三种PCB的特殊走线技巧

合集下载

pcb布线规则及技巧

pcb布线规则及技巧

使用自动布线工具需 要合理设置参数,以 确保布线的质量和效 果。
自动布线工具可以自 动优化线路布局,减 少线路交叉和干扰。
考虑电磁兼容性
在布线过程中需要考虑电磁兼容 性,避免线路之间的干扰和冲突。
合理选择线宽和间距,以降低电 磁干扰的影响。
考虑使用屏蔽、接地等措施,提 高电磁兼容性。
04 PCB布线中的挑战及应对 策略
模拟电路板布线
总结词:模拟电路板布线需要特别关注信号的 连续性和稳定性。
01
确保信号的连续性和稳定性,避免信号的 突变和噪声干扰。
03
02
详细描述:在模拟电路板布线中,应遵循以 下规则和技巧
04
考虑信号的带宽和频率,以选择合适的传 输线和端接方式。
优化布线长度和布局,以减小信号的延迟 和失真。
05
1 2
高速信号线应进行阻抗匹配
高速信号线的阻抗应与终端负载匹配,以减小信 号反射和失真。
敏感信号线应进行隔离
敏感信号线应与其他信号线隔离,以减小信号干 扰和噪声。
3
大电流信号线应进行散热设计
大电流信号线应考虑散热问题,以保证电路的正 常运行。
03 PCB布线技巧
优化布线顺序
01
02
03
先电源后信号
3. 解决策略:对于已存 在的电磁干扰问题,可 以尝试优化PCB布局、 改进屏蔽设计、增加滤 波器或调整接地方式等 技术手段进行改善。
05 PCB布线实例分析
高速数字电路板布线
在此添加您的文本17字
总结词:高速数字电路板布线需要遵循严格的规则和技巧 ,以确保信号完整性和可靠性。
在此添加您的文本16字
考虑电磁兼容性
布线过程中需要考虑电磁兼容性,通过合理的布线设计减小电磁干扰和辐射,提 高电路板的电磁性能。

PCB如何布线布局的方法

PCB如何布线布局的方法

PCB如何布线布局的方法PCB布线布局是电路设计的重要环节之一,它涉及到各个电子元件之间的互连,以及信号传输、电源供应和地线的设计。

良好的布线布局能够提高电路性能,降低电磁干扰,增加可靠性。

下面将介绍一些常用的PCB布线布局方法。

1.层间布线:PCB通常具有多层布线,因此在布局时需要考虑层间布线的方式。

首先,应将信号线和电源线、地线分离在不同的层上,以减小互相干扰的可能性。

其次,层间布线时应尽量使用直线来连接元件,以降低损耗和干扰。

2.最短路径布局:在布线布局中,应尽量将信号线的长度缩短到最小,以减小传输时间和避免信号衰减。

因此,在选定元件位置时,应考虑信号线的走向和长度,使得信号线尽量短而直。

3.阻抗匹配布局:在高速电路设计中,为了保证信号的完整性,信号线的阻抗匹配非常重要。

布局时应尽量避免信号线之间的阻抗变化,宜采用相同宽度和层间距、相同走线方式的布线。

4.绕排突出布局:与传统的矩形布线布局相比,绕排突出布局可以更好地集中功率传输器件,减小电磁干扰,提高电路性能。

这种布局方法通常适用于功率放大器、开关电源等需要大电流传输的电路。

5.模拟与数字分离布局:在混合信号电路中,模拟信号和数字信号往往需要分开处理,以避免相互干扰。

布线布局时,应尽可能将模拟信号线和数字信号线分开,同时采取屏蔽措施,减少干扰。

6.参考地布局:参考地布局是指将整个电路的地线连接在一起,形成一个参考地。

这种布局方法可以降低电路中的回流电流,减少电流环路带来的电磁干扰。

参考地布局的原则是将地线尽可能地贴近信号线并平行排列,以减小回流电流路径的长度。

7.高频信号布局:在高频电路设计中,布线布局尤为重要。

尽量减小高频信号线的长度,减小信号线间的耦合和阻抗变化。

此外,高频信号线还需要采取差分布局或屏蔽布局,以减小干扰。

8.电源供应布局:电源供应布局是指电源线的布线方法。

应尽量减小电源线的长度,避免与信号线和地线交叉,以减小电源噪声的影响。

pcb布线规则及技巧

pcb布线规则及技巧
pcb布线规则及技巧
9. 在芯片中若出现成排电源引脚或地引脚(如AVDD和DGND)最好采用如下连接方 式(该方式可避免芯片发生偏移)
pcb布线规则及技巧
10. 摄像头中信号线应尽量放在底层,布线时过孔应尽量打在芯片外部,所有布 线与最外层裁剪框应至少保证0.15MM距离。 11. 在摄像头中,布线结束后需将所有角转变成倒角,避免反射形成干扰;在转 接板中,若只是作为测试用,要求不高是可不必转成倒角,且在布线过程中允许 使用部分直角。 12. 布线时,板子左右两边边缘最好放置一条地线;铺铜时地线最好都能保证连 接以增加导电性。 13. 金手指布线时过孔只能打在补强以下。 14. 布线过程中,过孔的大小为硬板0.4/0.2,其余板0.35/0.15或0.3/0.1 15. MIPI接口是指串行差分接口,DVP接口是指并行传输接口
pcb布线规则及技巧
EMI是英文Electro Magnetic Interference 的缩写,是 电磁干扰的意思。电源是发生EMI的重要来源。电源电路 中EMI电路的作用是滤除由电网进来的各种干扰信号,防止电源开关电路形成的高频扰窜电网,或对设备和应 用环境造成干扰。在其它电路或设备中,也往往要用到EMI电路或采取其它措施防止和抑制EMI的发生,以防止 和抑制干扰,如通讯电缆的终端电阻,电脑的机箱,变压器的屏蔽罩,用顺磁材料或抗磁材料来疏导或阻止电 磁场的穿行等等。EMI是产品投放市场前电工认证的一个必检内容。 我们平时经常见到一些产品由于EMI不过 关的报告或投诉。我们常见的开关电源入口处,有一个两个绕组的电感,这个电感是共模抑制电感,也起到减 少EMI的作用。另外,一些数据线的两头,会鼓出来一个大包包(例如电脑彩显的数据线上,一些数码相机的 数据线上),其实里面就是一个减少EMI的磁环。 pcb布线规则及技巧

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项1.确定信号的类型与分类:首先需要明确信号的类型,如模拟信号、数字信号、高频信号等。

不同类型的信号在布线时需要采取不同的方式和策略。

此外,还需要将信号进行分类,根据其功能和特性确定合适的布线规则。

2.分层布线:为了降低互穿干扰和提高信号完整性,可以采用分层布线的方式。

将信号分散在不同的层次,如将地平面和电源平面分开,通过适当的间隔和规则来设计信号路径,能够有效减少信号串扰和辐射噪声。

3.地线与电源线的布线:地线是PCB布线中非常重要的一条线路,它负责回流电流和信号的引用。

在布线中,需要确保地线的连续性和低阻抗,避免开环和电流浪涌。

电源线的布线也需要注意稳定性和电流传输的需求,尽量避免电源线与信号线相互干扰。

4.信号线的长度匹配:如果需要传输同步或高速信号,信号线的长度匹配是十分重要的。

对于时序敏感的信号,如DDR总线,需要确保信号线的长度尽量相等,以避免信号的延迟差异影响其同步性能。

5.信号线的走线规则:对于高速信号,需要遵循规范的匹配走线方式,如使用直线、星形或者差分线走线等。

避免使用锯齿形的走线方式,以降低信号的串扰和辐射。

6.分区布线:如果电路较为复杂,可以将电路划分为不同的区域进行布线,以降低信号干扰和简化布线的复杂性。

每个区域可以独立进行布线并进行适当的隔离。

7.路径优化:在布线过程中,需要考虑信号的传输路径和相互之间的交叉。

尽量采用最短路径和避免交叉的方式来优化布线,以减少信号的延迟和干扰。

8.保护地线和信号线的距离:在布线中,需要保持地线和信号线的一定距离,避免信号线受到地线干扰。

一般情况下,地线和信号线的距离应大于5倍的线宽。

9.避免锯齿形走线:尽量避免使用锯齿形走线,如信号线多次转弯或穿越。

这样的走线方式容易导致信号串扰和辐射噪声。

10.引脚分配与走线规划:在进行PCB布线之前,需要进行引脚分配和走线规划。

将输入/输出端口、复位线、时钟线等关键信号的引脚安排在合适的位置,以提高布线的可行性和稳定性。

PCB板布线技巧

PCB板布线技巧

PCB板布线技巧1.合理规划布局:在开始布线之前,应该先对PCB板进行合理规划布局。

要根据电路的功能和信号传输的需求,将元器件和功能块合理地部署在PCB板上。

在布置元器件时,应该注意使信号路径尽可能的短,并保持良好的信号完整性。

2.地线和电源线设计:地线和电源线是电路中非常重要的信号线。

在布线时,要保证地线和电源线的宽度足够大以承受电流负载,并且要尽量减小地线和电源线的阻抗。

此外,还需要注意地线和电源线之间的间距,以避免相互干扰。

3.运用差分信号线:对于高速传输信号线,可以采用差分信号线布线。

差分信号线可以提高信号的抗干扰能力,减小信号线对周围环境的敏感度。

在布线时,应保持差分信号线的长度相等,并保持一定的间距,以避免互相干扰。

4.控制信号和高频信号的布线:对于控制信号和高频信号,布线时需要格外注意。

控制信号线应尽量和地线分开,以减小相互干扰的可能性。

对于高频信号线,应尽量避免走直线,而是采用更曲折的布线方式,以减小信号的辐射和串扰。

5.设计适当的信号地方向:在布线时,需要合理地选择信号的走向。

对于高频信号和运放信号,应尽量避免穿越整个板子。

信号线的走向应避免和其他高频信号和电源线相交,以减小相互干扰的可能性。

6.控制阻抗匹配:在布线中,要注意保持信号线的阻抗匹配。

如果信号线的阻抗不匹配,会导致信号的反射和损耗,从而影响信号的传输和质量。

通过控制信号线的宽度和间距,可以实现阻抗的匹配。

7.确保信号完整性:在布线时,需要注意信号的完整性。

可以通过增加电容和电感等元器件来实现信号的滤波和隔离,以减小干扰和噪声对信号的影响。

此外,还可以采用差分对地布线来降低信号的串扰。

8.注意电流回路:在布线时,需要特别关注电流回路的设计。

电流回路的布线需要注意回路的完整性,避免出现回路断开或者电流集中在其中一小段线路上的情况,从而引起电压降低和电流过载的问题。

以上就是PCB板布线的一些技巧。

在实际设计过程中,还需要根据具体的电路设计要求和特性进行合理的布线设计,从而实现电路性能和可靠性的最优化。

pcb的18种特殊走线的画法与技巧!

pcb的18种特殊走线的画法与技巧!

pcb的18种特殊走线的画法与技巧!AD 布蛇形线方法Tool 里选 Interactive length tuning 要先布好线再改成蛇形, 这里用的是布线时直接走蛇形: 先 P->T 布线, 再 Shift + A 切换成蛇形走线按 Tab 可设置属性, 类型了选用圆弧,Max Amplitude 设置最大的振幅 ,Gap 就是间隔(不知这么翻译对不) ,下面左边是振幅增量, 右边是间隔增量。

然后开始布线让边缘变'圆' - 按快捷键 '2', 就会增大弧的半径, 增到最大就是两个 1/4 的弧直连就是一个 180度的半圆了快捷键 ',' '.' 可以调节振幅要是不记得快捷键, 没关系, 随时按 '`' 可以显示当前支持的操作可以看到网络的长度, 还不止一个地方哟等长可使用调节器完成等长布线大电流走线中去除阻焊层这里要注意的两点,首先Paste 层才是真正的喷锡层,但是默认走线上是有阻焊层的,所以单单使用Paste,是没用的,故需要使用Solder,此层中划出的部分是没有阻焊的,故可使用Paste+Solder 的方法达到喷锡线的绘制,若板上本来就有走线,可直接使用对应层的 Solder 进行开窗。

总线画法Altium Designer 支持多条网络同时布线,布线可以起始于焊盘也可以起始于线路开端。

按住shift键选择多个网络,或者用鼠标框选多个网络,选择菜单命令 PLACE >> Interactive Multi-Routing 再单击布线工具栏上的总线布线工具,既可以开始总线布线,在布线过程中可以放置过孔,切换直线层,可以按逗号,和句号。

分支线间距进行调整。

期间按 2 可加过孔,L 可设换层~ 从原理图到PCB在原理图中用鼠标框选一块电路或选中若干个器件,按T—>S,就能马上切换到 PCB 中,同步选中那些器件走线中换层、操作过孔、操作走线走线推挤与连线方式快速设置简易图元的PCB黏贴图元文件的粘贴让机械层设计文档的生成更容易完成,通过使用习惯的与Windows 相同的粘贴命令(Ctrl+V),任何来自剪贴板中的图元文件都可以粘贴到PCB 编辑中。

PCB板布局原则布线技巧

PCB板布局原则布线技巧

PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。

比如,将稳压电路、放大电路、数字电路等放在不同的区域内。

-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。

因此,尽量把线路缩短,减少线路长度。

-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。

因此,尽量避免线路的交叉,使布局更加清晰。

-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。

-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。

2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。

-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。

-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。

-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。

-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。

总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。

通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项布线技巧:1.确定电路结构:在布线之前,需要先确定电路结构。

将电路分成模拟、数字和电源部分,然后分别布线。

这样可以减少干扰和交叉耦合。

2.分区布线:将电路分成不同的区域进行布线,每个区域都有自己的电源和地线。

这可以减少干扰和噪声,提高信号完整性。

3.高频和低频信号分离:将高频和低频信号分开布线,避免相互干扰。

可以通过设立地板隔离和电源隔离来降低电磁干扰。

4.绕规则:维持布线规则,如保持电流回路的闭合、尽量避免导线交叉、保持电线夹角90度等。

这样可以减少丢失信号和干扰。

5.简化布线:简化布线路径,尽量缩短导线长度。

短导线可以减少信号传输延迟,并提高电路稳定性。

6.差分线布线:对于高速信号和差分信号,应该采用差分线布线。

差分线布线可以减少信号的传输损耗和干扰。

7.用地平面:在PCB设计中,应该用地平面层绕过整个电路板。

地平面可以提供一个低阻抗回路,减少对地回路电流的干扰。

8.参考层对称布线:如果PCB板有多层,应该选择参考层对称布线。

参考层对称布线可以减少干扰,并提高信号完整性。

注意事项:1.信号/电源分离:要避免信号线与电源线共享同一层,以减少互相干扰。

2.减小射频干扰:布线时要特别注意射频信号传输的地方,采取屏蔽措施,如避免长线路、使用高频宽接地等。

3.避免过长接口线:如果接口线过长,则信号传输时间会增加,可能导致原始信号失真。

4.避免过短导线:过短的导线也可能引发一些问题,如噪声、串扰等。

通常导线长度至少应该为信号上升时间的三分之一5.接地技巧:为了减少地回路的电流噪声,应该尽量缩短接地回路路径,并通过增加地线来提高接地效果。

6.隔离高压部分:对于高压电路,应该采取隔离措施,避免对其他电路产生干扰和损坏。

7.注重信号完整性:对于高速和差分信号,应该特别注重信号完整性。

可以采用阻抗匹配和差分线布线等技术来提高信号传输的稳定性。

总结起来,PCB布线需要遵循一些基本原则,如简化布线、分区布线、差分线布线等,同时需要注意电源和信号的分离、射频干扰的减小等问题。

PCB 20——三种特殊走线技巧

PCB 20——三种特殊走线技巧

PCB 20——三种特殊走线技巧下面从直角走线、差分走线、蛇形线三个方面来阐述PCB LAYOUT的走线。

一、直角走线(三个方面)直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端产生的EMI,到10GHz以上的RF设计领域,这些小小的直角都可能成为高速问题的重点对象。

二、差分走线(“等长、等距、参考平面”)何为差分信号(Differential Signal)?通俗地说就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0”还是“1”。

而承载差分信号的那一对走线就称为差分走线。

差分信号和普通的单端信号走线相比,最明显的优势体现在以下三方面:1、抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可被完全抵消。

2、能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。

3、时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。

目前流行的LVDS(low voltage differential signaling)就是指这种小振幅差分信号技术。

三、蛇形线(调节延时)蛇形线是Layout中经常使用的一类走线方式。

其主要目的就是为了调节延时,满足系统时序设计要求。

其中最关键的两个参数就是平行耦合长度(Lp)和耦合距离(S),很明显,信号在蛇形走线上传输时,相互平行的线段之间会发生耦合,呈差模形式,S越小,Lp越大,则耦合程度也越大。

可能会导致传输延时减小,以及由于串扰而大大降低信号的质量,其机理可以参考对共模和差模串扰的分析。

PCB走线技巧

PCB走线技巧
本文来自电子工程师之家:/read.php?tid=16117
误区一:认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对方提供回流途径。造成这种误区的原因是被表面现象迷惑,或者对高速信号传输的机理认识还不够深入。从接收端的结构可以看到,晶体管Q3,Q4的发射极电流是等值,反向的,他们在接地处的电流正好相互抵消(I1=0),因而差分电路对于类似地弹以及其它可能存在于电源和地平面上的噪音信号是不敏感的。地平面的部分回流抵消并不代表差分电路就不以参考平面作为信号返回路径,其实在信号回流分析上,差分走线和普通的单端走线的机理是一致的,即高频信号总是沿着电感最小的回路进行回流,最大的区别在于差分线除了有对地的耦合之外,还存在相互之间的耦合,哪一种耦合强,那一种就成为主要的回流通路。
传输线的直角带来的寄生电容可以由下面这个经验公式来计算:C=61W(Er)1/2/Z0 在上式中,C就是指拐角的等效电容(单位:pF),W指走线的宽度(单位:inch),εr指介质的介电常数,Z0就是传输线的特征阻抗。举个例子,对于一个4Mils的50欧姆传输线(<εr为4.3)来说,一个直角带来的电容量大概为0.0101pF,进而可以估算由此引起的上升时间变化量:T10-90%=2.2*C*Z0/2 = 2.2*0.0101*50/2 = 0.556ps
误区三:认为差分走线一定要靠的很近。让差分走线靠近无非是为了增强他们的耦合,既可以提高对噪声的免疫力,还能充分利用磁场的相反极性来抵消对外界的电磁干扰。虽说这种做法在大多数情况下是非常有利的,但不是绝对的,如果能保证让它们得到充分的屏蔽,不受外界干扰,那么我们也就不需要再让通过彼此的强耦合达到抗干扰和抑制EMI的目的了。如何才能保证差分走线具有良好的隔离和屏蔽呢?增大与其它信号走线的间距是最基本的途径之一,电磁场能量是随着距离呈平方关系递减的,一般线间距超过4<倍线宽时,它们之间的干扰就极其微弱了,基本可以忽略。此外,通过地平面的隔离也可以起到很好的屏蔽作用,这种结构在高频的(10G以上)IC封装PCB设计中经常会用采用,被称为CPW结构,可以保证严格的差分阻抗控制(2Z0)。

PCB布线与布局优化技巧

PCB布线与布局优化技巧

PCB布线与布局优化技巧在电子设备的设计中,PCB(Printed Circuit Board,印刷电路板)的布线与布局对于整个电路性能和稳定性起着至关重要的作用。

优秀的PCB布线与布局可以提高电路的抗干扰能力、信号完整性和性能稳定性。

下面就介绍一些PCB布线与布局优化技巧,帮助设计师提高产品质量和性能。

1. 分割电源平面:在PCB设计中,将电源平面分割成多个部分可以减少信号干扰及电磁辐射。

分割电源平面时,需要注意将模拟和数字电源分开,避免互相干扰。

通过合理设置分割线路,可以降低信号交叉干扰,提高信噪比。

2. 最短路径布线:尽量保持布线路径短,减少信号传输的延迟和损耗。

在选取布线路径时,应避免走线交叉、绕线等现象,以确保信号传输的稳定性和可靠性。

布线时还需考虑信号走线的方向,避免信号环路和共模噪声的产生。

3. 差分信号布线:对于高速信号线,尤其是差分信号线,需要特别注意其布线。

差分信号线的长度要尽量保持一致,以减少信号失真和串扰。

此外,差分信号线应在布线过程中尽量保持相邻,以减小信号传输的时间差。

4. 阻抗匹配:在PCB设计中,特别是在高频电路中,阻抗匹配是非常重要的。

正确设计差分对地、微带线、板厚等参数,以保证信号传输的稳定性和准确性。

利用阻抗匹配技术可以尽量减小信号的反射和衰减,提高信号完整性。

5. 地线布线:地线布线是PCB设计中的关键环节。

要尽量减小地线回路面积,避免干扰信号传输。

将地线设置为宽带,减小地线阻抗,提高地线的导电性。

另外,地线布线还要尽量与信号走线相互垂直,避免共模干扰。

6. 噪声隔离:在PCB布局设计中,要将噪声源与敏感信号源隔离开来,以减少噪声对信号的影响。

在设计布局时,可以使用屏蔽罩、滤波器等措施来隔离噪声源,确保信号传输的稳定性和准确性。

7. 确保热量散发:在PCB布局设计中,要考虑电路元件的散热问题。

合理安排元件的位置,保证元件之间的通风通道畅通,以便排出热量。

在布局时应注意避免高功率元件集中布局,以减小热量聚集的风险。

PCB特殊走线的三种技巧分享

PCB特殊走线的三种技巧分享

PCB特殊走线的三种技巧分享在讲解PCB布线完成后的检查工作之前,先为大家介绍三种PCB的特殊走线技巧。

将从直角走线,差分走线,蛇形线三个方面来阐述PCB LAYOUT的走线:一、直角走线(三个方面)直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端产生的EMI,到10GHz以上的RF设计领域,这些小小的直角都可能成为高速问题的重点对象。

二、差分走线(“等长、等距、参考平面”)何为差分信号(Differential Signal)?通俗地说就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0”还是“1”。

而承载差分信号的那一对走线就称为差分走线。

差分信号和普通的单端信号走线相比,最明显的优势体现在以下三方面:1)抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可被完全抵消。

2)能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。

3)时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。

目前流行的LVDS(low voltage differenTIal signaling)就是指这种小振幅差分信号技术。

三、蛇形线(调节延时)蛇形线是Layout中经常使用的一类走线方式。

其主要目的就是为了调节延时,满足系统时序设计要求。

其中最关键的两个参数就是平行耦合长度(Lp)和耦合距离(S),很明显,信号在蛇形走线上传输时,相互平行的线段之间会发生耦合,呈差模形式,S越小,Lp。

PCB板布局原则布线技巧

PCB板布局原则布线技巧

PCB板布局原则布线技巧一、布局原则:1.功能分区:将电路按照其功能划分为若干区域,不同功能的电路相互隔离,减少相互干扰。

2.信号流向:在布局过程中应保持信号流向规则和简洁,避免交叉干扰。

3.重要元件位置:将较重要的元件、信号线和电源线放置在核心区域,以提高系统的可靠性和抗干扰能力。

4.散热考虑:将产热较大的元件、散热器等布局在较为开阔的地方,利于散热,避免过热导致不正常工作。

5.地线布局:地线的布局和连通应该注意短、宽、粗、低阻、尽可能铺满PCB板的底层,减少环路面积,避免回流信号干扰。

二、布线技巧:1.差分信号布线:对于高速传输的差分信号(如USB、HDMI等),应采用相对的布线方式,尽量保持两条信号线的长度、路径和靠近程度等因素相等。

2.信号线长度控制:对于高速信号线,要控制传输时间差,避免信号的串扰,可以采用长度相等的原则,对多个信号线进行匹配。

3.距离和屏蔽:信号线之间应保持一定的距离,减少串扰。

对于敏感信号线,可以采用屏蔽,如使用屏蔽线或者地层或电源面直接作为屏蔽。

4.平面分布布线:将电路面分布在PCB板的一面,减少控制层(可减少电磁干扰),易于维护。

对于比较大的PCB板,可以将电路分布在多层结构中,减小板子尺寸。

5.电源线和地线:电源线和地线尽量粗而宽,以降低线路阻抗和电压降。

同时,尽量减少电源线和地线与其它信号线的交叉和共面长度,减小可能的电磁干扰。

6.设备端口布局:对于外部设备接口,宜以一边和一角为原则,将各种本机接口尽量分布在同一区域,以保持可维护性和布局的简洁性。

7.组件布局:对于IC和器件的布局,可以按照电路的工作顺序、重要程度和电路结构等因素综合考虑,优先放置重要元件,如主控芯片、存储器等。

三、布局规则:1.尽量缩短信号线的长度,减少信号传输的延迟和串扰。

2.尽量减小信号线的面积,减少对周围信号的干扰。

3.尽量采用四方对称布线,减少线路不平衡引起的干扰。

4.尽量降低线路阻抗,提高信号的传输质量。

PCB三种走线

PCB三种走线

PCB Layout中的走线策略布线(Layout)是PCB设计工程师最基本的工作技能之一。

走线的好坏将直接影响到整个系统的性能,大多数高速的设计理论也要最终经过Layout得以实现并验证,由此可见,布线在高速PCB设计中是至关重要的。

下面将针对实际布线中可能遇到的一些情况,分析其合理性,并给出一些比较优化的走线策略。

主要从直角走线,差分走线,蛇形线等三个方面来阐述。

1.直角走线直角走线一般是PCB布线中要求尽量避免的情况,也几乎成为衡量布线好坏的标准之一,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。

其实不光是直角走线,顿角,锐角走线都可能会造成阻抗变化的情况。

直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端产生的EMI。

传输线的直角带来的寄生电容可以由下面这个经验公式来计算:C=61W(Er)1/2/Z0在上式中,C就是指拐角的等效电容(单位:pF),W指走线的宽度(单位:inch),εr指介质的介电常数,Z0就是传输线的特征阻抗。

举个例子,对于一个4Mils的50欧姆传输线(εr为4.3)来说,一个直角带来的电容量大概为0.0101pF,进而可以估算由此引起的上升时间变化量:T10-90%=2.2*C*Z0/2 = 2.2*0.0101*50/2 = 0.556ps通过计算可以看出,直角走线带来的电容效应是极其微小的。

由于直角走线的线宽增加,该处的阻抗将减小,于是会产生一定的信号反射现象,我们可以根据传输线章节中提到的阻抗计算公式来算出线宽增加后的等效阻抗,然后根据经验公式计算。

反射系数:ρ=(Zs-Z0)/(Zs+Z0),一般直角走线导致的阻抗变化在7%-20%之间,因而反射系数最大为0.1左右。

而且,从下图可以看到,在W/2线长的时间内传输线阻抗变化到最小,再经过W/2时间又恢复到正常的阻抗,整个发生阻抗变化的时间极短,往往在10ps之内,这样快而且微小的变化对一般的信号传输来说几乎是可以忽略的。

PCB布线规则与技巧

PCB布线规则与技巧

PCB布线规则与技巧PCB(Printed Circuit Board,印刷电路板)布线是电子产品设计中非常重要的一项工作,它决定了电路的性能和可靠性。

正确的布线可以确保信号传输的稳定性,降低噪音干扰,提高产品的工作效率和可靠性。

下面将介绍一些常用的PCB布线规则与技巧。

1.保持信号完整性:信号完整性是指信号在传输过程中不受噪音、串扰等干扰影响,保持原有的稳定性。

为了保持信号完整性,应尽量减少信号线的长度和走线面积,减少信号线与功率线、地线等的交叉和平行布线。

同时,在高速信号线上使用传输线理论进行布线,如匹配阻抗、差分信号布线等。

2.分离高频和低频信号:为了避免高频信号的干扰,应将高频信号线与低频信号线分开布线,并保持一定的距离。

例如,在布线时可以采用地隔离层将不同频率的信号线分离或者采用地隔离孔将不同频率的信号线连接到不同的地层。

这样可以减少高频信号的串扰和干扰。

3.合理布局:布线时应合理规划电路板的布局,将功率线和地线尽量靠近,以减少电磁干扰。

同时,尽量避免信号线与功率线、地线等平行布线,减少互穿引起的干扰。

在设计多层板时,还要考虑到信号引线的短暂电容和电感,尽量减小信号线长度,以减少信号传输时的延迟。

4.适当使用扩展板和跳线:在复杂的PCB布线中,有时无法直接连接到目标位置,这时可以使用扩展板或跳线来实现连接。

扩展板是一个小型的PCB板,可以将需要连接的器件布线到扩展板上,再通过导线连接到目标位置。

跳线可以直接用导线连接需要的位置,起到连接的作用。

但是,在使用扩展板和跳线时要注意保持信号完整性,尽量缩短导线长度,避免干扰。

5.优化地线布局:地线是电路中非常重要的部分,它不仅提供回路给电流,还能减少电磁干扰和噪音。

在布线时应保证地线的连续性和稳定性,地线应尽量靠近功率线,对于高频信号,还应采用充足的地平面来隔离。

同时,地线的走线应尽量短且直,减少环状或绕圈的走线。

6.合理规划电源线:电源线的布线要尽量靠近负载,减小电流环形和接地环形。

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项1.合理规划电路板上的元件布局:在进行布线之前,需要根据电路的功能和结构合理规划元件的布局。

合理布局可以减少跨线和交叉线,简化布线过程,并提高电路的可靠性和抗干扰能力。

例如,将相互关联的元件集中在一起,以减少连线长度和信号传输的损耗。

2.使用地平面和电源平面:地平面和电源平面是PCB布线中非常重要的一部分。

通过在PCB中设置地平面和电源平面,可以有效减少地线和电源线的长度,减小同轴电缆的干扰和耦合,提高信号完整性和抗干扰能力。

3.利用电网连接:电网连接是PCB布线中常用的一种布线方式。

电网连接可以减小线宽和线间距,减小电路板上的导线一阶传输延迟,提高信号完整性和抗干扰能力。

在布局时,应尽量合理规划电网的结构和布线的路径。

4.分析和优化信号传输路径:信号传输路径是PCB布线中需要特别关注的一部分。

通过分析信号传输路径,可以了解信号在电路板上的传输特性,并进行优化。

例如,可以采用直线传输路径,减小信号传输的损耗和干扰;可以避免信号线与电源线、地线和其他高频信号线的交叉,减小互相干扰。

5.处理高频和高速信号:在布线中,对于高频和高速信号需要特别注意。

高频信号容易受到串扰和反射的影响,因此对于高频信号,应避免长线和小弯曲。

对于高速信号,需要注意控制传输线的阻抗匹配,减小信号的反射和射频干扰。

6.使用适当的布线规则和约束:在进行布线之前,需要根据电路设计的要求和约束设置适当的布线规则。

布线规则可以包括连线宽度、线间距、最小孔径等要素。

合理设置布线规则可以减小静电干扰和交叉干扰,提高电路的性能和可靠性。

7.进行电磁兼容性(EMC)设计:在进行布线时,需要考虑电磁兼容性设计。

电磁辐射和电磁敏感性是电路板设计中常见的问题,可以通过合理的布线和使用滤波器来减小电磁干扰。

8.进行仿真和测试:在完成布线之后,需要进行仿真和测试来验证电路的性能和可靠性。

通过仿真和测试,可以检测电路中可能存在的问题,并做出相应的调整。

PCB上那些不规则的铺铜是怎么做的

PCB上那些不规则的铺铜是怎么做的

PCB上那些不规则的铺铜是怎么做的在PCB设计中,不规则的铺铜通常是由于特殊的要求或复杂的电路连接而产生的。

这种设计能够提供更高的布线密度和更好的电路性能。

下面将详细介绍几种常见的不规则铺铜设计方法:1. 风琴式铺铜(Fan-out)风琴式铺铜是一种以逐渐增加铜的宽度来创建不规则形状的铺铜。

在这种设计中,电流从初始窄宽度的铜走廊逐渐扩展到所需的宽度。

这种设计可以减少布线空间并提供更好的电流流动路径。

2. 直线铺铜(Straight Line Fill)直线铺铜是一种简单的不规则铺铜方式。

在这种设计中,铜填充沿着一条直线路径进行,以满足特定的需求或连接要求。

这种设计常用于连接不同的电路板层或连接复杂的电路结构。

3. 丝状铺铜(Serpetine Fill)丝状铺铜是一种利用多个弯曲和交叉路径的不规则铺铜。

这种设计可以有效地利用布线空间,并提供更多的铜填充面积。

丝状铺铜常用于高速信号传输线路,可以减少信号互相干扰,并提高电路性能。

4. 岛状铺铜(Island Fill)岛状铺铜是一种在PCB上创建孤立的铜填充区域的不规则铺铜方式。

这种设计通常应用于EMI(电磁干扰)屏蔽或信号隔离的需求。

岛状铺铜可以有效地隔离信号,并降低电路之间的互相干扰。

5. 平行跨越铺铜(Parallel Jump Fill)平行跨越铺铜是一种通过在布线过程中添加平行跳跃路径来创建的不规则铺铜设计。

这种设计可以有效地连接不同的电路区域,并提供更高的布线密度。

平行跨越铺铜还可以提供更好的电流流动路径,以提高电路性能。

实际上,上述方法可以结合使用,可以根据设计要求和布线需求来选择合适的不规则铺铜方式。

在PCB设计前,可以使用专业的CAD软件来模拟和优化布线方案,以确保不规则铺铜设计的正确性和可行性。

总之,不规则铺铜是一种灵活和高效的PCB设计技术,可以提供更高的布线密度和更好的电路性能。

通过合适的设计工具和方法,设计师可以根据特定的需求和要求来创建复杂且高性能的不规则铺铜电路板。

PCB技巧蛇形布线

PCB技巧蛇形布线

PCB技巧蛇形布线蛇形布线是一种在PCB设计中常用的技巧,它能够减少布线的交叉和干扰,提高设计的性能和可靠性。

下面是关于蛇形布线的一些技巧和注意事项。

1.确定布线的方向:在进行蛇形布线之前,需要确定布线的方向。

一般来说,信号传输的方向和布线距离较远的元件的位置相对应。

确保信号传输的方向是一致的,可以减少信号干扰和交叉。

2.进行合理的布线规划:在进行蛇形布线之前,需要进行合理的布线规划。

将电路板的不同功能模块分组,并分配给不同的布线区域。

这样可以减少布线之间的交叉和干扰,提高信号完整性。

3.使用连续的布线路径:蛇形布线应该使用连续的布线路径。

这样可以减少信号路径的突变,减小信号的散射和串扰。

如果布线中断,可以通过使用通孔来连接信号路径。

4.注意信号地平面:在蛇形布线中,应该注意信号地平面的规划。

要保持信号地平面连续,避免出现散射和串扰。

可以使用地引线连接不同层的地面。

5.采用四层布线:为了更好地实现蛇形布线,可以考虑使用四层布线。

这样可以将信号层和地平面层分开,减少信号干扰和交叉。

6.控制布线的尺寸:在进行蛇形布线时,应控制布线的尺寸。

布线的尺寸应符合设计规范和制造能力,避免布线过宽或过窄。

布线过宽会导致布线密度较低,布线过窄则容易出现导线打断等问题。

7.控制布线的长度:在进行蛇形布线时,应控制布线的长度。

布线的长度会影响信号传输的速度和信号完整性。

尽量保持布线的长度较短,避免信号传输的延迟和损失。

8.注意信号的引出和引入:在进行蛇形布线时,应注意信号的引出和引入。

要确保信号的引出和引入位置相对于布线路径是理想的。

可以使用不同的引出和引入方式,如引线、晶振等。

9.使用合适的布线密度:在进行蛇形布线时,应使用合适的布线密度。

布线密度过高会导致布线之间的交叉和干扰,布线密度过低则会浪费板子的空间资源。

要根据具体的设计要求和制造能力选择合适的布线密度。

10.进行布线优化:在进行蛇形布线后,还可以进行布线优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、时序定位精确,由于差分信号的开关变化是位于两个信号的 交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺, 温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的 电路。目前流行的 LVDS(low voltage differential signaling) 就是指这种小振幅差分信号技术。
气和机械方面的问题,所以应该避免在导线中出现尖角和急剧的拐 角。
PCB 宽度和厚度: 刚性印制电路板蚀刻的铜导线的载流量。对于 1 盎司和 2 盎司的 导线,考虑到蚀刻方法和铜箔厚度的正常变化以及温差,允许降低标 称值的 10%(以负载电流计);对于涂覆了保护层的印制电路板组装 件(基材厚度小于 0.032 英寸,铜箔厚度超过 3 盎司)则元件都降低 15%;对于浸焊过的印制电路板则允许降低 30%。 PCB 导线间距: 必须确定导线的最小间距,以消除相邻导线之间的电压击穿或飞 弧。间距是可变的,它主要取决于下列因素: 1)相邻导线之间的峰值电压。 2)大气压力(最大工作高度)。 3)所用涂覆层。 4)电容耦合参数。 关键的阻抗元件或高频元件一般都放得很靠近,以减小关键的级 延迟。变压器和电感元件应该隔离,以防止耦合;电感性的信号导线 应该成直角地正交布设;由于磁场运动会产生任何电气噪声的元件应 该隔离,或者进行刚性安装,以防止过分振动。
PCB 物理特性检查项目: 1)所有焊盘及其位置是否适合总装? 2)装配好的印制电路板是否能满足冲击和振功条件? 3)规定的标准元件的间距是多大? 4)安装不牢固的元件或较重的部件固定好了吗? 5)发热元件散热冷却正确吗?或者与印制电路板和其它热敏元 件隔离了吗? 6)分压器和其它多引线元件定位正确吗? 7)元件安排和定向便于检查吗? 8)是否消除了印制电路板上和整个印制电路板组装件上的所有 可能产生的干扰? 9)定位孔的尺寸是否正确? 10)公差是否完全及合理? 11)控制和签定过所有涂覆层的物理特性没有? 12)孔和引线直径比是否公能接受的范围内? PCB 机械设计因素: 虽然印制电路板采取机械方法支撑元件,但它不能作为整个设备 的结构件来使用。在印制版的边沿部分,至少每隔 5 英寸进行一定的 文撑。选择和设计印制电路板必须考虑的因素如下; 1)印制电路板的结构--尺寸和形状。 2)需要的机械附件和插头(座)的类型。 3)电路与其它电路及环境条件的适解 PCB 布线完成后的检查工作之前,先为大家介绍三种 PCB 的特 殊走线技巧。将从直角走线,差分走线,蛇形线三个方面来阐述 PCB LAYOUT 的走线:
一、直角走线(三个方面) 直角走线的对信号的影响就是主要体现在三个方面:一是拐角可 以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造 成信号的反射;三是直角尖端产生的 EMI,到 10GHz 以上的 RF 设计领 域,这些小小的直角都可能成为高速问题的重点对象。 二、差分走线(“等长、等距、参考平面”) 何为差分信号(Differential Signal)?通俗地说就是驱动端 发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判 断逻辑状态“0”还是“1”。而承载差分信号的那一对走线就称为差
15.上风侧和下风侧元件的安排; 16.具有方向性的元件是否进行了错误的翻转而不是旋转; 17.元件管脚的安装孔是否合适,能否便于插入; 18.检查每一个元件的空脚是否正常,是否为漏线; 19.检查同一网络表在上下层布线是否有过孔,焊盘通过孔相连, 防止断线,确保线路的完整性; 20.检查上下层字符放置是否正确合理,不要放上元件盖住字符, 以便于焊接或维修人员操作; 21.非常重要的上下层线的连接不要仅仅用直插的元件的焊盘连 接,最好也用过孔连接; 22.插座中电源和信号线的安排要保证信号的完整性和抗干扰 性; 23.注意焊盘和焊孔的比例合适; 24.各插头尽可能放在 PCB 板的边缘且便于操作; 25.查看元件标号是否与元件相符,各元件摆放尽可能朝同一方 向且摆放整齐; 26.在不违反设计规则的情况下,电源和地线应尽可能加粗; 27.一般情况下,上层走横线,下层走竖线,且倒角不小于 90 度; 28.PCB 上的安装孔大小和分布是否合适,尽可能减小 PCB 弯曲 应力; 29.注意 PCB 上元件的高低分布和 PCB 的形状和大小,确保方便 装配。
1、尽量增加平行线段的距离(S),至少大于 3H,H 指信号走线 到参考平面的距离。通俗的说就是绕大弯走线,只要 S 足够大,就几 乎能完全避免相互的耦合效应。
2、减小耦合长度 Lp,当两倍的 Lp 延时接近或超过信号上升时间 时,产生的串扰将达到饱和。
3、带状线(Strip-Line)或者埋式微带线(Embedded Micro-strip)的蛇形线引起的信号传输延时小于微带走线 (Micro-strip)。理论上,带状线不会因为差模串扰影响传输速率。
1)酚醛浸渍纸。 2)丙烯酸-聚酯浸渍无规则排列的玻璃毡。 3)环氧浸渍纸。 4)环氧浸渍玻璃布。 每种基材可以是阻燃的或是可燃的。上述 1、2、3 是可以冲制的。 金属化孔印制电路板最常用的材料是环氧-玻璃布,它的尺寸稳定性 适合于高密度线路使用,并且能使金属化孔中产生裂纹的情况最少发 生。 环氧-玻璃布层压板的一个缺点是:在印制电路板的常用厚度范 围内难以冲制,由于这个原因,所有的孔通常都是钻出来的,并采用 仿型铣作业以形成印制电路板的外形。 PCB 电气考虑: 在直流或低频交流场合中,绝缘基材最重要的电气特性是:绝缘 电阻、抗电孤性和印制导线电阻以及击穿强度。 而在高频和微波场合中则是:介电常致、电容、耗散因素。 而在所有应用场合中,印制导线的电流负载能力都是重要的。 导线图形: PCB 布线路径和定位 印制导线在规定的布线规则的制约下,应该走元件之间最短的路 线。尽可能限制平行导线之间的耦合。良好的设计,要求布线的层数 最少,在相应于所要求的封装密度下,也要求采用最宽的导线和最大 的焊盘尺寸。因为圆角和平滑的内圃角可能会避免可能产生的一些电
手术很重要,术后恢复也必不可少!讲完了 PCB 布线,那么布完 线就完事了吗?很显然,不是!PCB 布线后检查工作也很必须,那么 如何对 PCB 设计中布线进行检查,为后来设计铺好路呢?请看下文!
通用 PCB 设计图检查项目 1)电路分析了没有?为了平滑信号电路划分成基本单元没有? 2)电路允许采用短的或隔离开的关键引线吗? 3)必须屏蔽的地方,有效地屏蔽了吗? 4)充分利用了基本网格图形没有? 5)印制电路板的尺寸是否为最佳尺寸? 6)是否尽可能使用选择的导线宽度和间距? 7)是否采用了优选的焊盘尺寸和孔的尺寸? 8)照相底版和简图是否合适? 9)使用的跨接线是否最少?跨接线要穿过元件和附件吗? l0)装配后字母看得见吗?其尺寸和型号正确吗? 11)为了防止起泡,大面积的铜箔开窗口了没有? 12)有工具定位孔吗? PCB 电气特性检查项目: 1)是否分析了导线电阻、电感、电容的影响?尤其是对关键的 压降相接地的影析了吗? 2)导线附件的间距和形状是否符合绝缘要求? 3)在关键之处是否控制和规定了绝缘电阻值? 4)是否充分识别了极性? 5)从几何学的角度衡量了导线间距对泄漏电阻、电压的影向吗? 6)改变表面涂覆层的介质经过鉴定了吗?
8)电路的类型及与其它电路的相互关系。 印制电路板的拨出要求: 1)不需要安装元件的印制电路板面积。 2)插拔工具对两印制电路板间安装距离的影响。 3)在印制电路板设计中要专门准备安装孔和槽。 4)插拨工具要放在设备中使用时,尤其是要考虑它的尺寸。 5)需要一个插拔装置,通常用铆钉把它永久性地固定在印制电 路板组装件上。 6)在印制电路板的安装机架中,要求特殊设计如负载轴承凸缘。 7)所用插拔工具与印制电路板的尺寸、形状和厚度的适应性。 8)使用插拔工具所涉及的成本,既包括工具的价钱,也包括所 增加的支出。 9)为了紧固和使用插拔工具,而要求在一定程度上可进入设备 内部。 PCB 机械方面的考虑: 对印制线路组装件有重要影响的基材特性是:吸水性、热膨张系 数、耐热特性、抗挠曲强度、抗冲击强度、抗张强度、抗剪强度和硬 度。 所有这些特性既影响印制电路板结构的功能,也影响印制电路板 结构的生产率。 对于大多数应用场合来说,印制线路板的介质基衬是下述几种基 材当中的一种:
PCB 导线图形检查: 1)导线是否在不牺牲功能的前提下短而直? 2)是否遵守了导线宽度的限制规定? 3)在导线间、导线和安装孔间、导线和焊盘间……必须保证的 最小导线间距留出来没有? 4)是否避免了所有导线(包括元件引线)比较靠近的平行布设? 5)导线图形中是否避免了锐角(90℃或小于 90℃)? PCB 设计项目检查项目列表: 1.检查原理图的合理性及正确性; 2.检查原理图的元件封装的正确性; 3.强弱电的间距,隔离区域的间距; 4.原理图和 PCB 图对应检查,防止网络表丢失; 5.元件的封装和实物是否相符; 6.元件的放置位置是否合适: 7.元件是否便于安装与拆卸; 8.对温度敏感元件是否距发热元件太近; 9.可产生互感元件距离及方向是否合适; 10.接插件之间的放置是否对应顺畅; 11.便于拔插; 12.输入输出; 13.强电弱电; 14.数字模拟是否交错;
4、高速以及对时序要求较为严格的信号线,尽量不要走蛇形线, 尤其不能在小范围内蜿蜒走线。
5、可以经常采用任意角度的蛇形走线,能有效的减少相互间的 耦合。
6、高速 PCB 设计中,蛇形线没有所谓滤波或抗干扰的能力,只 可能降低信号质量,所以只作时序匹配之用而无其它目的。
7、有时可以考虑螺旋走线的方式进行绕线,仿真表明,其效果 要优于正常的蛇形走线。
4)根据一些因素,例如受热和灰尘来考虑垂直或水平安装印制 电路板。
5)需要特别注意的一些环境因素,例如散热、通风、冲击、振 动、湿度。灰尘、盐雾以及辐射线。
6)支撑的程度。 7)保持和固定。 8)容易取下来。 PCB 印制电路板的安装要求: 至少应该在印制电路板三个边沿边缘 1 英寸的范围内支撑。根据 实践经验,厚度为 0.031--0.062 英寸的印制电路板支撑点的间距至 少应为 4 英寸;厚度大于 0.093 英寸的印制电路板,其支撑点的间距 至少应为 5 英寸。采取这一措施可提高印制电路板的刚性,并破坏印 制电路板可能出现的谐振。 某种印制电路板通常要在考虑下列因素之后,才能决定它们所采 用的安装技术。 1)印制电路板的尺寸和形状。 2)输入、输出端接数。 3)可以利用的设备空间。 4)所希望的装卸方便性。 5)安装附件的类型。 6)要求的散热性。 7)要求的可屏蔽性。
相关文档
最新文档