单晶制绒常见问题及解决办法
【2019年整理】制绒原理及相应问题的对策

NaOH-etch - solid line Isotexture - dashed line
600
800
Wavelength, nm
1000
1200
一对矛盾
多晶硅织绒较深会引起并联电阻减小,反向电流增大,甚至击穿。但是 织绒较浅,会影响件反射效果。实际中发现,深度以3~5m为宜
深沟腐蚀区表面形貌
方案一、利用NaOCl预清洗
实验条件
传统织构化工艺 新工艺条件
1 NaOH (8%,75C,2min) NaOCl(12%,80C,15min)
2 NaOH(2%)+IPA(7%) NaOH(2%)+IPA(7%)
硅片表面的沾污之一
FTIR谱 存在: C=O拉伸键 S-C-O键 烷基硫酸盐
IQE IQE
绒面作用: 1、减少表面反射 2、提高内部光吸收
100
80
60
without
with
40
20
0 400
600
800
1000 1200
wavelength(nm)
T=200us
100
80
60
with
without
40
20
0 400
600 800 1000 1200
wavelength
T=2us
入刀口的现象,如润滑剂过稀则冷却效果不好。这些润滑剂在高 温下有可能碳化粘附在硅片表面。
硅片经过热碱处理后提出在空气中,时间过长会与空气中的氧反
应形成一层氧化层,这层氧化层一旦形成就很难再清洗下去了。 因此,在碱清洗后不能在空气中暴露12秒以上。
表面油脂货摊沾污的结果
减缓去损伤层的量 无法形成织构化的成核 表面织构化无法形成
制绒原理及相应问题的解决

对形貌的影响
KOH only
KOH +IPA
KOH +Si solved
KOH +IPA+Si solved
反应15分钟时反射率
反应45分钟时
反射率和金字塔尺寸和均匀性没有密切关系, 取决于金字塔有没有布满
关键因素的分析 ——NaOH的影响 的影响
0.5% 1.5% 5.5%
关键因素的分析 ——温度的影响 温度的影响
图3 悬挂健对反应的影响
影响因素分析
硅的刻蚀速率与表面原子密度、晶格方向、掺杂浓 度、腐蚀液成分、浓度、温度、搅拌等参数有关
1. 2. 3. 4. 5. 6.
NaOH浓度 无水乙醇或异丙醇浓度 制绒槽内硅酸钠的累计量 制绒腐蚀的温度 制绒腐蚀时间的长短 槽体密封程度、乙醇或异丙醇的挥发程度
各个因素作用
图6 一定温度下NaOH溶液浓度和IPA含量对反应速率的影响
温度越高腐蚀速度越快 腐蚀液浓度越高腐蚀速度越快 IPA浓度越高腐蚀速率越慢 Na2SiO3浓度越高腐蚀速率越慢
对反射率的影响
绒面的平均反射率随NaOH浓度的变化
图7 NaOH浓度对反射率的影响
图8 一定条件下NaOH浓度和IPA含量对反射率的影响
如何检测硅酸钠含量
硅酸钠具体含量测量是没必要的, 只要判定它的含量是否过量即可。实验 是用100%的浓盐酸滴定,若滴定一段 时间后出现少量絮状物,说明硅酸钠含 量适中;若滴定开始就出现一团胶状固 体且随滴定的进行变多,说明硅酸钠过 量。
各向异性的原因
1、水分子的屏蔽效应(screening effect)阻挡了硅原子与OH根离子的 作用,而水分子的屏蔽效应又以原子 排列密度越高越明显。 2、在{111}晶面族上,每个硅原子具 有三个共价健与晶面内部的原子健结 及一个裸露于晶格外面的悬挂健, {100}晶面族每一个硅原子具有两个共 价健及两个悬挂健,当刻蚀反应进行 时,刻蚀液中的OH-会跟悬挂健健 结而形成刻蚀,所以晶格上的单位面 积悬挂健越多,会造成表面的化学反 应自然增快。
单晶硅片制绒后产生白斑的原因分析及改善措施

注:两侧方向是指垂直于硅片刀纹的方向,进刀方向是指平行于硅片刀纹的方向3.2 异常硅片厚度测试2种单晶硅片的异常硅片进行厚度测试。
每片异常硅片测试4个点,其中,测试点常区域中心点,测试点2为异常区域边缘,测试为硅片中心点,测试点4为异常区域对称位置,示例图如图3所示;然后分别测试不同异常硅片测试点的厚度,并与正常硅片(生产中未出现异常的M2硅片)在对应位置的厚度进行对比,结果如表2所示。
a. 进刀面b. 两侧图1 M2异常硅片绒面测试结果Fig. 1 The test results of anomalous M2 texturing silicon wafera. 进刀面表2 各测试点的厚度测试结果Table 2 The results of thickness test of differenttest point硅片类型测试点1/µm测试点2/µm测试点3/µm测试点异常硅片177172172157.4 mm异常硅片174169170正常硅片1761761783 异常硅片厚度测试的测试点分布图示例Fig. 3 The test point distribution example of thickness test ofanomalous silicon waferb. 两侧图2 157.4 mm异常硅片绒面测试结果Fig. 2 The test results of anomalous 157.4 mm texturingsilicon waferb. 两侧位置图4 157.4 mm 异常硅片的显微红外测试结果Fig. 4 The micro-infrared test result of anomalous 157.4 mmtexturing silicon wafera. 进刀面a. 进刀面0.190.180.170.160.150.140.138090405060702010304000400020002000波数/cm-1波数/cm -1波数/cm-13000300030002000100035002500150010001000对图4~图7的测试结果进行分析,可得出:1)157.4 mm 异常硅片的进刀面:对波峰进行数据库对比分析,显微红外测试结果显示,杂质可能是无机磷酸盐类物质,主要匹配到磷酸盐、焦磷酸盐、硅酸盐等。
制绒段常见不良及常规解决方法

可编辑版
8
片源异常及解决方法
4、线痕
线痕片大幅存在,线痕片存在的隐患为:深线痕可能导致更高碎片率,多线 线痕可能影响外观并对效率有轻微影响。
线痕表现形式:线痕可从外观直接看出,一般为一根或数根直且细的沟壑(缺照 片)。
对单晶而言,线痕分为单线线痕及多线线痕,单线线痕一般因切割断线引起,多 线线痕一般为切割浆料异常引起(如回收液的大量使用)。
黑名单:当前因各厂家自身控制以及我们采购、质量的严格把关,线痕片出现极
少。
可编辑版
9
设备异常及解决办法
设备引起的制绒异常主要有如下几个特征:
1、独立性。由于设备的损坏,尤其是制绒设备的损坏,并不会同时产生,因此,因 设备引起的异常往往仅表现为某一个槽或某一条线;
2、异常硅片的规律性。设备异常,如鼓泡管堵塞,加热器损坏,其制绒出来的硅片 往往呈现一致的特征,并且在位置方面也有规律性。
制绒段常见异常及常规解 决方法
可编辑版
1
制绒不良树状结构图
可编辑版
2
片源异常及解决方法
1、指纹及划痕
指纹区
划伤区
可编辑版
指纹片源于:硅片厂家在硅片清洗过程时进 行裸手插片,或者插片时所穿戴的手套 不能满足隔汗要求(自身来料检有时也 会引入);
划痕源于:硅片厂家在插片过程的摩擦,同 时也来源于硅片厂家的硅片检验以及我 们公司自身的来料检验。
可编辑版
17
工艺异常及常规解决办法
制绒异常及解决办法:
1、小雨点 小雨点因制绒过程IPA不足引起,IPA不足除引起小雨点外,也使跳片的概率上升, 因此,需予以及时解决。
太阳能电池制绒原理以及问题处理

多晶制绒原理及相应对策
多晶硅织构化应使用各项同性织构技术
湿法各项同性腐蚀
使用HF/HNO3/H2O
• HNO3在硅表面形成SiO层 • HF将氧化层除去
两者形成竞争
效率增加: 电池片:7% 组件: 4.8%
温度与腐蚀速度的关系
100
HNO3:HF:CH3COOH 4.5 : 2 : 3.5
Etch-rate, m/min
表面油脂去除方案
有机溶剂+超声——有机溶剂溶解有机物质 酸性液体去除法——如RCA工艺:热硫酸煮硅片
表面活性剂
NaOCl热处理——利用O自由基的强腐蚀性
方案一、利用NaOCl预清洗
实验条件
1 传统织构化工艺 新工艺条件 NaOH (8%,75C,2min) NaOCl(12%,80C,15min) 2 NaOH(2%)+IPA(7%) NaOH(2%)+IPA(7%)
等离子体法刻蚀形貌图
怎样是“好”的金字塔
小而均匀 布满整个硅片表面
Low density texture
High density texture
怎样得到“好”的金字塔 关键:降低硅片表面/溶液的界面能
两个方面实现:
1、提高硅片表面的浸润能力,如添加IPA或者把硅片进行酸或碱的 腐蚀。
{111}
各向异性的原因
Si+2NaOH+H2O==Na2SiO3+2H2
1、水分子的屏蔽效应(screening effect)阻挡了硅原子与OH根离子的 作用,而水分子的屏蔽效应又以原子 排列密度越高越明显。
2、在{111}晶面族上,每个硅原子具 有三个共价健与晶面内部的原子健结 及一个裸露于晶格外面的悬挂健, {100}晶面族每一个硅原子具有两个共 价健及两个悬挂健,当刻蚀反应进行 时,刻蚀液中的OH-会跟悬挂健健 结而形成刻蚀,所以晶格上的单位面 积悬挂健越多,会造成表面的化学反 应自然增快。
单晶硅太阳能电池的制绒方法

未经处理的单晶硅表面具有高反射率 ,通过制绒技术可以降低表面反射, 减少光能的损失,提高太阳能电池的 光电转换效率。
国内外研究现状
国外研究
国外对单晶硅太阳能电池的制绒技术进行了广泛的研究,提 出了多种制绒方法和工艺,包括酸腐蚀、碱腐蚀、激光刻蚀 等。其中,酸碱联合制绒工艺因其效果显著而得到广泛应用 。
废水处理和回收
建立废水处理设施,对废 水进行回收处理,实现废 水零排放。
05 结论与展望
研究结论
制绒方法优化
通过对比不同制绒工艺参数,发 现碱浓度、温度和时间等因素对 制绒效果具有显著影响。优化后 的制绒工艺可提高硅片表面绒面
结构的质量和效率。
表面形貌改善
研究结果显示,优化后的制绒工 艺能够获得更细小、更均匀的绒 面晶胞结构,显著提高了硅片表
03 实验结果与分析
实验结果
制备出单晶硅太阳能 电池,表面制绒后呈 现出明显的绒面结构 。
经过制绒处理,太阳 能电池的短路电流和 开路电压均有所提高 。
绒面结构增加了太阳 能电池的表面积,提 高了光的吸收效率。
结果分析
制绒处理能够改善单晶硅太阳 能电池的表面形貌,增加光吸 收面积。
通过对比实验,发现制绒处理 能够提高太阳能电池的性能。
效果。
04 讨论与优化建议
制绒工艺优化
01
02
03
工艺参数优化
通过调整制绒液浓度、浸 泡时间、清洗温度等工艺 参数,提高制绒效果。
设备改进
采用新型的制绒设备,提 高设备运行效率和稳定性 。
清洗技术改进
采用先进的清洗技术,如 超声波清洗、喷淋清洗等 ,提高清洗效果。
提高太阳能电池效率的途径
选用高质量硅材料
单晶硅制绒

单晶硅制绒工艺一次清洗工艺说明1.目的确保单晶硅片扩散前的清洗腐蚀的工艺处于稳定的受控状态2.使用范围适用于单晶硅片扩散前的清洗腐蚀工序3.责任本工艺说明由技术部负责4.硅片检验4.1 将包装箱打开,查看规格、电阻率、厚度、单多晶、厂家、编号是否符合要求;4.2 检查硅片是否有崩边、裂纹、针孔、缺角、油污、划痕、凹痕;(见附图一、二)4.3 将不合格品放置规定碎片盒子内,作统一处理。
5.装片(见附图三)5.1 片盒保持干净,片盒底部衬以海绵,将硅片插入片盒中,每盒最多插25片硅片。
5.2 禁止手与片盒、硅片直接接触,必须戴塑料洁净手套或乳胶手套操作。
每插100张硅片,需更换手套。
5.3 操作中严禁工作服与硅片和片盒接触。
6.上料(见附图四)6.1 硅片插完后,取出片盒底部的海绵,扣好压条。
6.2 将已插好硅片的片盒整齐、有序的装入包塑的不锈钢花篮中,每篮12个片盒,片盒之间有适当的间隔。
7化学腐蚀液的配制7.1 准备:将各槽中破损硅片等杂质清除,用去离子水将各槽壁冲洗干净。
7.2 配制:向5、6、8、10#槽中注满去离子水,1-4、7、9#槽中注入约一半深度的去离子水,按照“7.3”比例分别向各槽加入指定量的化学药品,再注去离子水达到指定的高度。
7.4 配制溶液要求:7.4.1 配料顺序:1#槽按水、氢氧化钠的顺序;2-4#槽按硅酸钠、氢氧化钠、异丙醇的顺序。
7#槽按水、氢氟酸、水的顺序;9#槽按水、盐酸、水的顺序。
7.4.2 时间要求:2-4#槽按硅酸钠、氢氧化钠配制完毕后,需等待10分钟之后硅酸钠、氢氧化钠完全溶解后,才能加异丙醇。
1#槽配制完毕后,温度达到工艺要求之后,同时2-4#槽的其中一槽加硅酸钠、氢氧化钠10分钟后,才可进硅片。
7.4.3 异丙醇加液要求:需用塑料管或漏斗将异丙醇加到制绒槽的底部,在硅片进入1#槽之后才能加异丙醇,减少异丙醇的挥发。
8.各化学药品规格及要求8.1 氢氧化钠:电子纯,容量500克/瓶,浓度≥98%。
单晶硅制绒原理

单晶硅制绒原理介绍单晶硅制绒是一种常用的制备技术,用于制备具有高质量表面的材料。
本文将详细介绍单晶硅制绒的原理及其相关的工艺流程和应用。
原理单晶硅制绒是通过晶体生长技术在硅基底上制备一层高质量的薄膜。
其原理主要包括以下几个方面:1.晶体生长:在制备单晶硅制绒时,首先需要选择适合的基底材料,通常选择硅基底。
然后,在基底上进行晶体生长,通常采用化学气相沉积(CVD)技术。
CVD技术通过将气相材料在高温条件下加热,使其分解并在基底上生成薄膜。
2.控制晶体方位:在单晶硅制绒中,晶体方位的控制是非常重要的。
晶体的方位决定了其物理和化学性质。
为了控制晶体方位,可以通过在基底上引入一层缓冲层,促使晶体在特定方位生长。
3.制备薄膜:通过晶体生长技术,可以在基底上制备一层薄膜。
这层薄膜通常具有高度的结晶度和平整度,能够提供良好的表面质量和机械性能。
工艺流程单晶硅制绒的工艺流程通常包括以下几个步骤:1.基底准备:选择适合的基底材料,并进行表面处理。
通常,基底会经过清洗、打磨和去除氧化层等工艺步骤,以保证基底的纯净性和平整度。
2.缓冲层生长:为了控制晶体的方位,常常需要生长一层缓冲层。
这层缓冲层通常由非晶态或微晶态硅材料组成,可以通过物理气相沉积(PVD)或化学气相沉积(CVD)等技术实现。
3.单晶硅生长:在缓冲层的基础上,进行单晶硅的生长。
通常,采用低温等离子体增强化学气相沉积(PECVD)或金属有机化学气相沉积(MOCVD)等技术进行生长。
这些技术可以提供较高的晶体质量和较高的生长速度。
4.表面处理:在单晶硅制绒后,通常需要进行一些表面处理,以提高薄膜的质量。
常用的表面处理方法包括化学机械抛光(CMP)、湿法腐蚀和离子注入等。
应用单晶硅制绒广泛应用于半导体器件、太阳能电池、显示器件等领域。
其应用主要包括以下几个方面:1.半导体器件:单晶硅制绒在半导体器件制造中起到重要作用。
通过控制晶体的方位和表面质量,可以提高器件的性能和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单晶制绒常见问题及解决办法
制绒是处理硅片的一种工艺方法,硅太阳能电池片生产的首道工序。
不管是单晶硅片还是多晶硅片,都可以用酸或者碱来处理。
无论用哪种方法处理,一般情况下,用碱处理是为了得到金字塔状绒面;用酸处理是为了得到虫孔状绒面。
不管是哪种绒面,都可以提高硅片的陷光作用。
单晶制绒常见异常
可返工异常:白斑、脏片、小雨点、暗斑、亮面、阴阳面、齿痕、水痕。
白斑脏
不可返工不良类型:原料片白斑(表面有黏附物或有不明污染物)、划痕(表面泛白的除外)、手印(表面泛白的除外)、线痕。
单晶制绒异常处理
亮面:
导致亮面的原因:反应剧烈,溶液配比不平衡;反应时间不足;
处理方法:依亮面程度及硅片减重情况,决定是否须补加酒精。
发白:
导致发白的原因:制绒不充分;
处理方法:依硅片发白程度,决定是否须补加NaOH。
雨点:
导致雨点的原因:溶液表面张力过大制绒过程中产生的气泡脱离困难;
处理方法:依情况补加适当酒精,以降低其溶液表面张力。
白点:
导致发白的原因:溶液不匀;
处理方法:进药后搅拌溶液。
齿痕
导致发白的原因:药量配比不足以消除齿痕;
处理方式:调整药量,适当多增加10~20gNaOH。