钢结构上第四章 轴心受力构件
第4章 钢结构轴心受力构件——格构式
![第4章 钢结构轴心受力构件——格构式](https://img.taocdn.com/s3/m/0607a1bb0029bd64783e2ceb.png)
4.5 格构式轴心受压构件计算
二、 格构式轴心受压构件的整体稳定承载力
2. 对虚轴的整体稳定承载力
N f x A
双肢格构式轴心受压构件对虚轴的换算长细比的计算公式是:
2 缀条构件: ox x 27 A A
1x
λx —— 整个构件对虚轴的长细比; A ——各分肢横截面的毛面积之和; A1x ——一个节间内两侧斜缀条的毛截面面积和:
(一)缀条的设计: 1、斜缀条的设计 2、横缀条的设计: (二)缀板的设计
4.5 格构式轴心受压构件计算 五、缀件(缀条、缀板)的设计 (一)缀条设计: 1 、斜缀条的设计: 缀条的布置一般采用单系缀条或交叉缀 条。缀条可看做以分肢为弦杆的平行弦桁架 的腹杆,与结构力学计算桁架腹杆的方法相 同。
4.5 格构式轴心受压构件计算 五、缀件(缀条、缀板)的设计 (一)缀条设计: 1 、斜缀条的设计: 按铰接桁架计算一个斜缀条 的内力为: N1=V1/(n cosθ)
缀条一般采用单角钢,与柱单面连接,考虑到
受力时的偏心和受压时的弯扭,当按轴心受力
构件设计时,应将钢材强度设计值乘以下列折
减系数η:
4.5 格构式轴心受压构件计算 五、缀件(缀条、缀板)的设计 (一)缀条设计: 1、斜缀条的设计: (1)按轴心受压计算构件的稳定性时: (2)按轴心受压计算构件的强度和(与分肢 的)连接时:
4.5 格构式轴心受压构件计算 二、 格构式轴心受压构件的整体稳定承载力 2、对虚轴的整体稳定承载力 对格构式构件来说,当绕虚轴失稳时,因肢件之 间不连续,只采用缀条或缀板联系,剪切变形较
大,剪力引起的附加影响不能忽略,通常采用换
算长细比λ0x来替代实际长细比λx,以考虑缀材
钢结构设计原理 第四章-轴心受力构件
![钢结构设计原理 第四章-轴心受力构件](https://img.taocdn.com/s3/m/2f48fd6b1eb91a37f1115c17.png)
因此,失稳时杆件的整个截面都处于加载的过 程中,应力-应变关系假定遵循同一个切线模量 Et,此时轴心受压杆件的屈曲临界力为:
N cr ,t
2 Et I
2 二、实际的轴心受压构件的受力性能
在钢结构中,实际的轴压杆与理想的直杆受力性能之间差别很大,实 际上,轴心受压杆的屈曲性能受许多因素影响,主要的影响因素有:
一、理想轴压构件的受力性能 理想轴压构件是指满足下列4个条件: o杆件本身绝对直杆; o材料均质且各向同性; o无荷载偏心且在荷载作用之前无初始应力; o杆端为两端铰接。 在轴心压力作用下,理想的压杆可能发生三种形式的屈曲: 弯曲屈曲、扭转屈曲、弯扭屈曲——见教科书P97图4–6 轴心受压构件具体以何种形式失稳,主要取决于截面的形式 和尺寸、杆的长度以及杆端的支撑条件。
l N 2 EI 对一无残余应力仅存在初弯曲的轴压杆,杆件中点截面边缘开始 式中 N l2 NE 屈服的条件为:
0
1
经过简化为:
N N vm v0 v0 fy v m v0 v 1 1 N NE A W N N v0 N E fy A W NE N
An—构件的净截面面积_
N fy r f R An
P94式4-2
(1)当轴力构件采用普通螺栓连接时 螺栓为并列布置:
n1 n2 n3
按最危险的截面Ⅰ-Ⅰ 计算,3个截面净截面面积 相同,但 Ⅰ-Ⅰ截面受力最大。
N n
Ⅰ-Ⅰ:N Ⅱ-Ⅱ:N-Nn1/n Ⅲ-Ⅲ:N-N(n1+n2)/n
Ⅰ Ⅱ Ⅲ
2 2
从上面两式我们可以看出,绕不同轴屈曲时,不仅临界力不同,且残余 应力对临界应力的影响程度也不同。因为k1,所以残余应力对弱轴的 影响比对强轴的影响严重的多。
钢结构第四章轴心受力构件
![钢结构第四章轴心受力构件](https://img.taocdn.com/s3/m/b714db5ba300a6c30c229fc1.png)
虑初弯曲和初偏心的影响,再考虑不同的截面形状和尺寸、不 同的加工条件和残余应力分布及大小及不同的屈曲方向后,采
用数值分析方法来计算构件的Nu值。
令 n/( E/ fy) Nu /(Afy)
绘出~λn曲线(算了200多条),它们形成了相当宽的
三、轴心受力构件的工程应用 平面桁架、空间桁架(包括网架和塔架)
结构、工作平台和其它结构的支柱等。 四、截面选型的原则
用料经济;形状简单,便于制做;便于与 其它构件连接。 五、设计要求
满足强度和刚度要求、轴心受压构件还应 满足整体稳定和局部稳定要求。
★思考问题:强度破坏和整体失稳有何异同??
第二节 轴心受力构件的强度和刚度计算
h ix /1
b iy /2
根据所需A、h、b 并考虑局部稳定要求 和构造要
求(h≥b),初选截面尺寸A、h、b 、t、tw。通常取h0 和b为10mm的倍数。对初选截面进行验算调整。由
于假定的不一定恰当,一般需多次调整才能获得较
满意的截面尺寸。
三、格构式轴心受压构件设计
1. 格构式轴心受压构件的整体稳定承载力 (1) 绕实轴的整体稳定承载力
h0/tw(2 50.5m)ax 23 /fy 5
式中λmax为两方向 长细比的较大值
当构件的承载力有富 裕时,板件的宽厚比可适 当放宽。
第五节 轴心受压构件设计
一、设计原则 1.设计要求 应满足强度、刚度、整体稳定和局部稳定要求。 2.截面选择原则 (1)尽量加大截面轮廓尺寸而减小板厚,以获得
也板称的作局局部部稳与定整计体算等,稳《定规准范则》。采用了σcr板σcr整体的设计准则, σcr板—板的临界应力,主要与板件的宽厚比有关。 《规范》采用限制板件宽厚比的方法来满足局部稳定。根据设 计准则分析并简化后得到的局部稳定计算公式为:
钢结构原理-第4章轴心受力构件
![钢结构原理-第4章轴心受力构件](https://img.taocdn.com/s3/m/aefe1f6883c4bb4cf7ecd1a9.png)
存在,且都是变量,再 加上材料的弹塑性,轴 压构件属于极值点失稳, 其极限承载力Nu很难用 解析法计算,只能借助 计算机采用数值法求解。
《钢结构原理》 第4章 轴心受力构件
缺陷通常只考虑影响最大的残余应力和初弯曲(l/1000)。 采用数值法可以计算出轴压构件在某个方向(绕 x 或 y 轴)的 柱子曲线,如下图,纵坐标为截面平均应力与屈服强度的比值, 横坐标为正则化长细比。
《钢结构原理》 第4章 轴心受力构件
4.1 概述
4.1.1 定义:构件只承受轴心力的作用。 承受轴心压力时称为轴心受压构件。 承受轴心拉力时称为轴心受拉构件。
N
N
N
N
《钢结构原理》 第4章 轴心受力构件
4.1.2 轴心受力构件的应用 平面及空间桁架(钢屋架、管桁架、塔桅、网架等); 工业及民用建筑结构中的一些柱; 支撑系统;等等。
(a) N
(b) N
Hale Waihona Puke (c) NNN
N
《钢结构原理》 第4章 轴心受力构件
4.4.3 理想轴心受压构件的弯曲屈曲 4.4.3.1 弹性弯曲屈曲
取隔离体,建立平衡微分方程
EyIN y0
用数学方法解得:N 的最 小值即分岔屈曲荷载 Ncr,又称 为欧拉荷载 NE 。
Ncr2EI/l2
对应的临界应力为:
《钢结构原理》 第4章 轴心受力构件
4.4 轴心受压构件的整体稳定
概念:在压力作用下,构件的外力必须和内力相平衡。 平衡有稳定、不稳定之分。当为不稳定平衡时,轻微的扰 动就会使构件产生很大的变形而最后丧失承载能力,这种 现象称为丧失稳定性,简称失稳,也称屈曲。 特点:与强度破坏不同,构件整体失稳时会导致完全 丧失承载能力,甚至整体结构倒塌。失稳属于承载能力极 限状态。与混凝土构件相比,钢构件截面尺寸小、构件细 长,稳定问题非常突出。只有受压才有稳定问题。
钢结构轴心受压答案
![钢结构轴心受压答案](https://img.taocdn.com/s3/m/5cd4b117453610661fd9f435.png)
;
(2)强度验算:
查表5.1,
由于 可正、可负,故由 产生的应力可使翼缘压应力增大(或减少)、也可使腹板压应力增大(或减少)。即:
所以,强度满足要求且腹板边缘起控制作用。
(3)弯矩作用平面内稳定验算:
查附表4.2得:
有端弯矩和横向荷载共同作用且产生同向曲率,故 。
由前可知,腹板起控制作用,所以:
还应验算腹板是否可能拉屈:
,b类截面,按 查表得
,承载力无太明显的提高。
(3)如果轴心压力为330KN(设计值),I16能否满足要求?如不满足,从构造上采取什么措施就能满足要求?
8距uuuuuuuuuuuujuu因为 ,所以整体稳定不满足。
在侧向加一支撑,重新计算。
,b类截面,查表得
,整体稳定满足。
4.6 设某工业平台柱承受轴心压力5000KN(设计值),柱高8m,两端铰接。要求设计一H型钢或焊接工字形截面柱。
(1)截面几何特征
强度验算:
因为: ,故可以考虑截面塑性发展。
(3)弯矩作用平面内的稳定验算:
, 查附表4.2得
对x轴为悬臂构件,故
(4)弯矩作用面外的稳定验算:
因上半段和下半段支撑条件和荷载条件一致,故:
查附表4.2得
构件对y轴无论是上半段、还是下半段均为两端支撑,在弯矩作用平面内有端弯矩且端弯矩相等而无横向荷载,故 ,
(4)验算弯矩作用平面外的稳定:
绕对称轴的长细比应取计入扭转效应的换算长细比 ,可采用简化计算方法确定:
根据教材85页,有:
因此:
属于b类截面,查附表4.2得:
①弯矩使翼缘受压时:
与对x轴相同,取
②弯矩使翼缘受拉时:
由于腹板的宽厚比
第四章 轴心受力构件
![第四章 轴心受力构件](https://img.taocdn.com/s3/m/2fa502563b3567ec102d8aff.png)
§4-6 格构式轴心受压柱的截面设计
§4-6 格构式轴心受压柱的截面设计
一、格构式轴心受压柱的组成 分肢
缀板
缀件
缀条
§4-6 格构式轴心受压柱的截面设计
二、格构式轴心受压柱的实轴和虚轴
垂直于分肢腹板平面的主轴--实轴;
垂直于分肢缀件平面的主轴--虚轴;
格构式轴心受压构件的设计应考虑:
§4-3 轴心受压构件的整体稳定
1.0
0.8 d 0.6 c b
a
0.4
0.2
0
50
100
150
200
250
(Q235)
a类为残余应力影响较小,c类为残余应力影响较大, 并有弯扭失稳影响,a、c类之间为b类,d类厚板工字 钢绕弱轴。
§4-3 轴心受压构件的整体稳定
构件长细比的确定
y x x
截面为双轴对称构件:
§4-2 轴心受力构件的强度和刚度
二、刚度计算(正常使用极限状态) 保证构件在运输、安装、使用时不会产生过大变形。
l0 [ ] i
l0 构件的计算长度;
i
I 截面的回转半径; A
[ ] 构件的容许长细比
§4-3 轴心受压构件的整体稳定
§4-3 轴心受压构件的整体稳定
强度 (承载能力极限状态) 刚度 (正常使用极限状态) 强度 轴心受压构件
轴 心 受 力 构 件
稳定
(承载能力极限状态)
刚度 (正常使用极限状态)
§4-2 轴心受力构件的强度和刚度
§4-2 轴心受力构件的强度和刚度
一、强度计算(承载能力极限状态)
N f An
其中: N — 轴心拉力或压力设计值; An— 构件的净截面面积; f— 钢材的抗拉强度设计值。 轴心受压构件,当截面无削弱时,强度不必计算。
第四章-轴心受力构件
![第四章-轴心受力构件](https://img.taocdn.com/s3/m/c09b0d9988eb172ded630b1c59eef8c75ebf9541.png)
2
300
200
有重 级工 作制 吊车 旳
厂房
250
-
受压构件旳允许长细比
项次
构件名称
允许长 细比
柱、桁架和天窗架中旳杆件
1 柱旳缀条、吊车梁或吊车桁架 150 下列旳柱间支撑
支撑(吊车梁或吊车桁架下列
旳柱间支撑除外)
2
200
用以降低受压构件长细比旳杆
件
第二节 轴心受压构件旳整体稳定
3、理想构件旳弹性弯曲失稳
根据右图列平衡方程
d2y EI dx2 Ny 0
解平衡方程:得
欧拉临界力只合用
N cr
π2 EI l02
π2 E λ2
A
于材料为弹性时旳 情况,应力一旦超 出材料旳百分比极
σ cr
N cr A
π2 E λ2
限,则欧拉公式不 再合用。
4、理想构件旳弹塑性弯曲失稳
构件失稳时假如截面应力超出弹性
ix( y)
Ix( y) A
实腹式轴心受压构件旳稳定性应按下式计算:
N ≤f
A
A为杆件毛截面面积
式中 为整体稳定系数,实质是临界应力与屈
服点旳比值。柱旳临界应力与截面形状、力作用方
向等有关,
— 轴心受压构件的整体稳定系数
根据构件截面分类取由λx,λy,λyz
fy 决定的
235
max
(1)规范现对t 40mm旳轴压构件作了专门要求。同步补充了d 类
r
2Er 2
5、实际构件旳整体稳定 实际构件与理想构件间存在着初始缺陷,缺陷主要有:
初始弯曲、残余应力、初始偏心。 ⑴、初始弯曲旳影响
1.一经加载产生 挠度,先慢后快
4-钢结构设计原理-轴心受力构件1 钢结构设计原理
![4-钢结构设计原理-轴心受力构件1 钢结构设计原理](https://img.taocdn.com/s3/m/9dd27dfb84254b35effd3403.png)
4 轴
主要内容:
心
受 力
1、轴心受拉构件的强度和刚度
构
件 设
2、轴心受压构件的强度
计
3、轴心受压实腹式构件的整体稳定
4、轴心受压格构式构件的整体稳定
5、轴心受压实腹式构件的局部稳定
6、轴心受压格构式构件的局部稳定
7、轴心受力构件的刚度
学习目标
1.掌握轴心受拉构件强度的计算方法、净截面的概念;
4
轴
心 受
所谓分支点失稳,是指当荷载逐渐增加到某一数值
力 构
时,结构除了按原有变形形式可能维持平衡之外,还可
件 设
能以其他变形形式维持平衡,这种情况称为出现平衡的
计
分支。出现平衡的分支是此种结构失稳的标志。
对于受偏心压力的细长直杆,当荷载逐渐增大而趋
于某一数值时,其原有变形形式急剧增大,致使结构丧
失承载能力。这种失稳现象称为极值点失稳。
结构或构件在外力增加到某一数值时,稳定的平衡
状态开始丧失,稍有扰动,结构变形迅速增大,使结构 丧失正常工作的能力,称为失稳。
在桥梁结构中,总是要求沿各个方向保持稳定的平
衡,也即沿各个方向都是稳定的,避免不稳定的平衡或 随遇平衡。
结构稳定问题的两种形式:
第一类稳定问题,分支点失稳问题; 第二类稳定问题,极值点失稳问题。
4
轴 心 受 力 构 件 设 计
4.3.3轴压稳定理论的沿革——具有初始缺陷的实际轴心压杆的稳 定问题
有关轴心压杆的整体稳定问题的理论经历了由理想状态杆件的
单曲线函数关系到实际状态杆件多曲线函数关系的沿革。传统的
理想状态压杆的单曲线稳定理论认为轴压杆是理想状态的,它在
钢结构基本原理第4章
![钢结构基本原理第4章](https://img.taocdn.com/s3/m/b0d9e711b4daa58da1114a3d.png)
第4.1节 概述
本节目录
1. 轴心受力构件的应用 2. 轴心受力构件类型 3. 轴心受力构件的截面形式 4. 轴心受力构件的计算内容
基本要求
了解轴心受力构件的类型、应用及计算内容
4.1.1 轴心受力构件的应用
轴心受力构件是指承受通过截面形心轴线的轴向力 作用的构件。
图4.1.1 桁架
图4.1.2 网架
由于组合截面制作费时费工,其总的成本并 不一定很低,目前只在荷载较大或构件较高时使 用。
4.1.4 轴心受力构件的计算内容
件轴 心 受 力 构
强度 (承载能力极限状态) 轴心受拉构件 刚度 (正常使用极限状态)
强度 (承载能力极限状态) 轴心受压构件 稳定
刚度 (正常使用极限状态)
第4.2节 轴心受力构件的强度和刚度
②理想轴心压杆的弹塑性弯曲屈曲临界力和临界应力
对于长细比λ<λp的轴心压杆发生弯曲屈曲时,构件截 面应力已超过材料的比例极限,并很快进入弹塑性状态, 由于截面应力与应变的非线性关系,这时构件的临界力和 临界应力公式采用切线模量理论计算。
N cr
2Et I
l2
cr
2Et 2
Et ---切线摸量
A
N f
A
N ——轴心压力设计值;
A ——构件毛截面积;
f ——钢材抗压强度设计值;
——
cr
/
f
,称为轴心受压构件整体稳定系数,
y
根据截面分类和构件长细比,由柱子曲线或查表确定。
轴心受压构件的柱子曲线
压杆失稳时临界应力σcr与长细比λ之间的关系曲线 称为柱子曲线。
规范在制定轴心受压构件的柱子曲线时,根据不同 截面形状和尺寸、不同加工条件和相应的残余应力分布 和大小、不同的弯曲屈曲方向以及l/1000的最大初弯曲, 按照最大强度准则,对多种实腹式轴心受压构件弯曲失 稳算出了近200条柱子曲线。
钢结构设计原理4轴心受力构件
![钢结构设计原理4轴心受力构件](https://img.taocdn.com/s3/m/abb1374bba68a98271fe910ef12d2af90242a8de.png)
轧制普通工字钢,腹板较薄,热轧后首先冷却;翼缘在
冷却收缩过程中受到腹板的约束,因此翼缘中产生纵向
残余拉应力,而腹板中部受到压缩作用产生纵向压应力
。轧制H型钢,由于翼缘较宽,其端部先冷却,因此具
有残余压应力,其值为=0.3
f
左右,残余应力在翼缘宽
y
度上的分布,常假设为抛物线或取为直线。翼缘是轧制
边或剪切边的焊接工字形截面,其残余应力分布情况与
Ncrx
2EIx 2
x
I ex Ix
2EIx 2
x
2t(kb)h2 / 4 2tbh2 / 4
2EIx 2
x
k
N cry
2EI y 2
y
I ey Iy
2EI y 2
y
2t(kb)3 /12 2tb3 /12
2EI y 2
y
k3
由于k<l.0,故知残余应力对弱轴的影响比对强轴的影 响要大得多 。
N f
An
采用高强度螺栓摩擦型连接的构件,验算净截面强度时 应考虑一部分剪力已由孔前接触面传递,验算最外列螺 栓处危险截面的强度时,应按下式计算
N' f
An
N ' N (1 0.5 n1 ) n
摩擦型连接的拉杆,除验算净截面强度外,还应验算毛 截面强度
N f
A
4.2.2轴心受力构件的刚度计算 为满足正常使用要求,构件应具有一定的刚度,保证构 件不会在运输和安装过程中产生弯曲或过大的变形,以 及使用期间因自重产生明显下挠,还有在动力荷载作用 下发生较大的振动。
GIt
1 i02
2E 2z
A
z
I
/ l2
Ai02 GIt
钢结构计算题答案
![钢结构计算题答案](https://img.taocdn.com/s3/m/28f9167aa26925c52cc5bf4b.png)
第四章 轴心受力构件4.1 验算由2∟635⨯组成的水平放置的轴心拉杆的强度和长细比。
轴心拉力的设计值为270KN ,只承受静力作用,计算长度为3m 。
杆端有一排直径为20mm 的孔眼(图4.37),钢材为Q235钢。
如截面尺寸不够,应改用什么角钢? 注:计算时忽略连接偏心和杆件自重的影响。
解:(1)强度 查表得 ∟635⨯的面积A=6.14cm 2 ,min 1.94x i i cm ==,22()2(614205)1028n A A d t mm =⨯-⋅=⨯-⨯=, N=270KN327010262.62151028n N Mpa f Mpa A σ⨯===≥=,强度不满足,所需净截面面积为32270101256215n N A mm f ⨯≥==, 所需截面积为212562057282n A A d t mm =+⋅=+⨯=, 选636⨯,面积A=7.29cm 22729mm =2728mm ≥ (2)长细比[]min3000154.635019.4o l i λλ===≤= 4.2 一块-40020⨯的钢板用两块拼接板-40012⨯进行拼接。
螺栓孔径为22mm ,排列如图4.38所示。
钢板轴心受拉,N=1350KN (设计值)。
钢材为Q235钢,解答下列问题; (1)钢板1-1截面的强度够否?(2)是否需要验算2-2截面的强度?假定N 力在13个螺栓中平均分配,2-2截面应如何验算?(3)拼接板的强度够否?解:(1)钢板1-1截面强度验算:210min (3)(400322)206680n A b d t mm =-⋅⋅=-⨯⨯=∑, N=1350KN31135010202.12056680n N Mpa f Mpa A σ⨯===≤=,强度满足。
(2)钢板2-2截面强度验算:(a ),种情况,(a )是最危险的。
2222()0(5)(400808080522)206463n a A l d t mm =-⋅⋅=-++-⨯⨯=, N=1350KN32135010208.92056463n N Mpa f Mpa A σ⨯===≥=,但不超过5%,强度满足。
第四章 轴心受力构件
![第四章 轴心受力构件](https://img.taocdn.com/s3/m/b4fcef35a32d7375a41780e5.png)
第四章轴心受力构件§4-1 概述1、工程实例(假设节点为铰接,无节间荷载作用时,构件只受轴心力作用)(1)桁架(2)塔架(3)网架、网壳2、分类⑴按受力来分:①轴心受拉构件②轴心受压构件到某临界值时,理想轴心受压构件可能以三种屈曲形式丧失稳定。
(1) 弯曲屈曲构件的截面只绕一个主轴旋转,构件的纵轴由直线变为曲线,这是双轴对称截面构件最常见的屈曲形式。
如图4-2 (a)就是两端铰接工字形截面构件发生的绕弱轴的弯曲屈曲。
(2) 扭转屈曲失稳时构件除支承端外的各截面均绕纵轴扭转,图4-2 (b)为长度较小的十字形截面构件可能发生的扭转屈曲。
(3) 弯扭屈曲单轴对称截面构件绕对称轴屈曲时,在发生弯曲变形的同时必然伴随着扭转。
图4-2 (c)即T 形截面构件发生的弯扭屈曲。
图4-2 轴心受压构件的三种屈曲形式欧拉临界力和欧拉临界应力临界应力其中:——单位剪力时的轴线转角,;通常剪切变形的影响较小,忽略其对临界力或临界应力的影响。
E N E σ1222211γλπλπσ⋅⋅+⋅⋅==EAEAN cr cr1γ)(1GA βγ=这样,※上述推导基于材料处于弹性阶段,即,或。
(二)初始缺陷对轴心受压构件稳定承载力的影响 1. 残余应力的影响残余压应力对压杆弯曲失稳的影响: 对弱轴的影响比对强轴的影响要大的多。
稳定应力上限,弱轴:强轴:其中:,0<<1.0。
2.初弯曲的影响图4-3 考虑初弯曲的压力—挠度曲线图示压力—挠度曲线有如下特点:1有初弯曲时,挠度v 不是随着N 按比例增加;N 较小时,挠度增加较慢,N 趋于时,挠度增加较快,并趋向于无限大;2相同压力N 的作用下,压杆的初挠度值越大,杆件的挠度也越大;Ecr N EAlEI N =⋅=⋅=2222λππEcr cr E AN σλπσ=⋅==22pcr f E≤⋅=22λπσpp f E λπλ=≥322kEx crx ⋅⋅=λπσkEycry⋅⋅=22λπσ翼缘宽度翼缘弹性区宽度=k k E N3由于有的存在,轴心压杆的承载力总是低于,因此是弹性压杆承载力的上限。
第四章 轴心受力构件 -公式整理
![第四章 轴心受力构件 -公式整理](https://img.taocdn.com/s3/m/57d3f29651e79b89680226b1.png)
( 4 27b )
B、等边双角钢截面,图(b)
b
y
b
当 b t 0.58 l 0 y b时:
4 0 . 475 b yz y 1 2 2 l0 y t 当 b t 0.58 l 0 y b时:
y
(b)
( 4 28a )
yz
a x
1 分肢对最小刚度轴 1 1的长细比, 1 l 01 i1 ;
l 01 分肢计算长度,焊接时 ,取相邻缀板间净距 离;螺栓连接时,取相 邻两缀板边缘螺栓的 距离。
1
x
3、缀材的设计
计算证明,在常用的常细比范围内 85 235 f y ,
l
z
N
因此平行于缀材面的最大柱剪力:
当 b1 t 0.56 l 0 y b 1 时:
2 2 l b1 0yt 3 .7 1 t 52.7b14
( 4 30a )
yz
( 4 30b )
④、单轴对称的轴心受压构件在绕非对称轴以外的任意轴失稳时 ,应按弯扭屈曲计算其稳定性。
当计算等边角钢构件绕平行轴(u轴)稳 定时,可按下式计算换算长细比,并按b类 截面确定 值:
热 扎 剖 分T 形 钢 :
自由边受拉时:
h0 235 15 0 .2 tw fy
h0 235 13 0 .17 tw fy
( 4 46 )
tw
( 4 47 )
h0
tw
h0
焊 接T形 钢 :
t
( 4 48 )
D
3、圆管截面
D 235 100 t fy
( 4 52 )
钢结构第四章
![钢结构第四章](https://img.taocdn.com/s3/m/ccacb56d561252d380eb6e49.png)
14.1轴心受力构件的截面形式4.2轴心受力构件的强度和刚度计算4.2.1 轴心受力构件的强度计算4.2.2 轴心受力构件的刚度计算4.3 轴心受压构件的整体稳定4.3.1 轴心受压构件的弹性弯曲屈曲4.3.2 轴心受压构件的弹塑性弯曲屈曲4.3.3初始缺陷对压杆稳定承载力的影响4.3.4 轴心受压构件的整体稳定计算24.4 实腹式轴心受压构件的局部稳定4.4.1 薄板屈曲(1) 薄板的弹性屈曲(2) 薄板的弹塑性屈曲4.4.2 受压构件局部稳定计算4.4.2.1 确定板件宽厚比(高厚比)限值的准则4.4.2.2 板件宽厚比(高厚比)限值4.4.2.3受压构件的腹板不满足高厚比限值时的处理例题-格构柱例题-轴压柱,截面削弱34.5.2 格构式轴压构件的整体稳定计算(1) 格构式构件绕实轴的整体稳定计算(2) 格构式构件绕虚轴的整体稳定计算①换算长细比②格构式构件绕虚轴的整体稳定计算4.5.3 格构式轴心受压构件分肢的稳定(1) 缀条柱(2) 缀板柱4.5.1 格构式轴心受压构件的截面形式与组成4.5 格构式轴压构件44.5.4 格构式轴心受压构件缀材计算(1) 缀材面承担的剪力①单缀条强度设计值的调整②斜缀条承受的轴向力(2) 缀条设计(3) 缀板设计③斜缀条整体稳定计算④缀条与分肢连接焊缝计算⑤缀条与分肢连接形式(4) 横隔设置①缀板受力②缀板与分肢连接③缀板线刚度54.6 轴心受压构件截面设计4.6.1 实腹式轴心受压构件截面设计4.6.2 格构式轴心受压构件截面设计(3) 截面验算(1) 确定截面所需的面积、回转半径、截面高度、截面宽度等(2) 确定型钢号或组合截面各板件尺寸(1) 根据绕实轴的稳定性确定分肢截面尺寸(2) 根据虚轴和实轴的等稳性确定分肢的间距(3) 截面验算(4)缀材设计7轴心受力构件:承受通过构件截面形心轴线的轴向力作用的构件。
(轴心受拉构件和轴心受压构件)截面形式型钢截面组合截面热轧型钢截面冷弯薄壁型钢截面实腹式组合截面格构式组合截面4.1轴心受力构件的截面形式应用:屋架、托架、塔架和网架、工作平台和其它结构的支柱等8实腹式构件:格构式构件:优点:构造简单、制造方便,整体受力和抗剪性能好缺点:截面尺寸大时钢材用量较多。
《轴心受力构件》课件
![《轴心受力构件》课件](https://img.taocdn.com/s3/m/d423cdab02020740be1e9ba9.png)
ma x ( x, ) y max
l0——计算长度,取决于其两端支承情况;
i——回转半径;
i I
[] ——容许长细比 ,查表P115表6.1,P117表6.2。
A
§6.3 实腹式轴心受压构件
6.3.1 轴心受压构件的整体失稳形式
理想轴心受压构件(理想直,理想 轴心受力)当其压力小于某 个值(Ncr)时,只有轴向压缩变形和均匀压应力。达到该值时,构 件可能弯曲或扭转,产生弯曲或扭转应力。此现象称:构件整体失 稳或整体屈曲。意指失去了原先的直线平衡形式的稳定性。
以轴心受力构件截面上的平均应力不超过钢材的屈服强度 为计算准则。
1. 截面无削弱
构件以全截面平均应力达到屈服强度为强度极限状态。 设计时,作用在轴心受力构件中的外力N应满足:
式中:
σN f A
(6.2.1)
N —— 轴心力设计值;
A—— 构件的毛截面面积;
f —— 钢材抗拉或抗压强度设计值。
2. 有孔洞等削弱
欧拉临界应力随着构件长细比减小而增大。
轴心受压构件的计算长度系数
表6.3.1
在欧拉临界力公式的推导中,假定材料无限弹性、符合虎克定理
(E为常量),因此当截面应力超过钢材的比例极限fp后,欧拉临界 力公式不再适用,式(6.3.2)应满足:
或长细比:
cr
2E 2
fp
p
E fP
(6.3.3) (6.3.4)
(6.2.2)
6.2.2 轴心受力构件的刚度计算(正常使用极限状态)
轴心受力构件均应具有一定的刚度,以免产生过大的变形和振
动。通常用长细比来衡量,越大,表示构件刚度越小。因此设计
时应使构件长细比不超过规定的容许长细比:
第4章轴心受拉构件介绍
![第4章轴心受拉构件介绍](https://img.taocdn.com/s3/m/cf0cfc215727a5e9856a615a.png)
轴心受拉构件
Chapter 4 Axial Tension Member
钢结构基本原理
Basic Principles of Steel Structure
主要内容
4.1 轴心受力构件的截面形式
4.2 轴心受拉构件的强度 4.3 轴心受拉构件的刚度 4.4 轴心受拉构件的运用类型 4.5 索的力学性能和计算方法
由 X 0 dH dx 0 dx
d 2z q q 2 两次积分: 2 z x C1 x C2 dx H 2H
将边界条件代入上式:x 0; z 0
x l; z c
q c z xl x x 2H l c 设索中点的挠度为 f,中点坐标 zc f ,代入上式 2 4 fxl x c z x 2 l l 4 fxl x 抛物线 如果c 0,则: z l2
y
dA
y
x
xdA
A
A
x x
S y xdA
A
y
ydA
A
A
S x ydA
A
(2)非紧密连接方式
净截面有效系数 130
a
22.5 1.4 22.5 1.4 0.9 1 . 4 15 1.4 0.7 2 22.5 1.4 0.9 15 1.4
4.2 轴心受拉构件的强度
1、承载极限
截面平均应力达到fu,但缺少安全储备。 毛截面平均应力达fy,结构变形过大。
2、计算准则:
毛截面平均应力不超过fy。
3、设计准则
净截面平均应力不超过钢材 的抗拉强度设计值。
钢材的应力应变关系
4.2 轴心受拉构件的强度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
x x
y
y
x(虚轴) y y x
(实轴)
x (虚轴) y
(实轴)
x
(c)
格构式柱 (缀条式)
(a)
实腹式柱
(b) 格构式柱 (缀板式)
l =l
01
l l
缀 条
01
1
1
4.2 轴心受力构件的强度及刚度 轴 心 受 力 构 件 轴心受拉构件 轴心受压构件 强度 (承载能力极限状态) 刚度 (正常使用极限状态) 强度 (承载能力极限状态) 稳定 刚度 (正常使用极限状态)
4、两类稳定问题 (1)第一类稳定问题
ห้องสมุดไป่ตู้
特点: a.存在两种平衡状态
N > Ncr
○ ○
N <Ncr
○ ○ ○ ○
Ncr
○ ○
Ncr
直线平衡
曲线平衡
。
直 线 平 衡
。
直 线 平 衡
。
弯 曲 平 衡
平失 衡去 直 线
。
弯 曲 破 坏
b.失稳前后变形状 态不同
(2)第二类稳定问题 只存在曲线平衡状态,失稳前后变形状态一样 5、欧拉临界力和临界应力 根据左图列平衡方程
d2y EI 2 Ny 0 dx
解平衡方程:得 π 2 EI π 2 E N cr 2 2 A l0 λ N cr π 2 E σ cr 2 A λ E--材料的弹性模量
l0 l--构件的计算长度
I--构件截面绕屈曲方向中和轴的惯性矩
EI--构件的抗弯刚度
i
l0 --截面绕屈曲方向的回转半径 --构件长细比 i
一、强度计算(承载能力极限状态)
N f An
(4 1)
N—轴心拉力或压力设计值; An—构件的净截面面积; f—钢材的抗拉强度设计值。
轴心受压 构件,当 截面无削 弱时,强 度不必计 算。
二、轴心受力构件的刚度(正常使用极限状态)
轴心受力构件的刚度是以他的长细比来衡量的 保证构件在运输、安装、使用时不会产生过大变形。
4.3 实腹式轴心受压构件的整体稳定
一、关于稳定问题的概述
(a)稳定:扰动变形可以恢复; (b)临界(中性平衡):维持扰动状态; (c)不稳定:扰动变形持续增加;
所谓的稳定是指结构或构件受载变形后,所处平衡状态的 属性。如上图,稳定分稳定平衡、随遇平衡、不稳定平衡。 结构或构件失稳实际上为从稳定平衡状态经过临界平衡状 态,进入不稳定状态,临界状态的荷载即为结构或构件的 稳定极限荷载,构件必须工作在临界荷载之前。
l0 i
式中 构件最不利方向的长细比,一般为
两主轴方向长细比的较大值.x = lox/ ix,y = loy/ iy
lo-----相应方向的构件计算长度 lo=μl,μ为计算长度 系数,取值如下表
i -----相应方向的截面回转半径
[] -----受拉或受压构件的容许长细比。
三、实际轴心受压构件的受力性能
1、实际轴心受压构件与理想构件的区别 存在残余应力 存在初弯曲 存在初偏心 2、失稳过程
N
○ ○
y0
第二类稳定问题
。
3、初始缺陷对构件屈曲临界力的影响 初始缺陷的存在,降低了构件屈曲临界临界力,会对 构件的稳定承载力产生不利影响。 。 残余应力对弱轴的影响要大于对强轴的影响。
N cr f y N N cr σ φ f A ArR Af y rR
φ N cr σ cr Af y fy
ψ按λ计算
λ
x( y)
l0 x ( 0 y ) ix ( y )
3、整体失稳(屈曲)形式 弯曲失稳--只有弯曲变形,截面只绕一个主轴旋转,杆纵 轴由直线变为曲线,是双轴对称截面常见的失稳形式; 扭转失稳--只有扭转变形,失稳时除杆件的支撑端外,各 截面均绕纵轴扭转; 弯扭失稳—弯曲变形的同时伴随有扭转变形。
单对称截面绕对称轴(或不对称截面)弯曲失稳时, 由于截面形心(内力作用点)与剪心(截面的扭转中心) 不重合,截面内的内力分量相对于剪心有偏心产生扭矩, 导致扭转变形。扭转失稳承载力低于弯曲失稳承载力。 只有类似于十字型截面扭转失稳承载力小于弯曲失稳 承载力。 动画
钢
结 构
主 讲:陈建锋
大纲要求
1、了解“轴心受力构件”的应用和截面形式; 2、掌握轴心受拉构件设计计算;
3 、了解“轴心受压构件”稳定理论的基本概念和
分析方法; 4 、 掌握现行规范关于“轴心受压构件”设计计算 方法,重点及难点是构件的整体稳定和局部稳定; 5、掌握格构式轴心受压构件设计方法。
第四章
4.1 概述
N
轴心受力构件
1.结构及受力特点
(1)作用在构件上的荷载是 轴心压力或轴心拉力; (2)构件理想的直杆;
N
图4-1 轴心受力构件
2.应用
主要用于承重结构,如:桁架、网架、塔架和支 撑结构等。
b)
+ + + + + + + +
3.塔架 2.网架 1.桁架
3.截面型式 热轧型钢、冷弯薄壁型钢、实腹式组合、 格构式组合。
四、实际轴心受压构件稳定的实用计算方法
初始弯曲与初始偏心的影响规律相同,按概率理论 两者同时取最大值的几率很小,工程中把初弯曲考虑为 最大(杆长的千分之一)以兼并考虑初弯曲的影响;按 弯曲失稳理论计算,考虑弯扭失稳的影响,同时考虑残 余应力的影响,根据各类影响因素的不同将构件截面类 型分为a、b、c及d四类(详见p81,图4.15及p82,表 4.3)。 a类为残余应力影响较小,c类为残余应力影响较大, 并有弯扭失稳影响,a、c类之间为b类,d类厚板工字钢 绕弱轴。 《规范》计算公式
稳定问题为钢结构的重点问题,所有钢结构构件均件均存 在稳定问题,稳定问题分构件的整体稳定和局部稳定。
二、理想轴心受压构件的受力性能
1、理想轴心受压构件
杆件本身是绝对直杆,材料均匀,完全弹性; 无荷载偏心,无初始应力,压力作用线与形心纵轴重合; 2、整体失稳(屈曲)现象
轴心压杆在截面上的平均应力低于屈服点的 情况下,由于变形(可能是弯曲,也可能是扭转 或弯扭)过大,处于不稳定状态而丧失承载能力。 这种现象称为整体失稳。
a)
b)
图4-2
轴心受力构件截面形式
截面可分为:实腹式和格构式两大类。 实腹式截面实腹式又分型钢截面(包括普通型钢与薄壁
型钢),组合截面(钢板组合与型钢组合截面)
格构式截面
截面由两个或多个型钢肢件通过缀材连接而成。
格构式截面又分缀条式截面与缀板式截面
实腹式轴压柱与格构式轴压柱
柱头
柱头
缀 板
柱身 柱身 柱脚 柱脚