受弯构件斜截面受剪承载力计算

合集下载

斜截面受剪承载力的计算

斜截面受剪承载力的计算
A SV bs
≥ ρsv ,min
ρsv ,min = 0.24
ft f yv
1
例 4-1.有一钢筋混凝土矩形截面简支梁,截面尺寸及纵筋数量见图。该梁承受均布荷载设 计值 70kN/m(包括自重) ,混凝土强度等级为 C30(������������ = 1.43 ������/������������2 、������������ = 1.43 ������/������������2 ) ,
������ 1.43 270
������������
= 250×200 =0.2%> ������������������ ,������������������ = 0.24 ������ ������ = 0.24 ×
2×50.3
= 0.127%,可以。
2
ቤተ መጻሕፍቲ ባይዱ
ℎ ������ ������ 1 1
= 250 = 2.24 < 4
560
属厚腹板
混凝土强度等级为 C30,不超过 C50,故取βc = 1, 则 0.25������������ ������ ������ ������ℎ0 = 0.25 × 1 × 14.3 × 250 × 560 = 500.5 ������������ > ������ = 124.6������������ ,截面符合要 求。 ③ 验算是否需要按计算配置箍筋 0.7������������ ������ℎ0 = 0.7 × 1.43 × 250 × 560 = 140.14 ������������ < ������ = 201.6������������,故选计算配置箍筋。 ④配箍筋 令V = VU ,有 ������������������������1 ������ − 0.7������������ ������ℎ0 201.6 × 103 − 0.7 × 14.3 × 250 × 560 = = = 0.406 ������������2 ������������ ������ ������ ℎ 270 × 560 ������������ 0 采用双肢箍筋Φ 8@200,实有 箍筋配筋率������������������ =

受弯构件斜截面承载力计算—受弯构件斜截面抗剪承载力计算

受弯构件斜截面承载力计算—受弯构件斜截面抗剪承载力计算

— 分配系数
p、h0近似取支座 和跨中截面的平 均值。
对于箍筋直径和间构造要求见构造要求
3 验算截面
验算截面
1.距支座中心h/2(梁高一半)处的截面1-1 2.纵筋弯起点处截面2-2 3.箍筋面积或间距改变处截面3-3 4.腹板宽度改变处截面
总结
1 设计内容 2 设计步骤 3 验算截面
3.剪力包络图。
s
设计:箍筋、弯起钢筋
计算剪力包络图(沿
梁长各截面上剪力组合 设计Vd的分布图,其纵 坐标表示该截面上作用 的最大设计剪力)
2
设计步骤
1)验算截面尺寸是否满足要求
0Vd 0.51 103 fcu,k bh0
当设计剪力不满足上式,应增大截面尺寸
2)验算是否需要按计算配筋
0Vd 0.50 1032 ftdbh0
梁斜截面抗剪承载力公式
C目 录 ONTENTS
梁斜截面抗剪 承载力公式
1 基本公式
2 公式的适用条件
1 基本公式
公式依据:剪压破坏 防止斜压破坏:限制截面最小尺寸 防止斜拉破坏:限制箍筋最小配箍率 公式来源:实验分析
Y 0 0Vd Vc Vsv Vsb Vcs Vsb
Vcs 123 0.45 103bh0 2 0.6 p f f cu,k sv sv
(kN)
V
s
V sb
Ra=V
V sv
Vs
kN
各符号的物理意义详见课本
2 公式的适用条件
(1)上限值—截面的最小尺寸
0Vd 0.51 103 fcu,k bh0
当设计剪力不满足上式,应增大截面尺寸
(2)下限值—按构造要求配置箍筋
0Vd 0.50 1032 ftdbh0

05受弯构件斜截面受剪承载力计算

05受弯构件斜截面受剪承载力计算
(2)计算并画出每根钢筋承担的弯矩Mui,如图 中的①、②、③号钢筋)
Asi M ui M u As
图5-13
2、纵向钢筋的弯起(如图5-23) (1)钢筋理论充分利用点 图中1、2、3点:是③、②、①号钢筋充分利用 点(图5-23); (2)钢筋理论不需要点 图中的2、3、a点是③、②、①号钢筋不需要点 (图5-23); ; (3) 以③号纵向钢筋弯起为例(图5-23) : 将③号钢筋在E、F点弯起,在G、H点穿过中 和轴进入受压区,对正截面抗弯消失。 分别以E、F点作垂线与③号钢筋交于e、f点。以 G、H点作垂线与②号钢筋交于g、h点,Mu图变成 aigefhb,Mu图>M图,此称之包络图或称材料图
若不满足,则按计算配箍筋 ②最小配箍率(按计算配箍筋)
nAsv1 ft sv sv ,min 0.24 bs f yv
(3)按计算配置腹筋(限制剪压破坏)
当不满足上述(1)、(2) 按计算配制箍筋Asv和弯起筋Asb
三、计算截面位置与剪力设计值的取值
1、计算截面位置:斜截面受剪承载力薄弱部位 截面的抗剪能力沿梁长也是变化的。在剪力或抗剪
hw— 截面的腹板高度,矩形截面取有效高度h0, T形截面取有 效高度减去翼缘高度,工形截面取腹板净高;
βc— 混凝土强度影响系数, (见表5-1)
hf h0 h0 h0 hf
hw
(b) hw = h0 – hf
h
hw hf
(a) hw = h0
(c) hw = h0 – hf – hf
图5-13 hw 取值示意图
临界斜裂缝。梁破坏时与斜裂缝相交的腹筋达
到屈服强度,剪压区的混凝土的面积越来越小,
达到混凝土压应力和剪应力的共同作用下的复

受弯构件斜截面受剪承载力计算

受弯构件斜截面受剪承载力计算
矩和剪力共同作用的区段进行斜截面承载力计算。
梁的斜截面承载力包括斜截面受剪承载力和斜截面受弯承载力。在实
际工程中,斜截面受剪承载力通过计算配置腹筋来保证,而斜截面受弯
承载力则通过构造措施来保证。
有腹筋梁斜截面破坏工程试验
1
剪跨比λ的定义
影响梁斜截面破坏形态有很多因素,其中最主要的两项是剪跨
比λ的大小和配置箍筋的多少
对于承受集中荷载的梁:第一个集中荷载作用点到支座边缘之
距a(剪跨跨长)与截面的有效高度ℎ0 之比称为剪跨比λ,即
λ=a/ℎ0 。
广义剪跨比λ=M/Vℎ0 (如果λ表示剪跨比,集中荷载作用下的
梁某一截面的剪跨比等于该截面的弯矩值与截面的剪力值和有效
高度乘积之比)。
有腹筋梁斜截面破坏工程试验
2
箍筋配筋率
箍筋配箍率是指箍筋截面面积与截面宽度和箍筋间距乘积的比值,
计算公式为:
1 =Βιβλιοθήκη =式中 ——配置在同一截面内箍筋各肢的全部截面面积(2 );
=1 ;
n——同一截面内箍筋肢数;
1 ——单支箍筋的截面面积(2 );
b——矩形截面宽度,T形、I字形截面的腹板宽度(mm);
1.75

≤ =
ℎ0 +
ℎ0
+1

式中 V——梁的剪力设计值(N/2 )
剪跨比λ<1.5时,取λ=1.5;当λ>3时,取λ=3.
谢 谢 观 看
s——箍筋间距;
仅配箍筋时梁的斜截面受剪承载力计算基本公式
对于矩形、T型、I字形截面的一般受弯构件:

≤ = 0.7 ℎ0 +
ℎ0

对承受集中荷载作用为主的独立梁或对集中荷载作用下(包括作用

混凝土结构设计受弯构件的斜截面受剪承载力计算

混凝土结构设计受弯构件的斜截面受剪承载力计算

◆(1.5≤ ≤3)
■ ■
剪跨比较小,有一定拱作用
斜裂缝出现后,部分荷载通过 拱作用传递到支座,承载力没 有很快丧失,荷载可继续增加, 并出现其它斜裂缝。 ■最后形成一条临界裂缝,裂缝逐渐向 集中荷载作用点处延伸,致使剪压区 高度不断减小,在剪压区由于混凝土 受剪力和压力的共同作用,达到混凝 土的复合受力下的强度,混凝土被压 碎发生破坏。
箍筋
弯起钢筋
腹筋
5.1概述
抗剪钢筋
第五章 钢筋混凝土受弯构件斜截面承载力计算
弯起钢筋则可利用正截面受弯的纵向钢筋直接弯起而成。弯起 钢筋的方向可与主拉应力方向一致,能较好地起到提高斜截面 承载力的作用,但因其传力较为集中,有可能引起弯起处混凝 土的劈裂裂缝。而且试验研究表明,箍筋对抑制斜裂缝开展的 效果比弯起钢筋好。所以首先选用竖直箍筋,然后再考虑采用 弯起钢筋。选用的弯筋位置不宜在梁侧边缘,且直径不宜过粗。
5.1 概述
受弯构件在荷载作用下,同时 产生弯矩和剪力。
A B C D
BC段仅有弯矩作用,称为纯弯 区段;
支座附近的AB、CD区段内有弯 矩与剪力的共同作用,称为剪 跨。 在弯矩区段,抗弯承载力不足 时,产生正截面受弯破坏,
而在剪力较大的区段(剪跨), 则会产生斜截面破坏。
5.1.1 受弯构件斜截面受力与破坏分析
5.1.2 斜截面的主要破坏形态
对集中荷载作用下的简支梁
h0
a
M a Vh0 h0
计算剪跨比
(狭义剪跨比)
我们把在集中力到支座之间的距离a称之为剪跨, 剪跨a与梁的有效高度h0的比值则称为计算剪跨比。
5.1.2 斜截面的主要破坏形态
1、无腹筋梁
◆(<1.5)或腹板较窄的T形梁或I形梁

受弯构件斜截面受剪承载力计算

受弯构件斜截面受剪承载力计算

受弯构件斜截面受剪承载力计算一、有腹筋梁受剪承载力计算基本公式1.矩形、T形和Ⅰ形截面的一般受弯构件,斜截面受剪承载力计算公式为:VVc0.7ftbh01.25fyvAvh0(5-6)式中ft一混凝土抗拉强度设计值;b一构件的截面宽度,T形和Ⅰ形截面取腹板宽度;h0一截面的有效高度;fyv一箍筋的抗拉强度设计值;Av一配置在同一截面内箍筋各肢的全部截面面积,AvnAv1;n一在同一截面内箍筋的肢数;Av1一单肢箍筋的截面面积;一箍筋的间距。

2.集中荷载作用下的独立梁(包括作用多种荷载,且其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的75%以上的情况),斜截面受剪承载力按下式计算:VVcA1.75ftbh0fyvvh01.0(5-7)式中一剪跨比,可取a/h0,a为计算截面至支座截面或节点边缘的距离,计算截面取集中荷载作用点处的截面。

当小于1.5时,取1.5;当大于3.0时,取3.0。

独立梁是指不与楼板整浇的梁。

构件中箍筋的数量可以用箍筋配箍率v表示:vAvb(5-8)3.当梁内还配置弯起钢筋时,公式(5-4)中Vb0.8fyAbin式中(5-9)fy一纵筋抗拉强度设计值;Ab一同一弯起平面内弯起钢筋的截面面积;一斜截面上弯起钢筋的切线与构件纵向轴线的夹角,一般取45o,当梁较高时,可取60。

剪压破坏时,与斜裂缝相交的箍筋和弯起钢筋的拉应力一般都能达到屈服强度,但是拉应力可能不均匀。

为此,在弯起钢筋中考虑了应力不均匀系数,取为0.8。

另外,虽然纵筋的销栓作用对斜截面受剪承载力有一定的影响,但其在抵抗受剪破坏中所起的作用较小,所以斜截面受剪承载力计算中没有考虑纵筋的作用。

二、混凝土的受剪承载力可以抵抗斜截面的破坏,可不进行斜截面承载力计算,仅需按构造要求配置箍筋的条件oV0.7ftbh0或(5-10)V1.75ftbh01.0(5-11)三、计算公式的适用范围(上限和下限)l.截面限制条件当配箍特征值过大时,箍筋的抗拉强度不能发挥,梁的斜截面破坏将由剪压破坏转为斜压破坏,此时,梁沿斜截面的抗剪能力主要由混凝土的截面尺寸及混凝土的强度等级决定,而与配筋率无关。

受弯构件斜截面承载力计算—受弯构件的斜截面抗剪承载力

受弯构件斜截面承载力计算—受弯构件的斜截面抗剪承载力
《公路钢筋混凝土及预应力钢筋混凝土桥涵设计规范》对配有腹筋的钢筋混凝土 梁斜截面抗剪承载力的计算,采用下述半经验半理论的公式:
0Vd Vu Vcs Vsb
Vcs a1a2a3(0.45 103 )bh0 (2 0.6p) fcu,k svfsv
Vsb (0.75 103 )fsd Asb sin s
当 hw ≤4.0时,属于一般的梁,应满足
b
当 hw ≥6.0时,属于薄腹梁,应满足
b
V 0.25c fcbh0 V 0.2c fcbh0
当4.0< hw<6.0时,应满足
b
V
0.025(14
hw b
)c
fcbh0
箍筋的构造要求
梁截面高度 h
150<h≤300 300<h≤500 500<h≤800
配有箍筋和弯起钢筋梁的斜截面受剪承载力
V
Vu
acv
ftbh0
f yv
Asv s
h0
0.8 fy Asb
sin as
5.公式的适用范围
(1)公式的上限——截面尺寸限制条件
取斜压破坏作为受剪承载力 的 上限。
hw hw
hw
斜压破坏取决于混凝土的抗
压强度和截面尺寸。
b
防止斜压破坏的截面限制条
sv
sv,min
0.24
ft f yv
抗剪承载能力计算基本公式
抗剪承载力的组成
配有箍筋和弯起钢筋的钢筋混凝土梁,当发生剪压破坏时,其抗剪承载
力 的剪抗能剪力能V力u由Vsv斜和裂弯缝起上钢剪筋压的区抗混剪凝能土力的Vsb抗三剪部能分力所Vc组,成与。斜裂缝相交的箍筋
Vu Vc Vsv Vsb
适用条件:多种荷载作用下,其中集中荷载对支座截面或节 点边缘所产生的剪 力值占总剪力值的75%以上时。

第四章 受弯构件斜截面受剪承载力计算

第四章 受弯构件斜截面受剪承载力计算

2主拉应力:tp第4章受弯构件的斜截面承载力教学要求:深刻理解受弯构件斜截面受剪的三种破坏形态及其防止对策。

熟练掌握梁的斜截面受剪承载力计算。

理解梁内纵向钢筋弯起和截断的构造要求。

知道梁内各种钢筋,包括纵向受力钢筋、纵向构造钢筋、架立筋和箍筋等的构造要求。

概述 在保证受弯构件正截面受弯承载力的同时,还要保证斜截面承载力,它包括斜截面受剪承载力和斜 截面受弯承载力两方面。

工程设计中,斜截面受剪承载力是由计算和构造来满足的,斜截面受弯承载力 则是通过对纵向钢筋和箍筋的构造要求来保证的。

图4-1箍筋和弯起钢筋图4-2钢筋弯起处劈裂裂缝工程设计中,应优先选用箍筋,然后再考虑采用弯起钢筋。

由于弯起钢筋承受的拉力比较大,且集 中,有可能引起弯起处混凝土的劈裂裂缝,见图4-2。

因此放置在梁侧边缘的钢筋不宜弯起,梁底层钢筋中的角部钢筋不应弯起,顶层钢筋中的角部钢筋不应弯下。

弯起钢筋的弯起角宜取45°或60°4.2斜裂缝、剪跨比及斜截面受剪破坏形态4.2.1腹剪斜裂缝与弯剪斜裂缝钢筋混凝土梁在剪力和弯矩共同作用的剪弯区段内,将产生斜裂缝。

1 2 3 44.1架立钢筋箍筋 弯起钢筋劈裂裂縫图4-3主应力轨迹线这种由竖向裂缝发展而成的斜裂缝,称为弯 剪斜裂缝,这种裂缝下宽上细,是最常见的,如图 4-4(b)所示。

4.2.2剪跨比在图4-5所示的承受集中荷载的简支梁中,最外侧的集中力到临近支座的距离 a 称为剪跨,剪跨 a与梁截面有效高度 h o 的比值,称为计算截面的剪跨比,简称剪跨比,用入表示,入=a/hoMb=—r主压应力cp主应力的作用方向与构件纵向轴线的夹角 2a 可按下式确定:tg2________ 丿 厂| _亠 ____ 一 ” ”ft图4-4 ⑻腹剪斜裂缝; 斜裂缝(b)弯剪斜裂缝V匸二4———•——二亠久 乂 勺叫 5'矶在剪跨比小的图4-6(a)中,在集中力到支座之间有虚线所示的主压应力迹线, 式传递的。

第四章 受弯构件斜截面承载力计算

第四章 受弯构件斜截面承载力计算

一旦出现斜裂缝,与斜裂缝相交的箍筋应力立即达 到屈服强度,箍筋对斜裂缝发展的约束作用消失,随后
斜裂缝迅速延伸到梁的受压区边缘,构件裂为两部分而
破坏。
(2)、剪压破坏:
1)产生条件 箍筋适量,且剪跨比适中(λ =1~3)。 2)破坏特征
与临界斜裂缝相交的箍筋应力达到屈服强度,最后
剪压区混凝土在正应力和剪应力共同作用下达到极限状 态而压碎,斜截面承载力随sv及fyv的增大而增大。
––– 弯筋与梁纵轴的夹角,一般取45,
h 大于 800mm时取60
1、矩形截面梁受均布荷载作用或以均布荷载为主的 情况,T形、工形截面梁。(一般情况)
Asv V 0.7 f t bh0 1.25 f yvh0 0.8 Asb f ysin s
2、集中荷载作用下的矩形截面独立梁(包括多种荷载 作用,其中集中荷载对支座截面产生的剪力值占总 剪力值的75%以上的情况)。(特殊情况)
一般原则:采用半理论半经验的实用计算公式;仅讨
论剪压破坏的情况;
对于斜压破坏,采用限制截面尺寸的构造措施来
防止;对于斜拉破坏,采用最小配箍率的构造措施
来防止。
以下以剪压破坏为前提进行讨论。
混凝土
第 四 章
(1)斜截面受剪承载力的组成:
V=VC+ VS + Vb 见P48,式4-4
(2)与斜裂缝相交的箍筋和弯起钢筋基本能屈服;
第 四 章
混凝土
在剪弯区段截面的下边缘,主拉应力还是水平向 的。所以,在这些区段仍可能首先出一些较短的垂直 裂缝,然后延伸成斜裂缝,向集中荷载作用点发展, 这种由垂直裂缝引伸而成的斜裂缝的总体,称为弯剪 斜裂缝,这种裂缝上细下宽,是最常见的,如下图所 示。

4受弯构件斜截面承载力计算(精)

4受弯构件斜截面承载力计算(精)

4 受弯构件斜截面承载力计算1 当仅配有箍筋时,对矩形、T 形和I 形截面的一般受弯构件斜截面受剪承载力计算采用下列公式:0025.17.0h s A f bh f V V sv yv t cs +=≤ (4-1)式中 V ——构件斜截面上的最大剪力设计值;V cs ——构件斜截面上混凝土和箍筋的受剪承载力设计值;A sv ——配置在同一截面内箍筋各肢的全部截面面积,A sv =nA sv1;n ——在同一截面内箍筋肢数;A sv1——单肢箍筋的截面面积;s ——沿构件长度方向的箍筋间距;f t ——混凝土轴心抗拉强度设计值;f yv ——箍筋抗拉强度设计值。

b ——矩形截面的宽度或T 形截面和工形截面的腹板宽度。

2 对集中荷载作用下(包括作用有多种荷载,其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的 75%以上的情况)的矩形、T 形和I 形截面的独立梁,斜截面受剪承载力计算按下列公式计算:00175.1h s A f bh f V V sv yv t cs ++=≤λ (4-2)式中λ——计算截面的计算剪跨比,可取λ= a /h 0, a 为集中荷载作用点至支座截面或节点边缘的距离;当λ<l.5时,取入= 1.5;当λ>3时,取λ=3,此时,在集中荷载作用点与支座之间的箍筋应均匀配置。

3 对于配有箍筋和弯起钢筋的矩形、T 形和I 形截面的受弯构件,其受剪承载力按下列公式计算:V ≤sb cs u V V V +==V cs +0.8f y A sb sina s (4-3)式中 V ——在配置弯起钢筋处的剪力设计值;V cs ——构件斜截面上混凝土和箍筋的受剪承载力设计值;f y ——弯起钢筋的抗拉强度设计值;A sb ——同一弯起平面内弯起钢筋的截面面积;αs ——弯起钢筋与构件纵轴线之间的夹角一般情况αs =45o ,梁截面高度较大时,()mm h 800≥取αs =60o 。

受弯构件斜截面抗剪承载力计算公式、适用条件

受弯构件斜截面抗剪承载力计算公式、适用条件
(1)截面(正)最小尺寸要求(防止发生斜压破坏):上 限
0Vd 0.51103 fcu,k bh0 (kN )
Vd——验算截面处由荷载产生的剪力组合设计值 b ——剪力组合设计值处的截面宽度

2 适用条件
(2)最小配箍率要求:下限
HPB300钢筋时 ( ) sv min 0.18% HRB335钢筋时 ( ) sv min 0.12%
1 计算公式
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
+(0.75103)fsd Asb sins
1
异号弯矩影响系数,计算简支梁和连续梁近边支点梁段 的抗剪承载力时,取为1.0;计算连续梁和悬臂梁近中间
支点梁段的抗剪承载力时,取为0.9;
2 预应力提高系数,对普通钢筋混凝土受弯构件,取为1.0;
集中荷载作用点附近,箍筋间距≤100mm; 4 有受压纵筋时为封闭箍筋;
箍筋可用双肢箍、4肢箍(剪力大、一排纵筋多于5 根、梁宽较大时用), 5 近梁端第一道箍筋在距端面一个C。
THE END
适用于矩形、T形、工形、箱形截面的等高度钢筋混凝 土简支梁及连续梁(包括悬臂梁)的斜截面抗剪承载 力计算(注:没考虑剪跨比、荷载类型)
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
+(0.75103)fsd Asb sins
如不配弯起筋或斜筋:
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
3 受压翼缘的影响系数,对具有受压翼缘的T形、工形截面, 取为1.1。
1 计算公式
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv

斜截面承载力 计算

斜截面承载力 计算
V ≤ Vu M ≤ Mu
V、 M——构件斜截面最大剪力与最大弯矩设计值
Vu 、Mu ——构件斜截面受剪承载力与受弯承载力设计值 在实际工程中一般通过配置腹筋来满足抗剪条件
通过构造措施来满足抗弯
图3-25为一配置箍筋及弯起钢筋的简支梁发生斜截 面剪压破坏时,取出的斜裂缝到支座间的一段隔离 体。斜截面的内力如图所示,其斜截面的受剪承载 力由混凝土、箍筋和弯起钢筋三部分组成,即:
按下列公式计算:
Vc
1.75
1.0
ftbh0
a, 当λ<l.5时,取λ = 1.5,当λ>3
h0
时,取λ=3 。α为集中荷载作用点到支座或节点边缘 的距离。
独立梁是指不与楼板整体浇筑的梁。
4.3 有腹筋梁的受剪性能
◆ 梁中配置箍筋,出现斜裂缝 后,梁的剪力传递机构由原 来无腹筋梁的拉杆拱传递机 构转变为桁架与拱的复合传 递机构
当 hw 4 时, b
V 0.25 c fcbh0 c为高强混凝土的强度折减
系数
当 hw 6 时, b
V 0.20 c fcbh0 fcu,k ≤50N/mm2时,c =1.0 fcu,k =80N/mm2时,c =0.8
当 4 < hw < 6 时,按直线内插法取用。 其间线性插值。
b
三、最小配箍率及配箍构造
◆箍筋参与斜截面的受弯,使斜裂缝出现后纵筋应力ss 的增量
减小;
◆ 配置箍筋对斜裂缝开裂荷载没有影响,也不能提高斜压破坏 的承载力,即对小剪跨比情况,箍筋的上述作用很小;对大 剪跨比情况,箍筋配置如果超过某一限值,则产生斜压杆压 坏,继续增加箍筋没有作用。
二、破坏形态
影响有腹筋梁破坏形态的主要因素有剪跨比 和配箍率rsv

钢筋混凝土受弯构件斜截面抗剪承载力计算

钢筋混凝土受弯构件斜截面抗剪承载力计算

剪跨比 大,荷载主 要依靠拉应力传递到支座

剪跨比 小,荷载主 要依靠压应力传递到支座

Vc ft bh0
剪跨比 (a) 集中荷载
Vc f t bh0
0.7
ô ¼ ¿ ç ± È =L0/(4h) (b) ¾ ù ² ¼ º É Ô Ø
三.混凝土强度等级 剪切破坏是由于剪压区应力达到复合应力(剪压)状态下 强度而发生的,故混凝土强度对受剪承载力有很大影响。
◇斜拉破坏为受拉脆性破坏, 脆性性质最显著;
◇斜压破坏为受压脆性破坏; ◇剪压破坏界于受拉和受压脆 性破坏之间。
f
ô Ñ ¼ ¹ Æ » µ ±­ Ð À Æ » µ
不同破坏形态的原因主要是由 于传力路径的变化引起应力状 态的不同而产生的。
4.2.2 有腹筋梁的受力破坏特征 一. 梁内箍筋的作用
◆ 斜裂缝出现后,拉应力由箍筋承担,增强了梁的剪力传递能力;
注意:
a λ:取计算剪跨比, , h0
1.5 3.0
a 为计算截面到支座截面或节点边缘的距离
a 取值示意
截面宽度b取值
b
b
b
2.2 配有箍筋和弯起钢筋的梁
Vu=Vcs+Vsb
弯筋的抗剪承载力: Vsb = 0.8 fy · Asb · sin 0.8 ––– 应力不均匀系数
h > 800mm时取60
Vc
Vu
Vsv Vsb
受剪承载力的组成
––– 弯筋与梁纵轴的夹角,一般取45,
As b——配置在同一弯起平面内的弯起钢筋的截面面积
1φ20
2φ20
弯终点
s
s
1φ20 h0 弯起点 as 弯起筋
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 受弯构件的斜截面承载力教学要求: 1深刻理解受弯构件斜截面受剪的三种破坏形态及其防止对策。

2熟练掌握梁的斜截面受剪承载力计算。

3理解梁内纵向钢筋弯起和截断的构造要求。

4知道梁内各种钢筋,包括纵向受力钢筋、纵向构造钢筋、架立筋和箍筋等的构造要求。

4.1 概述在保证受弯构件正截面受弯承载力的同时,还要保证斜截面承载力,它包括斜截面受剪承载力和斜截面受弯承载力两方面。

工程设计中,斜截面受剪承载力是由计算和构造来满足的,斜截面受弯承载力则是通过对纵向钢筋和箍筋的构造要求来保证的。

图4-1 箍筋和弯起钢筋图4-2 钢筋弯起处劈裂裂缝工程设计中,应优先选用箍筋,然后再考虑采用弯起钢筋。

由于弯起钢筋承受的拉力比较大,且集中,有可能引起弯起处混凝土的劈裂裂缝,见图4-2。

因此放置在梁侧边缘的钢筋不宜弯起,梁底层钢筋中的角部钢筋不应弯起,顶层钢筋中的角部钢筋不应弯下。

弯起钢筋的弯起角宜取45°或60°4.2 斜裂缝、剪跨比及斜截面受剪破坏形态4.2.1 腹剪斜裂缝与弯剪斜裂缝钢筋混凝土梁在剪力和弯矩共同作用的剪弯区段内,将产生斜裂缝。

主拉应力:2242τσσσ++=tp , 主压应力2242τσσσ+-=cp主应力的作用方向与构件纵向轴线的夹角a 可按下式确定:图4-3 主应力轨迹线图4-4 斜裂缝(a)腹剪斜裂缝;(b)弯剪斜裂缝这种由竖向裂缝发展而成的斜裂缝,称为弯剪斜裂缝,这种裂缝下宽上细,是最常见的,如图4-4(b)所示。

4.2.2 剪跨比在图4-5所示的承受集中荷载的简支梁中,最外侧的集中力到临近支座的距离a 称为剪跨,剪跨a 与梁截面有效高度h 0的比值,称为计算截面的剪跨比,简称剪跨比,用λ表示,λ=a/h 0。

对于承受集中荷载的简支梁,λ=M/(Vh 0)=a/h 0,即这时的剪跨比与广义剪跨比相同。

对于承受均布荷载的简支梁,设l 为梁的跨度,βl 为计算截面离支座的距离,则λ可表达为跨高比l /h 0的函数:剪跨比λ反映了截面上正应力σ和剪应力τ的相对比值,在一定程度上也反映了截面上弯矩与剪力的相对比值。

它对无腹筋梁的斜截面受剪破坏形态有着决定性的影响,对斜截面受剪承载力也有着极为重要的影响。

4.2.3 斜截面受剪破坏的三种主要形态1 无腹筋梁的斜截面受剪破坏形态图4-6 主应力迹线分布图在剪跨比小的图4-6(a)中,在集中力到支座之间有虚线所示的主压应力迹线,即力是按斜向短柱的形式传递的。

可见,剪跨比小时,主要是斜向受压而产生斜压破坏。

在剪跨比大的图4-6(c)中,集中力与支座之间没有直接的主压应力迹线,故以弯曲传力为主,产生沿主压应力迹线的斜裂缝,并发展为斜拉破坏。

试验也表明,无腹筋梁的斜截面受剪破坏形态与剪跨比λ有决定性的关系,主要有斜压破坏、剪压破坏和斜拉破坏三种破坏形态。

图4-7斜截面破坏形态(a)斜压破坏;(b)剪压破坏;(c)斜拉破坏(1)斜压破坏(图4-7a)λ<1时,发生斜压破坏。

这种破坏多数发生在剪力大而弯矩小的区段,以及梁腹板很薄的T形截面或I形截面梁内。

破坏时,混凝土被腹剪斜裂缝分割成若干个斜向短柱而压坏,因此受剪承载力取决于混凝土的抗压强度,是斜截面受剪承载力中最大的。

(2)剪压破坏(图4-7b)1≤λ≤3时,常发生剪压破坏。

其破坏特征通常是,在弯剪区段的受拉区边缘先出现一些竖向裂缝,它们沿竖向延伸一小段长度后,就斜向延伸形成一些斜裂缝,而后又产生一条贯穿的较宽的主要斜裂缝,称为临界斜裂缝,临界斜裂缝出现后迅速延伸,使斜截面剪压区的高度缩小,最后导致剪压区的混凝土破坏,使斜截面丧失承载力。

(3)斜拉破坏(图4-7c)λ>3时,常发生斜拉破坏。

其特点是当竖向裂缝一出现,就迅速向受压区斜向伸展,斜截面承载力随之丧失。

破坏荷载与出现斜裂缝时的荷载很接近,破坏过程急骤,破坏前梁变形很小,具有很明显的脆性,其斜截面受剪承载力最小。

图4-8 斜截面破坏的F-f曲线图4-8为三种破坏形态的荷载-挠度(F-f)曲线图。

可见,三种破坏形态的斜截面受剪承载力是不同的,斜压破坏时最大,其次为剪压,斜拉最小。

它们在达到峰值荷载时,跨中挠度都不大,破坏时荷载都会迅速下降,表明它们都属脆性破坏类型,是工程中应尽量避免的。

另外,这三种破坏形态虽然都是属于脆性破坏类型,但脆性程度是不同的。

混凝土的极限拉应变值比极限压应变值小得多,所以斜拉破坏最脆,斜压破坏次之。

为此,规范规定用构造措施,强制性地来防止斜拉、斜压破坏,而对剪压破坏,因其承载力变化幅度相对较大所以是通过计算来防止的。

2 有腹筋梁的斜截面受剪破坏形态配置箍筋的有腹筋梁,它的斜截面受剪破坏形态是以无腹筋梁为基础的,也分为斜压破坏、剪压破坏和斜拉破坏三种破坏形态。

这时,除了剪跨比对斜截面破坏形态有决定性的影响以外,箍筋的配置数量对破坏形态也有很大的影响。

当λ>3,且箍筋配置数量过少时,斜裂缝一旦出现,与斜裂缝相交的箍筋承受不了原来由混凝土所负担的拉力,箍筋立即屈服而不能限制斜裂缝的开展,与无腹筋梁相似,发生斜拉破坏。

如果λ>3,箍筋配置数量适当的话,则可避免斜拉破坏,而转为剪压破坏。

这是因为斜裂缝产生后,与斜裂缝相交的箍筋不会立即受拉屈服,箍筋限制了斜裂缝的开展,避免了斜拉破坏。

箍筋屈服后,斜裂缝迅速向上发展,使斜裂缝上端剩余截面缩小,使剪压区的混凝土在正应力σ和剪应力τ共同作用下产生剪压破坏。

如果箍筋配置数量过多,箍筋应力增长缓慢,在箍筋尚未屈服时,梁腹混凝土就因抗压能力不足而发生斜压破坏。

在薄腹梁中,即使剪跨比较大,也会发生斜压破坏。

所以,对有腹筋梁来说,只要截面尺寸合适,箍筋配置数量适当,使其斜截面受剪破坏成为剪压破坏形态是可能的。

4.3 简支梁斜截面受剪机理4.3.1 带拉杆的梳形拱模型带拉杆的梳形拱模型适用于无腹筋梁。

图4-9 梳状结构图4-10 齿的受力图4-11 拱体的受力4.3.2 拱形桁架模型拱形桁架模型适用于有腹筋梁。

图4-12 拱形桁架模型4.3.3 桁架模型图4-13 桁架模型(a)45°桁架模型;(b)变角桁架模型;(c)变角桁架模型的内力分析4.4 斜截面受剪承载力的计算1 剪跨比随着剪跨比λ的增加,梁的破坏形态按斜压(λ<1)、剪压(1≤λ≤3)和斜拉(λ>3)的顺序演变,其受剪承载力则逐步减弱。

当λ>3时,剪跨比的影响将不明显。

2 混凝土强度斜截面破坏是由混凝土到达极限强度而发生的,故混凝土的强度对梁的受剪承载力影响很大。

3 箍筋的配筋率梁内箍筋的配筋率是指沿梁长,在箍筋的一个间距范围内,箍筋各肢的全部截面面积与混凝土水平截面面积的比值。

图4-14 箍筋的肢数(a)单肢箍;(b)双肢箍;(c)四肢箍图4-15 箍筋的配筋率对梁受剪承载力的影响4 纵筋配筋率纵筋的受剪产生了销栓力,它能限制斜裂缝的伸展,从而使剪压区的高度增大。

所以,纵筋的配筋率越大,梁的受剪承载力也就提高。

5 斜截面上的骨料咬合力斜裂缝处的骨料咬合力对无腹筋梁的斜截面受剪承载力影响较大。

6 截面尺寸和形状(1)截面尺寸的影响截面尺寸对无腹筋梁的受剪承载力有较大的影响,尺寸大的构件,破坏时的平均剪应力比尺寸小的构件要低。

有试验表明,在其他参数(混凝土强度、纵筋配筋率、剪跨比)保持不变时,梁高扩大4倍,破坏时的平均剪应力可下降25%~30%。

对于有腹筋梁,截面尺寸的影响将减小。

(2)截面形状的影响这主要是指T形梁,其翼缘大小对受剪承载力有影响。

适当增加翼缘宽度,可提高受剪承载力25%,但翼缘过大,增大作用就趋于平缓。

另外,加大梁宽也可提高受剪承载力。

4.4.2 斜截面受剪承载力的计算公式1 基本假设国内外许多学者曾在分析各种破坏机理的基础上,对钢筋混凝土梁的斜截面受剪承载力给出过不少类型的计算公式,但终因问题的复杂性而不能实际应用。

我国规范目前采用的是半理论半经验的实用计算公式。

对于斜压破坏,通常用控制截面的最小尺寸来防止;对于斜拉破坏,则用满足箍筋的最小配筋率条件及构造要求来防止;对于剪压破坏,因其承载力变化幅度较大,必须通过计算,使构件满足一定的斜截面受剪承载力,从而防止剪压破坏。

(1) 梁发生剪压破坏时,斜截面所承受的剪力设计值由三部分组成,见图4-16,即图4-16 受剪承载力的组成(2) 梁剪压破坏时,与斜裂缝相交的箍筋和弯起钢筋的拉应力都达到其屈服强度,但要考虑拉应力可能不均匀,特别是靠近剪压区的箍筋有可能达不到屈服强度。

(3) 斜裂缝处的骨料咬合力和纵筋的销栓力,在无腹筋梁中的作用还较显著,两者承受的剪力可达总剪力的50%~90%,但在有腹筋梁中,由于箍筋的存在,虽然使骨料咬合力和销栓力都有一定程度的提高,但它们的抗剪作用已大都被箍筋所代替,试验表明,它们所承受的剪力仅占总剪力的20%左右。

另外,研究表明,只有当纵向受拉钢筋的配筋率大于1.5%时,骨料咬合力和销栓力才对无腹筋梁的受剪承载力有较明显的影响。

所以为了计算简便,将不计入咬合力和销栓力对受剪承载力的贡献。

(4)截面尺寸的影响主要对无腹筋的受弯构件,故仅在不配箍筋和弯起钢筋的厚板计算时才予以考虑。

(5)剪跨比是影响斜截面承载力的重要因素之一,但为了计算公式应用简便,仅在计算受集中荷载为主的独立梁时才考虑了λ的影响。

2 无腹筋梁混凝土剪压区的受剪承载力试验结果与取值我国《混凝土结构设计规范》规定的受弯构件斜截面受剪承载力的计算公式主要是以无腹筋梁的试验结果为基础的。

图4-17 无腹筋梁混凝土剪压区受剪承载力的试验结果(a)均布荷载作用下;(b)集中荷载作用下3 计算公式(1)仅配置箍筋的矩形、T形和I形截面受弯构件的斜截面受剪承载力设计值(2)当配置箍筋和弯起钢筋时,矩形、T形和I形截面受弯构件的斜截面承载力设计值图4-18 弯起钢筋承担的剪力(3)不配置箍筋和弯起钢筋的一般板类受弯构件,其斜截面受剪承载力设计值4对计算公式的说明(1)V cs由二项组成,前一项αcs f t bh0是由混凝土剪压区承担的剪力,后一项f yv A sv sh0中大部分是由箍筋承担的剪力,但有小部分属于混凝土的,因为配置箍筋后,箍筋将抑制斜裂缝的开展,从而提高了混凝土剪压区的受剪承载力,但是究竟提高了多少,很难把它从第二项中分离出来,并且也没有必要。

因此,应该把V cs理解为混凝土剪压区与箍筋共同承担的剪力。

(2)与λ=1.5~3.0相对应的αcs=0.7~0.44,这说明当λ>1.5时,均布荷载作用下的无腹筋独立梁,它的受剪承载力比其他梁的低,λ愈大,降低愈多。

(3)现浇混凝土楼盖和装配整体式混凝土楼盖中的主梁虽然主要承受集中荷载,但不是独立梁,所以除吊车梁和试验梁以外,建筑工程中的独立梁是很少见的。

相关文档
最新文档