《解析几何》第6讲 直线与圆、圆与圆的位置关系

合集下载

直线与圆的位置关系课件

直线与圆的位置关系课件
研究图形性质
通过研究直线与圆的位置关系,可以进一步研究图形的性质 。例如,通过观察直线与圆的位置关系,可以研究圆的对称 性、中心性等性质。
在物理学中的应用
研究运动轨迹
在物理学中,直线与圆的位置关系可以用于研究物体的运动轨迹。例如,在研究抛物线运动时,可以 通过设定一个初始位置和初始速度,利用直线与圆的位置关系来研究物体的运动轨迹。
几何解释能够直观地描述直线与圆的 位置关系,有助于深入理解相关概念 和性质。
通过几何解释,可以更好地掌握解析 几何的基本思想和方法,提高解决实 际问题的能力。
直线与圆的位置关
04
系的代数表示
代数表示的方法
直线方程
一般式 $Ax + By + C = 0$,斜截式 $y = mx + b$,点斜式 $y - y_1 = m(x - x_1)$
圆方程
一般式 $(x - h)^2 + (y - k)^2 = r^2$,标准式 $x^2 + y^2 + Dx + Ey + F = 0$
直线与圆的位置关系判断
将圆心坐标代入直线方程,根据判别式 $Delta = b^2 - 4ac$ 的 值判断。
代数表示的应用场景
解析几何问题
在解析几何中,直线与圆的位置关系是常见的问题,通过代数表示可以方便地 解决这类问题。
实际应用
在工程、建筑、地理等领域中,经常需要用到直线与圆的位置关系来解决问题 。例如,建筑设计中的平面布局、地理测量中的数据解析等。
代数表示的重要性
简化问题
通过代数表示,可以将复 杂的问题简化为易于处理 的形式,从而方便解决问 题。
提高效率
使用代数表示可以快速地 计算和比较数据,提高解 决问题的效率。

直线与圆、圆与圆的位置关系―知识讲解提高

直线与圆、圆与圆的位置关系―知识讲解提高

直线与圆相交于一点 直线与圆相切于一点 直线与圆相离于一点 直线与圆相交于两点
判断直线与圆的位置关系,可以通过比较圆心到直线的距离与圆的半径大小来实现。
圆心到直线的距离小于半径,则直线与圆相交;等于半径,则直线与圆相切;大于半径,则 直线与圆相离。
判断圆与圆的位置关系,可以通过比较两圆的圆心距与两圆半径之和或半径之差的大小来实 现。
圆心到直线的距离:利用圆心到直 线的距离判断圆与直线的关系
弦长:通过比较弦长来判断圆与圆 的位置关系
添加标题
添加标题
添加标题
添加标题
圆的半径:比较两圆的半径大小, 判断圆与圆的位置关系
切线:利用切线性质判断圆与直线 的关系
距离公式:利用两点间的距离公式求解直线与圆之间的距离 角度公式:利用三角函数或余弦定理求解直线与圆之间的夹角 代数运算:利用代数方法简化计算过程,提高解题效率
交通路线规划:利用直线与圆的位置关系,确定最佳路线。 股市分析:通过分析股票价格与均线的位置关系,判断股票走势。 地球科学:利用圆与圆的位置关系,研究地球与其他天体的相对位置。 建筑学:在建筑设计时,利用直线与圆、圆与圆的位置关系,实现美观与实用的统一。
直线与圆的位置关系在解析几何中的应用 圆与圆的位置关系在几何证明题中的应用 利用直线与圆、圆与圆的位置关系解决数学竞赛中的难题 在数学竞赛中,直线与圆、圆与圆的位置关系常作为考点和难点
特殊情况处理:针对直线与圆相切、相交等特殊情况,采用相应的方法进行求解
理解数形结合的概念,将数学问题转化为图形问题 掌握常见的数形结合方法,如坐标法、向量法等 学会利用图形直观地分析问题,找到解题思路 练习数形结合的题目,提高解题能力
掌握直线与圆的位置关系的基本题型,包括相切、相交和相离等,并掌握相应的解题方法。 掌握圆与圆的位置关系的基本题型,包括相切、相交和相离等,并掌握相应的解题方法。 熟悉不同题型的特点和解题方法,能够根据题目的具体要求选择合适的解题方法。 掌握解题技巧,如利用几何性质、数形结合等方法,提高解题效率。

《直线与圆的位置关系》说课稿(附教学设计)

《直线与圆的位置关系》说课稿(附教学设计)

《直线与圆的位置关系》说课稿一、教材的理解与处理本节课的内容是平面解析几何的基础知识,是对前面所学直线与圆的方程的进一步应用。

而解决问题的主要方法是解析法。

解析法不仅是定量判断直线与圆的位置关系的方法,更为后续研究直线与圆锥曲线的位置关系奠定思想基础,具有承上启下的作用。

本节课的教学目的是使学生掌握直线与圆的位置关系的判定方法,教材处理问题的方法主要是:用点到直线的距离公式求出圆心到直线的距离d后与圆的半径r比较作出判断;类比利用直线方法求两条直线交点的方法,联立直线与圆的方程,通过解方程组,根据方程组解的个数判断直线与圆的位置关系。

考虑到圆的性质的特殊性,以及渗透给学生解决问题尽力选择简捷途径,以及学生的认知结构特征,课堂上师生着力用第一种方法来解决直线与圆的位置关系,对于第二种方法主要留给学生自主探究,教师做适当的点拨总结。

二、教学目标确定说明学生在初中已经学习了直线与圆的位置关系,也知道可以利用直线与圆的交点的个数以及圆心与直线的距离d与半径r的大小比较两种方法判断直线与圆的位置关系,但是,在初中学习时,这两种方法都是以结论性的形式呈现,在高一学习了解析几何以后要求学生掌握用直线和圆的方程来判断直线与圆的位置关系,解决问题的主要方是解析法。

高中数学教学的重要目标之一是提高学生的数学思维能力,通过不同形式的探究活动,让学生亲身经历知识的发生和发展过程,从中领悟解决问题的思想方法,不断提高分析和解决问题的能力,使数学学习变成一种愉快的探究活动,从中体验成功的喜悦,不断增强探究知识的欲望和热情,养成一种良好的思维品质和习惯。

根据本节课的教学内容和我所教学生的实际,本节课的教学目标确定为以下三个方面:(1)知识与技能目标:①理解直线与圆三种位置关系。

②掌握用圆心到直线的距离d与圆的半径r比较,以及通过方程组解的个数判断直线与圆位置关系的方法。

(2)能力目标:①通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考,自主探究,动手实践,合作交流的学习方式。

《直线与圆的位置关系》

《直线与圆的位置关系》
《直线与圆的位 置关系》
2023-11-10
目 录
• 引言 • 直线与圆的位置关系概述 • 判断直线与圆的位置关系的方法 • 直线 复习与思考
01
CATALOGUE
引言
课程背景介绍
平面解析几何是数学的基础知识,而直线与圆的位置关系是解析几何中的重要内 容之一。
在物理学中,圆和直线是非常重要的概 念,它们被广泛应用于各种现象和实验
中。
例如,在力学中,圆被用来描述物体的 运动轨迹,而直线则被用来描述物体的 运动速度和方向。此外,在电磁学中, 圆和直线也被广泛应用于描述电磁波的
传播和电场线的分布。
另外,在光学中,直线则被用来描述光 的传播路径和光的干涉现象,而圆则被 用来描述光的衍射现象。因此,掌握直 线与圆的位置关系对于理解物理现象和
解决物理问题非常重要。
直线与圆在经济学中的应用
在经济学中,直线与圆的位置关系也 被广泛应用于各种经济理论和模型中 。
VS
例如,在供需模型中,直线被用来表 示供给曲线和需求曲线,而圆则被用 来表示市场均衡点。此外,在货币供 应和货币政策中,直线则被用来表示 货币供应量和利率之间的关系,而圆 则被用来表示通货膨胀率和失业率之 间的权衡关系。
对于练习题,需要仔细计算公共弦的长度,避免出错。
对于思考题,可以通过几何方法证明两点之间线段最短 ,也可以用解析几何的方法证明。
通过本章的学习,可以进一步加深对平面几何的认识和 理解,同时为后续学习空间几何打下基础。
THANKS
感谢观看
相交直线的性质
01
02
03
相交直线的夹角
两条相交直线之间的夹角 是锐角或直角,且夹角的 大小取决于两条直线的倾 斜程度。

解析几何中的直线与圆的位置关系

解析几何中的直线与圆的位置关系

解析几何中的直线与圆的位置关系直线与圆的位置关系是解析几何中的重要概念之一。

在空间几何中,直线和圆可以有多种相互位置的情况,包括相离、相切和相交。

本文将对直线与圆的不同位置关系进行解析和讨论。

一、直线和圆相离的情况当一条直线与一个圆没有任何交点时,我们称直线和圆相离。

此时,直线与圆之间的最短距离等于两者之间的半径差。

直线作为一个无限延伸的曲线,在与圆相离的情况下,可能与圆的外部或内部都不存在交点。

二、直线和圆相切的情况直线和圆相切意味着它们只有一个公共点,即相切点。

在这种情况下,直线与圆的切点即为它们的交点,且直线垂直于通过切点的半径。

直线与圆相切的情况分为两种,一种是直线与圆外切,另一种是直线与圆内切。

1. 直线与圆外切当一条直线与一个圆外切时,直线与圆相交于切点。

此时,直线与圆的半径垂直并且共线,且直线和圆之间的最短距离等于圆的半径。

直线从切点开始离开圆,没有任何交点。

外切情况下,直线与圆的位置关系可以通过切线与圆的关系来理解。

2. 直线与圆内切直线与圆内切意味着直线与圆只有一个公共点,并且直线在此切点处与圆的内部相切。

如外切情况一样,直线与圆内切时,直线与通过切点的半径垂直并且共线。

直线从切点开始进入圆内,没有任何其他交点。

三、直线和圆相交的情况直线和圆可能有两个交点或者无穷多个交点。

直线与圆相交的情况分为两种,一种是直线穿过圆内部,另一种是直线截取了圆的一部分。

1. 直线穿过圆内部当一条直线穿过一个圆的内部时,直线与圆的交点有两个。

此时直线与圆的位置关系是直线既与圆的内部相交,又与圆的外部相交。

直线穿过圆的内部时,直线与圆的交点处于圆的两侧。

2. 直线截取圆的一部分当一条直线截取了一个圆的一部分时,直线与圆的交点有两个。

此时直线与圆的位置关系是直线既与圆的内部相交,又与圆的外部相交。

直线截取圆的一部分时,直线的两个交点分别位于圆上,相交点将圆分成了两部分。

总结:直线和圆的位置关系在解析几何中是一个重要的概念。

2023高考数学一轮总复习第九章平面解析几何第四节直线与圆圆与圆的位置关系pptx课件北师大版

2023高考数学一轮总复习第九章平面解析几何第四节直线与圆圆与圆的位置关系pptx课件北师大版
第九章
第四节
直线与圆、圆与圆的位置关系




01
强基础 增分策略
02
增素能 精准突破
课标解读
衍生考点
核心素养
1.能根据给定直线、圆的方程,
判断直线与圆、圆与圆的位置 1.直线与圆的位置关系 直观想象
关系.
2.圆的切线与弦长问题 数学运算
2.能用直线和圆的方程解决一
3.圆与圆的位置关系
些简单的数学问题与实际问题.
设圆C1:x2+y2+D1x+E1y+F1=0,①
圆C2:x2+y2+D2x+E2y+F2=0,②
若两圆相交,则有一条公共弦,其公共弦所在直线的方程可由①-②得到,即
(D1-D2)x+(E1-E2)y+(F1-F2)=0.
(2)两个圆系方程
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方
典例突破
例1.(1)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法错误的
是(
)
A.若点A在圆C上,则直线l与圆C相切
B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离
D.若点A在直线l上,则直线l与圆C相切
(2)(2021北京人大附中模拟)已知圆C过点(-1,0)和(1,0),且与直线y=x-1只有
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)若两圆的圆心距小于两圆的半径之和,则两圆相交.( × )

直线与圆、圆与圆的位置关系—知识讲解(基础)

直线与圆、圆与圆的位置关系—知识讲解(基础)

直线与圆、圆与圆的位置关系—知识讲解(基础)【学习目标】1.理解并掌握直线与圆、圆与圆的各种位置关系;2.理解切线的判定定理、性质定理和切线长定理,了解三角形的内切圆和三角形的内心的概念,并熟练掌握以上内容解决一些实际问题;3.了解两个圆相离(外离、内含),两个圆相切(外切、内切),两圆相交,圆心距等概念.理解两圆的位置关系与d、r1、r2数量关系的等价条件并灵活应用它们解题.【要点梳理】要点一、直线和圆的位置关系1.直线和圆的三种位置关系:(1) 相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.(2) 相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.(3) 相离:直线和圆没有公共点时,叫做直线和圆相离.2.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.如果⊙O的半径为r,圆心O到直线的距离为d,那么要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的判定定理、性质定理和切线长定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理:圆的切线垂直于过切点的半径.3.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 4.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.5.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.6.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).要点三、圆和圆的位置关系1.圆与圆的五种位置关系的定义两圆外离:两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.两圆相交:两个圆有两个公共点时,叫做这两圆相交.两圆内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.两圆内含:两个圆没有公共点,且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.2.两圆的位置与两圆的半径、圆心距间的数量关系:设⊙O1的半径为r1,⊙O2半径为r2,两圆心O1O2的距离为d,则:两圆外离d>r1+r2两圆外切d=r1+r2两圆相交r1-r2<d<r1+r2 (r1≥r2)两圆内切d=r1-r2 (r1>r2)两圆内含d<r1-r2 (r1>r2)要点诠释:(1) 圆与圆的位置关系,既考虑它们公共点的个数,又注意到位置的不同,若以两圆的公共点个数分类,又可以分为:相离(含外离、内含)、相切(含内切、外切)、相交;(2) 内切、外切统称为相切,唯一的公共点叫作切点;(3) 具有内切或内含关系的两个圆的半径不可能相等,否则两圆重合.【典型例题】类型一、直线与圆的位置关系【高清ID号: 356966 关联的位置名称(播放点名称):经典例题1-2】1.(优质试题•盐城)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC 于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.【答案与解析】(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,(2)证明:连接OE.在△EAO与△EDO中,,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.【总结升华】本题考查了切线的判定,连接OE构造全等三角形是解题的关键.举一反三:【高清ID号: 356966 关联的位置名称(播放点名称):经典例题1-2】【变式】如图,P点是∠AOB的平分线OC上一点,PE⊥OA于E,以P为圆心,PE为半径作⊙P .求证:⊙P与OB相切.【答案】作PF⊥OB于F,则可证明△OEP≌△OFP,所以PF=PE,即F在圆P上,故⊙P与OB相切.2.(优质试题•黄石)如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.【思路点拨】(1)根据圆周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,进而求得BC即可;(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.【答案与解析】证明:(1)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABC=30°,AB=4,∴BD=2,∵D是BC的中点,∴BC=2BD=4;(2)证明:连接OD.∵D是BC的中点,O是AB的中点,∴DO是△ABC的中位线,∴OD∥AC,则∠EDO=∠CED又∵DE⊥AC,∴∠CED=90°,∠EDO=∠CED=90°∴DE是⊙O的切线.【总结升华】此题主要考查了切线的判定以及含30°角的直角三角形的性质.解题时要注意连接过切点的半径是圆中的常见辅助线.类型二、圆与圆的位置关系3.(1)已知两圆的半径分别为3cm,5cm,且其圆心距为7cm,则这两圆的位置关系是( )A.外切 B.内切 C.相交 D.相离(2)已知⊙O1与⊙O2相切,⊙O1的半径为3cm,⊙O2的半径为2cm,则O1O2的长是( )A.1cm B.5cm C.1cm或5cm D.0.5cm或2.5cm【答案】(1)C ;(2)C.【解析】(1)由于圆心距d=7cm,R+r=5+3=8(cm),R-r=5-3=2(cm).∴ R-r<d<R+r,故这两圆的位置关系是相交.(2)两圆相切包括外切和内切,当⊙O1与⊙O2外切时,d=O1O2=R+r=3+2=5(cm);当⊙O1与⊙O2内切时,d=O1O2=R-r=3-2=1(cm).【总结升华】由数量确定位置或由位置确定数量的依据是:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r;④两圆内切⇔d=R-r;⑤两圆内含⇔d<R-r.4.已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.【思路点拨】首先连接O1B,O2C,O1O2,过点O1作O1D⊥O2C于D,由直线l与⊙O1、⊙O2分别切于B,C 点,可得四边形O1BCD是矩形,即可知CD=O1B=r1=2cm,BC=O1D,然后在Rt△O2DO1中,利用勾股定理即可求得O1D的长,即可得BC的长.【答案与解析】【总结升华】此题考查了相切两圆的性质、切线的性质、矩形的判定与性质以及勾股定理.此题难度适中,解题的关键是准确作出辅助线,掌握相切两圆的性质.举一反三:【变式】如图所示,在△ABC中,AB=BC=2,以AB为直径的⊙O与BC相切于点B,则AC等于( )A..【答案】因为以AB为直径的⊙O与BC相切于点B,所以∠ABC=90°,在Rt△ABC中,AC=C.。

圆圆的位置关系知识点总结

圆圆的位置关系知识点总结

圆圆的位置关系知识点总结圆的位置关系是几何学中一个重要的概念,涉及到圆与直线、圆与圆之间的相对位置关系。

下面是关于圆的位置关系的知识点总结。

一、圆与直线的位置关系:1.外切:当直线与圆相切于圆的一点时,我们称这条直线与圆外切。

2.内切:当直线与圆只在圆的内部与圆相切时,我们称这条直线与圆内切。

3.交于两点:当直线与圆相交并有两个交点时,我们称这条直线与圆相交于两点。

4.不相交:当直线与圆没有交点时,我们称这条直线与圆不相交。

二、圆与圆的位置关系:1.相切:当两个圆相切于圆的一点时,我们称这两个圆相切。

2.相交:当两个圆有交点时,我们称这两个圆相交。

3.重合:当两个圆的圆心和半径完全相同时,我们称这两个圆重合。

4.内含:当一个圆完全在另一个圆内部时,我们称这个圆在另一个圆内含。

5.相离:当两个圆没有交点,且一个圆的外部不与另一个圆的内部相交时,我们称这两个圆相离。

三、判别圆与直线的位置关系的方法:1.利用距离:计算直线上一点到圆心的距离,根据距离与圆的半径的大小关系来判断圆与直线的位置关系。

-当直线上一点到圆心的距离等于圆的半径时,这条直线与圆相切。

-当直线上一点到圆心的距离大于圆的半径时,这条直线与圆相交。

-当直线上一点到圆心的距离小于圆的半径时,这条直线与圆不相交。

2.利用方程:通过圆的方程和直线的方程来求解相交的点,根据求解得到的交点的数量来判断圆与直线的位置关系。

四、判别圆与圆的位置关系的方法:1.利用距离:计算两个圆心之间的距离,根据距离与两个圆的半径之和、之差的大小关系来判断圆与圆的位置关系。

-当两个圆心之间的距离等于两个圆的半径之和时,这两个圆相交。

-当两个圆心之间的距离大于两个圆的半径之和时,这两个圆相离。

-当两个圆心之间的距离等于两个圆的半径之差的绝对值时,一个圆完全包含在另一个圆内即一个圆内含于另一个圆。

-当两个圆心之间的距离大于两个圆的半径之差的绝对值,但小于两个圆的半径之和时这两个圆相交于两个交点。

解析几何中的圆与圆的位置关系

解析几何中的圆与圆的位置关系

解析几何中的圆与圆的位置关系在解析几何中,研究圆与圆之间的位置关系是一个重要的课题。

圆与圆之间的位置关系分为三种情况:相离、相切和相交。

下面将逐一介绍这些位置关系。

一、相离当两个圆的半径之和小于两圆心之间的距离时,我们称这两个圆为相离的。

如下图所示,圆A和圆B的半径和小于两圆心之间的距离,因此它们是相离的。

[图示]二、相切当两个圆的半径之和等于两圆心之间的距离时,我们称这两个圆为相切的。

如下图所示,圆A和圆B的半径之和等于两圆心之间的距离,因此它们是相切的。

[图示]三、相交当两个圆的半径之和大于两圆心之间的距离时,我们称这两个圆为相交的。

相交的情况又可以分为内切和外切两种情况。

1. 内切当两个圆的半径之差等于两圆心之间的距离时,我们称这两个圆为内切的。

如下图所示,圆A和圆B的半径之差等于两圆心之间的距离,因此它们是内切的。

[图示]2. 外切当两个圆的半径之和大于两圆心之间的距离,但小于两个圆的半径之差时,我们称这两个圆为外切的。

如下图所示,圆A和圆C的半径之和大于两圆心之间的距离,但小于圆A和圆C的半径之差,因此它们是外切的。

[图示]除了以上三种位置关系之外,两个圆还可能重合。

当两个圆的圆心和半径均相等时,我们称这两个圆为重合的。

总结通过以上介绍,我们了解了解析几何中的圆与圆的位置关系。

不同的位置关系对应着不同的圆之间的约束条件,这对于解析几何的应用具有重要意义。

在实际问题中,我们可以根据圆与圆之间的位置关系来求解一些几何问题,进一步推进解析几何的发展与应用。

以上就是关于解析几何中圆与圆的位置关系的解析。

通过对这些位置关系的深入理解和应用,我们可以更好地解决与圆相关的几何问题。

希望本文的内容对你有所帮助。

谢谢阅读!。

高中 平面解析几何直线与圆、圆与圆的位置关系 知识点+例题

高中 平面解析几何直线与圆、圆与圆的位置关系 知识点+例题

辅导讲义――直线和圆、圆与圆的位置关系圆的切线方程设法:(1)过圆222r y x =+上一点),(00y x P 的圆的切线方程为200r y y x x =+.(2)过圆222)()(r b y a x =-+-上一点),(00y x P 的圆的切线方程为200))(())((r b y b y a x a x =--+--. (3)过圆222r y x =+外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200r y y x x =+.(4)过圆222)()(r b y a x =-+-外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200))(())((r b y b y a x a x =--+--.[例]经过点M (2,-1)作圆522=+y x 的切线,则切线方程为_________________. 2x-y-5=0[巩固] 过点P (3,1)作曲线C :0222=-+x y x 的两条切线,切点分别为A ,B ,则直线AB 的方程为____________. 2x+y-3=01.若两圆的半径分别为r 1,r 2,两圆的圆心距为d ,则两圆的位置关系的判断方法如下:位置 关系 外离外切相交内切内含图示d 与r 1,r 2 的关系d >r 1+r 2 d =r 1+r 2 |r 1-r 2|< d < r 1+r 2d =|r 1-r 2|d <|r 1-r 2|两圆的公共点个数0个 1个 2个 1个 0个2.两圆的共切线:(1)当两圆内含时,没有公切线; (2)当两圆内切时有一条公切线; (3)当两圆相交时,有两条外公切线;知识模块4圆与圆的位置关系 精典例题透析知识模块3切线及弦所在直线的方程设法∴切线方程为2x +y ±52=0; ③∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.[巩固] (2013·江苏)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围. (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2), 于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3, 由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为 (x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为|MA |=2|MO |,所以x 2+(y -3)2=2 x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤|CD |≤2+1, 即1≤a 2+(2a -3)2≤3. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.题型三:直线与圆相交的问题[例]已知直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为8,求k 的值.设直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为AB ,其中点为C ,则△OCB 为直角三角形.因为圆的半径为|OB |=5,半弦长为|AB |2=|BC |=4,所以圆心到直线kx -y +6=0的距离为3,由点到直线的距离公式得6k 2+1=3,解之得k =±3.[巩固] 求直线x -3y +23=0被圆x 2+y 2=4截得的弦长.如图,设直线x -3y +23=0与圆x 2+y 2=4交于A ,B 两点,弦AB 的中点为M ,则OM ⊥AB (O 为坐标原点),所以OM =|0-0+23|12+(-3)2=3,所以AB =2AM =2OA 2-OM 2=222-(3)2=2.圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为___________. 圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R ).化为:(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1,∵圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.4.(2013·山东)过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为____________.解析 如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2, ∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.已知直线y =kx +b 与圆O :x 2+y 2=1相交于A ,B 两点,当b =1+k 2时,OA →·OB →等于___________.设A (x 1,y 1),B (x 2,y 2),将y =kx +b 代入x 2+y 2=1得(1+k 2)x 2+2kbx +b 2-1=0,故x 1+x 2=-2kb 1+k 2,x 1x 2=b 2-11+k 2, 从而·=x 1x 2+y 1y 2=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=b 2-1-2k 2b 21+k 2+b 2=2b 21+k 2-1=1. 6.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是______________.由y =3-4x -x 2,得(x -2)2+(y -3)2=4(1≤y ≤3).∴曲线y =3-4x -x 2是半圆,如图中实线所示.当直线y =x +b 与圆相切时,|2-3+b |2=2.∴b =1±2 2. 由图可知b =1-2 2.∴b 的取值范围是[]1-22,3.7.(2014·上海)已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的Q 使得AP →+AO→=0,则m 的取值范围为________.曲线C :x =-4-y 2,是以原点为圆心,2为半径的圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的Q 使得+=0,(1)求矩形ABCD 的外接圆的方程;(2)已知直线l :(1-2k )x +(1+k )y -5+4k =0(k ∈R ),求证:直线l 与矩形ABCD 的外接圆恒相交,并求出相交的弦长最短时的直线l 的方程.(1)∵l AB :x -3y -6=0且AD ⊥AB ,点(-1,1)在边AD 所在的直线上,∴AD 所在直线的方程是y -1=-3(x +1),即3x +y +2=0.由⎩⎪⎨⎪⎧x -3y -6=0,3x +y +2=0,得A (0,-2). ∴|AP |=4+4=22, ∴矩形ABCD 的外接圆的方程是(x -2)2+y 2=8.(2)直线l 的方程可化为k (-2x +y +4)+x +y -5=0,l 可看作是过直线-2x +y +4=0和x +y -5=0的交点(3,2)的直线系,即l 恒过定点Q (3,2),由(3-2)2+22=5<8知点Q 在圆P 内,∴l 与圆P 恒相交.设l 与圆P 的交点为M ,N ,则|MN |=28-d 2(d 为P 到l 的距离),设PQ 与l 的夹角为θ,则d =|PQ |·sin θ=5sin θ,当θ=90°时,d 最大,|MN |最短.此时l 的斜率为PQ 的斜率的负倒数,即-12, 故l 的方程为y -2=-12(x -3),即x +2y -7=0.11.若直线l :y =kx +1 (k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是_________. 因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交. 12.设曲线C 的方程为(x -2)2+(y +1)2=9,直线l 的方程为x -3y +2=0,则曲线上的点到直线l 的距离为71010的点的个数为____________.B解析 由(x -2)2+(y +1)2=9,得圆心坐标为(2,-1),半径r =3,圆心到直线l 的距离d =|2+3+2|1+(-3)2=710=71010. 能力提升训练要使曲线上的点到直线l 的距离为71010, 此时对应的点在直径上,故有两个点.13.(2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于____________.∵S △AOB =12|OA ||OB |sin ∠AOB =12sin ∠AOB ≤12. 当∠AOB =π2时, △AOB 面积最大.此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33). 14.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0).由题意知(4,0)到kx -y -2=0的距离应不大于2,即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43. 15.(2014·重庆)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以|AB |=|BC |=2,所以(|a +a -2|a 2+1)2+12=22,解得a =4±15.。

平面解析几何直线与圆、圆与圆的位置关系课件

平面解析几何直线与圆、圆与圆的位置关系课件

高考要求
该知识点是高中数学重要 内容,也是高考的必考考 点之一。
思维培养
通过学习该知识点,可以 培养学生的空间想象能力 、逻辑推理能力和解决问 题的能力。
学习目标与要求
知识与技能
掌握直线与圆、圆与圆的 位置关系的定义、性质和 判定方法,能熟练求解相 关问题。
过程与方法
经历从具体到抽象、从特 殊到一般、从感性到理性 的认知过程,体会数形结 合的思想方法。
预习要求
学生需要提前预习椭圆、双曲线和抛物线的 定义、性质及其图像,为下节课的学习做好 准备。同时,复习本节课所学内容,加深对
直线与圆、圆与圆位置关系的理解。
THANKS
谢谢您的观看
情感态度价值观
通过主动探究和合作学习 ,培养对数学的兴趣和好 奇心,形成严谨求实的科 学态度。
知识点概述
直线与圆的位置关系
包括相离、相切和相交三种情况,可 以通过比较圆心到直线的距离与圆的 半径来判定。
圆与圆的位置关系
包括外离、外切、相交、内切和内含 五种情况,可以通过比较两圆圆心距 与两圆半径之和或差来判定。
圆的标准方程
$(x-a)^2+(y-b)^2=r^2$,圆心 $(a,b)$,半径$r$。
圆的性质
圆上任一点到圆心的距离等于半 径;过圆心的任意弦为直径,其 两端点与圆上任意一点构成的角 为直角。
两圆位置关系判断
圆心距
两圆圆心之间的距离,记为$d$。
两圆位置关系
通过比较圆心距$d$与两圆半径之和$R+r$、之差$|R-r|$来判断。
03
详细讲解如何求解直线与圆、圆与圆的交点坐标,以及交点个
数的判断方法。
分组讨论与分享
分组讨论

平面解析几何直线与圆的位置关系

平面解析几何直线与圆的位置关系

平面解析几何直线与圆的位置关系在平面解析几何中,直线和圆是两个基本的几何概念。

它们之间存在着不同的位置关系,这些位置关系在几何学中有着重要的应用。

本文将介绍直线与圆的七种位置关系,并探讨其几何特征和判别方法。

一、直线与圆相离直线与圆相离是指直线与圆不相交,且它们的最短距离大于圆的半径。

这种情况下,直线上的每个点到圆的距离都大于圆的半径。

图1是直线与圆相离的示意图。

判别方法:通过求直线到圆心的距离来判断,若距离大于半径,则直线与圆相离。

二、直线与圆相切直线与圆相切是指直线与圆有且只有一个公共的切点。

这个切点既在直线上,也在圆上。

图2是直线与圆相切的示意图。

判别方法:通过求直线到圆心的距离来判断,若距离等于半径,则直线与圆相切。

三、直线穿过圆直线穿过圆是指直线与圆有两个交点。

这种情况下,直线分为两部分,一部分在圆内,一部分在圆外。

图3是直线穿过圆的示意图。

判别方法:通过求直线到圆心的距离来判断,若距离小于半径,则直线穿过圆。

四、直线与圆相交但不穿过圆直线与圆相交但不穿过圆是指直线与圆有两个交点,但直线的一部分在圆的外部,另一部分在圆的内部。

图4是直线与圆相交但不穿过圆的示意图。

判别方法:通过求直线到圆心的距离来判断,若直线与圆相交但距离大于半径,则直线与圆相交但不穿过圆。

五、直线与圆内切直线与圆内切是指直线与圆有且只有一个公共切点,并且这个切点在直线的一侧。

图5是直线与圆内切的示意图。

判别方法:通过求直线到圆心的距离来判断,若直线与圆相切且距离小于半径,则直线与圆内切。

六、直线与圆外切直线与圆外切是指直线与圆有且只有一个公共切点,并且这个切点在直线的另一侧。

图6是直线与圆外切的示意图。

判别方法:通过求直线到圆心的距离来判断,若直线与圆相切且距离大于半径,则直线与圆外切。

七、直线在圆内直线在圆内是指直线的所有点都在圆的内部。

图7是直线在圆内的示意图。

判别方法:通过求直线到圆心的距离来判断,若直线到圆心的距离小于圆的半径,则直线在圆内。

直线与圆及圆与圆的位置关系

直线与圆及圆与圆的位置关系

直线与圆及圆与圆的位置关系【本讲教育信息】⼀. 教学内容:直线与圆及圆与圆的位置关系⼆. 学习⽬标:1、能根据给出的直线和圆的⽅程,判断直线与圆、圆与圆的位置关系;2、在学习过程中,进⼀步体会⽤代数⽅法处理⼏何问题的思想;3、进⼀步体会转化、数形结合等数学思想和⽅法。

三. 知识要点:1、直线和圆的位置关系设△是联⽴直线⽅程与圆的⽅程后得到的判别式,dO-L是圆⼼O到直线L的距离,则有:直线与圆相交:有两个公共点——△>0——dO-L∈[0,R];直线与圆相切:有⼀个公共点——△=0——dO-L=R;直线与圆相离:⽆公共点——△<0——dO-L>R.2、圆与圆的位置关系两圆相交:有两个公共点——△>0——dO-O’∈[|R-r|,R+r];两圆外切:有⼀个公共点——△=0——dO-O’=R+r;两圆内切:有⼀个公共点——△=0——dO-O’=|R-r|;④两圆相离:⽆公共点——△<0——dO-O’>R+r;⑤两圆内含:⽆公共点——△<0——dO-O’<|R-r|.【典型例题】考点⼀ 研究直线与圆的位置关系例1 已知直线L过点(-2,0),当直线L与圆x2+y2=2x有两个不同交点时,求斜率k的取值范围。

法⼀:设直线L的⽅程为:y=k(x+2),与圆的⽅程联⽴,代⼊圆的⽅程令△>0可得:。

法⼀:法⼆:设直线L的⽅程为:y=k(x+2),利⽤圆⼼到直线的距离dO-L∈[0,R]可解得:。

法⼆:考点⼆ 研究圆的切线例2 直线y=x+b与曲线有且仅有⼀个公共点,求b的取值范围。

分析:作出图形后进⾏观察,以找到解决问题的思路。

分析:解:曲线即x2+y2=1(x≥0),当直线y=x+b解:与之相切时,满⾜:由观察图形可知:当或时,它们有且仅有⼀个公共点。

例3 过点P(1,2)作圆x2+y2=5的切线L,求切线L的⽅程。

解:因P点在圆上,故可求切线L的⽅程为x+2y=5。

《直线与圆的位置关系》 讲义

《直线与圆的位置关系》 讲义

《直线与圆的位置关系》讲义在我们的数学世界中,直线和圆是两个非常重要的几何图形。

它们之间的位置关系不仅是数学中的基础知识,也在实际生活和各种科学领域中有着广泛的应用。

接下来,让我们一起深入探讨直线与圆的位置关系。

一、直线与圆的位置关系的定义直线与圆的位置关系有三种情况:相离、相切和相交。

当直线与圆没有公共点时,我们称直线与圆相离。

想象一下,一个圆在地上安静地躺着,而一条直线远远地从旁边经过,两者之间没有任何接触,这就是相离的状态。

当直线与圆有且只有一个公共点时,直线与圆相切。

此时,直线被称为圆的切线,这个公共点叫做切点。

就好像直线轻轻触碰了一下圆,然后就离开了,只留下这一个“亲密接触”的瞬间。

当直线与圆有两个公共点时,直线与圆相交。

可以想象成直线像一把刀一样切入圆中,产生了两个交点。

二、判断直线与圆位置关系的方法1、几何法通过比较圆心到直线的距离 d 与圆的半径 r 的大小关系来判断。

若 d > r ,则直线与圆相离;若 d = r ,则直线与圆相切;若 d <r ,则直线与圆相交。

那么如何求圆心到直线的距离呢?对于直线 Ax + By + C = 0 ,圆的方程为(x a)²+(y b)²= r²,圆心为(a, b) ,则圆心到直线的距离 d =|Aa + Bb + C| /√(A²+ B²) 。

2、代数法将直线方程与圆的方程联立,消去 y (或 x ),得到一个关于 x (或 y )的一元二次方程。

通过判断这个一元二次方程的根的判别式Δ 的值来确定位置关系。

若Δ < 0 ,则直线与圆相离;若Δ = 0 ,则直线与圆相切;若Δ > 0 ,则直线与圆相交。

三、直线与圆相切的性质1、切线的性质切线垂直于经过切点的半径。

这是一个非常重要且常用的性质。

如果我们知道某条直线是圆的切线,并且知道切点,那么连接圆心和切点的半径就与切线垂直。

2、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

解析几何直线与圆圆与圆的位置关系课件理新

解析几何直线与圆圆与圆的位置关系课件理新

解析几何直线与圆圆与圆的位置关系课件理新汇报人:日期:•直线与圆•圆与圆的位置关系•解析几何的基本概念•直线与圆及圆与圆的方程•应用举例目•复习与总结录直线与圆01给定两点$P_1(x_1, y_1)$和$P_2(x_2, y_2)$,直线方程可以表示为$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$。

直线的基本性质直线的两点式方程直线与x轴夹角的正切值称为直线的斜率。

直线的斜率所有垂直于x轴的直线的斜率都为无穷大。

垂直于x轴的直线圆心位于圆的中心,半径是从圆心到圆上任意一点的距离。

圆心和半径圆的方程圆的直径给定圆心坐标$(h, k)$和半径$r$,圆的方程可以表示为$(x - h)^{2} + (y - k)^{2} = r^2$。

直径是圆中最长的弦,其长度为2r。

03圆的基本性质0201如果直线与圆没有交点,则称直线与圆相离。

相离如果直线与圆只有一个交点,则称直线与圆相切。

相切如果直线与圆有两个交点,则称直线与圆相交。

相交直线与圆的位置关系圆与圆的位置关系02外切两圆的外切是指两个圆在外部相切,即两个圆心之间的距离等于两个圆的半径之和。

内切两圆的内切是指两个圆在内部相切,即两个圆心之间的距离等于两个圆的半径之差。

外切与内切相交两圆相交是指两个圆心之间的距离小于两个圆的半径之和且大于两个圆的半径之差。

相离两圆相离是指两个圆心之间的距离大于两个圆的半径之和。

内含两圆内含是指两个圆心之间的距离小于两个圆的半径之差。

圆与圆的相离、相交、内含关系对于两个外切的圆,存在两条外公切线,它们与两个圆都相切。

外公切线对于两个内切的圆,存在两条外公切线,它们与两个圆都相切。

内公切线对于给定的两个圆,我们可以使用极坐标方程来表示它们的圆心和半径。

极坐标方程圆与圆的公切线解析几何的基本概念03向量的定义向量是一个有方向和大小的量,通常用一条有向线段表示,包括起点、方向和长度。

高二数学点与圆、直线与圆以及圆与圆的位置关系知识精讲

高二数学点与圆、直线与圆以及圆与圆的位置关系知识精讲

高二数学点与圆、直线与圆以及圆与圆的位置关系【本讲主要内容】点与圆、直线与圆以及圆与圆的位置关系【知识掌握】 【知识点精析】1. 点与圆的位置关系设圆C ∶(x -a )2+(y -b )2=r 2,点M (x 0,y 0)到圆心的距离为d ,则有: (1)d >r 点M 在圆外; (2)d =r 点M 在圆上; (3)d <r 点M 在圆内。

2. 直线与圆的位置关系设圆C ∶(x -a )2+(y -b )2=r 2,直线l 的方程为Ax +By +C =0,圆心(a ,b )到直线l 的距离为d ,⎩⎨⎧=++=-+-0C By Ax r )b y ()a x (222消去y 得x 的一元二次方程判别式为△,则有: (1)d <r 直线与圆相交; (2)d =r 直线与圆相切; (3)d>r 直线与圆相离,即几何特征; 或(1)△>0直线与圆相交; (2)△=0直线与圆相切; (3)△<0直线与圆相离,即代数特征。

3. 圆与圆的位置关系 设圆C 1:(x -a )2+(y -b )2=r 2和圆C 2:(x -m )2+(y -n )2=k 2(k≥r ),且设两圆圆心距为d ,则有: (1)d =k +r 两圆外切; (2)d =k -r 两圆内切; (3)d >k +r 两圆外离; (4)d <k -r 两圆内含; (5)k -r <d <k +r 两圆相交。

4. 其他(1)过圆上一点的切线方程:①圆x 2+y 2=r 2,圆上一点为(x 0,y 0),则此点的切线方程为x 0x +y 0y =r 2 ②圆(x -a )2+(y -b )2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2(2)相交两圆的公共弦所在直线方程:设圆C 1∶x 2+y 2+D 1x +E 1y +F 1=0和圆C 2∶x 2+y 2+D 2x +E 2y +F 2=0,若两圆相交,则过两圆交点的直线方程为(D 1-D 2)x +(E 1-E 2)y +(F 1-F 2)=0。

《直线与圆、圆与圆的位置关系》大单元教学设计方案【高中数学】

《直线与圆、圆与圆的位置关系》大单元教学设计方案【高中数学】

直线与圆、圆与圆的位置关系大单元教学
设计
用几何方法和代数方法,这种综合是充分借助图形的几何性质,一定程度上简化代数运算,最后得到图形之间的位置关系的方法.利用直线与圆的位置关系解决实际问题,是初中平面几何的综合运用,是在学习了点和圆的位置关系的基础上进行的,又为后面学习圆与圆的位置关系作了铺垫,对解题及几何证明将起到重要的作用.
本单元综合运用直线和圆的方程研究直线与圆、圆与圆的位置关系, 以及一些简单的数学问题和实际问题. 直线与圆的教学在平面解析几何乃至整个中学数学中都占有重要的地位, 直线和圆的位置关系应用也比较广泛、图形之间的位置关系, 既可以直观定性描述, 也可以严格定量刻画.定量刻画的方法既可以是完全运用代数的方法, 通过运算求解, 得到图形之间的位置关系, 也可以综合运用几何方法和代数方法, 这种综合是充分借助图形的几何性质, 一定程度上简化代数运算, 最后得到图形之间的位置关系的方法.利用直线与圆的位置关系解决实际问题, 是初中平面几何的综合运用, 是在学习了点和圆的位置关系的基础上进行的, 又为后面学习圆与圆的位置关系作了铺垫, 对解题及几何证明将起到重要的作用.
本单元综合运用直线和圆的方程研究直线与圆、圆与圆的位置关系,以及一些简单的数学问题和实际问题. 直线与圆的教学在平面解析几何乃至整个中学数学中都占有重要的地位,直线和圆的位置关系应用也比较广泛、图形之间的位置关系,既可以直观定性描述,也可以严格定量刻画.定量刻画的方法既可以是完全运用代数的方法,通过运算求解,得到图形之间的位置关系,也可以综合运用几何方法和代数方法,这种综合是充分借助图形的几何性质,一定程度上简化代数运算,最后得到图形之间的位置关系的方法.利用直线与圆的位置关系解决实际问题,是初中平面几何的综合运用,是在学习了点和圆的位置关系的基础上进行的,又为后面学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数法:两圆方程 联立组成方程组的 解的情况 无解 ________ 一组实数解 两组不同的实数解 一组实数解 ____________
无解 __________
栏目 导引
第八章
平面解析几何
例题1. 已知圆x2+y2=1. (1) 它与直线y=x+2的位置关系 是 . (2) 若它和直线y=kx+2没有公共 点,则实数k的取值范围是___.
第八章
平面解析几何
第6讲
直线与圆、圆与圆
的位置关系
第八章
平面解析几何
1.直线与圆的位置关系 设直线l:Ax+By+C=0(A2+B2≠0),
圆:(x-a)2+(y-b)2=r2(r>0),
d为圆心(a,b)到直线 l的距离,联立直线和圆的方程,消元 后得到的一元二次方程的判别式为Δ.
方法 位置关系 相交 相切 相离
x y 1
x y 4 0
2 2
栏目 导引
几何法 d____ < r d____ = r d____ > r
代数法 Δ____0 > Δ____0 = Δ____0 <
栏目 导引
第八章
平面解析几何
2.圆与圆的位置关系 设圆 O1: (x- a1 )2+ (y- b1 )2= r2 1( r1 >0), 圆 O2: (x- a2)2+ (y- b2)2= r2 2( r2 >0).
(3) 若点M(a,b)在圆上,则圆和直线 ax+by=1的位置关系是 .
栏目 导引
第八章
平面解析几何
例题2. 圆(x+2)2+y2=4与 圆(x-2)2+(y-1)2=9 (1) 两圆的位置关系为 . (2) 公共弦所在的直线方程是 .
(3) 公共弦的长度是
.
栏目 导引
第八章
平面解析几何
直线与圆的位置关系有两种判定方法:代数法与几何法.由
C
.O
A
D
栏目 导引
第八章
平面解析几何
B
2
M
-5
A
5
C
O N
-2
o’ E
D
-4
设Aa,0、B0,b、Cc,0 D0,d
-6 -8
栏目 导引
第八章
平面解析几何
例题3. 下列曲线表示的图形是什么. ①. x 1 1 ( y 1)
2 2 2
②. x 1 1 ( y 1) ③. x 1 1 ( y 1) ④.
方法 位置 关系 相离 外切 相交 内切 内含
几何法:圆心距d与 r1,r2的关系 d>r1+r2 __________ d= r1 + r2 __________ |r1-r2|<d<r1+r2 _______________ d=|r1-r2|(r1≠r2) 0≤d<|r1-r2|(r1≠r2)
于几何法一般比代数法计算量小,简便快捷,所以更容易被
人接受.同时,由于它们的几何性质非常明显,所以利用数 形结合,并充分考虑有关性质会使问题处理起来更加方便.
栏目 导引
第八章
平面解析几何
(1)判断两圆的位置关系常用几何法, 即用两圆圆心距与两圆 半径和与差之间的关系,一般不采用代数法. (2)当两圆相交时求其公共弦所在直线方程或是公共弦长, 只 要把两圆方程相减消掉二次项所得方程就是公共弦所在的 直线方程, 再根据其中一个圆和这条直线就可以求出公共弦 长.
圆目 导引
第八章
平面解析几何
例题1.设圆满足: ①截y轴所得的弦长为2; ②被x轴分成两段圆弧长的比为3∶1.
在满足条件①②的所有圆中,
求圆心到直线l: x-2y=0 的距离为 5 的圆的方程. 5
栏目 导引
第八章
平面解析几何
例题2. 已知内接于圆的四边形的 对角线互相垂直. 求证:圆心到一边的距离等于这条边 所对边长的一半. B
栏目 导引
第八章
平面解析几何
提高部分
栏目 导引
第八章
平面解析几何
▲有点“动静”的问题.
栏目 导引
第八章
平面解析几何
▲有点“动静”的问题.
圆心动形状静
圆心静形状动
栏目 导引
第八章
平面解析几何
▲有点“动静”的问题.
圆心动形状静
擦肩而过
圆心静形状动
栏目 导引
第八章
平面解析几何
▲有点“动静”的问题.
相关文档
最新文档