钢筋混凝土受弯构件斜截面承载力计算
斜截面承载力计算
随P 裂缝数 ,W Va , 沿纵筋的混凝土保护层 也可能被撕裂,Vd ,其中一条斜裂缝发展为主要斜裂 缝----临界斜裂缝.无腹筋梁此时如同拱结构,纵筋成 拱的拉杆.
常见的破坏:临界斜裂缝的发展导致混凝土剪压区高 度的不断减小,最后在切应力和压应力的共同作用下, 剪压区混凝土被压碎(拱顶破坏),梁发生破坏.
的受剪承载力来防止由于配箍率而过高产生斜压破坏 ◆ 受剪截面应符合下列截面限制条件
h 当
w
4 时,
V 0.25 f bh
c c
b hw 6 时, V 0.20 c f c bh0 当 b hw < < 6 时,按直线内插法取用。 当4 b
0
上式表明梁的斜截面受剪 承载力的上限,相当于限制 了梁所必须具有的最小截 面尺寸,在只配有箍筋下也 限制了最大配筋率.如不满 足 ?
h 当
w
4 时,
V 0.25 f bh
c c
b hw 6 时, V 0.20 c f c bh0 当 b hw < < 6 时,按直线内插法取用。 当4 b
0
c为高强混凝土的强度折减系 数,当fcu,k ≤50N/mm2时,c =1.0,当fcu,k =80N/mm2时c
表 5-3 梁中箍筋最小直径(mm) 梁高 h(mm) h≤800 h >800 箍筋直径 6 8
5.2 受弯构件斜截面设计方法
第5章 钢筋混凝土受弯构件斜截面承载力计算
2、截面限制条件 上限值---最小截面尺寸和最大配筋率 ◆ 当配箍率超过一定值后,则在箍筋屈服前,斜压杆混凝土已 压坏,故可取斜压破坏作为受剪承载力的上限。 ◆ 斜压破坏取决于混凝土的抗压强度和截面尺寸。
钢筋混凝土受弯构件斜截面承载力
正由于有纵筋的弯起或截断,梁的抵抗弯矩的能力
可以因需要合理调整。
第
混凝土结构设计原理
五 章
3.5.1 抵抗弯矩图及绘制方法
1 抵抗弯矩图: 抵抗弯矩图就是以各截面实际纵向受拉钢
筋所能承受的弯矩为纵坐标,以相应的截面位 置为横坐标,所作出的弯矩图(或称材料图), 简称Mu图。
当梁的截面尺寸,材料强度及钢筋截面面 积确定后,其抵抗弯矩值,可由下式确定
的弯起、锚固、截断以及箍筋的间距,
有何构造要求?
第
混凝土结构设计原理
五 章
锚固长度不应小于0.7 la ,也可以伸过节点或支座范
围,并在梁中弯矩较小处设置搭接接头,如图所示。
第
混凝土结构设计原理
五 章
第
混凝土结构设计原理
五 章
3.6.2 箍筋
1、箍筋的形式和肢数
箍筋的形式有封闭式和开口式两种,一般均应采用封 闭式,特别是当梁中配置有受压钢筋时。
箍筋有单肢、双肢和复合箍等形式。一般按以下情况 选用: ➢当梁宽≤400mm时,可采用双肢箍; ➢当梁宽>400mm且一层内的纵向受压钢筋多于3根时, 或梁宽≤400mm,但一层内的纵向受压钢筋多于4根时, 应设置复合箍筋。 ➢当梁宽<100mm时,可采用单肢箍
…5-23
第
混凝土结构设计原理
五 章
斜截面受弯承载力不进行计算而通过构造措施 来保证。措施要求:
◆沿梁纵轴方向钢筋的布置,应结合正截面 承载力,斜截面受剪和受弯承载力综合考虑。
◆以简支梁在均布荷载作用下为例。跨中弯
矩最大,纵筋As最多,而支座处弯矩为零,剪力最 大,可以用正截面抗弯不需要的钢筋作抗剪腹筋。
第
混凝土结构设计原理
钢筋混凝土受弯构件斜截面承载力计算1
1.75 V 0.7f t bh0或V f t bh0 1
斜截面受剪承载力的计算
2、斜截面受剪承载力的计算步骤
计算步骤: (3)确定腹筋数量 仅配箍筋时,一般先根据构造要求选定箍筋肢数和直径,再按公式
V Vcs 0.7f t bh0 1.25f yv
或
Asv h0 s
V Vcs
Asv h0 s
Asv 1.75 V Vcs f t bh0 f yv h0 1.0 s
Asv——配置在同一截面内箍筋各肢的全部截面积,Asv=nAsv1 fyv——箍筋抗拉强度设计值 ft——混凝土轴心抗拉强度设计值 s——箍筋间距
斜截面受剪承载力计算公式
2、同时配置箍筋和弯起钢筋的受弯构件
•⑦钢筋骨架中的光面受力钢筋,应在钢筋末端做弯钩。
箍筋的构造要求
1.箍筋的设置 高度大于300m:全长设置箍筋
高度为150—300mm:端部各1/4跨度范 周内设置箍筋,但当梁的中部1/2跨度范 围内有集中荷载作用时,则应沿梁的全长 配置箍筋 高度小于150mm:可不设箍筋。
2. 箍筋的直径 箍筋直径应不小于表的规定
hf b为矩形截面的宽度
Βc混凝土强度影响系数
或T形截面和工形截面的 腹板宽度
基本计算公式的适用条件
2、防止出现斜拉破坏的条件——最小配箍率的限制
钢筋混凝土梁出现斜裂缝后,斜裂缝处原来由混凝土 承担的拉力全部传给钢筋承担,使箍筋的拉应力突然增大, 如果箍筋配置过少,斜裂缝一经出现,箍筋很快达到屈服 强度而发生斜拉破坏。因此,对箍筋的配置要规定一个下 限值,及最小配箍率。
概述
进行受弯构件设计时: 既要保证构件不得沿正截面发生破坏又要保证构件 不得沿斜截面发生破坏 ,因此要进行正截面承载能 力和斜截面承载能力计算。
受弯构件斜截面受剪承载力计算
梁的斜截面承载力包括斜截面受剪承载力和斜截面受弯承载力。在实
际工程中,斜截面受剪承载力通过计算配置腹筋来保证,而斜截面受弯
承载力则通过构造措施来保证。
有腹筋梁斜截面破坏工程试验
1
剪跨比λ的定义
影响梁斜截面破坏形态有很多因素,其中最主要的两项是剪跨
比λ的大小和配置箍筋的多少
对于承受集中荷载的梁:第一个集中荷载作用点到支座边缘之
距a(剪跨跨长)与截面的有效高度ℎ0 之比称为剪跨比λ,即
λ=a/ℎ0 。
广义剪跨比λ=M/Vℎ0 (如果λ表示剪跨比,集中荷载作用下的
梁某一截面的剪跨比等于该截面的弯矩值与截面的剪力值和有效
高度乘积之比)。
有腹筋梁斜截面破坏工程试验
2
箍筋配筋率
箍筋配箍率是指箍筋截面面积与截面宽度和箍筋间距乘积的比值,
计算公式为:
1 =Βιβλιοθήκη =式中 ——配置在同一截面内箍筋各肢的全部截面面积(2 );
=1 ;
n——同一截面内箍筋肢数;
1 ——单支箍筋的截面面积(2 );
b——矩形截面宽度,T形、I字形截面的腹板宽度(mm);
1.75
≤ =
ℎ0 +
ℎ0
+1
式中 V——梁的剪力设计值(N/2 )
剪跨比λ<1.5时,取λ=1.5;当λ>3时,取λ=3.
谢 谢 观 看
s——箍筋间距;
仅配箍筋时梁的斜截面受剪承载力计算基本公式
对于矩形、T型、I字形截面的一般受弯构件:
≤ = 0.7 ℎ0 +
ℎ0
对承受集中荷载作用为主的独立梁或对集中荷载作用下(包括作用
受弯构件斜截面承载力计算
第 1 页/共 2 页第四章 受弯构件斜截面承载力计算1、钢筋混凝土受弯构件沿斜截面破坏的形态有几种?各在什么情况下发生? 答:(1)斜拉破坏:在荷载作用下,梁的剪跨段产生由梁底竖向裂缝沿主压应力轨迹线向上延伸发展而成的斜裂缝。
其中有一条主要斜裂缝很快形成,并疾驰舒展至荷载垫板边缘而使梁体混凝土裂通,梁被撕裂成两部分而丧失承载力,同时,沿纵向钢筋往往陪同产生水平撕裂裂缝。
这种破坏发生骤然,破坏荷载等于或者略高于主要斜裂缝浮上时的荷载,破换面比较整洁,无混凝土压碎现象。
发生条件:在剪跨比比较大时。
(m >3)(2)斜压破坏:当剪跨比较小时,(m <1),首先是荷载作用点和支座之间浮上一条斜裂缝,然后浮上若干条大体相平行的斜裂缝,梁腹被分割成若干个倾斜的小柱体。
随着荷载增大,梁腹发生类似混凝土棱柱体被压坏的情况,破环时斜裂缝多而密,但没有主裂缝,所以称为斜压破坏。
(3)剪压破坏:随着荷载的增大,梁的剪弯区段内陆续浮上几条斜裂缝,其中一条发展成为临界斜裂缝。
临界斜裂缝浮上后,梁承受的荷载还能继续增强,而斜裂缝舒展至荷载垫板下,直到斜裂缝顶端(剪压区)的混凝土在正应力x σ,剪应力τ及荷载引起的竖向局部压应力y σ的共同作用下被压酥而破坏。
破坏处可见到无数平行的斜向断裂缝和混凝土碎渣。
发生条件:多见于剪跨比13≤≤m 的情况中。
2、名词解释:广义剪跨比、狭义剪跨比、理论充足利用点、理论不需要点、 弯矩包络图、抵御弯矩图 答:广义剪跨比:剪跨比是一个无量纲常数,用0Vh m M =来表示,此处M 和V 分离为剪弯区段中某个竖直截面的弯矩和剪力,0h 为截面有效高度,普通把m 的这个表达式称为“广义剪跨比”。
狭义剪跨比:例如图中CC ‵截面的剪跨比00h a h V m c c =M =,其中a 为扩散力作用点至简支梁最近的支座之间的距离,称为“剪跨”。
偶尔称0h a m =为“狭义剪跨比”。
抵御弯矩图:它又称材料图,就是沿梁长各个正截面按实际配置的总受拉钢筋面积能产生的抵御弯矩图,即表示各正截面所具有的抗弯承载力。
混凝土结构设计原理第五章 受弯构件斜截面
s
s
Asv . . h0 .... b
架立筋
箍筋 纵筋
· · · ·
弯起点 as 弯起筋
箍筋及弯起钢筋 有腹筋梁:箍筋、弯起钢筋(斜筋)、纵筋 无腹筋梁:纵筋
第5章 钢筋混凝土受弯构件斜截面承载力计算
2 无腹筋梁的受力及破坏分析 梁斜裂缝中受力状态图: 现将梁沿斜裂缝AAB切开,取出斜裂缝顶点左边部分脱离体。
第5章 钢筋混凝土受弯构件斜截面承载力计算
拱形桁架模型 此模型把开裂后的有腹筋梁看成为拱形桁架,其拱体是上弦
杆,裂缝间的齿块是受压的斜腹杆,箍筋则是受拉腹杆。如 图所示;与梳形拱模型的主要区别:1)考虑了箍筋的受拉作 用; 2)考虑了斜裂缝间混凝土的受压作用。
拱形桁架模型
第5章 钢筋混凝土受弯构件斜截面承载力计算
当弯剪区的主拉应力tp>ft时,即产生与主拉应力迹线大致垂直 的斜裂缝,故其破坏面与梁轴斜交-称斜截面破坏。
弯剪斜裂缝:裂缝下宽上窄 斜裂缝的类型 腹剪斜裂缝:中间宽两头窄
(a) 腹剪斜裂缝
(b) 弯剪斜裂缝
第5章 钢筋混凝土受弯构件斜截面承载力计算
为了抵抗主拉应力的钢筋: 弯起钢筋,箍筋
梁中设置纵向钢筋承担开裂后的拉力,箍筋、弯筋、纵筋、架 立筋 ––– 形成钢筋骨架,如图所示。
B A Vc D c A
P
D C B A A
P
D C VA
Va Vd Ts B C a MB
(a)
MA
梁中斜裂缝的受力变化
第5章 钢筋混凝土受弯构件斜截面承载力计算
D
C
B
A Vc D c
应力状态变化分析:
VA
Va T B Vd s C a MB
混凝土结构设计受弯构件的斜截面受剪承载力计算
◆(1.5≤ ≤3)
■ ■
剪跨比较小,有一定拱作用
斜裂缝出现后,部分荷载通过 拱作用传递到支座,承载力没 有很快丧失,荷载可继续增加, 并出现其它斜裂缝。 ■最后形成一条临界裂缝,裂缝逐渐向 集中荷载作用点处延伸,致使剪压区 高度不断减小,在剪压区由于混凝土 受剪力和压力的共同作用,达到混凝 土的复合受力下的强度,混凝土被压 碎发生破坏。
箍筋
弯起钢筋
腹筋
5.1概述
抗剪钢筋
第五章 钢筋混凝土受弯构件斜截面承载力计算
弯起钢筋则可利用正截面受弯的纵向钢筋直接弯起而成。弯起 钢筋的方向可与主拉应力方向一致,能较好地起到提高斜截面 承载力的作用,但因其传力较为集中,有可能引起弯起处混凝 土的劈裂裂缝。而且试验研究表明,箍筋对抑制斜裂缝开展的 效果比弯起钢筋好。所以首先选用竖直箍筋,然后再考虑采用 弯起钢筋。选用的弯筋位置不宜在梁侧边缘,且直径不宜过粗。
5.1 概述
受弯构件在荷载作用下,同时 产生弯矩和剪力。
A B C D
BC段仅有弯矩作用,称为纯弯 区段;
支座附近的AB、CD区段内有弯 矩与剪力的共同作用,称为剪 跨。 在弯矩区段,抗弯承载力不足 时,产生正截面受弯破坏,
而在剪力较大的区段(剪跨), 则会产生斜截面破坏。
5.1.1 受弯构件斜截面受力与破坏分析
5.1.2 斜截面的主要破坏形态
对集中荷载作用下的简支梁
h0
a
M a Vh0 h0
计算剪跨比
(狭义剪跨比)
我们把在集中力到支座之间的距离a称之为剪跨, 剪跨a与梁的有效高度h0的比值则称为计算剪跨比。
5.1.2 斜截面的主要破坏形态
1、无腹筋梁
◆(<1.5)或腹板较窄的T形梁或I形梁
钢筋混凝土受弯构件斜截面承载力计算汇总
第五章钢筋混凝土受弯构件斜截面承载力计算本章学习要点:1、掌握无腹筋梁和有腹筋梁斜截面受剪承载力的计算公式和适用条件,防止斜压破坏和斜拉破坏的措施;2、掌握纵向受力钢筋伸入支座的锚固要求和箍筋的构造要求;3、了解斜截面破坏的主要形态,影响斜截面抗剪承载力的主要因素;4、了解受弯承载力图的作法,弯起钢筋的弯起位置和纵向受力钢筋的截断位置;§5-1 概述5.1.1受弯构件斜截面受力与破坏分析1、斜截面开裂前的受力分析图5-1所示矩形截面简支梁,在跨中正截面抗弯承载力有保证的情况下,有可能在剪力和弯矩的联合作用下,在支座附近区段发生沿斜截面破坏。
图5-1 对称加载简支梁梁在荷载作用下的主应力迹线图5-2。
图中实线为主拉应力迹线,虚线为主压应力迹线。
图5-2 梁的主应力迹线和单元体应力图位于中和轴处的微元体1,其正应力为零,切应力最大,主拉应力和主压应力与梁轴线成45°角。
位于受压区的微元体2,主拉应力减小,主压应力增大,主拉应力与梁轴线夹角大45°。
位于受拉区的微元体3,主拉应力增大,主压应力减小,主拉应力与梁轴线夹角小于45°。
当主拉应力或主压应力达到材料的抗拉或抗压强度时,将引起构件截面的开裂和破坏。
2、无腹筋梁的受力及破坏分析腹筋是箍筋和弯起钢筋的总称。
无腹筋梁是指不配箍筋和弯起钢筋的梁。
实验表明,当荷载较小,裂缝未出现时,可将钢筋混凝土梁视为均质弹性材料的梁,其受力特点可用材料力学的方法分析。
随着荷载的增加,梁在支座附近出现斜裂缝。
取CB为隔离体。
图5-3 隔离体受力与剪力V平衡的力有:AB面上的混凝土切应力合力Vc;由于开裂面BC两侧凹凸不平产生的骨料咬合力Va的竖向分力;穿过斜裂缝的纵向钢筋在斜裂缝相交处的销栓力Vd。
与弯矩M平衡的力矩主要由纵向钢筋拉力T和AB面上混凝土压应力合力DC组成的内力矩。
由于斜裂缝的出现,梁在剪弯段内的应力状态将发生变化,主要表现在:(1)开裂前的剪力是全截面承担的,开裂后则主要由剪压区承担,混凝土的切应力大大增加,应力的分布规律不同于斜裂缝出现前的情景。
钢筋混凝土受弯构件斜截面承载力计算
关于第五章钢筋混凝土受弯构件斜截面承载力计算的学习报告前言:斜截面受力与破坏机理:主要是支座附近的剪跨区段发生沿斜截面破坏。
斜截面产生原因:当主拉应力值超过混凝土抗拉强度时,将首先在达到该强度的部位产生裂缝其裂缝走向与主拉应力的方向垂直,故是斜裂缝。
腹筋是箍筋和弯起钢筋的总称。
无腹筋梁是指不配箍筋和弯起钢筋的梁。
本章学习思路分析:要研究抵抗钢筋混凝土的斜截面破坏,首先要从无腹筋梁受力及破坏分析入手,然后再从有腹筋梁的受力及破坏分析研究如何抵抗钢筋混凝土的斜截面破坏,从而总结出一般受弯构件斜截面设计方法。
当然,斜截面的抗剪弯设计是建立在正截面抗弯能力的基础之上的,这由前面第4章内容可以计算得到,另外,斜截面的抗剪弯能力必须同时得到保证,计算顺序是先计算斜截面的抗剪能力,再计算斜截面的受弯承载力。
破坏情况大致如下:关于无腹筋梁斜裂缝出现后剪弯段内的应力变化:①开裂前的剪力是全截面承担的,开裂后则主要是由剪压区承担,混凝土剪应力大大增加(随着荷载的增大,斜裂缝宽度增加,骨料咬合力也迅速减小),应力的分布规律不同于斜裂缝出现前的情形。
②混凝土剪压区面积因斜裂缝的出现和发展而减小,剪压区内的混凝土压应力将大大增加。
③与斜裂缝相交处的纵向钢筋应力,由于斜裂缝的出现而突然增大。
因为该处的纵向钢筋拉力T在斜裂缝出现前是由截面C处弯矩Mc决定的(图见书P107),而在斜裂缝出现后,根据力矩平衡的概念,纵向钢筋的拉力T则是由斜裂缝端点处截面AB的弯矩Mb所决定,Mb比Mc要大很多。
④纵向钢筋拉应力的增大导致钢筋与混凝土间粘结应力的增大,有可能出现沿纵向钢筋的粘结裂缝。
关于有腹筋梁的受力及破坏分析得出的相关结论:配置箍筋可以有效提高梁的斜截面受剪承载力。
箍筋最有效的布置方式是与梁腹中的主拉应力方向保持一致,但为了施工方便,一般和梁轴线成90度布置。
斜裂缝出现前,箍筋的应力很小,主要由混凝土传递剪力;斜裂缝出现后,与斜裂缝后相交的箍筋应力增大。
钢筋混凝土基本构件ch5-4MOOC-受弯构件斜截面承载力分析与计算--设计计算(工程案例)(贾.4
钢筋混凝土基本构件---受弯构件斜截面承载力分析与计算中国矿业大学贾福萍E-mail: jfp_ljx@受弯构件斜截面承载力分析与计算1 工程概述2 试验研究3 受弯构件斜截面承载力分析4 受弯构件斜截面承载力设计计算(案例分析)5 构造要求u cs V VV ≤=u cs sbV V V V ≤=+仅配置箍筋兼配弯起筋无腹筋梁或板u cV V V ≤=受弯构件斜截面承载力设计计算(案例分析)•均布荷载下一般受弯构件(仅配置箍筋)•无腹筋梁或板•集中荷载作用下独立简支梁(仅配置箍筋)•兼配弯起筋1020()svu t yv sb A V f bh f h V s αα=+⋅+受弯构件斜截面承载力设计计算(案例分析)受弯构件斜截面承载力设计计算(案例分析)计算截面位置?受弯构件斜截面承载力设计计算(案例分析)1)计算截面位置•在计算斜截面承载力时,其剪力设计值的计算截面应按以下规定采用:(1)支座边缘处斜截面(2)弯起钢筋弯起点处的斜截面(3)箍筋数量和间距改变处的斜截面(4)腹板宽度改变处的斜截面上述截面都是斜截面承载力比较薄弱的地方,故应进行计算,并应取这些斜截面范围内的最大剪力,即斜截面起始端的剪力作为剪力设计值。
受弯构件斜截面承载力设计计算(案例分析)箍筋间距、箍筋直径有何限定?2)箍筋限定条件-----间距•在满足最小配箍率的要求后,如箍筋选得较粗而配置较稀,则可能因箍筋间距过大在两根箍筋之间出现不与箍筋相交的斜裂缝,使箍筋无法发挥作用.梁高h (mm )150200200300250350300400300150≤<h 500300≤<h 800500≤<h 800>h 07.0bh f V t ≤07.0bh f V t >《规范》规定:梁中箍筋的间距需满足max s s ≤受弯构件斜截面承载力设计计算(案例分析)梁高箍筋最小直径(mm )当梁中配有计算需要的纵向受压钢筋时箍筋的直径尚不小于纵向受压钢筋的最大直径的2.5倍)h mm h 800>mm8≥mm 6≥为了使钢筋骨架具有一定的刚性,便于制作安装,箍筋的直径不应太小。
第四章钢筋混凝土受弯构件斜截面承载力计算
第四章 钢筋混凝土受弯构件斜截面承载力计算一、填空题:1、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生 超过了混凝土的极限抗拉强度而开裂的。
2、斜裂缝破坏的主要形态有:、、,其中属于材料充分利用的是。
3、梁的斜截面承载力随着剪跨比的增大而。
4、梁的斜截面破坏形态主要有三种,其中,以破坏的受力特征为依据建立斜截面承载力的计算公式。
5、随着混凝土强度的提高,其斜截面承载力。
6、随着纵向配筋率的提高,其斜截面承载力。
7、对于情况下作用的简支梁,可以不考虑剪跨比的影响。
对于情况的简支梁,应考虑剪跨比的影响。
8、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为。
9、对梁的斜截面承载力有有利影响,在斜截面承载力公式中没有考虑。
10、设置弯起筋的目的是、。
11、为了防止发生斜压破坏,梁上作用的剪力应满足 ;为了防止发生斜拉破坏,梁配置的箍筋应满足。
12、梁设置鸭筋的目的是,它不能承担弯矩。
二、判断题:1、某简支梁上作用集中荷载或作用均布荷载时,该梁的抗剪承载力数值是一样的。
( )2、剪压破坏时,与斜裂缝相交的腹筋先屈服,随后剪压区的混凝土压碎,材料得到充分利用,属于塑性破坏。
( )3、梁设置箍筋的主要作用是保证形成良好的钢筋骨架,保证钢筋的正确位置。
( )4、当梁承受的剪力较大时,优先采用仅配置箍筋的方案,主要的原因是设置弯起筋抗剪不经济。
( )5、当梁上作用有均布荷载和集中荷载时,应考虑剪跨比λ的影响,取0Vh M=λ( )6、当剪跨比大于3时或箍筋间距过大时,会发生剪压破坏,其承载力明显大于斜裂缝出现时的承载力。
( )7、当梁支座处允许弯起的受力纵筋不满足斜截面抗剪承载力的要求时,应加大纵筋配筋率。
( )8、当梁支座处设置弯起筋充当支座负筋时,当不满足斜截面抗弯承载力要求时,应加密箍筋。
( )9、梁设置多排弯起筋抗剪时,应使前排弯起筋在受压区的弯起点距后排弯起筋受压区的弯起点之距满足:max s s ≤( )10、由于梁上的最大剪力值发生在支座边缘处,则各排弯起筋的用量应按支座边缘处的剪力值计算。
斜截面承载力的计算
钢筋情况: 箍筋达到屈服强度
破坏性质:脆性不如斜拉 和斜压明显
防止剪压破坏: 通过斜截面承载力计算,配
置适量腹筋。
剪压破坏形态是建立斜截面受 剪承载力计算公式的依据
第三章 钢筋混凝土受弯构件
(3)斜拉破坏
破坏前提:λ>3,ρsv较小
破坏特征:
斜裂缝一旦出现,箍筋应力立即达到屈服强度,这条斜裂缝将迅速 伸展到梁的受压边缘,使构件很快裂为两部分而破坏。这种破坏没有预 兆,破坏前梁的变形很小,具有明显的脆性,与正截面少筋梁的破坏相 似。
第三章 钢筋混凝土受弯构件
斜截面受剪承载力的计算位置 (1)支座边缘处的斜截面,如截面1-1 (2)钢筋弯起点处的斜截面,截面2-2 、3-3 (3)受拉区箍筋截面面积或间距改变处的斜截面,截面4-4
斜截面计算位置:
第三章 钢筋混凝土受弯构件
2、复核截面尺寸 一般梁的截面尺寸应满足最小截面尺寸的限制要求,
(4)箍筋计算
Asv s
V 0.7 ftbh0 f yvh0
150000 101123 270 455
0.398 mm 2 mm
选用双肢箍筋Φ8(n=2,Asv1=50.3mm2),则箍筋间距为
S Asv nAsv1 2 50.3 252mm 0.398 0.398 0.398
取S 250mm,沿梁全长等距布置
s
f yv h0
求出Asv/S的值后,根据构造要求选定肢数n和直径d,求 出间距s,或者根据构造要求选定n、s,然后求出d。
5、验算配箍率
第三章 钢筋混凝土受弯构件
【例3-4】 矩形截面简支梁截面尺寸200×500mm,计算跨度 L0=4.24m(净跨Ln=4m),承受均布荷载设计值(包括自重) q=100KN/m,混凝土为C20级(fc=9.6N/mm2),箍筋采用HPB300 级钢筋(fyv=270N/mm2),求箍筋数量(已知纵筋配置一排, 环境类别为一类,as=40mm)。
受弯构件斜截面抗剪承载力计算公式、适用条件
0Vd 0.51103 fcu,k bh0 (kN )
Vd——验算截面处由荷载产生的剪力组合设计值 b ——剪力组合设计值处的截面宽度
2 适用条件
(2)最小配箍率要求:下限
HPB300钢筋时 ( ) sv min 0.18% HRB335钢筋时 ( ) sv min 0.12%
1 计算公式
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
+(0.75103)fsd Asb sins
1
异号弯矩影响系数,计算简支梁和连续梁近边支点梁段 的抗剪承载力时,取为1.0;计算连续梁和悬臂梁近中间
支点梁段的抗剪承载力时,取为0.9;
2 预应力提高系数,对普通钢筋混凝土受弯构件,取为1.0;
集中荷载作用点附近,箍筋间距≤100mm; 4 有受压纵筋时为封闭箍筋;
箍筋可用双肢箍、4肢箍(剪力大、一排纵筋多于5 根、梁宽较大时用), 5 近梁端第一道箍筋在距端面一个C。
THE END
适用于矩形、T形、工形、箱形截面的等高度钢筋混凝 土简支梁及连续梁(包括悬臂梁)的斜截面抗剪承载 力计算(注:没考虑剪跨比、荷载类型)
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
+(0.75103)fsd Asb sins
如不配弯起筋或斜筋:
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
3 受压翼缘的影响系数,对具有受压翼缘的T形、工形截面, 取为1.1。
1 计算公式
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
第四章 钢筋混凝土受弯构件斜截面承载力计算
配箍率sv
Asv nAsv1 sv bs bs
A Asv——设置在同一截面内的箍筋截面面积; sv nAsv1 Asv1——单肢箍筋截面面积; n——箍筋肢数; s——箍筋沿梁轴向的间距; b——梁宽。
1、仅配箍筋时梁的受剪承载力计算公式:
(1)规范对承受一般荷载的矩形、T形和工形截面的受 弯构件(包括连续梁和约束梁)给出计算公式:
规范对集中荷载作用下(包括作用有多种荷载,且 集中荷载对支座截面或节点边缘所产生的剪力值占 总剪力值的75%以上的情况)的矩形截面独立梁(包 括连续梁和约束梁)给出了计算的公式:
Asv 0.2 Vcs f c bh0 1.25 f yv h0 1.5 s
——计算剪跨比, a / h0 a——集中荷载作用点至支座截面或节点边缘的距离。
<1.4时,取
=1.4;当 >3时,取 =3。
T形和工形截面梁按式(4-4)计算 。
1、仅配箍筋时梁的受剪承载力计算公式:
V
1
d
Vcs 所配的箍筋不能满足抗剪要求。
解决办法:
箍筋加密或加粗; 增大构件截面尺寸; 提高砼强度等级。 纵筋弯起成为斜筋或加焊斜筋;
纵筋可能弯起时,用弯起的纵筋抗剪可收到 较好的经济效果。
Vcs 0.07 f c bh0 1.25 f yv
Asv h0 s
fc—— 砼轴心抗压强度设计值; b —— 矩形截面的宽度 或T形、工形截面的腹板宽 度; h0 ——截面有效高度; fyv——箍筋抗拉强度设计值, 不大于310N/mm2。
试验表明,承受集中荷载为主的矩形截面梁,按式 (4-7) 计算不够安全。
(0.3 f c bh0 ) (0.2 f c bh0 )
钢筋混凝土及预应力混凝土受弯构件斜截面抗剪承载力计算
式中,0.75为考虑竖向预应力钢筋应力不均匀分布影响 系数; 为与斜裂缝相交的竖向预应力钢筋的截面面积 2 ( mm ); 为竖向预应力钢筋的抗拉强度设计值 (MPa)。
五、变高度梁斜截面抗剪承载力计算 在桥梁工程中,经常遇到变高度的钢筋混凝土梁,例如, 连续梁、悬臂梁及刚架横梁等。目前国内外关于变高度梁斜 载面抗剪承载力研究较少,特别是有说服力的试验研究资料 不多。以往遇到这类问题,只能参照交通部1975年颁布的 《公路桥涵设计规范》,用以弹性理论分析为基础的允许应 力法计算。 新《桥JTG D62》,借助于变高度梁的弹性分析方法, 考虑了弯矩引起的附加剪力的作用,将过去针对等高度梁导 出的斜截面承载力计算公式,推广应用于变高度梁。 将前面介绍的等高度梁斜面抗剪承载力计算公式(5-1) 中,不等号左侧的最大剪力组合设计值 改为最大换算剪 力组合设计值 ,公式不等号右侧各项不变,即可用于变 高度钢筋混凝土梁斜截面抗剪承载能力计算。
(kN) 应由第二排弯起钢筋承担的合成剪力设计值为(Vcd.1— V‘cs.2)(式中Vcd.1—为第二个斜截面顶端受压处对应的合成剪 力设计值)。第二排弯起钢筋的截面面积由公式(5-3)求得。 (mm2) 根据设计需要,依次计算以后各段的箍筋和弯起钢筋数 量。
二、抗剪强度上、下限值的规定,与老桥规《JTJ023》 的水平大体相当,并考虑了预加力对抗剪强度下限值的有利 影响。 计算截面的剪力组合设计值应满足下式要求: (5-5) 若不满足上式要求, 时,则需加大 截面尺寸或提高混凝土强度等级; 时,可 不进行斜截面抗剪承载力计算,按构造要求配置箍筋。 应特别指出,新《桥规JTG D62》明确指出了斜截面抗 剪承载力计算及抗剪强度上、下限复核时,梁的有效高度 为纵向受拉钢筋截面重心至截面受压边缘的距离,即在计算 时不应考虑弯起钢筋的影响。 笔者认为这里的 是反映梁高对抗剪承载力的影响。对 于在支点处所有预应力筋均弯起的情况,验算支点的附近斜 截面抗剪承载力和复核抗剪强度上、下限值时, 可从跨中 截面钢筋重心或底排纵向普通钢筋重心算起。
钢筋混凝土受弯构件斜截面抗剪承载力计算
剪跨比 大,荷载主 要依靠拉应力传递到支座
◆
剪跨比 小,荷载主 要依靠压应力传递到支座
◆
Vc ft bh0
剪跨比 (a) 集中荷载
Vc f t bh0
0.7
ô ¼ ¿ ç ± È =L0/(4h) (b) ¾ ù ² ¼ º É Ô Ø
三.混凝土强度等级 剪切破坏是由于剪压区应力达到复合应力(剪压)状态下 强度而发生的,故混凝土强度对受剪承载力有很大影响。
◇斜拉破坏为受拉脆性破坏, 脆性性质最显著;
◇斜压破坏为受压脆性破坏; ◇剪压破坏界于受拉和受压脆 性破坏之间。
f
ô Ñ ¼ ¹ Æ » µ ± Ð À Æ » µ
不同破坏形态的原因主要是由 于传力路径的变化引起应力状 态的不同而产生的。
4.2.2 有腹筋梁的受力破坏特征 一. 梁内箍筋的作用
◆ 斜裂缝出现后,拉应力由箍筋承担,增强了梁的剪力传递能力;
注意:
a λ:取计算剪跨比, , h0
1.5 3.0
a 为计算截面到支座截面或节点边缘的距离
a 取值示意
截面宽度b取值
b
b
b
2.2 配有箍筋和弯起钢筋的梁
Vu=Vcs+Vsb
弯筋的抗剪承载力: Vsb = 0.8 fy · Asb · sin 0.8 ––– 应力不均匀系数
h > 800mm时取60
Vc
Vu
Vsv Vsb
受剪承载力的组成
––– 弯筋与梁纵轴的夹角,一般取45,
As b——配置在同一弯起平面内的弯起钢筋的截面面积
1φ20
2φ20
弯终点
s
s
1φ20 h0 弯起点 as 弯起筋
钢筋混凝土受弯构件斜截面承载力计算公式
钢筋混凝土受弯构件斜截面承载力计算公式好的,以下是为您生成的文章:在建筑领域中,钢筋混凝土受弯构件斜截面承载力计算公式那可是相当重要的!就像我们日常生活中的各种规则一样,这个公式就是保障建筑结构安全稳定的“铁律”。
咱先来说说什么是钢筋混凝土受弯构件斜截面。
想象一下,一根长长的大梁,承受着各种力量的作用。
当它弯曲的时候,侧面就会受到斜向的拉力和压力,这个侧面的部分就是斜截面啦。
那为啥要研究它的承载力计算公式呢?这就好比你要知道自己能背多重的书包才不会累垮一样,建筑结构也得清楚自己能承受多大的力才不会出问题呀!这个计算公式里面涉及到好多因素呢,比如混凝土的强度、箍筋的配置、截面的尺寸等等。
可别小看这些因素,它们每一个都像是一场游戏里的关键角色,缺了谁都玩不转。
我记得有一次去一个建筑工地考察,看到工人们正在浇筑大梁。
我就凑过去和一位老师傅聊天,问他知不知道这个斜截面承载力的事儿。
老师傅一脸认真地说:“这可含糊不得!要是算错了,房子出了问题,那可就是大事儿!”他指着那些钢筋和模板,详细地给我解释着每个部分的作用。
混凝土的强度就像是人的身体素质,越强健就能承受更大的压力;箍筋呢,就像是给大梁穿上了一层“防护服”,让它更有抵抗力;截面的尺寸大小也有讲究,太大了浪费材料,太小了又扛不住。
在实际运用这个公式的时候,可不能马虎。
得精确测量各种数据,一点点的误差都可能导致结果的偏差。
比如说,测量混凝土的强度,如果测不准,那计算出来的承载力就可能不靠谱。
而且,这个公式还在不断地完善和改进呢。
随着建筑技术的发展,新的材料、新的工艺不断出现,公式也得跟着“与时俱进”。
总的来说,钢筋混凝土受弯构件斜截面承载力计算公式虽然看起来复杂,但它可是建筑安全的重要保障。
我们得认真对待,严格按照公式计算,才能让我们的建筑稳稳当当,为大家遮风挡雨!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆ 斜裂缝间齿状体混凝土有如斜压腹杆(compression diagonals) ◆ 箍筋的作用有如竖向拉杆 ◆ 临界斜裂缝上部及受压区混凝土相当于受压弦杆(compression
破坏特点
中和轴附近出现斜裂缝,然后向支座和荷载作用点 延伸,破坏时在支座与荷载作用点之间形成多条斜 裂缝,斜裂缝间混凝土突然压碎,腹筋不屈服。
上一章 下一章 帮助
混凝土结构设计原理 2. 剪压破坏
3. 斜拉破坏
第5章
产生条件 1≤λ≤3且腹筋量适中。
破坏特点
主页
受拉区边缘先开裂,然后向 受压区延伸。破坏时,与临 界斜裂缝相交的腹筋屈服, 受压区混凝土随后被压碎。
斜截面破坏: 斜截面受剪破坏——通过抗剪计算来满足受剪承载力要求; 斜截面受弯破坏——通过满足构造要求来保证受弯承载力
要求。
在设计受弯构件时,应避免使其产生斜截面受 剪破坏。因此,设计中采用“强剪弱弯”的概念
第五章 受弯构件斜截面受剪承载力
需要说明的是:
以上无腹筋梁受剪承载力计算公式仅有理论上的意义。
帮助
7. 截面尺寸及尺寸效应
梁截面尺寸增大,抗剪承载力提高,但对于无 腹筋梁,高度很大时,撕裂裂缝较明显,销栓作用 大大降低,斜裂缝宽度也较大,骨料咬合作用削弱。 受剪承载力降低。对于高度较大的梁,配置梁腹纵 筋,可控制斜裂缝的开展。配置腹筋后,尺寸效应 的影响减小。
➢8:预应力; ➢9:梁的连续性;
配箍率
sv
Asv bs
sv——配箍率; Asv——同一截面箍筋的截面积,Asv=nAsv1 b——梁的截面宽度,s——箍筋间距, Asv——单肢箍筋截面积,n——箍筋肢数
实际无腹筋梁不允许采用
《规范》中仅给出不配置箍筋和弯起钢筋的一般单向板类构
件的受剪承载力计算公式
Vc=0.7bh ftbh0
bh
800 h0
1/
4
bh 截面高度影响系数
当h0小于800mm时取h0=800mm 当h0≥2000mm时取h0=2000mm
第五章 受弯构件斜截面受剪承载力
5.3 有腹筋梁的受剪性能
箍筋
弯起筋 b
纵筋
腹筋的数量增多时,斜截面的承载能力增大。
主页 目录 上一章 下一章 帮助
混凝土结构设计原理
第5章
6.截面形状
T形截面有受压翼缘,增加了剪压区的面 积,对斜拉破坏和剪压破坏的受剪承载力有提 高(20%);但对斜压破坏的受剪承载力并没 有提高,因为斜压破坏主要发生在腹板中。
主页 目录 上一章 下一章
混凝土结构设计原理
第5章 钢筋混凝土受弯构件 斜截面承载力
研制单位:湖南大学
高等教育出版社 高等教育电子音像出版社
混凝土结构设计原理
第5章
本章重点
➢ 了解斜截面破坏的主要形态及影响因素; ➢ 掌握受弯构件斜截面承载力的计算方法及 防止斜压和斜拉破坏的措施;
➢ 了解材料抵抗弯矩图的画法; ➢ 掌握深受弯构件斜截面承载力计算方法
第5章
5.1.2 影响斜截面承载力的主要因素
1. 剪跨比
定义:
当为右图所示的 对称荷载时:
M
Vh0
…5-3
aP
Pa
l
P
P
主页 目录 上一章 下一章 帮助
1. 剪跨比的对斜截面破坏的影响
混凝土结构设计原理
第5章
2.腹筋(箍筋和弯起钢筋)配筋率
(a)
(b) 弯终点 s s
A sv
弯起点
架立筋
as h0
chord) ◆ 纵筋相当于下弦拉杆(tension chord)
第五章 受弯构件斜截面受剪承载力
5.3 有腹筋梁的受剪性能
◆ 箍筋将齿状体混凝土传来的荷载悬吊到受压弦杆,增加了混 凝土传递受压的作用
◆ 斜裂缝间的骨料咬合作用,还将一部分荷载传递到支座(拱 作用arch mechanism)
第五章 受弯构件斜截面受剪承载力
产生条件
λ>3且腹筋量少。 破坏特点
受拉边缘一旦出现斜裂缝便 急速发展,构件很快破坏。
目录 上一章 下一章 帮助
混凝土结构设计原理
第5章
小结 •斜拉:抗剪承载力取决于混凝土的抗拉强度
• 剪压:抗剪承载力主要取决于混凝土在复 合应力下的抗压强度
•卸压:抗剪承载力取决于混凝土的抗压强度
sv
斜压
主页 目录 上一章
混凝土结构设计原理
第7章
5.1.3 斜截面的主要破坏型态
aa a F F F F
剪跨比:
M Pa Pa a
Vh0 Vh0 Ph0 h0
a FF
斜拉破坏
aF
F
剪压破坏
aF
F
斜压破坏
主页 目录 上一章 下一章 帮助
混凝土结构设计原理 1. 斜压破坏
第5章
主页
目录
产生条件 λ <1或腹筋多、腹板薄。
及构造要求。
主页 目录 上一章 下一章 帮助
混凝土结构设计原理
第5章
§5.1 概 述 5.1.1 斜截面破坏机理
主页 目录 上一章 下一章 帮助
腹筋
箍筋 弯起钢筋
若箍筋布置与梁内主拉应力方向一致,可有效地 限制斜裂缝的开;
但从施工考虑,倾斜的箍筋不便绑扎,与纵筋难 以形成牢固的钢筋骨架
故一般都采用竖直箍筋。
sv,max
剪压
下一章
sv,min
斜拉
帮助
0
1
3
斜截面破坏形态分区示意图
混凝土结构设计原理
第5章
5.1.4 防止斜截面破坏的承载力条件
斜截面上有剪力,也有弯矩。为了防止斜截面 破坏,要求:
V
≤
V u
…5-5
M ≤ Mu
…5-6
主页 目录 上一章 下一章 帮助
在受弯构件的剪弯区段,在M、V作用下,有可能发生斜 截面破坏。
弯起钢筋
弯起钢筋可利用正截面受弯的纵向钢筋直接弯起而 成。弯起钢筋的方向可与主拉应力方向一致,能较好地 起到提高斜截面承载力的作用,但因其传力较为集中, 有可能引起弯起处混凝土的劈裂裂缝。 在设计中,首先选用竖直箍筋,然后再考虑采用弯起钢 筋。选用的弯筋位置不宜在梁侧边缘,且直径不宜过粗。
混凝土结构设计原理
一、箍筋的作用
◆ 斜裂缝出现后,拉应力由箍筋承担,增强了梁的剪力传递能 力;
◆ 箍筋控制了斜裂缝的开展,增加了剪压区的面积,使Vc增加, 骨料咬合力Va也增加;
◆吊住纵筋,延缓了撕裂裂缝的开展,增强了纵筋销栓作用Vd;
◆箍筋参与斜截面的受弯,使斜裂缝出现后纵筋应力ss 的增量
减小;
◆ 配置箍筋对斜裂缝开裂荷载没有影响,也不能提高斜压破坏 的承载力,即对小剪跨比情况,箍筋的上述作用很小;对大 剪跨比情况,箍筋配置如果超过某一限值,则产生斜压杆压 坏,继续增加箍筋没有作用。