先将其 化为两个一次方程的乘积等于0的形式,再 分别求解这两个一次方程。
二次函数与一元二次方程对应关系
要点一
二次函数 $y=ax^2+bx+c$ 与 一元二次方程 …
二次函数的图像与x轴的交点即为一元二次方程的根。
要点二
二次函数的判别式 $Delta=b^24ac$ 与…
面积最大化问题建模与求解
面积函数建立
根据几何形状的面积公式 ,建立与面积相关的二次 函数模型。
顶点求解
通过配方或公式法求出二 次函数的顶点,即最大面 积点。
约束条件分析
考虑实际问题的约束条件 ,如边长范围、形状限制 等,对解进行合理性检验 。
其他实际问题中二次函数应用举例
01
02
03
04
运动学问题
XXX
PART 03
二次函数在实际问题中应 用
REPORTING
利润最大化问题建模与求解
01
02
03
利润函数建立
根据售价、成本、销量等 因素,建立与利润相关的 二次函数模型。
顶点求解
通过配方或公式法求出二 次函数的顶点,即最大利 润点。
约束条件分析
考虑实际问题的约束条件 ,如售价范围、成本限制 等,对解进行合理性检验 。
当 $Delta>0$ 时,方程有两个不相等的实根,对应二次函 数图像与x轴有两个交点;当 $Delta=0$ 时,方程有两个 相等的实根,对应二次函数图像与x轴有一个交点;当 $Delta<0$ 时,方程无实根,对应二次函数图像与x轴无 交点。
利用二次函数解一元二次方程实例分析
实例1
求解一元二次方程 $x^2-2x3=0$。可以将其看作二次函数 $y=x^2-2x-3$ 与x轴的交点问题 ,通过配方或公式法求解得到
初中数学二次函数综合复习基础题(含答案)
![初中数学二次函数综合复习基础题(含答案)](https://img.taocdn.com/s3/m/66be760ba1c7aa00b42acb80.png)
初中数学二次函数综合复习基础题一、单选题(共13道,每道8分)1.若二次函数的图象经过原点,则a的值必为()A.1或2B.0C.1D.2答案:D试题难度:三颗星知识点:二次函数表达式2.在同一坐标系中,作,,的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点答案:D试题难度:三颗星知识点:二次函数图象特征3.对于反比例函数,当x>0时,y随x的增大而增大,则二次函数的大致图象是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图象初步判定4.抛物线可以由抛物线平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位答案:B试题难度:三颗星知识点:二次函数图像平移5.已知二次函数,当x=-1时有最大值,把x=-5,-2,1时对应函数值分别记为y1,y2,y3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y2>y1>y3D.y2>y3>y1答案:D试题难度:三颗星知识点:二次函数图像增减性、对称轴固定6.若二次函数,当时,y随x的增大而减小,则m的取值范围是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图像增减性、对称轴固定7.(2011四川雅安)已知二次函数的图象如图,其对称轴为直线x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0.则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤答案:D试题难度:三颗星知识点:二次函数数形结合8.二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0).则此二次函数的表达式为()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数一般式9.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线x=2;乙说:与x轴的两个交点距离为6;丙说:抛物线与x轴的交点和其顶点围成的三角形面积等于9,请选出一个满足上述全部条件的一条抛物线的解析式:()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数顶点式10.二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.求二次函数的解析式()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数交点式11.若直线与二次函数的图象交于A、B两点,求以A、B及原点O为顶点的三角形的面积().A. B.C. D.无法计算答案:C试题难度:三颗星知识点:二次函数初步综合12.设一元二次方程的两根分别为,,且,则,满足()A. B.C. D.且答案:D试题难度:三颗星知识点:二次函数图象与方程、不等式13.设一元二次方程的两根分别为,,且,则二次函数的函数值y>m时自变量x的取值范围是()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数图象与方程、不等式。
(完整版)初中数学二次函数专题经典练习题(附答案)
![(完整版)初中数学二次函数专题经典练习题(附答案)](https://img.taocdn.com/s3/m/e2300e627f1922791688e8e2.png)
二次函数总复习经典练习题1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( )(A) 没有交点.(B) 只有一个交点.(C) 有且只有两个交点.(D) 有且只有三个交点.2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( )(A)2 .(B)1 .(C)3 .(D)4 .3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 .24.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( )(A) 没有交点.(B) 有两个交点,都在x 轴的正半轴.(C) 有两个交点,都在x 轴的负半轴.(D) 一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a(A) x= .(B) x=2.(C) x=4.(D) x=3.b6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( )7.二次函数y=2x2-4x+5 的最小值是_____ .28.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ .9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ .10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:801001101008060为获得最大利润,销售商应将该品牌电饭锅定价为元.11.函数y=ax 2-(a-3)x+ 1 的图象与x 轴只有一个交点,那么 a 的值和交点坐标分别为12.某涵洞是一抛物线形, 它的截面如图3 所示, 现测得水面宽AB 1.6m, 涵洞顶点O 到水面的距离为2.4m, 在图中的直角坐标系内, 涵洞所在抛物线的解析式为13.(本题8 分)已知抛物线y=x2-2x-2 的顶点为A,与y 轴的交点为B,求过A、B 两点的直线的解析式.14.(本题8分)抛物线y=ax2+2ax+a2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8 分)如图4,已知抛物线y=ax2+bx+c(a> 0)的顶点是C(0,1),直线l :y=-ax+3 与这条抛物线交于P、Q两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q的坐标.16.(本题8 分)工艺商场以每件155 元购进一批工艺品.若按每件200 元销售,工艺商场每天可售出该工艺品100 件;若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10 分))杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第 1个月到第x 个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元) ,g也是关于x 的二次函数.(1) 若维修保养费用第 1 个月为 2 万元,第 2 个月为 4 万元.求y 关于x 的解析式;(2) 求纯收益g 关于x 的解析式;(3) 问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4- ①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5 根支柱A1B1、A2B2、A3B3、A4B4、A5B5 之间的距离均为15m,B1B5∥ A1A5,将抛物线放在图4- ②所示的直角坐标系中.(1) 直接写出图4- ②中点B1、B3、B5的坐标;(2) 求图4- ②中抛物线的函数表达式;(3) 求图4- ①中支柱A2B2、A4B4 的长度.B319、如图5,已知A(2,2),B(3,0).动点P( m,0)在线段OB上移动,过点P作直线l 与x 轴垂直.(1) 设△ OAB中位于直线l 左侧部分的面积为S,写出S与m之间的函数关系式;(2) 试问是否存在点P,使直线l 平分△ OAB的面积?若有,求出点P 的坐标;若无,请说明理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:答案:一、1.B 2 .D 3 .C 4 .D 5 .D 6.B二、 7.3 8 .y =- x +3x +4 9 .- 2< x <2 10 .1301 115 211. a =0, ( ,0);a =1,(-1,0);a =9,( ,0) 12 . y x 23 3 413.抛物线的顶点为 (1,- 3),点 B 的坐标为 (0,- 2).直线 AB 的解析式为 y =-x -2 14.依题意可知抛物线经过点 (1,0) .于是 a + 2a + a 2+ 2=0,解得 a 1=-1,a 2=-2.当 a = -1 或 a =-2 时,求得抛物线与 x 轴的另一交点坐标均为 ( -3,0)2 15. (1) 依题意可知 b =0,c =1,且当 y =2 时,ax 2+1=2①,- ax +3=2②.由①、②解得 a =1, x =1.故抛物线与直线的解析式分别为: y =x 2+ 1,y =- x +3;(2) Q ( -2,5)216.设降价 x 元时,获得的利润为 y 元.则依意可得 y =(45-x )(100 +4x )= -4x 2+80x +4500, 即 y =-4(x -10)2+4900.故当 x =10时, y 最大=4900(元)2217. (1) 将(1,2)和(2,6) 代入 y =ax 2+bx ,求得 a =b =1.故 y =x 2+x ;(2) g =33x -150-y , 22即 g =-x 2+32x -150;(3) 因 y =-(x -16) 2+106,所以设施开放后第 16 个月,纯收益最大.令 g =0,得- x 2+ 32 x - 150=0.解得 x =16± 106 ,x ≈16- 10.3=5.7( 舍去 26.3) .当 x =5 时, g <0, 当 x =6 时, g >0,故 6 个月后,能收回投资18.(1) B 1( 30,0), B 3 (0,30) , B 5 (30,0) ;(2)设抛物线的表达式为 y a (x 30)(x 30) ,把 B 3 (0,30) 代入得 y a(0 30)(0 30) 30.1∴ a .30∵所求抛物线的表达式为: y3)∵ B 4 点的横坐标为 15, 1 45∴B 4 的纵坐标 y 4 (15 30)(15 30) .4 30 2∵ A 3B 3 50 ,拱高为 30,1 (x 30)(x 30) . 30∴立柱A4B445 8520 (m) .22由对称性知:85A2B2 A4B4 (m) .2四、1 2 1 119.(1)当0≤m≤2时,S= m2;当2<m≤3时,S= ×3×2-(3 -m)(-2m+6)= -m22 2 2+6m-6.(2)若有这样的P点,使直线l 平分△ OAB的面积,很显然0<m<2.由于△ OAB3 1 3的面积等于3,故当l 平分△ OAB面积时,S= .∴ m2.解得m= 3 .故存在这样2 2 2的P点,使l 平分△ OAB的面积.且点P的坐标为(3 ,0).。
初中数学专题温习:二次函数知识点总结与练习题
![初中数学专题温习:二次函数知识点总结与练习题](https://img.taocdn.com/s3/m/8bef2026ec630b1c59eef8c75fbfc77da269975e.png)
二次函数知识点总结一、二次函数概念:1.二次函数的概念:一样地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数。
(那个地址需要强调:和一元二次方程类似,二次项系数0a≠,而b c,能够为零.二次函数的概念域是全部实数.)2. 二次函数2=++的结构特点:y ax bx c⑴等号左侧是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的大体形式1. 二次函数大体形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
y ax c=+的性质:上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方式一:⑴ 将抛物线解析式转化成极点式()2y a x h k =-+,确信其极点坐标()h k ,; ⑵ 维持抛物线2y ax =的形状不变,将其极点平移到()h k ,处,具体平移方式如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 归纳成八个字“左加右减,上加下减”. 方式二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方能够取得前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法 五点画图法:利用配方式将二次函数2y ax bx c =++化为极点式2()y a x h k =-+,确信其开口方向、对称轴及极点坐标,然后在对称轴双侧,左右对称地描点画图.一样咱们选取的五点为:极点、与y 轴的交点()0c ,、和()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(假设与x 轴没有交点,那么取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,极点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,极点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,极点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方式1. 一样式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 极点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都能够化成一样式或极点式,但并非所有的二次函数都能够写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才能够用交点式表示.二次函数解析式的这三种形式能够互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确信的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴确实是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右边. ⑵ 在0a <的前提下,结论恰好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右边; 当0b =时,02ba-=,即抛物线的对称轴确实是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确信的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左侧那么0>ab ,在y 轴的右边那么0<ab ,归纳的说确实是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确信,那么这条抛物线确实是唯一确信的. 二次函数解析式的确信:依照已知条件确信二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必需依照题目的特点,选择适当的形式,才能使解题简便.一样来讲,有如下几种情形:1. 已知抛物线上三点的坐标,一样选用一样式;2. 已知抛物线极点或对称轴或最大(小)值,一样选用极点式;3. 已知抛物线与x 轴的两个交点的横坐标,一样选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用极点式.九、二次函数图象的对称二次函数图象的对称一样有五种情形,能够用一样式或极点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,取得的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,取得的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,取得的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,取得的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,取得的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,取得的解析式是()2y a x h k =-+-; 4. 关于极点对称(即:抛物线绕极点旋转180°)2y ax bx c =++关于极点对称后,取得的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于极点对称后,取得的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,取得的解析式是()222y a x h m n k =-+-+-依照对称的性质,显然不管作何种对称变换,抛物线的形状必然可不能发生转变,因此a 永久不变.求抛物线的对称抛物线的表达式时,能够依据题意或方便运算的原那么,选择适合的形式,适应上是先确信原抛物线(或表达式已知的抛物线)的极点坐标及开口方向,再确信其对称抛物线的极点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情形):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情形. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,不管x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,不管x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴必然相交,交点坐标为(0,)c ;3. 二次函数经常使用解题方式总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方式将二次函数由一样式转化为极点式;⑶ 依照图象的位置判定二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判定图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a++≠本身确实是所含字母x的二次函数;下面以0a>时为例,揭露二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的概念、性质,有关试题常出此刻选择题中,如:2y=3(x+4)22y=3x22-32y=-2(x-3)2已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像通过原点, 那么m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,若是函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D3. 考查用待定系数法求二次函数的解析式,有关习题显现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线通过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
中学初中数学二次函数知识点汇总
![中学初中数学二次函数知识点汇总](https://img.taocdn.com/s3/m/eae62587ab00b52acfc789eb172ded630b1c983b.png)
中学初中数学二次函数知识点汇总一、基本概念:1. 二次函数的定义:二次函数是以$x$为自变量,$y$为因变量,且它的表达式为$f(x) = ax^2 + bx + c$的函数,其中$a$、$b$、$c$为实数,$a\neq0$。
2. 二次函数的图象:二次函数$y = ax^2 + bx + c$的图象是抛物线。
3. 抛物线的顶点:抛物线$y = ax^2 + bx + c$的顶点坐标为$(-\frac{b}{2a}, f(-\frac{b}{2a}))$。
4. 对称轴:二次函数$y = ax^2 + bx + c$的对称轴方程为$x = -\frac{b}{2a}$。
5. 判别式:二次方程$ax^2 + bx + c = 0$的判别式为$\Delta =b^2 - 4ac$。
二、基本性质:1.最值问题:当二次函数的开口向上时,最值为最小值;当二次函数的开口向下时,最值为最大值。
2.函数的增减性:当$a>0$时,图象开口向上,为增函数;当$a<0$时,图象开口向下,为减函数。
3. 零点问题:二次函数$y = ax^2 + bx + c$的零点为方程$ax^2 + bx + c = 0$的根,可用判别式$\Delta$来判断有无实根。
4. 平移问题:二次函数$y = ax^2 + bx + c$的图象沿$x$轴平移$h$个单位,可修改为$y = a(x-h)^2 + b(x-h) + c$;沿$y$轴平移$k$个单位,可修改为$y = a(x-k)^2 + b(x-k) + c$。
5. 和差问题:二次函数$y = ax^2 + bx + c$与$y = x^2$的和差为$y = a(x-\frac{b}{2a})^2 + c - \frac{b^2}{4a}$和$y = -a(x-\frac{b}{2a})^2 + c + \frac{b^2}{4a}$。
三、图象的性质:1. 开口方向:二次函数$y = ax^2 + bx + c$的系数$a$的符号决定了图象的开口方向。
初中数学《二次函数》十大题型汇编含解析
![初中数学《二次函数》十大题型汇编含解析](https://img.taocdn.com/s3/m/b3de6eaef80f76c66137ee06eff9aef8941e4839.png)
二次函数【十大题型】【题型1 辨别二次函数】 (1)【题型2 由二次函数的定义求字母的值】 (3)【题型3 由二次函数的定义求字母的取值范围】 (4)【题型4 二次函数的一般形式】 (6)【题型5 求二次函数的值】 (7)【题型6 判断函数关系】 (9)【题型7 列二次函数关系式(几何图形)】 (11)【题型8 列二次函数关系式(增长率)】 (14)【题型9 列二次函数关系式(循环)】 (15)【题型10 列二次函数关系式(销售)】 (16)知识点1:二次函数的定义一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.【题型1 辨别二次函数】【例1】(23-24九年级上·江西南昌·阶段练习)下列函数解析式中,yy一定是xx的二次函数的是()A.yy=2aaxx2B.yy=2xx+aa2C.yy=2xx2−1D.yy=xx2+1xx【答案】C【分析】本题考查二次函数的识别,形如yy=aaxx2+bbxx+cc(aa≠0)的函数是二次函数,根据定义逐一判断即可得到答案.【详解】解:A,当aa=0时,yy=2aaxx2=0,不是二次函数,不合题意;B,yy=2xx+aa2,yy是xx的一次函数,不合题意;C,yy=2xx2−1,yy一定是xx的二次函数,符合题意;D,yy=xx2+1xx中含有分式,不是二次函数,不合题意;故选C.【变式1-1】(23-24九年级上·安徽安庆·阶段练习)下列函数是二次函数的是()A.yy=2xx−1B.yy=√xx2−1C.yy=xx2−1D.yy=12xx【答案】C【分析】本题考查了二次函数的定义,能熟记二次函数的定义是解此题的关键,注意:形如yy=aaxx2+bbxx+cc (aa、b、c为常数,aa≠0)的函数叫二次函数.根据二次函数的定义逐个判断即可.【详解】解:A、函数yy=2xx−1是一次函数,不是二次函数,故本选项不符合题意;B、函数yy=√xx2−1根号内含有x,不是二次函数,故本选项不符合题意;C、函数yy=xx2−1是二次函数,故本选项符合题意;D、函数yy=12xx分母中含有x,不是二次函数,故本选项不符合题意.故选:C.【变式1-2】(23-24九年级下·江苏·专题练习)下列函数关系式中,二次函数的个数有()(1)yy=3(xx−1)2+1;(2)yy=1xx2−xx;(3)SS=3−2tt2;(4)yy=xx4+2xx2−1;(5)yy=3xx(2−xx)+3xx2;(6)yy=mmxx2+8.A.1个B.2个C.3个D.4个【答案】B【分析】本题考查了二次函数的定义,一般地,形如yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的函数叫做二次函数.判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】解:(1)yy=3(xx−1)2+1是二次函数,故符合题意;(2)yy=1xx2−xx,不是二次函数,故不符合题意;(3)SS=3−2tt2是二次函数,故符合题意;(4)yy=xx4+2xx2−1不是二次函数,故不符合题意;(5)yy=3xx(2−xx)+3xx2=6xx不是二次函数,故不符合题意;(6)yy=mmxx2+8,不确定m是否为0,不一定是二次函数,故不符合题意;综上所述,二次函数有2个.故选:B.【变式1-3】(23-24九年级上·湖南长沙·期末)下列函数①yy=5xx−5;②yy=3xx2−1;③yy=4xx3−3xx2;④yy=2xx2−2xx+1;⑤yy=1xx2.其中是二次函数的是.【答案】②④/④②【分析】根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.【详解】解:①yy=5xx−5为一次函数;②yy=3xx2−1为二次函数;③yy=4xx3−3xx3自变量次数为3,不是二次函数;④yy=2xx2−2xx+1为二次函数;⑤yy=1xx2函数式为分式,不是二次函数.故答案为②④.【点睛】本题考查二次函数的定义,能够根据二次函数的定义判断函数是否属于二次函数是解决本题的关键.【题型2 由二次函数的定义求字母的值】【例2】(23-24九年级下·广东东莞·期中)已知函数yy=(mm−1)xx mm2+1是二次函数,则mm=.【答案】−1【分析】根据定义得:形如yy=aaxx2+bbxx+cc(aa、bb、cc是常数,且aa≠0)的函数是二次函数,列方程可求得答案.【详解】解:依题意得:mm2+1=2且mm−1≠0,解得mm=−1.故答案为:−1.【点睛】本题考查了二次函数的定义.注意:二次函数yy=aaxx2+bbxx+cc中,aa是常数,本题关键点为aa≠0.【变式2-1】(23-24九年级上·江苏扬州·阶段练习)如果yy=2xx|mm|+3xx−1是关于xx的二次函数,则mm=.【答案】±2【分析】本题主要考查了二次函数的定义,直接利用二次函数的定义得出答案.【详解】解:∵yy=2xx|mm|+3xx−1是关于x的二次函数,∴|mm|=2,解得:mm=±2.故答案为:±2.【变式2-2】(23-24九年级上·湖北·周测)如果函数yy=(kk−1)xx kk2−kk+2+kkxx−1是关于x的二次函数,则kk=.【答案】0【分析】本题考查了二次函数的定义.根据二次函数的定义得到kk−1≠0且kk2−kk+2=2,然后解不等式和方程即可得到k的值.【详解】解:根据题意,得kk−1≠0且kk2−kk+2=2,解得kk=0.故答案为:0.【变式2-3】(23-24九年级下·广东广州·期末)如果yy=(kk−3)xx�kk-1�+xx−3是二次函数,佳佳求出k的值为3,敏敏求出k的值为-1,她们俩中求得结果正确的是.【答案】敏敏【分析】本题考查了二次函数的定义,由定义得|kk−1|=2,kk−3≠0,即可求解;理解定义:“一般地,形如yy=aaxx2+bbxx+cc(a、b、c是常数,aa≠0)的函数叫做二次函数.” 是解题的关键.【详解】解:∵yy=(kk−3)xx�kk-1�+xx−3是二次函数,∴|kk−1|=2,解得kk1=3,kk2=−1,又∵kk−3≠0,即kk≠3,∴kk=−1,故敏敏正确.【题型3 由二次函数的定义求字母的取值范围】【例3】(23-24九年级上·上海嘉定·期末)如果函数yy=(kk−1)xx2+kkxx−1(kk是常数)是二次函数,那么kk的取值范围是.【答案】kk≠1【分析】根据:“形如yy=aaxx2+bbxx+cc(aa≠0),这样的函数叫做二次函数”,得到kk−1≠0,即可.【详解】解:由题意,得:kk−1≠0,∴kk≠1;故答案为:kk≠1.【变式3-1】(23-24九年级上·浙江嘉兴·开学考试)已知函数yy=(mm2−mm)xx2+(mm−1)xx−2(m为常数).(1)若这个函数是关于x的一次函数,求m的值.(2)若这个函数是关于x的二次函数,求m的取值范围.【答案】(1)mm=0;(2)mm≠1且mm≠0.【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题.【详解】(1)解:依题意mm2−mm=0且mm−1≠0,所以mm=0;(2)解:依题意mm2−mm≠0,所以mm≠1且mm≠0.【点睛】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,属于中考常考题型.【变式3-2】(23-24九年级上·广东江门·阶段练习)已知关于xx的二次函数yy=(aa2−1)xx2+xx−2,则aa的取值范围是()A.aa≠1B.aa≠−1C.aa≠±1D.为任意实数【答案】C【分析】根据二次函数定义可得aa2−1≠0,解出答案即可.【详解】因为关于xx的二次函数yy=(aa2−1)xx2+xx−2,∴aa2−1≠0,解得:aa≠±1.故选:C.【点睛】本题考查的是二次函数yy=aaxx2+bbxx+cc(aa≠0)概念,熟练掌握二次函数定义是解题关键.【变式3-3】(23-24九年级下·四川遂宁·期中)已知函数yy=(mm2-2)xx2+(mm+√2)xx+8.若这个函数是二次函数,求mm的取值范围【答案】mm≠√2且mm≠-√2【分析】根据二次函数的定义,即可得不等式mm2-2≠0,解不等式即可求得.【详解】解:∵函数yy=(mm2-2)xx2+(mm+√2)xx+8是二次函数,∴mm2-2≠0,解得mm≠±√2,故答案为:mm≠√2且mm≠-√2.【点睛】本题考查了二次函数的定义,熟练掌握和运用二次函数的定义是解决本题的关键.【题型4 二次函数的一般形式】【例4】(23-24九年级上·四川南充·阶段练习)二次函数yy=xx2−3xx+5的二次项是,一次项系数是,常数项是.【答案】xx2−3 5【分析】根据二次函数的定义判断即可。
初中数学二次函数知识点汇总(史上最全)
![初中数学二次函数知识点汇总(史上最全)](https://img.taocdn.com/s3/m/9e9af6bc312b3169a551a435.png)
二次函数知识点一、基本概念:1.二次函数的概念:一般地,形如y =ax2 +bx +c (a ,b,c是常数,a ≠ 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a ≠ 0 ,而b ,c 可以为零.二次函数的定义域是全体实数.2. 二次函数y =ax2 +bx +c 的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.二、基本形式1.二次函数基本形式:y =ax2 的性质:a 的绝对值越大,抛物线的开口越小。
2.y=ax2 +c的性质:(上加下减)向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位y=a (x-h )2y=ax 2+ky=ax 2y=a (x-h )2+k3. y = a (x - h )2的性质:(左加右减)a 的符号 开口方向顶点坐 标 对称 轴 性质a > 0向上(h ,0)X=h x > h 时,y 随 x 的增大而增大;x < h 时,y 随x 的增大而减小; x = h 时, y 有最小值0 .a < 0向下(h ,0)X=h x > h 时,y 随 x 的增大而减小;x < h 时,y 随x 的增大而增大; x = h 时, y 有最大值0 .4. y = a (x - h )2+ k 的性质:a 的符号 开口方向顶点坐 标 对称 轴 性质a > 0向上(h ,k )X=h x > h 时,y 随 x 的增大而增大;x < h 时,y 随x 的增大而减小; x = h 时, y 有最小值k .a < 0向下(h ,k )X=h x > h 时,y 随 x 的增大而减小;x < h 时,y 随x 的增大而增大; x = h 时, y 有最大值k .三、二次函数图象的平移1. 平移步骤:方法 1:⑴ 将抛物线解析式转化成顶点式 y = a (x - h )2+ k ,确定其顶点坐标(h ,k ); ⑵ 保持抛物线 y = ax 2 的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:向上(k >0)【或向下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位2. 平移规律在原有函数的基础上“ h 值正右移,负左移; k 值正上移,负下移”.概括成八个字“左加右减, 上加下减”.2a 方法 2:⑴ y = ax 2 + bx + c 沿 y 轴平移:向上(下)平移m 个单位, y = ax 2 + bx + c 变成y = ax 2 + bx + c + m (或 y = ax 2 + bx + c - m )⑵ y = ax 2+ bx + c 沿轴平移:向左(右)平移m 个单位, y = ax 2+ bx + c 变成y = a (x + m )2 + b (x + m ) + c (或 y = a (x - m )2 + b (x - m ) + c )四、二次函数 y = a (x - h )2+ k 与 y = ax 2 + bx + c 的比较从解析式上看, y = a (x - h )2+ k 与 y = ax 2 + bx + c 是两种不同的表达形式,后者通过配方可以得到⎛ b ⎫24ac - b 2 b 4ac - b 2前者,即 y = a x + ⎪ +⎝ ⎭4a ,其中h = - ,k = . 2a 4a五、二次函数 y = ax2+ bx + c 图象的画法五点绘图法:利用配方法将二次函数 y = ax 2 + bx + c 化为顶点式 y = a (x - h )2 + k ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与 y 轴的交点(0,c )、以及(0,c )关于对称轴对称的点(2h ,c )、与 x 轴的交点(x 1 ,0), (x 2 ,0)(若与 x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与 x 轴的交点,与 y 轴的交点.六、二次函数 y = ax2+ bx + c 的性质b⎛ b 4ac - b 2 ⎫1. 当a > 0 时,抛物线开口向上,对称轴为 x = - 2a ,顶点坐标为 - 2a , 4a ⎪ .当 x < - b2a时, y 随 x 的增大而减小;当 x > - b 2a ⎝ ⎭时, y 随 x 的增大而增大;当 x = - b 2a时, y 有最小值4ac - b 2. 4ab⎛ b4ac - b 2 ⎫ b2. 当a < 0 时,抛物线开口向下,对称轴为 x = - 2a ,顶点坐标为 - 2a , 4a ⎪ .当 x < - 2a 时,y ⎝ ⎭b b 4ac - b 2随 x 的增大而增大;当 x > - 时, y 随 x 的增大而减小;当 x = - 时, y 有最大值.2a 2a4a七、二次函数解析式的表示方法1. 一般式: y = ax 2 + bx + c ( a , b , c 为常数, a ≠ 0 );2. 顶点式: y = a (x - h )2 + k ( a , h , k 为常数, a ≠ 0 );3. 两根式: y = a (x - x 1 )(x - x 2 ) ( a ≠ 0 , x 1 , x 2 是抛物线与 x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即b2 - 4ac ≥ 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1.二次项系数a二次函数y =ax2 +bx +c 中,a 作为二次项系数,显然a ≠ 0 .⑴ 当a > 0 时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当a < 0 时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向, a 的大小决定开口的大小.2.一次项系数b在二次项系数a 确定的前提下, b 决定了抛物线的对称轴.⑴ 在a > 0 的前提下,当b > 0 时,-b2a 当b = 0 时,-b2a 当b < 0 时,-b2a < 0 ,即抛物线的对称轴在y 轴左侧;= 0 ,即抛物线的对称轴就是y 轴;> 0 ,即抛物线对称轴在y 轴的右侧.⑵ 在a < 0 的前提下,结论刚好与上述相反,即当b > 0 时,-b2a 当b = 0 时,-b2a 当b < 0 时,-b2a > 0 ,即抛物线的对称轴在y 轴右侧;= 0 ,即抛物线的对称轴就是y 轴;< 0 ,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下, b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴x =-b 2a是“左同右异”总结:3.常数项c在y 轴左边则ab > 0,在y 轴的右侧则ab < 0,概括的说就⑴ 当c > 0 时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当c = 0 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0 ;⑶ 当c < 0 时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a ,b ,c 都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于x 轴对称y =ax2 +bx +c 关于x 轴对称后,得到的解析式是y =-ax2 -bx -c ;y=a(x-h)2 +k关于x轴对称后,得到的解析式是y=-a(x-h)2 -k;2.关于y 轴对称y =ax2 +bx +c 关于y 轴对称后,得到的解析式是y =ax2 -bx +c ;y=a(x-h)2 +k关于y轴对称后,得到的解析式是y=a(x+h)2 +k;3.关于原点对称y =ax2 +bx +c 关于原点对称后,得到的解析式是y =-ax2 +bx -c ;y=a(x-h)2 +k关于原点对称后,得到的解析式是y=-a(x+h)2 -k;4.关于顶点对称(即:抛物线绕顶点旋转180°)y =ax2+bx +c 关于顶点对称后,得到的解析式是y =-ax2b2-bx +c -;2ay=a(x-h)2 +k关于顶点对称后,得到的解析式是y=-a(x-h)2 +k.5.关于点(m ,n)对称y=a(x-h)2 +k关于点(m,n)对称后,得到的解析式是y=-a(x+h-2m)2 +2n-k根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):一元二次方程ax 2 + bx + c = 0 是二次函数 y = ax 2 + bx + c 当函数值 y = 0 时的特殊情况.图象与 x 轴的交点个数:① 当∆ = b 2 - 4ac > 0 时,图象与 x 轴交于两点 A (x ,0),B (x ,0 ) (x ≠ x ) ,其中的 x ,x 是一元二121212次方程ax 2+ bx + c = 0(a ≠ 0)的两根.这两点间的距离 AB = x 2 - x 1 =.② 当∆ = 0 时,图象与 x 轴只有一个交点; ③ 当∆ < 0 时,图象与 x 轴没有交点.1' 当a > 0 时,图象落在 x 轴的上方,无论 x 为任何实数,都有 y > 0 ;2 ' 当a < 0 时,图象落在 x 轴的下方,无论 x 为任何实数,都有 y < 0 .2. 抛物线 y = ax 2 + bx + c 的图象与 y 轴一定相交,交点坐标为(0 , c ) ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数 y = ax 2 + bx + c 中a , b , c 的符号,或由二次函数中a , b , c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2 + bx + c (a ≠ 0) 本身就是所含字母 x 的二次函数;下面以a > 0 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数y = (m - 2)x 2 +m 2 -m - 2 的图像经过原点,则m 的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y =kx +b 的图像在第一、二、三象限内,那么函数y =kx 2 +bx - 1的图像大致是()y y y y1 10 x o-1 x 0 x 0 -1 xA B C D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =5,求这条抛物线的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学二次函数复习〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向 〖大纲要求〗1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(ax +m)2+k 的图象,了解特殊与一般相互联系和转化的思想; 4.会用待定系数法求二次函数的解析式;5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容(1)二次函数及其图象如果y=ax 2+bx+c(a,b,c 是常数,a ≠0),那么,y 叫做x 的二次函数。
二次函数的图象是抛物线,可用描点法画出二次函数的图象。
(2)抛物线的顶点、对称轴和开口方向抛物线y=ax 2+bx+c(a ≠0)的顶点是)44,2(2a b ac a b --,对称轴是abx 2-=,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
抛物线y=a (x+h )2+k(a ≠0)的顶点是(-h ,k ),对称轴是x=-h. 〖考查重点与常见题型〗1.考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x 为自变量的二次函数y =(m -2)x 2+m 2-m -2额图像经过原点, 则m 的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y =kx +b 的图像在第一、二、三象限内,那么函数y =kx 2+bx -1的图像大致是( )3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =53,求这条抛物线的解析式。
4.考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点的横坐标是-1、3,与y 轴交点的纵坐标是-32 (1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.5.考查代数与几何的综合能力,常见的作为专项压轴题。
习题1:一、填空题:(每小题3分,共30分)1、 已知A(3,6)在第一象限,则点B(3,-6)在第 象限 2、 对于y=-1x,当x>0时,y随x的增大而 3、 二次函数y=x2+x-5取最小值是,自变量x的值是 4、 抛物线y=(x-1)2-7的对称轴是直线x= 5、 直线y=-5x-8在y轴上的截距是 6、 函数y=12-4x中,自变量x的取值范围是7、 若函数y=(m+1)xm2+3m+1是反比例函数,则m 的值为8、 在公式1-a2+a=b中,如果b是已知数,则a= 9、 已知关于x的一次函数y=(m-1)x+7,如果y随x的增大而减小,则m的取值范围是10、 某乡粮食总产值为m吨,那么该乡每人平均拥有粮食y(吨),与该乡人口数x的函数关系式是 二、选择题:(每题3分,共30分) 11、函数y=x-5 中,自变量x的取值范围 ( )(A)x>5 (B)x<5 (C)x≤5 (D)x≥5 12、抛物线y=(x+3)2-2的顶点在 ( )(A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限 13、抛物线y=(x-1)(x-2)与坐标轴交点的个数为 ( ) (A)0 (B)1 (C)2 (D)314、下列各图中能表示函数和在同一坐标系中的图象大致是( )(A) (B) (C) (D)15.平面三角坐标系内与点(3,-5)关于y轴对称点的坐标为()(A)(-3,5)(B)(3,5)(C)(-3,-5)(D)(3,-5)16.下列抛物线,对称轴是直线x=12的是()(A)y=12x2(B)y=x2+2x(C)y=x2+x+2(D)y=x2-x-2 17.函数y=3x1-2x中,x的取值范围是()(A)x≠0 (B)x>12(C)x≠12(D)x<1218.已知A(0,0),B(3,2)两点,则经过A、B两点的直线是()(A)y=23x(B)y=32x(C)y=3x(D)y=13x+119.不论m为何实数,直线y=x+2m与y=-x+4 的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限20.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点M离墙1米,离地面403米,则水流下落点B离墙距离OB是()(A)2米(B)3米(C)4米(D)5米三.解答下列各题(21题6分,22----25每题4分,26-----28每题6分,共40分)21.已知:直线y=12x+k过点A(4,-3)。
(1)求k的值;(2)判断点B(-2,-6)是否在这条直线上;(3)指出这条直线不过哪个象限。
22.已知抛物线经过A(0,3),B(4,6)两点,对称轴为x=53,(1) 求这条抛物线的解析式;(2) 试证明这条抛物线与X 轴的两个交点中,必有一点C ,使得对于x轴上任意一点D 都有AC +BC ≤AD +BD 。
23.已知:金属棒的长1是温度t的一次函数,现有一根金属棒,在O ℃时长度为200cm,温度提高1℃,它就伸长0.002cm。
(1) 求这根金属棒长度l与温度t的函数关系式; (2) 当温度为100℃时,求这根金属棒的长度;(3) 当这根金属棒加热后长度伸长到201.6cm时,求这时金属棒的温度。
24.已知x1,x2,是关于x的方程x2-3x+m=0的两个不同的实数根,设s=x12+x22(1) 求S 关于m的解析式;并求m的取值范围; (2) 当函数值s=7时,求x13+8x2的值;25.已知抛物线y=x2-(a+2)x+9顶点在坐标轴上,求a的值。
26、如图,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:(1)四边形CGEF的面积S关于x的函数表达式和X的取值范围; (2)当x为何值时,S的数值是x的4倍。
DABCE FGX XX27、国家对某种产品的税收标准原定每销售100元需缴税8元(即税率为8%),台洲经济开发区某工厂计划销售这种产品m吨,每吨2000元。
国家为了减轻工人负担,将税收调整为每100元缴税(8-x)元(即税率为(8-x)%),这样工厂扩大了生产,实际销售比原计划增加2x%。
(1)写出调整后税款y(元)与x的函数关系式,指出x的取值范围;(2)要使调整后税款等于原计划税款(销售m吨,税率为8%)的78%,求x的值.28、已知抛物线y=x2+(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边) (1)写出A,B,C三点的坐标;(2)设m=a2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由;(3)设m=a2-2a+4,当∠BAC最大时,求实数a的值。
习题2:一.填空(20分)1.二次函数=2(x - 32)2 +1图象的对称轴是 。
2.函数的自变量的取值范围是 。
3.若一次函数y=(m-3)x+m+1的图象过一、二、四象限,则的取值范围是 。
4.已知关于的二次函数图象顶点(1,-1),且图象过点(0,-3),则这个二次函数解析式为 。
5.若y 与x 2成反比例,位于第四象限的一点P (a ,b )在这个函数图象上,且a,b 是方程x 2-x -12=0的两根,则这个函数的关系式 。
6.已知点P (1,a )在反比例函数y=kx(k ≠0)的图象上,其中a=m 2+2m+3(m 为实数),则这个函数图象在第 象限。
7. x,y 满足等式x=3221y y +-,把y 写成x 的函数 ,其中自变量x 的取值范围是 。
8.二次函数y=ax 2+bx+c+(a ≠0)的图象如图,则点P (2a-3,b+2) 在坐标系中位于第 象限9.二次函数y=(x-1)2+(x-3)2,当x= 时,达到最小值 。
10.抛物线y=x 2-(2m-1)x- 6m 与x 轴交于(x 1,0)和(x 2,0)两点,已知x 1x 2=x 1+x 2+49,要使抛物线经过原点,应将它向右平移 个单位。
二.选择题(30分)11.抛物线y=x 2+6x+8与y 轴交点坐标( ) (A )(0,8) (B )(0,-8) (C )(0,6) (D )(-2,0)(-4,0)12.抛物线y= -12(x+1)2+3的顶点坐标( )(A )(1,3) (B )(1,-3) (C )(-1,-3) (D )(-1,3)13的图象在第一、二、三象限,那么函数y=kx 2+bx-1的图象大致是( 14.函数y=1x +x 的取值范围是( )(A )x ≤2 (B )x<2 (C )x> - 2且x ≠1 (D )x ≤2且x ≠–115.把抛物线y=3x 2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是( )(A )=3(x+3)2 -2 (B )=3(x+2)2+2 (C )=3(x-3)2 -2 (D )=3(x-3)2+216.已知抛物线=x 2+2mx+m -7与x 轴的两个交点在点(1,0)两旁,则关于x 的方程14x 2+(m+1)x+m 2+5=0的根的情况是( )(A )有两个正根 (B )有两个负数根 (C )有一正根和一个负根 (D )无实根x y o-2-2x y ox yo x y o 1-1-1BCD17.函数y= - x 的图象与图象y=x+1的交点在( )(A ) 第一象限 (B )第二象限 (C )第三象限 (D )第四象限 18.如果以y 轴为对称轴的抛物线y=ax 2+bx+c 的图象,如图, 则代数式b+c-a 与0的关系( )(A )b+c-a=0 (B )b+c-a>0 (C )b+c-a<0 (D )不能确定19.已知:二直线y= -35x +6和y=x - 2,它们与y 轴所围成的三角形的面积为( )(A )6 (B )10 (C )20 (D )1220.某学生从家里去学校,开始时匀速跑步前进,跑累了后,再匀速步行余下的路程。
下图所示图中,横轴表示该生从家里出发的时间t ,纵轴表示离学校的路程s ,则路程s与时间t 之间的函数关系的图象大致是( )三.解答题(21~23每题5分,24~28每题7分,共50分)21.已知抛物线y=ax 2+bx+c (a ≠0)与x 轴的两交点的横坐标分别是-1和3,与y 轴交点的纵坐标是-32;(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向,对称轴和顶点坐标。