高考真题讲义-解三角形-全国卷

合集下载

专题08 解三角形(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题08 解三角形(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题08解三角形考点三年考情(2022-2024)命题趋势考点1:正余弦定理综合应用2023年天津高考数学真题2022年高考全国乙卷数学(文)真题2023年北京高考数学真题2023年高考全国乙卷数学(文)真题2024年高考全国甲卷数学(理)真题2024年天津高考数学真题2022年新高考天津数学高考真题高考对本节的考查不会有大的变化,仍将以考查正余弦定理的基本使用、面积公式的应用为主.从近三年的全国卷的考查情况来看,本节是高考的热点,主要以考查正余弦定理的应用和面积公式为主.考点2:实际应用2024年上海夏季高考数学真题2022年新高考浙江数学高考真题考点3:角平分线、中线、高问题2023年新课标全国Ⅰ卷数学真题2023年高考全国甲卷数学(理)真题考点4:解三角形范围与最值问题2022年高考全国甲卷数学(理)真题2022年新高考全国I卷数学真题2022年新高考北京数学高考真题考点5:周长与面积问题2024年新课标全国Ⅰ卷数学真题2024年新课标全国Ⅱ卷数学真题2024年北京高考数学真题2022年高考全国乙卷数学(理)真题2022年新高考北京数学高考真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题2022年新高考浙江数学高考真题2022年新高考全国II卷数学真题考点6:解三角形中的几何应用2023年新课标全国Ⅱ卷数学真题考点1:正余弦定理综合应用1.(2023年天津高考数学真题)在ABC 中,角,,A B C 所对的边分别是,,a b c .已知39,2,120a b A ==∠= .(1)求sin B 的值;(2)求c 的值;(3)求()sin B C -的值.【解析】(1)由正弦定理可得,sin sin a b A B =392sin120sin B = ,解得:13sin 13B =(2)由余弦定理可得,2222cos a b c bc A =+-,即21394222c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,解得:5c =或7c =-(舍去).(3)由正弦定理可得,sin sin a c A C =395sin120sin C =,解得:513sin 26C =,而120A =o,所以,B C 都为锐角,因此2539cos 15226C =-,139cos 11313B =-,()133********sin sin cos cos sin 1326132626B C B C B C -=-=⨯-⨯=-.2.(2022年高考全国乙卷数学(文)真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ;(2)证明:2222a b c =+【解析】(1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =.(2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a c b b c a b c a a b c +--+-=+--+-,化简得:2222a b c =+,故原等式成立.3.(2023年北京高考数学真题)在ABC 中,()(sin sin )(sin sin )a c A C b A B +-=-,则C ∠=()A .π6B .π3C .2π3D .5π6【答案】B【解析】因为()(sin sin )(sin sin )a c A C b A B +-=-,所以由正弦定理得()()()a c a c b a b +-=-,即222a c ab b -=-,则222a b c ab +-=,故2221cos 222a b c ab C ab ab +-===,又0πC <<,所以π3C =.故选:B.4.(2023年高考全国乙卷数学(文)真题)在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c -=,且5C π=,则B ∠=()A .10πB .5πC .310πD .25π【答案】C【解析】由题意结合正弦定理可得sin cos sin cos sin A B B A C -=,即()sin cos sin cos sin sin cos sin cos A B B A A B A B B A -=+=+,整理可得sin cos 0B A =,由于()0,πB ∈,故sin 0B >,据此可得πcos 0,2A A ==,则ππ3πππ2510B AC =--=--=.故选:C.5.(2024年高考全国甲卷数学(理)真题)在ABC 中,内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A .23913B .3913C .72D .31313【答案】C 【解析】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则7sin sin A C +=.故选:C.6.(2024年天津高考数学真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.【解析】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B 为三角形内角,所以22957sin 1cos 11616B B ⎛⎫=-=-= ⎪⎝⎭,再根据正弦定理得sin sin a b A B =,即4sin 5716A =7sin 4A =法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则237sin 144A ⎛⎫=- ⎪⎝⎭(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知57sin 16B =,因为a b <,则A B <,所以273cos 144A ⎛⎫=-= ⎪ ⎪⎝⎭,则7337sin 22sin cos 2448A A A ==⨯=,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()91573757cos 2cos cos 2sin sin 216864B A B A B A -=+=⨯=.法二:7337sin 22sin cos 2448A A A ===,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以22957sin 1cos 116B B ⎛⎫=-=-= ⎪⎝⎭所以()91573757cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯=7.(2022年新高考天津数学高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知16,2,cos 4a b c A ===-.(1)求c 的值;(2)求sin B 的值;(3)求sin(2)A B -的值.【解析】(1)因为2222cos a b c bc A =+-,即22162b c bc =++,而2b c =,代入得22264c c c =++,解得:1c =.(2)由(1)可求出2b =,而0πA <<,所以215sin 1cos 4A A =-sin sin a b AB =,所以152sin 104sin 46b AB a==(3)因为1cos 4A =-,所以ππ2A <<,故π02B <<,又215sin 1cos A A =-所以11515sin 22sin cos 2448A A A ⎛⎫==⨯-⨯=- ⎪⎝⎭,217cos 22cos 121168A A =-=⨯-=-,而sin 104B =26cos 1sin 4B B =-,故15671010sin(2)sin 2cos cos 2sin 84848A B A B A B ⎛-=-=-+= ⎝⎭.考点2:实际应用8.(2024年上海夏季高考数学真题)已知点B 在点C 正北方向,点D 在点C 的正东方向,BC CD =,存在点A 满足16.5,37BAC DAC =︒=︒∠∠,则BCA ∠=(精确到0.1度)【答案】7.8︒【解析】设,90BCA ACD θθ∠=∠=- ,在DCA △中,由正弦定理得sin sin CA CDD CAD=∠,即()sin 37.0sin 1809037.0CACD θ-=⎡⎤-+⎣⎦’即()sin 37.0sin 9037.0CACDθ=-+①在BCA V 中,由正弦定理得sin sin CA CBB CAB=∠,即()sin16.5sin 18016.5CACB θ=⎡⎤+⎦-⎣,即()sin16.5sin 16.5CA CBθ=+ ,②因为CD CB =,②①得()()sin 9037.0sin 37.0sin16.5sin 16.5θθ-+=+,利用计算器即可得7.8θ≈ ,故答案为:7.8 .9.(2022年新高考浙江数学高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2,3,2a b c ===,则该三角形的面积S =.234【解析】因为222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,所以242312342442S ⎡⎤+-⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⨯234考点3:角平分线、中线、高问题10.(2023年新课标全国Ⅰ卷数学真题)已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【解析】(1)3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,3310sin 1010A ∴==(2)由(1)知,10cos 1010A =,由sin sin()B A C =+23101025sin cos cos sin ()210105A C A C =+==由正弦定理,sin sin c bC B=,可得255521022b =,11sin 22AB h AB AC A ∴⋅=⋅⋅,310sin 210610h b A ∴=⋅==.11.(2023年高考全国甲卷数学(理)真题)在ABC 中,60,2,6BAC AB BC ∠=︒==,BAC ∠的角平分线交BC 于D ,则AD =.【答案】2【解析】如图所示:记,,AB c AC b BC a ===,方法一:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:13b =+由ABC ABD ACD S S S =+ 可得,1112sin 602sin 30sin 30222b AD AD b ⨯⨯⨯=⨯⨯⨯+⨯⨯⨯ ,解得:2313323312b AD b ==++.故答案为:2.方法二:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:13b =62sin 60sin sin b B C ==,解得:62sin 4B =,2sin 2C =,因为1362+>>45C = ,180604575B =--= ,又30BAD ∠=o ,所以75ADB ∠= ,即2AD AB ==.故答案为:2.考点4:解三角形范围与最值问题12.(2022年高考全国甲卷数学(理)真题)已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =.31/13-【解析】[方法一]:余弦定理设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-==-+++++()1244233211m m ≥--+⋅+当且仅当311m m +=+即31m =时,等号成立,所以当ACAB取最小值时,31m =.31.[方法二]:建系法令BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系.则C (2t,0),A (13,B (-t,0)()()()22222221344412443324131113,31t AC t t AB t t t t t t BD -+-+∴===-≥-++++++++==当且仅当即时等号成立。

专题14 三角恒等变换与解三角形(解析版)

专题14 三角恒等变换与解三角形(解析版)

专题14 三角恒等变换与解三角形【高考导航】1.利用各种三角函数进行求值与化简,其中降幂公式、辅助角公式是考查的重点.2.利用正、余弦定理进行边和角、面积的计算,三角形形状的判定以及有关范围的计算,常与三角恒等变换综合考查.【真题解析】1.(2016·全国卷Ⅱ)若cos ⎝⎛⎭⎫π4-α=35,则sin2α=( )A.725B.15 C .-15 D .-725[解析] 解法一:∵cos ⎝⎛⎭⎫π4-α=35, ∴sin2α=cos ⎝⎛⎭⎫π2-2α=cos2⎝⎛⎭⎫π4-α =2cos 2⎝⎛⎭⎫π4-α-1=2×⎝⎛⎭⎫352-1=-725.故选D. 解法二:∵cos ⎝⎛⎭⎫π4-α=22(cos α+sin α)=35,∴cos α+sin α=325,∴1+sin2α=1825,∴sin2α=-725.故选D.[答案] D2.(2017·山东卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A[解析] 解法一:因为sin B (1+2cos C )=2sin A cos C +cos A sin C ,所以sin B +2sin B cos C =sin A cos C +sin(A +C ),所以sin B +2sin B cos C =sin A cos C +sin B ,即cos C (2sin B -sin A )=0,所以cos C =0或2sin B =sin A ,即C =90°或2b =a ,又△ABC 为锐角三角形,所以0°<C <90°,故2b =a .故选A.解法二:由正弦定理和余弦定理得b ⎝⎛⎭⎫1+a 2+b 2-c 2ab =2a ×a 2+b 2-c 22ab +c ×b 2+c 2-a 22bc , 所以2b 2⎝⎛⎭⎫1+a 2+b 2-c 2ab =a 2+3b 2-c 2, 即2b a(a 2+b 2-c 2)=a 2+b 2-c 2, 即(a 2+b 2-c 2)⎝⎛⎭⎫2b a -1=0,所以a 2+b 2=c 2或2b =a ,又△ABC 为锐角三角形,所以a 2+b 2>c 2,故2b =a ,故选A.[答案] A3.(2017·浙江卷)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.[解析] 由余弦定理得cos ∠ABC =42+22-422×4×2=14, ∴cos ∠CBD =-14,sin ∠CBD =154, ∴S △BDC =12BD ·BC ·sin ∠CBD =12×2×2×154=152. 又cos ∠ABC =cos2∠BDC =2cos 2∠BDC -1=14, 0<∠BDC <π2,∴cos ∠BDC =104. [答案]152 104 4.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.[解] (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a 3sin A. 由正弦定理得12sin C sin B =sin A 3sin A. 故sin B sin C =23. (2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12. 所以B +C =2π3,故A =π3. 由题设得12bc sin A =a 23sin A,即bc =8. 由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9,得b +c =33.故△ABC 的周长为3+33.【典例解析】考点一 三角恒等变换1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β.(2)cos(α±β)=cos αcos β∓sin αsin β.(3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式(1)sin2α=2sin αcos α.(2)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)tan2α=2tan α1-tan 2α. 3.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎫其中tan φ=b a . 【训练】1.已知sin ⎝⎛⎭⎫π6-α=13,则cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3+α的值是( ) A.79 B.13 C .-13 D .-79[解析] ∵sin ⎝⎛⎭⎫π6-α=13,∴cos ⎝⎛⎭⎫π3-2α=cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6-α=1-2sin 2⎝⎛⎭⎫π6-α=79,∴cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3+α=cos ⎝⎛⎭⎫2π3+2α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-2α=-cos ⎝⎛⎭⎫π3-2α=-79. [答案] D【训练】2.已知m =tan (α+β+γ)tan (α-β+γ),若sin2(α+γ)=3sin2β,则m =( ) A.12 B.34 C.32D .2 [解析] 设A =α+β+γ,B =α-β+γ,则2(α+γ)=A +B,2β=A -B ,因为sin2(α+γ)=3sin2β,所以sin(A +B )=3sin(A -B ),即sin A cos B +cos A sin B =3(sin A cos B -cos A sin B ),即2cos A ·sin B =sin A cos B ,所以tan A =2tan B ,所以m =tan A tan B=2,故选D. [答案] D3.若sin2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是________. [解析] 因为α∈⎣⎡⎦⎤π4,π,故2α∈⎣⎡⎦⎤π2,2π,又sin2α=55,故2α∈⎣⎡⎦⎤π2,π,α∈⎣⎡⎦⎤π4,π2,∴cos2α=-255,β∈⎣⎡⎦⎤π,3π2,故β-α∈⎣⎡⎦⎤π2,5π4,于是cos(β-α)=-31010,∴cos(α+β)=cos [2α+(β-α)]=cos2αcos(β-α)-sin2αsin(β-α)=-255×⎝⎛⎭⎫-31010-55× 1010=22,且α+β∈⎣⎡⎦⎤5π4,2π,故α+β=7π4. [答案]7π4(1)三角恒等变换的三原则①一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理拆分,从而正确使用公式,如1题.②二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”.③三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.(2)解决条件求值应关注的三点①分析已知角和未知角之间的关系,正确地用已知角来表示未知角.②正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.③求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小,如3题.考点二 解三角形1.正弦定理 a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c 2R. a ∶b ∶c =sin A ∶sin B ∶sin C .2.余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac, cos C =a 2+b 2-c 22ab. 变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C .3.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .角度1:利用正弦、余弦定理判断三角形的形状[解析] ∵2b cos C -2c cos B =a ,∴2sin B cos C -2sin C cos B =sin A =sin(B +C ),即sin B cos C =3cos B sin C ,∴tan B =3tan C ,又B =2C ,∴2tan C 1-tan 2C=3tan C ,得tan C =33,C =π6,B =2C =π3,A =π2,故△ABC 为直角三角形.[答案] B 角度2:在三角形中利用正、余弦定理进行边角计算[解析] 由b sin B -a sin A =12a sin C 及正弦定理得b 2-a 2=12ac ,又c =2a ,所以b =2a ,∵cos B =a 2+c 2-b 22ac=a 2+4a 2-2a 24a 2=34,∴sin B = 1-⎝⎛⎭⎫342=74.故选A.[答案] A 角度3:结合正、余弦定理进行面积的计算[思维流程] (1)代换A +C 为π-B →化简关系式→求出cos B (2)求sin B →结合面积公式求出ac →借助余弦定理求出b[解] (1)由题设及A +B +C =π得sin B =8sin 2B 2,故sin B =4(1-cos B ). 上式两边平方,整理得17cos 2B -32cos B +15=0,解得cos B =1(舍去),cos B =1517. (2)由cos B =1517得sin B =817, 故S △ABC =12ac sin B =417ac . 又S △ABC =2,则ac =172. 由余弦定理及a +c =6得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-2×172×⎝⎛⎭⎫1+1517=4. 所以b =2.正、余弦定理的适用条件(1)“已知两角和一边”或“已知两边和其中一边的对角”应采用正弦定理.(2)“已知两边和这两边的夹角”或“已知三角形的三边”应采用余弦定理.【特别提醒】 应用定理要注意“三统一”,即“统一角、统一函数、统一结构”.【训练】1.[角度1]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2A 2=b +c 2c,则△ABC 的形状一定是( )A.正三角形B.直角三角形C.等腰三角形 D.等腰直角三角形[解析]在△ABC中,∵cos2A2=b+c2c,∴1+cos A2=sin B+sin C2sin C=12·sin Bsin C+12,∴1+cos A=sin Bsin C+1,∴cos A sin C=sin B=sin(A+C)=sin A cos C+cos A sin C,∴sin A cos C=0,sin A≠0,∴cos C=0,∴C为直角.故选B.[答案] B【训练】2.[角度2]在△ABC中,内角A,B,C所对的边长分别为a,b,c,且满足a sin B cos C+c sin B cos A=12b,则B=()A.π6或5π6 B.π3 C.π6 D.5π6[解析]∵a sin B cos C+c sin B cos A=12b,∴由正弦定理可得sin A sin B cos C+sin C sin B cos A=12sin B. 又∵sin B≠0,∴sin A cos C+sin C cos A=12,解得sin(A+C)=sin B=12.∵0<B<π,∴B=π6或5π6.故选A.[答案] A【训练】3.[角度3]已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC面积的最大值为________.[解析]由正弦定理得,(2+b)(a-b)=(c-b)·c,又a=2,所以b2+c2-bc=4,所以cos A=b2+c2-42bc=bc2bc=12,故A=π3.因为b2+c2≥2bc,所以bc≤4,所以S△ABC=12bc sin A≤12×4×32=3,当且仅当b=c时取等号.[答案] 3考点三 正、余弦定理的实际应用1.实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.2.实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.【训练】1.张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( )A .2 2 kmB .3 2 kmC .3 3 kmD .2 3 km[解析] 画出示意图如图,由条件知AB =24×1560=6.在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.BS sin30°=AB sin45°,所以BS =AB sin30°sin45°=3 2. [答案] B2.如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25 m 的建筑物CD ,为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得∠DAC =15°,沿山坡前进50 m 到达B 处,又测得∠DBC =45°,根据以上数据可得cos θ=________.[解析] 由∠DAC =15°,∠DBC =45°可得∠BDA =30°,∠DBA =135°,∠BDC =90°-(15°+θ)-30°=45°-θ,由内角和定理可得∠DCB =180°-(45°-θ)-45°=90°+θ,根据正弦定理可得50sin30°=DB sin15°,即DB =100sin15°=100×sin(45°-30°)=252(3-1),又25sin45°=252(3-1)sin (90°+θ),即25sin45°=252(3-1)cos θ,得到cos θ=3-1.[答案]3-1解三角形实际问题的4步骤【强化训练】一、选择题1.已知α为锐角,且7sin α=2cos2α,则sin ⎝⎛⎭⎫α+π3=( ) A.1+358 B.1+538C.1-358D.1-538[解析] 由7sin α=2cos2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0, 解得sin α=-2(舍去)或sin α=14,又由α为锐角,可得cos α=154, ∴sin ⎝⎛⎭⎫α+π3=12sin α+32cos α=1+358,故选A. [答案] A2.在△ABC 中,a =2,b =3,B =π3,则A 等于( )A.π6B.π4C.3π4D.π4或3π4[解析] 由正弦定理得a sin A =b sin B ,所以sin A =a sin Bb =2×sin π33=22,所以A =π4或3π4.又a <b ,所以A <B ,所以A =π4.[答案] B3.(2016·全国卷Ⅲ)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010 C .-1010 D .-31010[解析] 设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得13a =c sin π4=22c ,则a =322c .在△ABC 中,由余弦定理可得b 2=a 2+c 2-2ac =92c 2+c 2-3c 2=52c 2,则b =102c .由余弦定理,可得cos A =b 2+c 2-a 22bc =52c 2+c 2-92c22×102c ×c=-1010,故选C. [答案] C4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若满足c =2,a cos C =c sin A 的△ABC 有两个,则边长BC 的取值范围是( )A .(1,2)B .(1,3)C .(3,2)D .(2,2)[解析] 因为a cos C =c sin A ,由正弦定理得sin A cos C =sin C sin A ,易知sin A ≠0,故tan C =1,所以C =π4.过点B 作AC 边上的高BD ,垂足为D ,则BD =22BC ,要使满足条件的△ABC 有两个,则BC >2>22BC ,解得2<BC <2.故选D.[答案] D5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A.π6B.π3C.2π3D.5π6[解析] 因为sin C =23sin B ,所以由正弦定理得c =23b ,代入a 2-b 2=3bc ,得a =7b ,再由余弦定理可得cos A =32,所以A =π6.故选A. [答案] A6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2c cos B =2a +b ,若△ABC 的面积为312c ,则ab 的最小值为( )A.12B.13C.16D .3 [解析] 由正弦定理及2c cos B =2a +b ,得2sin C cos B =2sin A +sin B ,因为A +B +C =π,所以sin A =sin(B +C ),则2sin C ·cos B =2sin(B +C )+sin B ,整理可得2sin B ·cos C +sin B =0,又0<B <π,所以sin B >0,则cos C =-12,因为0<C <π,所以C =2π3,所以sin C =32,则△ABC 的面积为12ab sin C =34ab =312c ,即c =3ab ,结合c 2=a 2+b 2-2ab ·cos C ,可得a 2+b 2+ab =9a 2b 2,∵a 2+b 2≥2ab ,∴2ab +ab ≤9a 2b 2,即ab ≥13,当且仅当a =b =33时等号成立,故ab 的最小值是13.故选B. [答案] B 二、填空题7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a sin A =(2sin B +sin C )b +(2c +b )sin C ,则A =________.[解析] 由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,又A 为三角形的内角,故A =120°.[答案] 120°8.计算:4cos50°-tan40°=________.[解析] 4cos50°-tan40°=4sin40°-sin40°cos40°=4cos40°sin40°-sin40°cos40°=2sin80°-sin40°cos40°=2sin (120°-40°)-sin40°cos40°=3cos40°+sin40°-sin40°cos40°=3cos40°cos40°= 3.[答案]39.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =45°,C 点的仰角∠CAB =60°以及∠MAC =75°;从C 点测得∠MCA =45°.已知山高BC =100 m ,则山高MN =________m.[解析] 在Rt △ABC 中,∠CAB =60°,BC =100 m ,所以AC =2003m.在△AMC 中,∠MAC =75°,∠MCA =45°, 从而∠AMC =60°,由正弦定理得AC sin60°=AM sin45°,因此AM =20023m.在Rt △MNA 中,AM =20023m ,∠MAN =45°,得MN =2003m.[答案] 2003三、解答题10.(2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝⎛⎭⎫2A +π4的值. [解] (1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎫2A +π4=sin2A cos π4+cos2A ·sin π4=7226. 11.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满足⎝⎛⎭⎫54c -a cos B =b cos A . (1)若sin A =25,a +b =10,求a ;(2)若b =35,a =5,求△ABC 的面积S . [解] ∵⎝⎛⎭⎫54c -a cos B =b cos A ,∴由正弦定理得⎝⎛⎭⎫54sin C -sin A ·cos B =sin B cos A ,即有54sin C cos B =sin A cos B +cos A sin B ,则54sin C ·cos B =sin C .∵sin C >0,∴cos B =45.(1)由cos B =45,得sin B =35,∵sin A =25,∴a b =sin A sin B =23.又∵a +b =10,∴a =4.(2)∵b 2=a 2+c 2-2ac cos B ,b =35,a =5,∴45=25+c 2-8c ,即c 2-8c -20=0,解得c =10或c =-2(舍去),∴S =12ac sin B =15.12.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足cos2C -cos2A =2sin ⎝⎛⎭⎫π3+C ·sin ⎝⎛⎭⎫π3-C . (1)求角A 的大小;(2)若a =3,且b ≥a ,求2b -c 的取值范围. [解] (1)由已知可得2sin 2A -2sin 2C =2⎝⎛⎭⎫34cos 2C -14sin 2C , 化简得sin 2A =34,∴sin A =±32,又0<A <π,∴sin A =32,故A =π3或2π3. (2)由a sin A =b sin B =csin C,得b =2sin B ,c =2sin C , 因为b ≥a ,所以B ≥A ,所以A =π3,B +C =2π3且B ∈⎣⎡⎭⎫π3,2π3, 故2b -c =4sin B -2sin C=4sin B -2sin ⎝⎛⎭⎫2π3-B =3sin B -3cos B=23sin ⎝⎛⎭⎫B -π6. 因为π3≤B <2π3,所以π6≤B -π6<π2,所以2b -c 的取值范围为[3,23).。

2022年全国新高考Ⅰ卷第18题解三角形说题-课件-2024届高三数学一轮复习

2022年全国新高考Ⅰ卷第18题解三角形说题-课件-2024届高三数学一轮复习

感悟
反思
2.加强教考衔接,注重通用方法,强调在深刻理解基础上的
融会贯通、灵活运用,让学生掌握原理、内化方法,主动进
行探究和深层次学习,帮助学生掌握探索的方法与解题的规
律,
3.在数学问题中,给出的条件有时会在量、形关系上显得较为杂
乱,要根据待解问题的表现形式,对所给的量、形关系做和谐统
一的化归,培养学生逻辑推理和数学运算的能力,注重学生核心
2

1 cos2 C
cos2 2 B 1 - cos2 B

1 sin 2 B
(2 cos2 B 1) 2 1 - cos2 B

cos2 B
2
4cos2 B
5
2
cos B
4 2 5
2
当且仅当cosB
2
时,等号成立.
2
反思感悟
原题呈现
命题立意
由第一问sinB -cosC 0,
2
cos x

设f ( x )
, x ( , )
1 sin x
2 2
1 sin x
得f ' ( x )
0
2
(1 sin x)
cos x

所以f ( x)
在( , )上单调递减
1 sin x
2 2

则f ( A) f ( 2 B )
2
所以A
内角之间的关系
学生的数学推理和运算能
力,以及转化和划归的数
学思想,分析,解决问题
的能力
本题设问由易到难,
重在培养学生的逻
辑推理,数学运算
这两大数学核心素

2020年高考数学·高考真题-分类汇编-第12讲-解三角形精选全文完整版

2020年高考数学·高考真题-分类汇编-第12讲-解三角形精选全文完整版

精选全文完整版专题四 三角函数与解三角形第十二讲 解三角形2020年1.(2020•北京卷)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =, S =选择条件②(Ⅰ)6(Ⅱ)sin C =, S =.2.(2020•全国2卷)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C. (1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+3.(2020•全国3卷)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B.13C. 12 D. 23【答案】A4.(2020•江苏卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【答案】(1)5sin C =(2)2tan 11DAC ∠=.5.(2020•新全国1山东)在①3ac =sin 3c A =,③3=c b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析6.(2020•天津卷)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知22,5,13a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求sin 24A π⎛⎫+⎪⎝⎭的值. 【答案】(Ⅰ)4Cπ;(Ⅱ)13sin 13A =;(Ⅲ)172sin 2426A π⎛⎫+= ⎪⎝⎭.7.(2020•浙江卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin b A =.(I )求角B ;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II )13,22⎛⎤⎥ ⎝⎦2016-2019年1.(2019全国Ⅰ理17)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(2)若22a b c +=,求sin C .2.(2019全国Ⅱ理15)ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.3.(2019全国Ⅲ理18)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.4.(2019江苏12)如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 .5.(2019江苏15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b 2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 6.(2019浙江14)在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____,cos ABD ∠=________.7.(2019北京15)在ABC △中,a =3,b -c =2 ,1cos 2B =- .(Ⅰ)求b ,c 的值; (Ⅱ)求sin(B -C ) 的值.8.(2019天津理15)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值.9.(2018全国卷Ⅱ)在△ABC 中,cos2=C 1=BC ,5=AC ,则=ABA .BCD .10.(2018全国卷Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C = A .2π B .3π C .4π D .6π 11.(2017山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是A .2a b =B .2b a =C .2A B =D .2B A = 12.(2016年天津)在ABC ∆中,若AB BC =3,120C ∠= ,则AC =A .1B .2C .3D .413.(2016年全国III )在ABC △中,π4B,BC 边上的高等于13BC ,则cos AA B C .1010 D .3101014.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .15.(2018浙江)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2b =,60A =,则sin B =___________,c =___________.16.(2017浙江)已知ABC ∆,4AB AC ==,2BC =. 点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是___________,cos BDC ∠=__________.17.(2017浙江)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度。

解三角形高考题PPT课件

解三角形高考题PPT课件
教材回顾 夯实基础
1.正弦定理和余弦定理
定 正弦定理

余弦定理
内 容
_s_i_na_A__=__si_n_b__B_= ___si_nc_C_ =2R(R 为△ABC 外接 圆半径)
a2=___b_2+__c_2_-__2_b_c_c_o_s_A_______; b2=___c_2+__a_2_-__2_c_a_c_o_s_B________; c2=___a_2+__b_2_-__2_a_b_c_o_s_C________

(2)已知△ABC 中,角 A、B、C 的对边分别为 a,b,c,若 f(A)
=0,a= 3,bc=2,求△ABC 的周长.
第28页/共40页
规 范
[解] (1)由题知 f(x)=-sin2x- 3sin xcos x+32
解 答
=cos2x- 3sin xcos x+12=cos2x+π3+1,
cos cos cos
b2+c2-a2 A=_____2_b_c___;
c2+a2-b2 B=_____2_c_a___;
a2+b2-c2
C=____2_a_b____
sin
a+b+c A+sin B+sin
C=sina
A
第2页/共40页
教材回顾 夯实基础
2.三角形中常用的面积公式 (1)S=12ah(h 表示边 a 上的高); (2)S=12bcsin A=___12_a_c_si_n__B__________=12absin C; (3)S=12r(a+b+c)(r 为三角形的内切圆半径).
4
3
A. 3 10 10
B. 10 C. 10 D. 3 10
10
10

专题3-2 解三角形最值范围与图形归类-2023年高考数学二轮复习讲练测(全国通用)(原卷版)

专题3-2 解三角形最值范围与图形归类-2023年高考数学二轮复习讲练测(全国通用)(原卷版)

专题3-2解三角形最值、范围与图形归类目录讲高考 ............................................................................................................................................................................... 1 题型全归纳 ...................................................................................................................................................................... 2 【题型一】最值与范围1:角与对边 .................................................................................................................... 2 【题型二】最值与范围2:角与邻边 .................................................................................................................... 2 【题型三】范围与最值3:有角无边型 ............................................................................................................... 3 【题型四】最值与范围4:边非对称型 ............................................................................................................... 4 【题型五】最值:均值型 .......................................................................................................................................... 4 【题型六】图形1:内切圆与外接圆 .................................................................................................................... 4 【题型七】图形2:“补角”三角形 .................................................................................................................... 6 【题型八】图形3:四边形与多边形 .................................................................................................................... 7 【题型九】三大线1:角平分线应用 .................................................................................................................... 8 【题型十】三大线2:中线应用 ............................................................................................................................. 8 【题型十一】三大线3:高的应用 ......................................................................................................................... 9 【题型十二】证明题 ................................................................................................................................................. 10 专题训练 (10)讲高考1.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==. (1)求ABC 的面积;(2)若sin sin A C =,求b .2.(2022·全国·统考高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-. (1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.3.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A B A B =++.(1)若23C π=,求B ;(2)求222a b c +的最小值.4.(2021·全国·统考高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.5.(2021·北京·统考高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ∠;(2)再从条件①、条件①、条件①这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件①:ABC 的周长为4+条件①:ABC题型全归纳【题型一】最值与范围1:角与对边【讲题型】例题1.已知ABC 的内角,,A B C 所对的边分别为()()22,,,sin sin sin sin sin a b c B C A B C -=- (1)求A ;(2)已知a =.例题2.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,已知22222202b c a ca b c b c+-+=+-+. (1)求角A 的值;1.在锐角三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且2sin 2cos )A ABC +sin 30A -. (1)求A 的大小;(2)若2a =,求ABC ∆的周长L 的取值范围.2.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a,b,c ,且()222πcos B b a c ac sinAcosA---=(1)求角A ;(2)若a =bc 的取值范围.【题型二】最值与范围2:角与邻边【讲题型】例题1..已知ABC 为锐角三角形,角,,A B C 所对边分别为,,a b c ,ABC 满足:222sin sin sin sin sin A B C B C +-≤.(1)求角A 的取值范围;1..在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求角B ;(2)若△ABC 为锐角三角形,且2c =,求△ABC 面积的取值范围.2.在ABC 中,设A ,B ,C 所对的边长分别为a ,b ,c ,且()()()sin sin sin c b C a b A B -=-+. (1)求A ;(2)若2b =,且ABC 为锐角三角形,求ABC 的面积S 的取值范围.【题型三】范围与最值3:有角无边型【讲题型】例题1.三角形ABC 中,已知222sin sin +sin sin sin A B A B C +=,其中,角A B C 、、所对的边分别为a b c 、、.(△)求角C 的大小; (△)求a b c+的取值范围.例题2.在锐角三角形ABC,若 (I)求角B(II)求的取值范围【练题型】1.设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =. (△)若a =5c =,求b (△)求cos sin A C +的取值范围.ac c b a c b a 3))((=+++-A A cos sin 3+2.在锐角三角形ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,且2sin sin cos sin cos C B a BB b A-=.(1)求A ;(2)求bc的取值范围.【题型四】最值与范围4:边非对称型【讲题型】例题1.在ABC ∆中,,,a b c 分别是角,,A B C 的对边()()3a b c a b c ab +++-=.(1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求2a b -的范围.【练题型】在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin 2sin sin A C B A C +=+. (△)求角B 的大小;(△)若ABC 为锐角三角形,2b =,求2a c -的取值范围.【题型五】最值:均值型【讲题型】例题1.已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ;(2)若24a S =,求c bb c+的最大值.【练题型】1.在△ABC 中,设AD 为BC 边上的高,且AD =BC BC ,b ,c 分别表示角B ,C 所对的边长,则的取值范围是_.【题型六】图形1:内切圆与外接圆【讲题型】例题1.在①ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知4b =,2c =,且sin sin sin()C B A B =+-. (1)求角A 和边a 的大小; (2)求①ABC 的内切圆半径.例题2.ABC 中,已知1AB =,7BC =D 为AC 上一点,2AD DC =,AB BD ⊥. (1)求BD 的长度;(2)若点P 为ABD △外接圆上任意一点,求2+PB PD 的最大值.b cc b+【讲技巧】外接圆:1.外接圆的圆心到三角形的三个顶点的距离相等。

2023年高考数学真题题源解密(全国卷)专题07 解三角形(原卷版)

2023年高考数学真题题源解密(全国卷)专题07 解三角形(原卷版)

2023年高考数学真题题源解密(全国卷)专题07解三角形目录一览①2023真题展现考向一正弦(余弦)定理解三角形考向二解三角形面积②真题考查解读③近年真题对比考向一正弦(余弦)定理解三角形考向二解三角形面积考向三解三角形的实际应用④命题规律解密⑤名校模拟探源⑥易错易混速记考向一正弦(余弦)定理解三角形考向二解三角形面积【命题意图】1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.【考查要点】解三角形,多以一个三角形为背景,也可能会以四边形为背景,考查利用正弦能理、余弦定理解三角形.【得分要点】高频考点:正弦定理、余弦定理、解三角形面积中频考点:解三角形的实际应用考向一正弦(余弦)定理解三角形,考向二解三角形面积考向三解三角形的实际应用B.A.113322.(2021·全国乙卷理数第海岛的高.如图,点E,H称为“表高”,EG称为“表距A . 表高表距表目距的差表高B . 表高表距表目距的差C .表高表距表目距的差表距D .表高表距表目距的差3.(2021·全国甲卷理数第8题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有解三角形的知识,有较强的几何意义,除了考查学生的应用意识和建模能力之外,更重要的是考查能否用正弦定理、余弦定理解决问题。

解三角部分题目侧重基础,主要考查学生的逻辑思维能力和运算求解能力.预计2024年主要还是考查正余弦定理解三角形。

一、单选题1.(2023·四川南充三模)在ABC 中,角,,A B C 的对边分别是,,a b c ,若222b a c ac ,则B ()A .,,,m ACB BCD BDC C .,,,m ACB ACD ADC8.(2023·新疆阿勒泰三模)在ABC 中,()A .632 C .9629.(2023·江西鹰潭·则b ca()A .7510.(2023·山东聊城三模)在长度的最大值为(A .311.(2023·河南·襄城三模)在上一点,2BD DC A .333212.(2023·河南开封三模)在A .153413.(2023·江西上饶二模)()A .362,A.1sin sin()2sin()aBC.1sin sin()2sin()aD18.(2023·湖南邵阳三模)拿破仑·波拿巴最早提出了一个几何定理:构造三个等边三角形,则这三个等边三角形的外接圆圆心恰为另一个等边三角形(此等边三角形称为拿破26.(2023·福建宁德二模)在ABC 中,30B ,27.(2023·贵州遵义三模)在ABC 中,2π3A ,D 为.三、解答题(1)若33cos a c b C ,求角(2)已知3b 、π3B,若40.(2023·四川·成都三模)已知(1)证明:2C A ;(2)求sin cos AC的取值范围.41.(2023·上海闵行三模)如图,时针排列),且满足CP1.其他三角形面积公式1()42abc S ABC a b c r R (r 是三角形内切圆的半径,并可由此计算R ,r .)2.正弦定理的应用①边化角,角化边::sin :sin :sin a b c A B C②大边对大角大角对大边sin sin cos cos a b A B A B A B③合分比:b 2sin sin sin sin sin sin sin sin sin sin sin B sin a bc a b b c a c a c R A B C A B B C A C A C 3.ABC △内角和定理:A B C①sin sin()sin cos cos sin C A B A B A B cos cos c a B b A ②cos cos()cos cos sinAsinB C A B A B ;③在ABC 中,内角A B C ,,成等差数列2,33B A C .。

专题04 三角函数与解三角形(原卷)2020年高考物理十年真题精解(全国Ⅰ卷)

专题04 三角函数与解三角形(原卷)2020年高考物理十年真题精解(全国Ⅰ卷)

三观一统2020年高考数学十年高考真题精解(全国卷I)专题4 三角函数与解三角形十年树木,百年树人,十年磨一剑。

本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。

三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。

(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一:三角化简求值(2019新课标I 卷T7文科)tan255°=( ) A .﹣2﹣B .﹣2+C .2﹣D .2+(2015新课标I 卷T2理科)o ooosin 20cos10cos160sin10- =( )(A )-(B (C )12- (D )12(2010新课标I 卷T1文科)cos300︒=(A)2-(B)-12 (C)12(D) 2(2011新课标I 卷T7文科)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y=2x 上,则cos2θ=( ) A .﹣B .﹣C .D .注意: (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.(2010新课标I 卷T2理科)记cos(80)k -︒=,那么tan100︒=C.一、角的有关概念1.定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 2.分类(1)按旋转方向不同分为正角、负角、零角.(2)按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合·3{|}60,S k k ββα==+︒∈Z .3.象限角与轴线角第一象限角的集合为π2π2π,2k k k αα⎧⎫<<+∈⎨⎬⎩⎭Z ; 第二象限角的集合为π2π2ππ,2k k k αα⎧⎫+<<+∈⎨⎬⎩⎭Z ; 第三象限角的集合为3π2ππ2π,2k k k αα⎧⎫+<<+∈⎨⎬⎩⎭Z ; 第四象限角的集合为3π2π2π2π,.2k k k αα⎧⎫+<<+∈⎨⎬⎩⎭Z 终边与x 轴非负半轴重合的角的集合为{}2π,k k αα=∈Z ; 终边与x 轴非正半轴重合的角的集合为{}2ππ,k k αα=+∈Z ;终边与x 轴重合的角的集合为{}π,k k αα=∈Z ;终边与y 轴非负半轴重合的角的集合为π2π,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z ; 终边与y 轴非正半轴重合的角的集合为π2π,2k k αα⎧⎫=-∈⎨⎬⎩⎭Z ; 终边与y 轴重合的角的集合为ππ,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z ; 终边与坐标轴重合的角的集合为π,2k k αα⎧⎫=∈⎨⎬⎩⎭Z .象限角和终边相同的角的判断及表示方法: 1.已知θ所在的象限,求nθ或nθ(n ∈N *)所在的象限的方法是:将θ的范围用不等式(含有k )表示,然后两边同除以n 或乘以n ,再对k 进行讨论,得到nθ或nθ(n ∈N *)所在的象限.2.象限角的判定有两种方法:一是根据图象,其依据是终边相同的角的思想;二是先将此角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与此角终边相同的角α,再由角α终边所在的象限来判断此角是第几象限角.3.由角的终边所在的象限判断三角函数式的符号,需确定各三角函数的符号,然后依据“同号得正,异号得负”求解. 二、弧度制1.1弧度的角把长度等于半径长的弧所对的圆心角叫做1弧度的角. 规定:,ll rα=是以角α作为圆心角时所对圆弧的长,r 为半径.正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.2.弧度制用“弧度”做单位来度量角的单位制叫做弧度制.比值lr与所取的r 的大小无关,仅与角的大小有关.3.弧度与角度的换算180π180πrad ,1rad =57.3,1=rad π180⎛⎫︒=︒≈︒︒ ⎪⎝⎭. 4.弧长公式l r α=,其中α的单位是弧度,l 与r 的单位要统一.角度制下的弧长公式为:π180n rl =(其中n 为扇形圆心角的角度数). 5.扇形的面积公式21122S lr r α==.角度制下的扇形面积公式为:2π360n r S =(其中n 为扇形圆心角的角度数).三、任意角的三角函数 1.定义设α是一个任意角,它的顶点与原点重合,始边与x 轴非负半轴重合,点(),P x y 是角α的终边上任意一点,P 到原点的距离()0OP r r =>,那么角α的正弦、余弦、正切分别是sin ,cos ,tan y x y r r xααα===. 注意:正切函数tan y x α=的定义域是ππ,2k k αα⎧⎫≠+∈⎨⎬⎩⎭Z ,正弦函数和余弦函数的定义域都是R .2.三角函数值在各象限内的符号三角函数值在各象限内的符号口诀:一全正、二正弦、三正切、四余弦. 3.三角函数线设角α的顶点与原点重合,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M .由三角函数的定义知,点P 的坐标为()cos ,sin αα,即()cos ,sin P αα,其中cos ,sin ,OM MP αα==单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan AT α=.我们把有向线段,,OM MP AT 分别叫做α的余弦线、正弦线、正切线.各象限内的三角函数线如下: 角所在的象限第一象限第二象限第三象限第四象限图形三角函数线的应用:1.利用三角函数的定义求角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x 、纵坐标y 、该点到原点的距离r .2.利用三角函数线解三角不等式的步骤:①确定区域的边界;②确定区域;③写出解集.3.已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.4.三角函数值的符号及角的位置的判断.已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角的终边所在的可能位置,二者的交集即为该角的终边位置.注意终边在坐标轴上的特殊情况4.特殊角的三角函数值补充:sin15cos 75,sin 75cos15,︒=︒=︒=︒=tan152,tan 752︒=︒=+ 四、同角三角函数的基本关系式 1.平方关系22sin cos 1αα+=.2.商的关系sin cos tan ααα=. 3.同角三角函数基本关系式的变形(1)平方关系的变形:2222sin 1cos ,cos 1sin αααα=-=-;(2)商的关系的变形:sin sin tan cos ,cos tan αααααα=⋅=; (3)2222111tan 1,1cos sin tan αααα-=-=.同角三角函数基本关系式的应用:1.利用22sin +cos 1αα=可以实现角α的正弦、余弦的互化,利用sin cos tan ααα=可以实现角α的弦切互化.2.sin ,cos αα的齐次式的应用:分式中分子与分母是关于sin ,cos αα的齐次式,或含有22sin ,cos αα及sin cos αα的式子求值时,可将所求式子的分母看作“1”,利用“22sin +cos 1αα=”代换后转化为“切”后求解.二、考向题型研究二: 三角恒等变换(2017新课标I 卷T15文科)已知α∈(0,),tanα=2,则cos (α﹣)=.(2016新课标I 卷T14文科)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= .(2010新课标I 卷T14文科)已知α为第二象限的角,3sin 5a =,则tan 2α= .(2014新课标Ⅰ卷T8理科)设α∈(0,),β∈(0,),且tanα=,则( )A. 3α﹣β= B .3α+β= C. 2α﹣β= D.2α+β=B.(2010新课标I 卷T14理科)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= .1.三角函数的诱导公式“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.*诱导公式的应用①求值:负化正,大化小,化到锐角为终了. ②化简:统一角,统一名,同角名少为终了. *诱导公式的应用:1.应用诱导公式,重点是“函数名称”与“正负号”的正确判断.求任意角的三角函数值的问题,都可以通过诱导公式化为锐角三角函数的求值问题,具体步骤为“负角化正角”→“正角化锐角”→求值. 2.使用诱导公式时一定要注意三角函数值在各象限的符号,特别是在具体题目中出现类似πk α±的形式时,需要对k 的取值进行分类讨论,从而确定出三角函数值的正负. 3.利用诱导公式化简三角函数式的思路: (1)分析结构特点,选择恰当公式; (2)利用公式化成单角三角函数; 4.巧用相关角的关系能简化解题的过程. 常见的互余关系有π3α-与π6α+,π3α+与π6α-,π4α+与π4α-等; 常见的互补关系有π3θ+与2π3θ-,π4θ+与3π4θ-等. 2..两角和与差的正弦、余弦、正切公式(1)()C αβ-:cos()αβ-=cos cos sin sin αβαβ+(2)()C αβ+:cos()cos cos sin sin αβαβαβ+=-(3)()S αβ+:sin()αβ+=sin cos cos sin αβαβ+(4)()S αβ-:sin()αβ-=sin cos cos sin αβαβ-(5)()T αβ+:tan()αβ+=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ++≠+∈-Z(6)()T αβ-:tan()αβ-=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ--≠+∈+Z3.二倍角公式(1)2S α:sin2α=2sin cos αα(2)2C α:cos2α=2222cos sin 12sin 2cos 1αααα-=-=- (3)2T α:tan 2α=22tan πππ(π,)1tan 224k k k αααα≠+≠+∈-Z 且4.公式的常用变形(1)tan tan tan()(1tan tan )αβαβαβ±=±m ;tan tan tan tan tan tan 11tan()tan()αβαβαβαβαβ+-=-=-+-(2)降幂公式:21cos 2sin 2αα-=;21cos 2cos 2αα+=;1sin cos sin 22ααα= (3)升幂公式:21cos 22cos αα+=;21cos 22sin αα-=;21sin 2(sin cos )ααα+=+;21sin 2(sin cos )ααα-=-(4)辅助角公式:sin cos a x b x +)x ϕ=+,其中cos ϕϕ==tan baϕ=5.半角公式(1)sin2α=(2)cos2α=(3)tan2α=sin 1cos 1cos sin αααα-==+【注】此公式不用死记硬背,可由二倍角公式推导而来,如下图: 6.公式的常见变形(和差化积、积化和差公式) (1)积化和差公式:1cos cos [cos()cos()]2αβαβαβ=++-;1sin sin [cos()cos()]2αβαβαβ=-+--;1sin cos [sin()sin()]2αβαβαβ=++-;1cos sin [sin()sin()]2αβαβαβ=+--.(2)和差化积公式:sin sin 2sincos22αβαβαβ+-+=;sin sin 2cossin22αβαβαβ+--=;cos cos 2coscos22αβαβαβ+-+=;cos cos 2sinsin22αβαβαβ+--=-.*三角函数的求值问题1.给角求值给角求值中一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察会发现非特殊角与特殊角之间总有一定的关系.解题时,要利用观察得到的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数,从而得解. 2.给值求值已知三角函数值,求其他三角函数式的值的一般思路: (1)先化简所求式子.(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手). (3)将已知条件代入所求式子,化简求值. 3.给值求角通过求角的某种三角函数值来求角,在选取函数时,有以下原则: (1)已知正切函数值,则选正切函数.(2)已知正、余弦函数值,则选正弦或余弦函数.若角的范围是π(0,)2,则选正、余弦皆可;若角的范围是(0,π),则选余弦较好;若角的范围为ππ(,)22-,则选正弦较好. 4.常见的角的变换 (1)已知角表示未知角例如:()()ααββββα=+-=--,()()()()2,2ααβαββαβαβ=++-=+--,(2)αβαβα+=++,(2)αβαβα-=-+,22αβαβα+-=+,22αβαββ+-=-.(2)互余与互补关系 例如:π3π()()π44αα++-=,πππ()()362αα++-=. (3)非特殊角转化为特殊角例如:15°=45°−30°,75°=45°+30°.三、考向题型研究三: 三角函数图像的平移、伸缩和翻折问题(2017新课标I 卷T9理科)已知曲线C 1:y=cosx ,C 2:y=sin (2x+),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2(2016新课标I 卷T6文科)若将函数y =2sin (2x +6π)的图像向右平移14个周期后,所得图像对应的函数为( )A .y =2sin(2x +4π) B .y =2sin(2x +3π) C .y =2sin(2x –4π) D .y =2sin(2x –3π)*y=A sin(ωx+φ)的有关概念*用五点法画y=A sin(ωx+φ)(A>0,ω>0,x∈R)一个周期内的简图时,要找五个特征点如下表所示:*函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的两种途径*图像变换规律:设函数为()y f x =(所涉及参数均为正数)1、函数图像的平移变换:(1)()f x a +:()f x 的图像向左平移a 个单位 (2)()f x a -:()f x 的图像向右平移a 个单位 (3)()f x b +:()f x 的图像向上平移b 个单位 (4)()f x b -:()f x 的图像向下平移b 个单位 2、函数图像的放缩变换:(1)()f kx :()f x 的图像横坐标变为原来的1k(图像表现为横向的伸缩) (2)()kf x :()f x 的图像纵坐标变为原来的k 倍(图像表现为纵向的伸缩) 3、函数图象的翻折变换: (1)()f x :()f x 在x 轴正半轴的图像不变,负半轴的图像替换为与正半轴图像关于y 轴对称的图像(2)()f x :()f x 在x 轴上方的图像不变,x 轴下方的部分沿x 轴向上翻折即可(与原x 轴下方图像关于x 轴对称) *图像变换中要注意的几点:1、如何判定是纵坐标变换还是横坐标变换?在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下: ① 若变换发生在“括号”内部,则属于横坐标的变换 ② 若变换发生在“括号”外部,则属于纵坐标的变换例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤()2y f x =-+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换2、解析式变化与图像变换之间存在怎样的对应?由前面总结的规律不难发现: (1)加“常数”⇔ 平移变换 (2)添“系数”⇔放缩变换 (3)加“绝对值”⇔翻折变换3、多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:① 横坐标的变换与纵坐标的变换互不影响,无先后要求 ② 横坐标的多次变换中,每次变换只有x 发生相应变化 ③ 纵坐标的多次变换中,每次变换将解析式看做一个整体进行 例如:()()21y f x y f x =→=+有两种方案方案一:先放缩:()()2y f x y f x =→=,再平移时,将解析式看做一个整体,整体加1,即()()()221y f x y f x =→=+方案二:先平移:()()1y f x y f x =→=+,则再放缩时,若纵坐标变为原来的a 倍,那么()()()11y f x y a f x =+→=+,无论a 取何值,也无法达到()21y f x =+,所以需要对前一步进行调整:平移12个单位,再进行放缩即可(2a =) 四、考向题型研究四:三角函数)sin(φ+=wx A y 的图像和性质(2015新课标I 卷T8文科)函数()cos()f x x ωϕ=+的部分图象如图所示,则()f x 的单调递减区间为( )A .1(4k π-,3)4k π+,k z ∈B .1(24k π-,32)4k π+,k z ∈ C .1(4k -,3)4k +,k z ∈ D .1(24k -,32)4k +,k z ∈(2019新课标I 卷T11理科).关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]ππ-有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③(2015新课标I 卷T8理科)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( ) (A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈(2011新课标I 卷T11文科)设函数,则f (x )=sin (2x+)+cos (2x+),则( )A .y=f (x )在(0,)单调递增,其图象关于直线x=对称B .y=f (x )在(0,)单调递增,其图象关于直线x=对称C .y=f (x )在(0,)单调递减,其图象关于直线x=对称D .y=f (x )在(0,)单调递减,其图象关于直线x=对称(2016新课标I 卷T12文科)若函数1()sin 2sin 3f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B .[-1,13] C .[-,13] D .[-1,-13](2014新课标Ⅰ卷T6理科)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 做直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数f (x ),则y=f (x )在[0,π]的图象大致为( )A .B .C .D .(2012新课标I 卷T9文科)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(2011新课标I 卷T11理科)设函数f (x )=sin (ωx+φ)+cos (ωx+φ)的最小正周期为π,且f (﹣x )=f (x ),则( ) A .f (x )在单调递减B .f (x )在(,)单调递减C .f (x )在(0,)单调递增D .f (x )在(,)单调递增1.用五点法作正弦函数和余弦函数的简图(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z)3.函数sin()y A x ωϕ=+(A >0,ω>0)的性质(1)奇偶性:=k ϕπ时,函数sin()y A x ωϕ=+为奇函数;=2k ϕππ+时,函数sin()y A x ωϕ=+为偶函数.(2)周期性:sin()y A x ωϕ=+存在周期性,其最小正周期为T =2ωπ.(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k ωϕππ-π≤+≤+π∈Z 得单调增区间;由+22,22k x k k ωϕπ3ππ≤+≤+π∈Z 得单调减区间. (4)对称性:利用y =sin x 的对称中心为(,0)()k k π∈Z 求解,令x k k ωϕ+=π(∈)Ζ,求得x .利用y =sin x 的对称轴为()2x k k π=π+∈Z 求解,令+2x k k ωϕπ+=π(∈)Ζ,得其对称轴. 4.函数sin()y A x ωϕ=+(A >0,ω>0)的物理意义当函数sin()y A x ωϕ=+(A >0,ω>0,[0,)x ∈+∞)表示一个简谐振动量时,则A 叫做振幅,T =2ωπ叫做周期,f =12πT ω=叫做频率,x ωϕ+叫做相位,x =0时的相位ϕ叫做初相. 5、三角函数的综合应用(1)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的定义域均为R ;函数tan()y A x ωϕ=+的定义域均为ππ{|,}2k x x k ϕωωω≠-+∈Z . (2)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的最大值为||A ,最小值为||A -;函数tan()y A x ωϕ=+的值域为R .(3)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的最小正周期为2πω;函数tan()y A x ωϕ=+的最小正周期为πω.(4)对于()sin y A x ωϕ=+,当且仅当()πk k ϕ=∈Z 时为奇函数,当且仅当()ππ2k k ϕ=+∈Z 时为偶函数;对于()cos y A x ωϕ=+,当且仅当()ππ2k k ϕ=+∈Z 时为奇函数,当且仅当()πk k ϕ=∈Z 时为偶函数;对于()tan y A x ωϕ=+,当且仅当()π2k k ϕ=⋅∈Z 时为奇函数.(5)函数()()sin 0,0y A x A ωϕω=+>>的单调递增区间由不等式ππ2π2π(22k x k k ωϕ-≤+≤+ )∈Z 来确定,单调递减区间由不等式()π3π2π2π22k x k k ωϕ+≤+≤+∈Z 来确定;函数()()cos 0,0y A x A ωϕω=+>>的单调递增区间由不等式()2ππ2πk x k k ωϕ-≤+≤∈Z 来确定,单调递减区间由不等式()2π2ππk x k k ωϕ≤+≤+∈Z 来确定;函数()()tan 0,0y A x A ωϕω=+>>的单调递增区间由不等式()ππππ22k x k k ωϕ-<+<+∈Z 来确定.【注】函数sin()y A x ωϕ=+,cos()y A x ωϕ=+,tan()y A x ωϕ=+(ω有可能为负数)的单调区间:先利用诱导公式把ω化为正数后再求解. (6)函数sin()y A x ωϕ=+图象的对称轴为ππ()2k x k ϕωωω=-+∈Z ,对称中心为π(,0)()k k ϕωω-∈Z ;函数cos()y A x ωϕ=+图象的对称轴为π()k x k ϕωω=-∈Z ,对称中心为ππ(,0)()2k k ϕωωω-+∈Z ;函数tan()y A x ωϕ=+图象的对称中心为π(,0)()2k k ϕωω-∈Z . 【注】函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的图象与x 轴的交点都为对称中心,过最高点或最低点且垂直于x 轴的直线都为对称轴. 函数tan()y A x ωϕ=+的图象与x 轴的交点和渐近线与x 轴的交点都为对称中心,无对称轴. (7)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.(8)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解. 对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点.(9)求三角函数周期的方法 ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.6、关于辅助角公式:()sin cos a b αααϕ+=+:sin cos a b αααα⎫+=+⎪⎭② 二找:由221+=,故可看作同一个角的正余弦(称ϕ为辅助角),如cos ϕϕ==)sin cos cos sin sin cos a b ααϕαϕα+=+③ 三合:利用两角和差的正余弦公式进行合角:()sin cos a b αααϕ+=+注意事项:① 在找角的过程中,一定要找“同一个角”的正余弦,因为合角的理论基础是两角和差的正余弦公式,所以构造的正余弦要同角② 此公式不要死记硬背,找角的要求很低,只需同一个角的正余弦即可,所以可以从不同的角度构造角,从而利用不同的公式进行合角, 7、表达式的化简攻略:可化简的表达式多种多样,很难靠列举一一道明,化简往往能够观察并抓住式子的特点来进行操作,所以说几条适用性广的建议: (1)观察式子:主要看三点① 系统:整个表达式是以正余弦为主,还是正切(大多数情况是正余弦),确定后进行项的统一(有句老话:切割化弦)② 确定研究对象:是以x 作为角来变换,还是以x 的表达式(例如2x )看做一个角来进行变换。

高考数学真题分类解析之三角形 解三角形

高考数学真题分类解析之三角形 解三角形

第四章 三角函数、解三角形考点1 三角函数的概念、同角三角函数基本关系式及诱导公式1.(2018全国卷I ,11) 已知角 的顶点为坐标原点,始边与 轴的非负半轴重合,终边上有两点 , , , ,且,则 A .B .C .D . 解析 : 由 三点共线,从而得到 ,因为,解得,即,所以,故选B. 答案 B2.(2018北京,7)在平面直角坐标系中, ,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是A .AB B .CDC .EFD .GH解析:由下图可得:有向线段OM 为余弦线,有向线段MP 为正弦线,有向线段AT 为正切线.A 选项:当点P 在AB 上时, cos ,sin x y αα==,cos sin αα∴>,故A 选项错误;B 选项:当点P 在CD 上时, cos ,sin x y αα==, tan y x α=, tan sin cos ααα∴>>,故B 选项错误;C 选项:当点P 在EF 上时, cos ,sin x y αα==, tan y xα=, sin cos tan ααα∴>>,故C 选项正确;D 选项:点P 在GH 上且GH 在第三象限, tan 0,sin 0,cos 0ααα><<,故D 选项错误. 综上,故选C. 答案 C3.(2017课标3,4)已知4sin cos 3αα-=,则sin 2α=( ) A .79- B .29- C . 29 D .793.解析 ()2sin cos 17sin 22sin cos 19ααααα--===-- .所以选A.答案 A4. (2017山东,4)已知3cos 4x =,则cos2x =( ) A.14- B.14 C.18- D.184.解析由3cos 4x =得2231cos22cos 12148x x ⎛⎫=-=⨯-= ⎪⎝⎭,故选D.答案D5.(2015·福建,6)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125B.-125C.512D.-512 5.解析 ∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512,故选D.答案 D6.(2014·大纲全国,2)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C.-35 D.-456.解析 记P (-4,3),则x =-4,y =3,r =|OP |=(-4)2+32=5, 故cos α=x r =-45=-45,故选D.答案 D7.(2014·新课标全国Ⅰ,2)若tan α>0,则( ) A.sin α>0 B.cos α>0 C.sin 2α>0 D.cos 2α>07.解析 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号,故sin 2α=2sin α cos α>0,故选C.答案 C8.(2017浙江,11)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积6S ,=6S .8.解析 如图,单位圆内接正六边形由六个边长为1的正三角形组成,所以,正六边形的面积S6=6 .=答案9.(2017北京,9)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=_________.9.解析 因为角α与角β关于y 轴对称,则α+β=π π,所以 π π α α答案 1310.(2017课标3,15)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,bc =3,则A =_________.10.解析 由题意:sin sin b c B C= ,即s i n 2sin 3b C B c ===,结合b c < 可得45B = ,则18075A B C =--=. 答案75°11.(2017江苏,5) 若π1tan(),46α-= 则tan α=.11.解析:由题意可得答案7512.(2017课标1,15)已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________. 12. 解析∵α∈(0,π),tanα=2,∴sinα=,cosα=,∴cos(α- π)=cosαcos π +sinαsin π = ×(+ )= . 答案1013.(2016·新课标全国Ⅰ,14)已知θ是第四象限角,且⎪⎭⎫ ⎝⎛+4sin πθ=35,则⎪⎭⎫ ⎝⎛-4t an πθ=________.13.解析 由题意,得⎪⎭⎫ ⎝⎛+4cos πθ=45,∴⎪⎭⎫ ⎝⎛+4tan πθ=34.∴⎪⎭⎫ ⎝⎛-4tan πθ=⎪⎭⎫ ⎝⎛-+24tan ππθ=-1tan ⎝ ⎛⎭⎪⎫θ+π4=-43.答案 -4314.(2016·四川,11)sin 750°=________.14.解析 ∵sin θ=sin(k ·360°+θ),(k ∈Z ),∴sin 750°=sin(2×360°+30°)=sin 30°=12.答案1215.(2015·四川,13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.15.解析 ∵sin α+2cos α=0, ∴sin α=-2cos α,∴tan α=-2,又∵2sin α cos α-cos 2α=2sin α·cos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1,∴原式=2×(-2)-1(-2)2+1=-1.答案 -116.(2018浙江,18)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (,). (Ⅰ)求sin (α+π)的值;(Ⅱ)若角 满足sin (α+ )=,求cos 的值. 16.(Ⅰ)由角 的终边过点得, 所以 π.(Ⅱ)由角 的终边过点得, 由得.由 得 , 所以或.考点2 三角函数的图象与性质1.(2018全国I 卷,8) 已知函数()222cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为4解析:根据题意有()1cos2x 35cos212cos2222f x x x -=+-+=+, 所以函数()f x 的最小正周期为22T ππ==, 且最大值为()max 35422f x =+=,故选B.答案 B2.(2018全国卷II ,10)若 在 是减函数,则 的最大值是A .B .C .D .解析:因为 π, 所以由 π ππ π,( )得ππ3ππ,( ) 因此 π3ππ3ππ,从而 的最大值为π,选A. 答案 A3.(2018全国卷Ⅲ,6)函数的最小正周期为 A . B .C .D . 解析:由已知得的最小正周期 π故选C. 答案 C4.(2018天津,6)将函数的图象向右平移个单位长度,所得图象对应的函数A .在区间上单调递增 B .在区间上单调递减 C .在区间上单调递增 D .在区间上单调递减解析:由函数的图象平移变换的性质可知: 将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:, 即,令 可得函数的一个单调递增区间为,选项A 正确,B 错误; 函数的单调递减区间满足:,即,令 可得函数的一个单调递减区间为,选项C ,D 错误;本题选择A 选项. 答案 A5.(2017课标3,6)函数1ππ()sin()cos()536f x x x =++-的最大值为( )A .65 B .1 C .35 D .155.解析 由诱导公式可得:cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,则:()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,函数的最大值为65 .答案A6.(2017课标II ,3)函数π()sin(2)3f x x =+的最小正周期为( )A.4πB.2πC. πD.π26.解析 由题意得 π=π答案 C7.(2017天津,7)设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则 ( )A 2π,312ωϕ==B 211π,312ωϕ==-C 111π,324ωϕ==-D 17π,324ωϕ==7. 解析 由f ( π )=2,得π+φ=π+2 π( ∈Z), (1)由f(π)=0,得π+φ= 'π( '∈Z), (2)由(1)(2)得 =-+(k'-2k),又最小正周期T= π>2π,所以0< <1, =,又|φ|<π,将 =代入(1)得φ=π.选项A 符合. 答案A8.(2017山东,7)函数2cos2y x x + 最小正周期为 ( )A.π2 B. 2π3C.πD. 2π8.解析 因为π2cos 22sin 23y x x x ⎛⎫=+=+ ⎪⎝⎭,所以其周期2ππ2T ==,故选C. 答案 C 9.(2017课标II ,13)函数()2c o sf x x x =+的最大值为 . 9.解析()f x ≤=答案10.(2016·新课标全国Ⅰ,6)若将函数y =⎪⎭⎫ ⎝⎛+62sin 2πx 的图象向右平移14个周期后,所得图象对应的函数为( )A.y =⎪⎭⎫ ⎝⎛+42sin 2πxB.y =⎪⎭⎫ ⎝⎛+32sin 2πxC.y =⎪⎭⎫ ⎝⎛-42sin 2πxD.y =⎪⎭⎫ ⎝⎛-32sin 2πx10.解析 函数y =⎪⎭⎫ ⎝⎛+62sin 2πx 的周期为π,将函数y =⎪⎭⎫ ⎝⎛+62sin 2πx 的图象向右平移14个周期即π4个单位,所得函数为y =2⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-642sin ππx =⎪⎭⎫ ⎝⎛-32sin 2πx ,故选D. 答案 D11.(2016·新课标全国卷Ⅱ,3)函数y =A sin( x +φ)的部分图象如图所示,则 ( )A.y =⎪⎭⎫ ⎝⎛-62sin 2πxB.y =⎪⎭⎫ ⎝⎛-32sin 2πxC.y =⎪⎭⎫ ⎝⎛+62sin 2πxD.y =⎪⎭⎫ ⎝⎛+32sin 2πx11解析 由题图可知,T =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-632ππ=π,所以 =2,由五点作图法可知2×π3+φ=π2,所以φ=-π6, 所以函数的解析式为y =⎪⎭⎫ ⎝⎛-62sin 2πx ,故选A.答案 A12.(2016·四川,4)为了得到函数y =⎪⎭⎫ ⎝⎛+3sin πx 的图象,只需把函数y =sin x的图象上所有的点( ) A.向左平行移动π3个单位长度 B.向右平行移动π3个单位长度 C.向上平行移动π3个单位长度 D.向下平行移动π3个单位长度 12.解析 由y =sin x 得到y =sin(x ±a )的图象,只需记住“左加右减”的规则即可. 答案 A13.(2015·新课标全国Ⅰ,8)函数f (x )=cos ( x +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝ ⎛⎭⎪⎫2k π-14,2k π+34,k ∈ZC.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z13.解析 由图象知T 2=54-14=1,∴T =2.由选项知D 正确. 答案 D14.(2015·山东,4)要得到函数y =⎪⎭⎫ ⎝⎛-34sin πx 的图象,只需将函数y =sin 4x的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位14.解析 ∵y =⎪⎭⎫ ⎝⎛-34sin πx =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-124sin πx ,∴要得到函数y =⎪⎭⎫ ⎝⎛-34sin πx 的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 答案 B15.(2014·天津,8)已知函数f (x )=3sin x +cos x ( >0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3C.πD.2π15.解析 由题意得函数f (x )=2⎪⎭⎫ ⎝⎛+6sin πωx ( >0),又曲线y =f (x )与直线y =1相邻交点距离的最小值是π3,由正弦函数的图象知, x +π6=π6和 x +π6=5π6对应的x 的值相差π3,即2π3 =π3,解得 =2, 所以f (x )的最小正周期是T =2π=π.答案 C16.(2014·陕西,2)函数f (x )=)42cos(π+x 的最小正周期是( )A.π2 B.π C.2π D.4π 16.解析 由余弦函数的复合函数周期公式得T =2π2=π. 答案 B17.(2014·四川,3)为了得到函数y =sin(x +1)的图象,只需把函数y =sin x 的图象上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度17.解析 由图象平移的规律“左加右减”,可知选A. 答案 A18.(2014·浙江,4)为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( ) A.向右平移π12个单位 B.向右平移π4个单位 C.向左平移π12个单位 D.向左平移π4个单位 18.解析 因为y =sin 3x +cos 3x =2⎪⎭⎫ ⎝⎛-43cos πx ,所以将y =2cos 3x 的图象向右平移π12个单位后可得到y =2⎪⎭⎫ ⎝⎛-43cos πx 的图象.答案 A19.(2014·安徽,7)若将函数f (x )=sin 2x +cos 2x 的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是( ) A.π8 B.π4 C.3π8 D.3π419.解析 方法一 f (x )=2)42sin(π+x ,将函数f (x )的图象向右平移φ个单位后所得图象对应的函数解析式为y =2)242sin(ϕπ-+x ,由该函数为偶函数可知2φ-π4=k π+π2,k ∈Z , 即φ=k π2+3π8,k ∈Z ,所以φ的最小正值为3π8. 方法二 f (x )=2⎪⎭⎫ ⎝⎛-42cos πx ,将函数f (x )的图象向右平移φ个单位后所得图象对应的函数为y =2⎪⎭⎫⎝⎛--ϕπ242cos x ,且该函数为偶函数,故2φ+π4=k π,k ∈Z , 所以φ的最小正值为3π8. 答案 C20.(2014·新课标全国Ⅰ,7)在函数①y =cos|2x |,②y =|cos x |,③y =)62sin(π+x ,④y =⎪⎭⎫ ⎝⎛-42tan πx 中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③20.解析 ①y =cos|2x |,最小正周期为π;②y =|cos x |,最小正周期为π;③y =)62cos(π+x ,最小正周期为π;④y =⎪⎭⎫ ⎝⎛-42tan πx ,最小正周期为π2,所以最小正周期为π的所有函数为①②③,故选A. 答案 A21.(2014·福建,7)将函数y =sin x 的图象向左平移π2个单位,得到函数y =f (x )的图象,则下列说法正确的是( )A.y =f (x )是奇函数B.y =f (x )的周期为πC.y =f (x )的图象关于直线x =π2对称 D.y =f (x )的图象关于点⎝ ⎛⎭⎪⎫-π2,0对称 21.解析 函数y =sin x 的图象向左平移π2个单位后,得到函数f (x )=)2sin(π+x =cos x 的图象,f (x )=cos x 为偶函数,排除A ;f (x )=cos x 的周期为2π,排除B ;因为⎪⎭⎫⎝⎛2πf =cos π2=0,所以f (x )=cos x 不关于直线x =π2对称,排除C ;故选D. 答案 D22.(2018江苏,7)已知函数的图象关于直线对称,则 的值是________.解析 由题意可得π ,所以π ππ,ππ( ),因为 ππ ,所以 π答案23.(2017浙江,13)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =23解析 取BC 中点E ,DC 中点F ,由题意:,AE BC BF CD ⊥⊥,△ABE 中,1cos 4BE ABC AB ∠==,1cos ,sin 44DBC DBC ∴∠=-∠==,BC 1sin 2D S BD BC DBC ∴=⨯⨯⨯∠=△又21cos 12sin ,sin 44DBC DBF DBF ∴∠=-∠=-∴∠=,cos sin 4BDC DBF ∴∠=∠=,综上可得,△BCD cos BDC ∠=.答案24.(2016·新课标全国Ⅲ,14)函数y =sin x -3cos x 的图象可由函数y =2sinx 的图象至少向右平移________个单位长度得到.24.解析 y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,由y =2sin x 的图象至少向右平移π3个单位长度得到. 答案π325.(2015·天津,11)已知函数f (x )=sin x +cos x ( >0),x ∈R .若函数f (x )在区间(- , )内单调递增,且函数y =f (x )的图象关于直线x = 对称,则 的值为________.25.解析 f (x )=sin x +cos x =2⎪⎭⎫ ⎝⎛+4sin πωx ,由-π2+2k π≤ x +π4≤π2+2k π,k ∈Z ,得-3π4+2k π≤ x ≤π4+2k π,由题意f (x )在区间(- , )内单调递增,可知k =0, ≥π2, 又函数y =f (x )的图象关于直线x = 对称, 所以sin( 2+π4)=1, 2+π4=π2, 所以 =π2. 答案 π226.(2015·陕西,14)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.26.解析 由题干图易得y min =k -3=2,则k =5, ∴y max =k +3=8. 答案 827(2015·湖南,15)已知 >0,在函数y =2sin x 与y =2cos x 的图象的交点中,距离最短的两个交点的距离为23,则 =________. 27.解析 由⎩⎨⎧y =2sin x ,y =2cos x ,知sin x =cos x ,即sin x -cos x =0,∴2⎪⎭⎫ ⎝⎛-4sin πωx 0,∴ x =π4+k π,x =⎪⎭⎫⎝⎛+ππωk 41k ∈Z ), ∴两函数交点坐标为⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛+2,41ππωk (k =0,2,4,…),或⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+2,41ππωk k =…,-3,-1,1,3,…)∴最短距离为(22)2+π22=23,∴π22=4,∴ =π2. 答案 π228.(2014·重庆,13)将函数f (x )=sin( x +φ)( >0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则⎪⎭⎫⎝⎛6πf =________.28.解析 把函数y =sin x 的图象向左平移π6个单位长度得到y =)6sin(π+x 的图象,再把函数y =)6sin(π+x 图象上每一点的横坐标伸长为原来的2倍,纵坐标不变,得到函数f (x )=)621sin(π+x 的图象,所以⎪⎭⎫⎝⎛6πf =)6621sin(ππ+⨯=sin π4=22.答案2229.(2018北京,16)已知函数 . (Ⅰ)求 的最小正周期;(Ⅱ)若 在区间上的最大值为,求 的最小值. 解析:(Ⅰ)π,所以 的最小正周期为ππ.(Ⅱ)由(Ⅰ)知 π. 因为π,所以π5π π.要使得 在 π上的最大值为,即 π在π上的最大值为1. 所以ππ ,即 π.所以 的最小值为π.30.(2018江苏,17)某农场有一块农田,如图所示,它的边界由圆 的一段圆弧 ( 为此圆弧的中点)和线段 构成.已知圆 的半径为40米,点 到的距离为50米.现规划在此农田上修建两个温室大棚,大棚内的地块形状为矩形,大棚内的地块形状为,要求均在线段上,均在圆弧上.设与所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚内种植甲种蔬菜,大棚内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.解析(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.).令∠GOK=θ0,则sinθ0=,θ0∈(0,π6当θ∈[θ0,π)时,才能作出满足条件的矩形ABCD,2所以sinθ的取值范围是[1,1).4答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[1,1).4(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)).=8000k(sinθcosθ+cosθ),θ∈[θ0,π2设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则. 令 = ,得θ=π6,当θ∈(θ0,π6)时, > ,所以f (θ)为增函数; 当θ∈(π6,π2)时, < ,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.31.(2017浙江,18)(本题满分14分)已知函数f (x )=sin 2x –cos 2x –x cos x (x ∈R ).(Ⅰ)求)32(πf 的值. (Ⅱ)求)(x f 的最小正周期及单调递增区间.解析 试题分析:(Ⅰ)由函数概念32cos 32sin 3232cos 32sin )32(22πππππ--=f ,分别计算可得;(Ⅱ)化简函数关系式得)sin(ϕω+=x A y ,结合ωπ2=T 可得周期,利用正弦函数的性质求函数的单调递增区间. (Ⅰ)由sin,cos= =, f()=()2-(- )2-2 ×(-),得f()=2.(Ⅱ)由cos 2x=cos2x-sin2x 与sin 2x=2sin xcos x 得 f(x)=-cos 2x- sin 2x=-2sin(2x+). 所以f(x)的最小正周期是π.由正弦函数的性质得+2 π≤2x+ ≤+2 π, ∈Z,解得 + π≤x≤+ π, ∈Z,所以,f(x)的单调递增区间是[+ π,+ π]( ∈Z).答案 (Ⅰ)2;(Ⅱ)最小正周期为π,单调递增区间为[+ π,+ π]( ∈Z).32.(2015·湖北,18)某同学用“五点法”画函数f (x )=A sin( x +φ),⎝⎛⎭⎪⎫ >0,|φ|<π2在某一个周期内的图象时,列表并填入部分数据,如下表:(1)f (x )的解析式;(2)将y =f (x )图象上所有点向左平移π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.解 (1)根据表中已知数据,解得A =5, =2,φ=-π6.数据补全如下表:且函数表达式为f (x )=5)62sin(-x .(2)由(1)知f (x )=5)62sin(π-x ,因此g (x )=5)6)6(2sin(ππ-+x =5)62sin(π+x .因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,解得x =k π2-π12,k ∈Z . 即y =g (x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝ ⎛⎭⎪⎫-π12,0.33.(2014·湖北,18)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cosπ12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.解 (1)f (8)=10-3cos ⎝ ⎛⎭⎪⎫π12×8-sin ⎝ ⎛⎭⎪⎫π12×8 =10-3cos2π3-sin 2π3=10-3×⎝ ⎛⎭⎪⎫-12-32=10.故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.34.(2014·四川,17)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝ ⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.解 (1)由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,有sin ⎝⎛⎭⎪⎫α+π4=45cos ⎝ ⎛⎭⎪⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝ ⎛⎭⎪⎫cos αcos π4-sin αsin π4(cos 2 α-sin 2 α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角,知α=3π4+2k π,k ∈Z ,此时cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54.由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或cos α-sin α=-52.35.(2014·福建,18)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝ ⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间. 解 f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝ ⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2.(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .36.(2014·北京,16)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.解 (1)f (x )的最小正周期为π,x 0=7π6,y 0=3.(2)因为x ∈⎣⎢⎡⎦⎥⎤-π2,-π12,所以2x +π6∈⎣⎢⎡⎦⎥⎤-5π6,0. 于是当2x +π6=0,即x =-π12时,f (x )取得最大值0; 当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3. 考点3 三角恒等变换1.(2018全国卷Ⅲ,4)若,则 A .B .C .D .解析:故答案为B. 答案B2.(2016·新课标全国Ⅲ,6)若tan θ=-13,则cos 2θ=( )A.-45B.-15C.15D.452.解析 tan θ=-13,则cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45. 答案 D3.(2016·新课标全国Ⅱ,11)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A.4 B.5 C.6D.73.解析 因为f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112, 所以当sin x =1时函数的最大值为5,故选B. 答案 B4.(2015·重庆,6)若tan α=13,tan(α+ )=12,则tan =( )A.17B.16 C.57 D.564.解析 tan =tan[(α+ )-α]=tan (α+ )-tan α1+tan (α+ )tan α=12-131+12×13=17.答案 A5.(2018全国卷II ,15)已知,则 __________.解析:,解方程得. 答案6.(2016·浙江,11)已知2cos 2x +sin 2x =A sin( x +φ)+b (A >0),则A =________,b =________.6.解析 ∵2cos 2x +sin 2x =cos 2x +1+sin 2x =2⎝ ⎛⎭⎪⎫22cos 2x +22sin 2x +1=2sin⎝ ⎛⎭⎪⎫2x +π4+1 =A sin( x +φ)+b (A >0), ∴A =2,b =1. 答案 2 17.(2018江苏,16)已知 为锐角,,.(1)求 的值;(2)求 的值.解析(1)因为 , ,所以. 因为 ,所以, 因此,. (2)因为 为锐角,所以 π . 又因为,所以, 因此 . 因为,所以,因此,+tan8.(2017北京,16)已知函数()3cos(2)2sin cos 3f x x -x x π=-.(I )f (x )的最小正周期; (II )求证:当[,]44x ππ∈-时,()12f x ≥-. 8.解析(Ⅰ)31π()2sin 2sin 2sin 22sin(2)223f x x x x x x x =+-==+. 所以()f x 的最小正周期2ππ2T ==. (Ⅱ)因为ππ44x -≤≤, 所以ππ5π2636x -≤+≤.所以ππ1sin(2)sin()362x +≥-=-.所以当ππ[,]44x ∈-时,1()2f x ≥-.答案 (Ⅰ)π ;(Ⅱ)详见解析.9.(2016·山东,17)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求⎪⎭⎫⎝⎛6πg 的值.9.解 (1)由f (x )=23sin(π-x )sin x -(sin x -cos x )2 =23sin 2x -(1-2sin x cos x ) =3(1-cos 2x )+sin 2x -1 =sin 2x -3cos 2x +3-1 =2sin ⎝⎛⎭⎪⎫2x -π3+3-1. 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ). 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )⎝ ⎛⎭⎪⎫或⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ).(2)由(1)知f (x )=2sin ⎝⎛⎭⎪⎫2x -π3+3-1,把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), 得到y =2sin ⎝ ⎛⎭⎪⎫x -π3+3-1的图象.再把得到的图象向左平移π3个单位,得到y =2sin x +3-1的图象, 即g (x )=2sin x +3-1.所以g ⎝ ⎛⎭⎪⎫π6=2sin π6+3-1= 3.10.(2016·北京,16)已知函数f (x )=2sin x cos x +cos 2 x ( >0)的最小正周期为π. (1)求 的值;(2)求f (x )的单调递增区间.10.解 (1)f (x )=2sin x ·cos x +cos 2 x =sin 2 x +cos 2 x=2⎝ ⎛⎭⎪⎫22sin 2 x +22cos 2 x=2sin ⎝⎛⎭⎪⎫2 x +π4由 >0,f (x )最小正周期为π得2π2 =π,解得 =1.(2)由(1)得f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4,令-π2+2k π≤2x +π4≤π2+2k π,k ∈Z ,解得-3π8+k π≤x ≤π8+k π,k ∈Z ,即f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z ).11.(2015·广东,16)已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.11.解 (1)tan ⎝⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=tan α+11-tan α=2+11-2=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α =2tan αtan 2α+tan α-2 =2×222+2-2 =1.12.(2015·北京,15)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值. 12.解 (1)因为f (x )=sin x +3cos x - 3. =2sin ⎝⎛⎭⎪⎫x +π3- 3.所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3时,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.13.(2015·福建,21)已知函数f (x )=103sin x 2cos x 2+10cos 2x2.(1)求函数f (x )的最小正周期; (2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2. ①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.13.(1)解 因为f (x )=103sin x 2cos x2+10cos 2x2=53sin x +5cos x +5 =10sin ⎝⎛⎭⎪⎫x +π6+5,所以函数f (x )的最小正周期T =2π. (2)证明 ①将f (x )的图象向右平移π6个单位长度后得到y =10sin x +5的图象,再向下平移a(a >0)个单位长度后得到g (x )=10sin x +5-a 的图象. 又已知函数g (x )的最大值为2,所以10+5-a =2,解得a =13. 所以g (x )=10sin x -8.②要证明存在无穷多个互不相同的正整数x 0,使得g (x 0)>0,就是要证明存在无穷多个互不相同的正整数x 0,使得10sin x 0-8>0,即sin x 0>45.由45<32知,存在0<α0<π3,使得sin α0=45. 由正弦函数的性质可知,当x ∈(α0,π-α0)时,均有sin x >45.因为y =sin x 的周期为2π,所以当x ∈(2k π+α0,2k π+π-α0)(k ∈Z )时,均有sin x >45.因为对任意的整数k ,(2k π+π-α0)-(2k π+α0)=π-2α0>π3>1, 所以对任意的正整数k ,都存在正整数x 0∈(2k π+α0,2k π+π-α0),使得sin x k >45.亦即,存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.14.(2014·广东,16)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫x +π3,x ∈R ,且f ⎝ ⎛⎭⎪⎫5π12=322.(1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫π6-θ.14.解 (1)∵f (x )=A sin ⎝ ⎛⎭⎪⎫x +π3,且f ⎝ ⎛⎭⎪⎫5π12=322,∴Asin ⎝ ⎛⎭⎪⎫5π12+π3=322⇒Asin 3π4=322⇒A =3. (2)由(1)知f(x)=3sin ⎝ ⎛⎭⎪⎫x +π3,∵f (θ)-f (-θ)=3, ∴3sin(θ+π3)-3sin ⎝⎛⎭⎪⎫-θ+π3=3,展开得3⎝ ⎛⎭⎪⎫12sin θ+32cos θ-3⎝ ⎛⎭⎪⎫32cos θ-12sin θ=3,化简得sin θ=33.∵θ∈⎝⎛⎭⎪⎫0,π2,∴cos θ=63.∴f ⎝⎛⎭⎪⎫π6-θ=3sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π6-θ+π3=3sin ⎝ ⎛⎭⎪⎫π2-θ=3cos θ= 6.15.(2014·浙江,18)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知4sin2A -B2+4sin A sin B =2+ 2. (1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值.15.解 (1)由已知得2[1-cos(A -B)]+4sin Asin B =2+2, 化简得-2cos Acos B +2sin Asin B =2, 故cos(A +B)=-22.所以A +B =3π4,从而C =π4.(2)因为S△ABC=12absin C,由S△ABC=6,b=4,C=π4,得a=32,由余弦定理c2=a2+b2-2abcos C,得c=10.考点4 正, 余弦定理及解三角形1.(2018全国卷Ⅲ,11)的内角 , , 的对边分别为,,,若的面积为,则A.π B.π C.π D.π解析:由题可知,所以,由余弦定理,所以,,。

历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编考点01 求面积的值及范围或最值1.(2024∙北京∙高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.2.(2023∙全国甲卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ; (2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.3.(2023∙全国乙卷∙高考真题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.4.(2022∙浙江∙高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.考点02 求边长、周长的值及范围或最值1.(2024∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =. (1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.2.(2024∙全国新Ⅰ卷∙高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .3.(2023∙全国新Ⅱ卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABCD 为BC 中点,且1AD =.(1)若π3ADC ∠=,求tan B ; (2)若228b c +=,求,b c .4.(2022∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123123S S S B -+==. (1)求ABC 的面积;(2)若sin sin 3A C =,求b . 5.(2022∙全国乙卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长.6.(2022∙北京∙高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.7.(2022∙全国新Ⅰ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c +的最小值.8.(2020∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin AC C . 9.(2020∙全国∙高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin .C(1)求A ;(2)若BC =3,求ABC 周长的最大值.考点03 求角和三角函数的值及范围或最值1.(2024∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,. (1)求a ; (2)求sin A ;(3)求()cos 2B A -的值.2.(2023∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别是,,a b c .已知2,120a b A ==∠= . (1)求sin B 的值; (2)求c 的值; (3)求()sin B C -的值.3.(2022∙天津∙高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.4.(2021∙天津∙高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =. (I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.5.(2021∙全国新Ⅰ卷∙高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.6.(2020∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知 5,a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.7.(2020∙浙江∙高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.8.(2020∙江苏∙高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.考点04 求三角形的高、中线、角平分线及其他线段长1.(2023∙全国新Ⅰ卷∙高考真题)已知在ABC 中,()3,2sin sin A B C A C B +=-=. (1)求sin A ;(2)设5AB =,求AB 边上的高.考点05 三角形中的证明问题1.(2022∙全国乙卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ; (2)证明:2222a b c =+2.(2021∙全国新Ⅰ卷∙高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.参考答案考点01 求面积的值及范围或最值1.(2024∙北京∙高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积. 条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分. 【答案】(1)2π3A =; (2)选择①无解;选择②和③△ABC【详细分析】(1)利用正弦定理即可求出答案; (2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【答案详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角, 则cos 0B ≠,则2sin 7B b =,则7sin sin sin b a BA A ===,解得sin 2A =, 因为A 为钝角,则2π3A =. (2)选择①7b =,则sin 7B ===2π3A =,则B 为锐角,则3B π=, 此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin 14B ==,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B ⎛⎫=+=+=+ ⎪⎝⎭131********⎛⎫=+-⨯= ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯=选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C ,解得sin C =,因为C 为三角形内角,则11cos 14C ==, 则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭11121421414⎛⎫=+-⨯= ⎪⎝⎭,则11sin 7522144ABC S ac B ==⨯⨯⨯=△ 2.(2023∙全国甲卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc ; (2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.【答案】(1)1(2)4【详细分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出sin A 即可得到三角形面积,对等式恒等变换,即可解出.【答案详解】(1)因为2222cos a b c bc A =+-,所以2222cos 22cos cos b c a bc Abc A A+-===,解得:1bc =.(2)由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A Ba Bb Ac A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B BA B A B A B ---=-==+++,变形可得:()()sin sin sin A B A B B --+=,即2cos sin sin A B B -=,而0sin 1B <≤,所以1cos 2A =-,又0πA <<,所以sin 2A =,故ABC的面积为11sin 122ABC S bc A ==⨯△.3.(2023∙全国乙卷∙高考真题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积. 【答案】(1)14;【详细分析】(1)首先由余弦定理求得边长BC的值为BCcos 14B =,最后由同角三角函数基本关系可得sin 14B =; (2)由题意可得4ABDACD S S =△△,则15ACD ABC S S =△△,据此即可求得ADC △的面积. 【答案详解】(1)由余弦定理可得:22222cos BC a b c bc A ==+-41221cos1207=+-⨯⨯⨯= ,则BC =222cos 214a c b B ac +-===,sin ABC ∠==(2)由三角形面积公式可得1sin 90241sin 302ABD ACDAB AD S S AC AD ⨯⨯⨯==⨯⨯⨯ △△,则11121sin12055210ACD ABC S S ⎛⎫==⨯⨯⨯⨯=⎪⎝⎭△△. 4.(2022∙浙江∙高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积. 【答案】;(2)22.【详细分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab +-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【答案详解】(1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin 45A C ==. (2)因为4a ,由余弦定理,得2222221612111355cos 22225a a aa b c C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=.5.(2019∙全国∙高考真题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2). 【详细分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABC S ac B =⋅ ,又根据正弦定理和1c =得到ABC S 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABC S C 的值域.【答案详解】(1)[方法一]【最优解:利用三角形内角和为π结合正弦定理求角度】 由三角形的内角和定理得222A C Bπ+=-, 此时sinsin 2A C a b A +=就变为sin sin 22B a b A π⎛⎫-= ⎪⎝⎭. 由诱导公式得sin cos 222B B π⎛⎫-= ⎪⎝⎭,所以cos sin 2B a b A =.在ABC 中,由正弦定理知2sin ,2sin a R A b R B ==, 此时就有sin cossin sin 2BA AB =,即cos sin 2B B =,再由二倍角的正弦公式得cos2sin cos 222B B B=,解得3B π=. [方法二]【利用正弦定理解方程求得cos B 的值可得B ∠的值】 由解法1得sin sin 2A CB +=, 两边平方得22sinsin 2A CB +=,即21cos()sin 2A CB -+=. 又180A BC ++=︒,即cos()cos A C B +=-,所以21cos 2sin B B +=, 进一步整理得22cos cos 10B B +-=, 解得1cos 2B =,因此3B π=. [方法三]【利用正弦定理结合三角形内角和为π求得,,A BC 的比例关系】 根据题意sinsin 2A Ca b A +=,由正弦定理得sin sin sin sin 2A C A B A +=, 因为0A π<<,故sin 0A >, 消去sin A 得sin sin 2A CB +=. 0<B π<,02A C π+<<,因为故2A C B +=或者2A CB π++=, 而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=, 又因为A BC π++=,代入得3B π=,所以3B π=.(2)[方法一]【最优解:利用锐角三角形求得C 的范围,然后由面积函数求面积的取值范围】 因为ABC 是锐角三角形,又3B π=,所以,6262A C ππππ<<<<, 则1sin 2ABCS ac B ==V 22sin 1sin 3sin 24sin 4sin C a A c B c C Cπ⎛⎫- ⎪⎝⎭⋅⋅=⋅=⋅=22sincos cos sin 333sin 8tan C CC C ππ-=. 因为,62C ππ⎛⎫∈ ⎪⎝⎭,所以tan C ⎫∈+∞⎪⎪⎝⎭,则1tan C ∈,从而ABC S ⎝⎭∈ ,故ABC面积的取值范围是82⎫⎪⎪⎝⎭. [方法二]【由题意求得边a 的取值范围,然后结合面积公式求面积的取值范围】 由题设及(1)知ABC的面积4ABC S a =△. 因为ABC 为锐角三角形,且1,3c B π==,所以22221cos 0,21cos 0,2b a A bb a C ab ⎧+-=>⎪⎪⎨+-⎪=>⎪⎩即22221010.b a b a ⎧+->⎨+->⎩, 又由余弦定理得221b a a =+-,所以220,20,a a a ->⎧⎨->⎩即122a <<,所以82ABC S << ,故ABC面积的取值范围是⎝⎭. [方法三]【数形结合,利用极限的思想求解三角形面积的取值范围】如图,在ABC 中,过点A 作1AC BC ⊥,垂足为1C ,作2AC AB ⊥与BC 交于点2C . 由题设及(1)知ABC的面积ABC S =△,因为ABC 为锐角三角形,且1,3c B π==,所以点C 位于在线段12C C 上且不含端点,从而cos cos cc B a B⋅<<, 即1cos3cos 3a ππ<<,即122a <<,所以82ABC S << , 故ABC面积的取值范围是82⎛⎫⎪ ⎪⎝⎭.【整体点评】(1)方法一:正弦定理是解三角形的核心定理,与三角形内角和相结合是常用的方法; 方法二:方程思想是解题的关键,解三角形的问题可以利用余弦值确定角度值; 方法三:由正弦定理结合角度关系可得内角的比例关系,从而确定角的大小. (2)方法一:由题意结合角度的范围求解面积的范围是常规的做法;方法二:将面积问题转化为边长的问题,然后求解边长的范围可得面积的范围;方法三:极限思想和数形结合体现了思维的灵活性,要求学生对几何有深刻的认识和灵活的应用.6.(2017∙全国∙高考真题)ABC ∆的内角,,A B C 的对边分别为,,,a b c已知sin 0,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积. 【答案】(1)23π,4;(2【答案详解】试题详细分析:(1)先根据同角的三角函数的关系求出tan A = 从而可得A 的值,再根据余弦定理列方程即可求出边长c 的值;(2)先根据余弦定理求出cos C ,求出CD 的长,可得12CD BC =,从而得到12ABD ABC S S ∆∆=,进而可得结果. 试题解析:(1)sin 0,tan A A A =∴= 20,3A A ππ<<∴=,由余弦定理可得2222cos a b c bc A =+-,即21284222c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,即22240c c +-=,解得6c =-(舍去)或4c =,故4c =. (2)2222cos c b a ab C =+-Q,1628422cos C ∴=+-⨯⨯,2cos 2cos AC C CD C ∴=∴===12CD BC ∴=,1142222ABC S AB AC sin BAC ∆∴=⋅⋅∠=⨯⨯⨯=12ABD ABC S S ∆∆∴==7.(2016∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=. (1)求角C ;(2)若c =2ABC S ∆=,求ABC ∆的周长. 【答案】(1)3C π=(2)5【答案详解】试题详细分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C += 12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C (2)11sin 6222∆=⇒=⇒=ABC S ab C ab ab又2222cos +-= a b ab C c2213a b ∴+=,2()255∴+=⇒+=a b a bABC ∆∴的周长为5考点:正余弦定理解三角形.8.(2015∙浙江∙高考真题)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan()24A π+=.(1)求2sin 2sin 2cos AA A+的值;(2)若,34B a π==,求ABC ∆的面积. 【答案】(1)25;(2)9 【答案详解】(1)利用两角和与差的正切公式,得到1tan 3A =,利用同角三角函数基本函数关系式得到结论;(2)利用正弦定理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积.试题解析:(1)由tan()24A π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin 5C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=. 考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.9.(2015∙全国∙高考真题)已知,,a b c 分别是ABC ∆内角,,A B C 的对边, 2sin 2sin sin B A C =. (1)若a b =,求cos ;B(2)若90B = ,且a =求ABC ∆的面积. 【答案】(1)14;(2)1 【答案详解】试题详细分析:(1)由2sin 2sin sin B A C =,结合正弦定理可得:22b ac =,再利用余弦定理即可得出cos ;B(2)利用(1)及勾股定理可得c ,再利用三角形面积计算公式即可得出 试题解析:(1)由题设及正弦定理可得22b ac = 又a b =,可得2,2b c a c ==由余弦定理可得2221cos 24a c b B ac +-==(2)由(1)知22b ac =因为90B = ,由勾股定理得222a c b += 故222a c ac +=,得c a == 所以的面积为1考点:正弦定理,余弦定理解三角形10.(2015∙山东∙高考真题)设()2sin cos cos 4f x x x x π⎛⎫=-+ ⎪⎝⎭.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.【答案】(Ⅰ)单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(Ⅱ)ABC ∆【答案详解】试题详细分析:(Ⅰ)首先利用二倍角公式化简函数()f x 的解析式,再利用正弦函数的单调性求其单调区间;(Ⅱ)首先由02A f ⎛⎫= ⎪⎝⎭结合(Ⅰ)的结果,确定角A 的值,然后结合余弦定理求出三角形ABC ∆面积的最大值. 试题解析:解:(Ⅰ)由题意知()1cos 2sin 2222x x f x π⎛⎫++ ⎪⎝⎭=-sin 21sin 21sin 2222x x x -=-=- 由222,22k x k k Z ππππ-+≤≤+∈ 可得,44k x k k Z ππππ-+≤≤+∈由3222,22k x k k Z ππππ+≤≤+∈ 可得3,44k x k k Z ππππ+≤≤+∈所以函数()f x 的单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ (Ⅱ)由1sin 0,22A f A ⎛⎫=-= ⎪⎝⎭得1sin 2A =由题意知A 为锐角,所以cos 2A =由余弦定理:2222cos a b c bc A =+-可得:2212b c bc =+≥即:2bc ≤ 当且仅当b c =时等号成立.因此1sin 2bc A ≤所以ABC ∆面积的最大值为24考点:1、诱导公式;2、三角函数的二倍角公式;3、余弦定理;4、基本不等式.考点02 求边长、周长的值及范围或最值1.(2024∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =. (1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长. 【答案】(1)π6A =(2)2+【详细分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决; (2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长. 【答案详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 12A A =,即sin()1π3A +=,由于ππ4π(0,π)(,333A A ∈⇒+∈,故ππ32A +=,解得π6A = 方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=⇔=,解得cos A = 又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos f A A A '==,即tan A = 又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A == ,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==, 则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=, 又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21t A A t ==+整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-, 又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=, 由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412b c==,解得b c == 故ABC的周长为2+2.(2024∙全国新Ⅰ卷∙高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3c . 【答案】(1)π3B =(2)【详细分析】(1)由余弦定理、平方关系依次求出cos ,sin C C,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【答案详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 222a b c C ab ab +-===, 因为()0,πC ∈,所以sin 0C >,从而sin 2C ===,又因为sin C B =,即1cos 2B =, 注意到()0,πB ∈, 所以π3B =. (2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而1,4222a cbc +====, 由三角形面积公式可知,ABC 的面积可表示为21113sin 222228ABC S ab C c c ==⋅⋅= , 由已知ABC的面积为323=所以c =3.(2023∙全国新Ⅱ卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABCD 为BC 中点,且1AD =. (1)若π3ADC ∠=,求tan B ; (2)若228b c +=,求,b c . 【答案】(2)2b c ==.【详细分析】(1)方法1,利用三角形面积公式求出a ,再利用余弦定理求解作答;方法2,利用三角形面积公式求出a ,作出BC 边上的高,利用直角三角形求解作答.(2)方法1,利用余弦定理求出a ,再利用三角形面积公式求出ADC ∠即可求解作答;方法2,利用向量运算律建立关系求出a ,再利用三角形面积公式求出ADC ∠即可求解作答. 【答案详解】(1)方法1:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=⨯⨯===,解得4a =, 在ABD △中,2π3ADB ∠=,由余弦定理得2222cos c BD AD BD AD ADB =+-⋅∠, 即2141221()72c =+-⨯⨯⨯-=,解得c =cos 14B ==,sin B ===,所以sin tan cos 5B B B ==. 方法2:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=⨯⨯===,解得4a =, 在ACD 中,由余弦定理得2222cos b CD AD CD AD ADC =+-⋅∠,即214122132b =+-⨯⨯⨯=,解得b =,有2224AC AD CD +==,则π2CAD ∠=,π6C =,过A 作AE BC ⊥于E,于是3cos ,sin 2CE AC C AE AC C ====,52BE =,所以tan 5AE B BE ==. (2)方法1:在ABD △与ACD 中,由余弦定理得222211121cos(π)4211121cos 42c a a ADC b a a ADC ⎧=+-⨯⨯⨯-∠⎪⎪⎨⎪=+-⨯⨯⨯∠⎪⎩,整理得222122a b c +=+,而228b c +=,则a =,又11sin 22ADC S ADC =⨯∠=,解得sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.方法2:在ABC 中,因为D 为BC 中点,则2AD AB AC =+ ,又CB AB AC =-,于是2222224()()2()16AD CB AB AC AB AC b c +=++-=+= ,即2416a +=,解得a =,又11sin 2ADC S ADC =⨯∠ sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.4.(2022∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S,已知123123S S S B -+==. (1)求ABC 的面积; (2)若sin sin 3A C =,求b . 【答案】(2)12【详细分析】(1)先表示出123,,S S S,再由1232S S S -+=求得2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB AC =,即可求解.【答案详解】(1)由题意得22221231,,22444S a a S b S c =⋅⋅===,则222123S S S -+==, 即2222a c b +-=,由余弦定理得222cos 2a c b B ac +-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则cos 3B ==,1cos 4ac B ==,则1sin 28ABC S ac B == ; (2)由正弦定理得:sin sin sin b a c B A C ==,则229sin sin sin sin sin 43b ac ac B A C A C =⋅==,则3sin 2b B =,31sin 22b B ==. 5.(2022∙全国乙卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 【答案】(1)见解析 (2)14【详细分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证; (2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. 【答案详解】(1)证明:因为()()sin sin sin sin C A B B C A -=-, 所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅, 即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+;(2)解:因为255,cos 31a A ==, 由(1)得2250bc +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=.6.(2022∙北京∙高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长. 【答案】(1)6π(2)6+【详细分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.【答案详解】(1)解:因为()0,C π∈,则sin 0C >2sin cos C C C =,可得cos 2C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 22ABC S ab C a === ,解得a =.由余弦定理可得2222cos 48362612c a b ab C =+-=+-⨯=,c ∴=所以,ABC 的周长为6a b c ++=.7.(2022∙全国新Ⅰ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c +的最小值.【答案】(1)π6;(2)5.【详细分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出. 【答案详解】(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-,所以30,,,424B C πππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以222222222sin sin cos 21cos sin cos a b A B B Bc C B +++-==()2222222cos 11cos 24cos 555cos cos B BB BB-+-==+-≥=.当且仅当2cos B =222a b c +的最小值为5. 8.(2020∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin AC =2,求C . 【答案】(1(2)15︒.【详细分析】(1)已知角B 和b 边,结合,a c 关系,由余弦定理建立c 的方程,求解得出,a c ,利用面积公式,即可得出结论;(2)方法一 :将30A C =︒-代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【答案详解】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B == (2)[方法一]:多角换一角 30A C +=︒ ,sin sin(30)A C C C ∴=︒-1cos sin(30)22C C C ==+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒. [方法二]:正弦角化边由正弦定理及150B =︒得22sin sin sin ====a c bR b A C B.故sin ,sin 22==a c A C b b .由sin 2A C =,得a +=.又由余弦定理得22222cos =+-⋅=+b a c ac B a 2+c ,所以()222()2=++a a c ,解得a c =.所以15=︒C .【整体点评】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.其中第二问法一主要考查三角恒等变换解三角形,法二则是通过余弦定理找到三边的关系,进而求角.9.(2020∙全国∙高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin .C(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【详细分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【答案详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法)设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b cA B C===,所以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤,当且仅当0α=,即6B C π==时,等号成立.此时ABC周长的最大值为3+ [方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭,易知当6C π=时,max ()b c +=所以ABC周长的最大值为3+【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.10.(2018∙全国∙高考真题)在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠; (2)若DC =,求BC . 【答案】(1)5;(2)5. 【详细分析】(1)方法一:根据正弦定理得到sin sin BD AB A ADB =∠∠,求得sin 5ADB ∠=,结合角的范围,利用同角三角函数关系式,求得cos 5ADB ∠==;(2)方法一:根据第一问的结论可以求得cos sin 5BDC ADB ∠=∠=,在BCD △中,根据余弦定理即可求出.【答案详解】(1)[方法1]:正弦定理+平方关系在ABD △中,由正弦定理得sin sin BD AB A ADB =∠∠,代入数值并解得sin 5ADB ∠=.又因为BD AB >,所以A ADB ∠>∠,即ADB ∠为锐角,所以cos 5ADB ∠=. [方法2]:余弦定理在ABD △中,2222cos 45BD AB AD AB AD =+-⋅ ,即2254222AD AD =+-⨯⨯⨯,解得:AD =所以,2254cos5ADB +-∠==. [方法3]:【最优解】利用平面几何知识如图,过B 点作BE AD ⊥,垂足为E ,BF CD ⊥,垂足为F .在Rt AEB 中,因为45A ∠=︒,=2AB ,所以AE BE ==.在Rt BED △中,因为5BD =,则DE ===.所以cos ADB ∠=[方法4]:坐标法以D 为坐标原点,DC 为x 轴,DA为y 轴正方向,建立平面直角坐标系(图略).设BDC α∠=,则(5cos ,5sin )B αα.因为45A ∠=︒,所以(0,5sin A α.从而2AB ==,又α是锐角,所以cos 5α=,cos sin ADB α∠===(2)[方法1]:【通性通法】余弦定理在BCD △,由(1)得,cos 5ADB ∠=,()2222cos 90BC BD DC BD DC ADB︒=+-⋅-∠2252525ADB =+-⨯⨯∠=,所以=5BC .[方法2]:【最优解】利用平面几何知识作BF DC ⊥,垂足为F ,易求,BF =FC =,由勾股定理得=5BC .【整体点评】(1)方法一:根据题目条件已知两边和一边对角,利用正弦定理和平方关系解三角形,属于通性通法;方法二:根据题目条件已知两边和一边对角,利用余弦定理解三角形,也属于通性通法; 方法三:根据题意利用几何知识,解直角三角形,简单易算.方法四:建立坐标系,通过两点间的距离公式,将几何问题转化为代数问题,这是解析思想的体现. (2)方法一:已知两边及夹角,利用余弦定理解三角形,是通性通法. 方法二:利用几何知识,解直角三角形,简单易算.11.(2017∙全国∙高考真题)△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2) 3【答案详解】试题详细分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC 的周长为3+试题解析:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A =. 故2sin sin 3B C =. (2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +故ABC 的周长为3+点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.12.(2017∙山东∙高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .【答案】34A π=,a =【答案详解】试题详细分析:先由数量积公式及三角形面积公式得3cos 613sin 32c A c A =-⎧⎪⎨⨯=⎪⎩,由此求A ,再利用余弦定理求a .试题解析:因为6AB AC ⋅=-, 所以cos 6bc A =-, 又3ABC S =△, 所以sin 6bc A =,因此tan 1A =-,又0πA <<, 所以3π4A =, 又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(a =+-⨯⨯,所以a = 【考点】解三角形【名师点评】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.13.(2017∙全国∙高考真题)△ABC 的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin2B AC +=.(1)求cos B ;(2)若6a c +=,△ABC 的面积为2,求b . 【答案】(1)1517;(2)2. 【答案详解】试题详细分析:(1)利用三角形的内角和定理可知A C B π+=-,再利用诱导公式化简()sin A C +,利用降幂公式化简28sin 2B,结合22sin cos 1B B +=,求出cos B ;(2)由(1)可知8sin 17B =,利用三角形面积公式求出ac ,再利用余弦定理即可求出b . 试题解析:(1)()2sin 8sin2BA C +=,∴()sin 41cosB B =-,∵22sin cos 1B B +=, ∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =; (2)由(1)可知8sin 17B =, ∵1sin 22ABC S ac B =⋅=,∴172ac =, ∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=, ∴2b =.14.(2016∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =ABC S ∆=ABC ∆的周长.【答案】(1)3C π=(2)5【答案详解】试题详细分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C += 12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 622∆=⇒=⇒=ABC S ab C ab ab 又2222cos +-= a b ab C c2213a b ∴+=,2()255∴+=⇒+=a b a bABC ∆∴的周长为5考点:正余弦定理解三角形.15.(2015∙浙江∙高考真题)在ABC ∆中,内角 A ,B , C 所对的边分别为a , b ,c ,已知 4A π=,22b a -=122c .(1)求tan C 的值;(2)若ABC ∆的面积为3,求 b 的值. 【答案】(1)2;(2)3b =.【答案详解】(1)根据正弦定理可将条件中的边之间的关系转化为角之间满足的关系,再将式 子作三角恒等变形即可求解;(2)根据条件首先求得sin B 的值,再结合正弦定理以及三角 形面积的计算公式即可求解.试题解析:(1)由22212b a c -=及正弦定理得2211sin sin 22B C -=, ∴2cos 2sin B C -=,又由4A π=,即34B C π+=,得cos 2sin 22sin cos B C C C -==,解得tan 2C =;(2)由tan 2C =,(0,)C π∈得sin 5C =,cos 5C =,又∵sin sin()sin()4B A C C π=+=+,∴sin B =3c b =,又∵4A π=,1sin 32bc A =,∴bc =3b =. 考点:1.三角恒等变形;2.正弦定理.16.(2015∙山东∙高考真题)ABC 中,角A B C ,,所对的边分别为,,a b c .已知cos ()39B A B ac =+==求sin A 和c 的值.【答案】,1.3【详细分析】由条件先求得sin sin C A ,,再由正弦定理即可求解.【答案详解】在ABC 中,由cos 3B =,得sin 3B =.因为A B C π++=,所以sin sin()9C A B =+=,因为sin sin C B <,所以C B <,C 为锐角,cos 9C =,因此sin sin()sin cos cos sin A B C B C B C =+=+39393=⨯+⨯=.由sin sin a c A C =,可得sin sin 9cc A a C ===,又ac =1c =.考点03 求角和三角函数的值及范围或最值1.(2024∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,. (1)求a ; (2)求sin A ;(3)求()cos 2B A -的值.【答案】(1)4(2)4 (3)5764【详细分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【答案详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍); 则4,6a c ==.(2)法一:因为B为三角形内角,所以sin B ===再根据正弦定理得sin sin a b A B =,即4sin A =sin A =法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭, 由(2)法一知sin 16B =,。

第三章 三角函数、解三角形 复习讲义

第三章 三角函数、解三角形 复习讲义

第1节 任意角和弧度制及任意角的三角函数◆考纲·了然于胸◆ 1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化. 3.理解任意角的三角函数(正弦、余弦、正切)的定义.[要点梳理]1.角的概念(1)角的分类(按旋转的方向):角⎩⎪⎨⎪⎧正角:按照逆时针方向旋转而成的角。

负角:按照顺时针方向旋转而成的角。

零角:射线没有旋转.(2)象限角与轴线角:(3)终边相同的角所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为S ={β|β=α+k·360°,k ∈Z }. 质疑探究1:(1)第二象限角一定是钝角吗?(2)终边相同的角一定相等吗?提示:(1)钝角是第二象限角,但第二象限角不一定是钝角;(2)终边相同的角不一定相等. 2.弧度制(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad. (2)公式(3)规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx(x ≠0).三个三角函数的初步性质如下表:如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .质疑探究[小题查验]1.-870°角的终边在第几象限( )A .一B .二C .三D .四2.(2016·龙岩质检)已知α为第二象限角,sin α=45,则tan α的值为( )A.34 B .-34 C.43 D .-433.(2016·洛阳一模)已知△ABC 为锐角三角形,且A 为最小角,则点P (sin A -cos B,3cos A -1)位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是________. 5.给出下列命题:①三角形的内角必是第一、二象限角.②第一象限角必是锐角.③不相等的角终边一定不相同.④若β=α+k ·720°(k ∈Z ),则α和β终边相同.⑤点P (tan α,cos α)在第三象限,则角α的终边在第二象限. 其中正确的是________.(写出所有正确命题的序号)考点一 象限角及终边相同的角(基础型考点——自主练透)[方法链接]1.利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角. 2.表示区间角的三个步骤:(1)先按逆时针方向找到区域的起始和终止边界.(2)按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间. (3)起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.3.已知角α终边所在的象限,求2α、α2、π-α等角的终边所在象限问题,可由条件先写出α的范围,解不等式得出角2α、α2、π-α等的范围,再根据范围确定象限.[题组集训]1.若角θ的终边与6π7角的终边相同,则在[0,2π)内终边与θ3角的终边相同的角为________.2.终边在直线y =3x 上的角的集合为________. 3.已知角α的终边落在阴影所表示的范围内(包括边界),则角α的集合为______________________.4.如果α是第三象限的角,则角-α的终边所在位置是____________,角2α的终边所在位置是________,角α3终边所在的位置是________.考点二 三角函数的定义(深化型考点——引申发散)[一题多变]【例1】 设角α终边上一点P (-4a,3a )(a <0),求sin α的值. [发散1] 若本例中“a <0”,改为“a ≠0”,求sin α的值.[发散2] 若本例中条件变为:已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 活学活用 若本例中条件变为:已知角α的终边上一点P (-3,m )(m ≠0), 且sin α=2m4,求cos α,tan α的值. [类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.考点三 三角函数线、三角函数值的符号(重点型考点——师生共研) 【例2】 (1)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 (2)已知cos α≤-12,则角α的集合为________.【名师说“法”】(1)熟练掌握三角函数在各象限的符号.(2)利用单位圆解三角不等式(组)的一般步骤:①用边界值定出角的终边位置;②根据不等式(组)定出角的范围;③求交集,找单位圆中公共的部分;④写出角的表达式.跟踪训练(1)y=sin x-32的定义域为____________.(2)已知sin 2θ<0,且|cos θ|=-cos θ,则点P(tan θ,cos θ)在第________象限.考点四扇形的弧长、面积公式的应用(深化型考点——引申发散)【例3】已知扇形周长为10,面积是4,求扇形的圆心角.[发散1]去掉本例条件“面积是4”,问当它的半径和圆心角取何值时,才使扇形面积最大?[发散2]若本例中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[发散3]若本例条件变为:扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[类题通法]应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.易错警示3错用三角函数的定义(2016·天津模拟)已知角θ的终边上一点P(3a,4a)(a≠0),则sin θ=________.成功破障已知角α的终边经过点P(-3,m),且sin α=34m(m≠0),则tan α的值为________.[课堂小结]【方法与技巧】1.在利用三角函数定义时,点P可取终边上任一点,如有可能则取终边与单位圆的交点.|OP|=r一定是正值.2.三角函数符号是重点,也是难点,在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.3.在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.【失误与防范】1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.课时活页作业(十七)[基础训练组]1.(2016·南平质检)喜洋洋从家步行到学校,一般需要10分钟,则10分钟时间钟表的分针走过的角度是() A.30°B.-30°C.60°D-60°2.(2014·新课标全国卷Ⅰ)若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>03.(2016·乌鲁木齐模拟)设函数f (x )满足f (sin α+cos α)=sin α cos α,则f (0)=( )A .-12B .0 C.12 D .14.(2016·潍坊模拟)如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( ) A .(cos θ,sin θ) B .(-cos θ,sin θ) C .(sin θ,cos θ) D .(-sin θ,cos θ) 5.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,126.在与2010°终边相同的角中,绝对值最小的角的弧度数为________. 7.已知角β的终边在直线y =3x 上,则sin β=________.8.(2016·玉溪模拟)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=________.9.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ的值. 10.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .[能力提升组]11.(2016·海淀模拟)若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z ),则角α与β的终边的位置关系是( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称12.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-313.(2016·太原模拟)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 14.(2016·合肥调研)函数y =lg(3-4sin 2x )的定义域为________. 15.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;(3)试判断tan α2 sin α2 cos α2的符号.第2节 同角三角函数基本关系及诱导公式◆考纲·了然于胸◆1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α.2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.[要点梳理]1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2.下列各角的终边与角α的终边的关系31.给出下列命题:①sin 2θ+cos 2φ=1.②同角三角函数的基本关系式中角α可以是任意角.③六组诱导公式中的角α可以是任意角. ④诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与α的大小无关. ⑤若sin(k π-α)=13(k ∈Z ),则sin α=13.其中正确的是( )A .①③B .④C .②⑤D .④⑤2.(2015·高考福建卷)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512 3.sin 585°的值为( )A .-22 B.22 C .-32 D.324.若cos α=-35,且α∈(π,3π2),则tan α=________.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2 α的值是________.考点一 同角三角函数关系式的应用(深化型考点——引申发散)[一题多变]【例1】 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[发散1] 若本例中的条件和结论互换:已知α是三角形的内角,且tan α=-13,求sin α+cos α的值.[发散2] 保持本例条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值.[发散3] 若本例条件变为:sin α+3cos α3cos α-sin α=5,求tan α的值.[类题通法]1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α. 考点二 三角函数的诱导公式的应用(基础型考点——自主练透)[方法链接](1)给角求值的原则和步骤①原则:负化正、大化小、化到锐角为终了.②步骤:利用诱导公式可以把任意角的三角函数转化为0~π4之间角的三角函数,然后求值,其步骤为:(2)给值求值的原则:寻求所求角与已知角之间的联系,通过相加或相减建立联系,若出现π2的倍数,则通过诱导公式建立两者之间的联系,然后求解.常见的互余与互补关系①常见的互余关系有:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.②常见的互补关系有:π3+θ与2π3-θ;π4+θ与3π4-θ等.遇到此类问题,不妨考虑两个角的和,要善于利用角的变换的思想方法解决问题.[题组集训]1.sin(-1 200°)·cos 1 290°+cos (-1 020°)·sin(-1 050°)+tan 945°=________. 2.已知cos(π6-α)=23,则sin(α-2π3)=________.3.设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos (3π2+α)-sin 2(π2+α)(1+2sin α≠0),则f (-23π6)=________.4.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin (-α-32π)cos (32π-α)cos (π2-α)sin (π2+α)·tan 2(π-α)=________.考点三 同角关系式、诱导公式在三角形中的应用(重点型考点——师生共研)【例2】 在△ABC 中,若sin(3π-A )=2sin(π-B ),cos(3π2-A )=2cos(π-B ).试判断三角形的形状.【名师说“法”】(1)在△ABC 中常用到以下结论:sin(A +B )=sin(π-C )=sin C ,cos(A +B )=cos(π-C )=-cos C ,tan(A +B )=tan(π-C )=-tan C , sin(A 2+B 2)=sin(π2-C 2)=cos C 2,cos(A 2+B 2)=cos(π2-C 2)=sin C 2.(2)求角时,一般先求出该角的某一个三角函数值,如正弦值,余弦值或正切值,再确定该角的范围,最后求角. 跟踪训练在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos (π-B ),求△ABC 的三个内角.思想方法11 分类讨论思想在三角函数化简中的应用 典例 化简:sin(4n -14π-α)+cos(4n +14π-α)(n ∈Z ).即时突破 已知A =sin (kπ+α)sin α+cos (kπ+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}[课堂小结]【方法与技巧】同角三角恒等变形是三角恒等变形的基础,主要是变名、变式.1.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin xcos x化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ(1+1tan 2θ)=tan π4=….【失误与防范】利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.课时活页作业(十八)[基础训练组]1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( )A .-32 B.32 C .-12 D.122.(2016·济南质检)α∈(-π2,π2),sin α=-35,则cos(-α)的值为( )A .-45 B.45 C.35 D .-353.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f (-25π3)的值为( )A.12 B .-12 C.32 D .-324.(2016·皖北模拟)若sin(π6+α)=35,则cos(π3-α)=( )A .-35 B.35 C.45 D .-455.(2016·石家庄模拟)已知α为锐角,且2tan(π-α)-3cos(π2+β)+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( )A.355 B.377 C.31010 D.136.(2016·成都一模)已知sin(π-α)=log 814 ,且α∈(-π2,0),则tan(2π-α)的值为________.7.(2015·辽宁五校第二次联考)已知sin x =m -3m +5,cos x =4-2m m +5,且x ∈(3π2,2π),则tan x =________.8.已知cos(π6-θ)=a (|a |≤1),则cos(5π6+θ)+sin(2π3-θ)的值是________.9.已知sin(3π+α)=2sin(3π2+α),求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.10.设0≤θ≤π,P =sin 2θ+sin θ-cos θ.(1)若t =sin θ-cos θ,用含t 的式子表示P ; (2)确定t 的取值范围,并求出P 的最大值和最小值.[能力提升组]11.(2016·厦门模拟)已知cos 31°=a ,则sin 239°·tan 149°的值是( )A.1-a 2aB.1-a 2C.a 2-1aD .-1-a 212.(2016·太原二模)已知sin α+cos α=2,α∈(-π2,π2),则tan α=( )A .-1B .-22 C.22D .1 13.(2016·海淀模拟)已知sin 2θ+4cos θ+1=2,那么(cos θ+3)(sin θ+1)的值为( )A .6B .4C .2D .014.(2016·新疆阿勒泰二模)已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________. 15.已知A 、B 、C 是三角形的内角,3sin A ,-cos A 是方程x 2-x +2a =0的两根.(1)求角A ;(2)若1+2sin B cos Bcos 2B -sin 2B=-3,求tanB.第3节 三角函数的图象与性质◆考纲·了然于胸◆1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象与x 轴的交点等),理解正切函数在区间(-π2,π2)内的单调性.[要点梳理]1.用五点法作正弦函数和余弦函数的简图:正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象和性质1.下列说法正确的是( )A .函数y =cos x 在第一象限内是减函数B .函数y =tan x 在定义域内是增函数C .函数y =sin x cos x 是R 上的奇函数D .所有周期函数都有最小正周期2.(2015·新课标卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A .(k π-14,k π+34),k ∈ZB .(k -14,k +34),k ∈ZC .(2k π-14,2k π+34),k ∈ZD .(2k -14,2k +34),k ∈Z3.(2016·三明模拟)已知函数f (x )=2sin(ωx +φ)对任意x 都有f (π6+x )=f (π6-x ),则f (π6)等于( )A .2或0B .-2或2C .0D .-2或0 4.函数y =tan (2x +π4)的图象与x 轴交点的坐标是________.5.(2015·江苏高考)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是__.考点一 三角函数的定义域、值域问题(基础型考点——自主练透)[方法链接](1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); ②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).[题组集训]1.函数y =sin x -cos x 的定义域为________.2.函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为________.3.当x ∈[π6,7π6]时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.考点二 三角函数的单调性(重点型考点——师生共研) 【例】 (1) y =sin(π3-2x )的单调递减区间为________.(2)(2016·洛阳模拟)若f (x )=2sin ωx +1(ω>0)在区间[-π2,2π3] 上是增函数,则ω的取值范围是________.互动探究 在本例(1)中函数不变,求函数在[-π,0]上的单调递减区间. 【名师说“法”】求三角函数单调区间的两种方法](1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图象法:函数的单调性表现在图象上是:从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.提醒:]求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域. 跟踪训练(1)y =tan(2x -π3)的单调递增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f (π7),b =f (π6),c =f (π3),则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a 考点三 三角函数的奇偶性、周期性和对称性(高频型考点——全面发掘)[考情聚焦]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有:(1)三角函数的周期;(2)求三角函数的对称轴或对称中心;(3)三角函数对称性的应用. 角度一 三角函数的周期1.函数y =-2cos 2(π4+x )+1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的非奇非偶函数2.(2016·长沙一模)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________.角度二 求三角函数的对称轴或对称中心3.(2016·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图象关于点(π2,0)对称 B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称 D .是偶函数且图象关于直线x =π对称角度三 三角函数对称性的应用 4.(2016·辽宁五校联考)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为( )A .-34 B .-14 C .-12 D.345.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.[通关锦囊](1)求三角函数周期的方法: ①利用周期函数的定义;②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|;③利用图象:对含绝对值的三角函数的周期问题,通常要画出图象,结合图象进行判断. (2)三角函数的对称性、奇偶性①正弦、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数图象只是中心对称图形,应熟记它们的对称轴和对称中心.②若f (x )=A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z );若f (x )=A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ).③若求f (x )=A sin(ωx +φ)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.[题组集训]1.(2016·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6 D .-π32.(2016·湖南六校联考)若函数f (x )=a sin ωx +b cos ωx (0<ω<5,ab ≠0)的图象的一条对称轴方程是x =π4ω,函数f ′(x )的图象的一个对称中心是(π8,0),则f (x )的最小正周期是________.易错警示4 三角函数单调性忽视x 的系数致错 典例 求函数y =12sin(π4-2x3)的单调区间为________.提醒:](1)对于其它形式的三角函数,首先要变换到y =A sin(ωx +φ)或y =A cos(ωx +φ),y =A tan(ωx +φ)(ω>0)才可.(2)求单调区间要注意定义域.即时突破 函数y =cos(2x +π6)的单调递增区间为________.[课堂小结]【方法与技巧】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 【失误与防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响. 2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时情况.课时活页作业(十九)[基础训练组]1.函数y =cos x -32的定义域为( ) A .[-π6,π6] B .[k π-π6,k π+π6],k ∈Z C .[2k π-π6,2k π+π6],k ∈Z D .R2.(2016·南昌联考)已知函数f (x )=sin (ωx +π6)-1(ω>0)的最小正周期为2π3,则f (x )的图象的一条对称轴方程( )A .x =π9B .x =π6C .x =π3D .x =π23.(2016·广州测试)若函数y =cos(ωx +π6)(ω∈N *)的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8 4.(2016·九江模拟)下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11° 5.将函数f (x )=3sin 2x -cos 2x 的图象向左平移|m |个单位,若所得的图象关于直线x =π6对称,则|m |的最小值为( )A.π3 B.π6 C .0 D.π126.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的________条件.7.(2016·大庆模拟)若f (x )=2sin ωx (0<ω<1)在区间[0,π3]上的最大值是2,则ω=________.8.(2016·荆州质检)函数y =sin(ωx +φ)(ω>0,0<φ<π)的最小正周期为π,且函数图象关于点(-3π8,0)对称,则函数的解析式为________.9.设函数f (x )=cos ⎝⎛⎭⎫2x -π3+2sin 2⎝⎛⎭⎫x +π2.(1)求f (x )的最小正周期和对称轴方程;(2)当x ∈⎣⎡⎦⎤-π3,π4时,求f (x )的值域. 10.设函数f (x )=sin(πx 3-π6)-2cos 2πx6.(1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.[能力提升组]11.(2014·课标全国Ⅰ)在函数①y =cos |2x |,②y =|cos x |,③y =cos(2x +π6),④y =tan(2x -π4)中,最小正周期为π的所有函数为( )A .②④ B .①③④ C .①②③ D .①③12.(2016·济南调研)已知f (x )=sin 2 x +sin x cos x ,则f (x )的最小正周期和一个单调增区间分别为( )A .π,[0,π]B .2π,[π4,3π4]C .π,[-π8,3π8]D .2π,[-π4,π4]13.(2016·豫北六校联考)若函数f (x )=cos(2x +φ)的图象关于点(4π3,0)成中心对称,且-π2<φ<π2,则函数y =f (x +π3)为( )A .奇函数且在(0,π4)上单调递增B .偶函数且在(0,π2)上单调递增C .偶函数且在(0,π2)上单调递减D .奇函数且在(0,π4)上单调递减14.(2015·安阳模拟)已知函数y =A cos(π2x +φ)(A >0)在一个周期内的图象如图所示,其中P ,Q 分别是这段图象的最高点和最低点,M ,N 是图象与x 轴的交点,且∠PMQ =90°,则A 的值为________. 15.(2016·荆门调研)已知函数f (x )=a (2cos 2x 2+sin x )+b .(1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值.第4节 函数y =A sin(ωx +φ)的图象及应用◆考纲·了然于胸◆1.了解函数y =A sin(ωx +φ)的物理意义,能画出函数y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题.[要点梳理]1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点.如下表所示.2.函数y3.图象的对称性:函数y =A sin(ωx +φ) (A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中ωx k +φ=k π+π2,k ∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形.[小题查验]1.函数y =sin(2x -π3)在区间[-π2,π]上的简图是( )2.(2015·高考山东卷)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位3.函数y =tan(π4x -π2)的部分图象如图所示,则(OB →-OA →)·OB →=( )A .-4B .2C .-2D .44.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.5.把函数y =sin(5x -π2)的图象向右平移π4个单位,再把所得函数图象上各点的横坐标缩短为原来的12,所得的函数解析式为________.考点一 求函数y =A sin(ωx +φ)的解析式(基础型考点——自主练透)确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT ;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.[题组集训]1.(2016·山西四校联考)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }2.(2016·东北三校联考)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( ) A .y =4sin(4x +π6) B .y =2sin(2x +π3)+2 C .y =2sin(4x +π3)+2 D .y =2sin(4x +π6)+23.已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .2+3 B.3 C.33D .2- 3 考点二 函数y =A sin(ωx +φ)的图象(题点多变型考点——全面发掘)【例1】 (2014·重庆高考)将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f (π6)=________.[发散1] 将本例变为:由函数y =sin x 的图象作怎样的变换可得到y =2sin(2x -π3)的图象?[发散2] 将本例中函数f (x )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值为. [发散3] 将本例变为:若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为________.[类题通法]函数y =A sin(ωx +φ)(A >0,ω>0)的图象的两种作法(1)五点法:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”.[提醒] ]平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 考点三 三角函数模型的应用(重点型考点——师生共研)【例2】 (2014·湖北高考)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cosπ12t -sin π12t ,t ∈[0,24). (1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温? 【名师说“法”】本题属三角函数模型的应用,通常的解决方法:转化为y =sin x ,y =cos x 等函数解决图象、最值、单调性等问题,体现了化归的思想方法;用三角函数模型解决实际问题主要有两种:一种是用已知的模型去分析解决实际问题,另一种是需要建立精确的或者数据拟合的模型去解决问题,尤其是利用数据建立拟合函数解决实际问题,充分体现了新课标中“数学建模”的本质. 跟踪训练如图所示,某地夏天从8~14时用电量变化曲线近似满足函数y =A sin(ωx +φ)+b ,φ∈(0,π).(1)求这一天的最大用电量及最小用电量;(2)写出这段曲线的函数解析式.规范答题3 三角函数图象与性质的综合问题典例 (本小题满分12分)已知函数f (x )=23sin(x 2+π4)·cos (x 2+π4)-sin(x +π).(1)求f (x )的最小正周期.(2)若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.即时突破 (2016·湖北八校联考)已知函数f (x )=2cos 2x +23sin x cos x ,x ∈R .(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间[-π6,π4]上的值域.[课堂小结]【方法与技巧】1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式由函数y =A sin(ωx +φ)的图象确定A 、ω、φ的题型,常常以“五点法”中的第一个零点(-φω,0)作为突破口,要从图象的升降情况找准第一个零点的位置.要善于抓住特殊量和特殊点. 3.对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻平衡点间的距离) 【失误与防范】1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩,则平移时要把x 前面的系数提出来. 2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化.课时活页作业(二十)[基础训练组]1.(2016·深圳二模)如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期为T ,且当x =2时,f (x )取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π22.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12] D .(0,2]3.(2016·长沙一模)定义⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3,若函数f (x )=⎪⎪⎪⎪⎪⎪sin2x cos 2x 1 3,则将f (x )的图象向右平移π3个单位所得曲线的一条对称轴的方程是( )A .x =π6B .x =π4C .x =π2D .x =π4.(2016·长春模拟)函数f (x )=sin(2x +φ)(|φ|<π2)向左平移π6个单位后是奇函数,则函数f (x )在[0,π2]上的最小值为( )A .-32 B .-12 C.12 D.32。

专题06 解三角形-五年(2017-2021)高考数学真题分项详解(新高考地区专用)(解析版)

专题06  解三角形-五年(2017-2021)高考数学真题分项详解(新高考地区专用)(解析版)

专题06 解三角形【2021年】一、【2021·浙江高考】我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为1S ,小正方形的面积为2S ,则12S S =___________.【答案】25 【解析】【分析】分别求得大正方形的面积和小正方形的面积,然后计算其比值即可.【详解】由题意可得,大正方形的边长为:5a =, 则其面积为:21525S ==, 小正方形的面积:212543412S ⎛⎫=-⨯⨯⨯=⎪⎝⎭, 从而1225251S S ==. 故答案为:25.【2021·浙江高考】在ABC 中,60,2B AB ∠=︒=,M 是BC的中点,AM =则AC =___________,cos MAC ∠=___________.【答案】(1).(2).【分析】由题意结合余弦定理可得=8BC ,进而可得AC ,再由余弦定理可得cos MAC ∠. 【详解】由题意作出图形,如图,在ABM 中,由余弦定理得2222cos AM AB BM BM BA B =+-⋅⋅, 即21124222BM BM =+-⨯⨯,解得=4BM (负值舍去), 所以=2=2=8BC BM CM ,在ABC 中,由余弦定理得22212cos 464228522AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=,所以AC =在AMC 中,由余弦定理得222cos2AC AM MC MAC AM AC +-∠===⋅.故答案为:13.二、【2021·江苏高考】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知b 2=ac ,点D 在边AC 上,BDsin∠ABC =asinC . (1)证明:BD =b ;(2)若AD =2DC ,求cos∠ABC .【答案】解:(1)证明:由正弦定理知,bsin∠ABC =csin∠ACB =2R , ∴b =2Rsin∠ABC ,c =2Rsin∠ACB , ∵b 2=ac ,∴b ⋅2Rsin∠ABC =a ⋅2Rsin∠ACB , 即bsin∠ABC =asinC , ∵BDsin∠ABC =asinC .(2)由(1)知BD=b,∵AD=2DC,∴AD=23b,DC=13b,在△ABD中,由余弦定理知,cos∠BDA=BD 2+AD2−AB22BD⋅AD=b2+(23b)2−c22b⋅23b=13b2−9c212b2,在△CBD中,由余弦定理知,cos∠BDC=BD 2+CD2−BC22BD⋅CD=b2+(13b)2−a22b⋅13b=10b2−9a26b2,∵∠BDA+∠BDC=π,∴cos∠BDA+cos∠BDC=0,即13b2−9c212b2+10b2−9a26b2=0,得11b2=3c2+6a2,∵b2=ac,∴3c2−11ac+6a2=0,∴c=3a或c=23a,在△ABC中,由余弦定理知,cos∠ABC=a2+c2−b22ac =a2+c2−ac2ac,当c=3a时,cos∠ABC=76>1(舍);当c=23a时,cos∠ABC=712;综上所述,cos∠ABC=712.【知识点】余弦定理、正弦定理【解析】(1)利用正弦定理求解;(2)要能找到隐含条件:∠BDA和∠BDC互补,从而列出等式关系求解.本题考查正弦定理及余弦定理的内容,是一道好题.【2020年】一、【2020·北京高考】2020年3月14日是全球首个国际圆周率日(πDay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔⋅卡西的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔⋅卡西的方法,π的近似值的表达式是()A. 3n(sin30°n +tan30°n) B. 6n(sin30°n+tan30°n)C. 3n(sin60°n +tan60°n) D. 6n(sin60°n+tan60°n)【答案】A【知识点】解三角形的实际应用、合情推理(归纳、类比推理)【解析】【分析】本题考查数学中的文化,考查圆的内接和外切多边形的边长的求法,考查运算能力,属于基础题.设内接正6n边形的边长为a,外切正6n边形的边长为b,运用圆的性质,结合直角三角形的锐角三角函数的定义,可得所求值.【解答】解:如图,设内接正6n边形的边长为a,外切正6n边形的边长为b,可得a=2sin360°12n =2sin30°n,b=2tan360°12n =2tan30°n,则2π≈6na+6nb2=6n(sin30°n+tan30°n),即π≈3n(sin30°n +tan30°n),故选:A.【2020·北京高考(理)】在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择一个作为已知,求:(Ⅰ)a的值;(Ⅱ)sinC和△ABC的面积.条件①:c=7,cosA=−17;条件②:cosA=18,cosB=916.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】解:选择条件①,(Ⅰ)由余弦定理得a 2=b 2+c 2−2bccosA ,即a 2−b 2=49−14b ×(−17)=49+2b , ∴(a +b)(a −b)=49+2b , ∵a +b =11,∴11a −11b =49+2b , 即11a −13b =49,联立{a +b =1111a −13b =49,解得a =8,b =3,故a =8.(Ⅱ)在△ABC 中,sinA >0, ∴sinA =√1−cos 2A =4√37, 由正弦定理可得 asinA =csinC , ∴sinC =csinA a =7×4√378=√32, ∴S △ABC =12absinC =12×8×3×√32=6√3.选择条件②,(Ⅰ)在△ABC 中,sinA >0,sinB >0,C =π−(A +B), ∵cosA =18,cosB =916, ∴sinA =√1−cos 2A =3√78,sinB =2B =5√716, 由正弦定理可得asinA =bsinB , ∴a b=sinA sinB =65, ∵a +b =11, ∴a =6,b =5, 故a =6;(Ⅱ)在△ABC 中,C =π−(A +B),∴sinC =sin(A +B)=sinAcosB +cosAsinB =3√78×916+5√716×18=√74, ∴S △ABC =12absinC =12×6×5×√74=15√74.【知识点】三角形面积公式、两角和与差的三角函数公式、余弦定理、正弦定理【解析】本题考查了同角的三角函数的关系,两角和的正弦公式,正余弦定理,三角形的面积公式等知识,考查了运算能力求解能力,转化与化归能力,属于中档题.选择条件①(Ⅰ)由余弦定理求出(a+b)(a−b)=49+2b,再结合a+b=11,即可求出a的值,(Ⅱ)由正弦定理可得sin C,再根据三角形的面积公式即可求出,选择条件②(Ⅰ)根据同角的三角函数的关系和正弦定理可得ab =sinAsinB=65,再结合a+b=11,即可求出a的值,(Ⅱ)由两角和的正弦公式求出sin C,再根据三角形的面积公式即可求出.二、【2020·浙江高考】在锐角△ABC中,角A,B,C的对边分别为a,b,c.已知2bsinA−√3a=0.(1)求角B;(2)求cosA+cosB+cosC的取值范围.【答案】解:(1)∵2bsinA=√3a,∴2sinBsinA=√3sinA,∵sinA≠0,∴sinB=√32,,∴B=π3,(2)∵△ABC为锐角三角形,B=π3,∴C=2π3−A,,△ABC为锐角三角形,,,解得,,,,∴cosA+cosB+cosC的取值范围为(√3+12,32 ].【知识点】求正弦型函数的值域或最值、辅助角公式(三角函数的叠加及应用(北师))、利用正弦定理解三角形、两角和与差的余弦公式【解析】本题考查了正弦定理,三角函数的化简,三角函数的性质,属于较难题.(1)根据正弦定理可得sinB=√32,结合角的范围,即可求出,(2)根据两角和与差的余弦公式,以及利用正弦函数的性质即可求出.三、【2020·天津高考】在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13.(Ⅰ)求角C的大小;(Ⅱ)求sin A的值;(Ⅲ)求sin(2A+π4)的值.【答案】解:(Ⅰ)由余弦定理以及a=2√2,b=5,c=√13,则cosC=a2+b2−c22ab =2×2√2×5=√22,∵C∈(0,π),∴C=π4;(Ⅱ)由正弦定理,以及C=π4,a=2√2,c=√13,可得sinA= asinCc =2√2×√22√13=2√1313;(Ⅲ)由a<c,及sinA=2√1313,可得cosA=√1−sin2A=3√1313,则sin2A=2sinAcosA=2×2√1313×3√1313=1213,∴cos2A=2cos2A−1=513,∴sin(2A+π4)=√22(sin2A+cos2A)=√22(1213+513)=17√226.【知识点】二倍角正弦公式、利用正弦定理解三角形、两角和与差的正弦公式、二倍角余弦公式、利用余弦定理解三角形【解析】本题考了正余弦定理,同角的三角函数的关系,二倍角公式,两角和的正弦公式,属于中档题.(Ⅰ)根据余弦定理即可求出C的大小;(Ⅱ)根据正弦定理即可求出sin A的值;(Ⅲ)根据同角的三角函数的关系,二倍角公式,两角和的正弦公式即可求出.【2019年】一、【2019·北京高考(理)】在△ABC中,a=3,b−c=2,cosB=−12.(1)求b,c的值;(2)求sin(B−C)的值.【答案】解:(1)∵a=3,b−c=2,cosB=−12.∴由余弦定理,得b2=a2+c2−2accosB=9+(b−2)2−2×3×(b−2)×(−12),∴b=7,∴c=b−2=5;(2)在△ABC中,∵cosB=−12,∴sinB=√32,由正弦定理有:csinC =bsinB,∴sinC=csinBb =5×√327=5√314,∵b>c,∴B>C,∴C为锐角,∴cosC=1114,∴sin(B−C)=sinBcosC−cosBsinC=√32×1114−(−12)×5√314=4√37.【知识点】利用正弦定理解三角形、两角和与差的正弦公式、利用余弦定理解三角形【解析】本题考查了正弦定理、余弦定理和两角差的正弦公式,属基础题.(1)利用余弦定理可得b2=a2+c2−2accosB,代入已知条件即可得到关于b的方程,解方程即可;(2)sin(B−C)=sinBcosC−cosBsinC,根据正弦定理可求出sin C,然后求出cos C,代入即可得解.【2019·北京高考(文)】在△ABC中,a=3,b−c=2,cosB=−12.(1)求b,c的值;(2)求sin(B+C)的值.【答案】解:(1)∵a=3,b−c=2,cosB=−12.∴由余弦定理,得b2=a2+c2−2accosB=9+(b−2)2−2×3×(b−2)×(−12),∴b=7,∴c=b−2=5;(2)在△ABC中,∵cosB=−12,∴sinB=√32,由正弦定理有:asinA =bsinB,∴sinA=asinBb =3×√327=3√314,∴sin(B+C)=sin(π−A)=sinA=3√314.【知识点】利用正弦定理解三角形、利用余弦定理解三角形【解析】本题考查了正弦定理和余弦定理在解三角形中的应用,属于中档题.(1)利用余弦定理可得b2=a2+c2−2accosB,代入已知条件即可得到关于b的方程,解方程即可;(2)sin(B+C)=sin(π−A)=sinA,根据正弦定理可求出sin A.二、【2019·浙江高考】在△ABC中,,AB=4,BC=3,点D在线段AC上,若,则BD=;.【答案】12√257√2 10【知识点】余弦定理、正弦定理在平面几何中的应用、利用正弦定理解三角形、两角和与差的正弦公式【解析】【分析】本题考查三角形的正弦定理和解直角三角形,考查三角函数的恒等变换,化简整理的运算能力,属于中档题.解直角三角形ABC,可得sin C,cos C,在三角形BCD中,运用正弦定理可得BD;再由三角函数的诱导公式和两角和差公式,计算可得所求值.【解答】解:如图所示,在直角三角形ABC中,AB=4,BC=3,可得AC=5,sinC=45,在△BCD中,由正弦定理可得3√22=BDsinC,可得BD=12√25;根据三角形内角和可知∠CBD=135°−C,sin∠CBD=sin(135°−C)=√22(cosC+sinC)=√22×(45+35)=7√210,即有cos∠ABD=cos(90°−∠CBD)=sin∠CBD=7√210,故答案为12√25;7√210.三、【2019·天津高考(理)】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3csinB= 4asinC.(Ⅰ)求cos B的值;(Ⅱ)求sin(2B+π6)的值.【答案】解:(Ⅰ)在三角形ABC中,由正弦定理得bsinB =csinC,所以bsinC=csinB,又由3csinB=4asinC,得3bsinC=4asinC,即3b=4a,又因为b+c=2a,得b=4a3,c=2a3,由余弦定理可得cosB=a2+c2−b22ac=a 2+49a2−169a22⋅a⋅23a=−14;(Ⅱ)由(Ⅰ)得sinB=√1−cos2B=√154,从而sin2B=2sinBcosB=−√158,cos2B=cos2B−sin2B=−78,故sin(2B+π6)=sin2Bcosπ6+cos2Bsinπ6=−√158×√32−78×12=−3√5+716.【知识点】二倍角正弦公式、利用正弦定理解三角形、两角和与差的正弦公式、二倍角余弦公式、利用余弦定理解三角形【解析】本题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力,属于中档题.(Ⅰ)根据正余弦定理可得;(Ⅱ)根据二倍角的正余弦公式以及和角的正弦公式可得.【2019·天津高考(文)】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3csinB=4asinC.(Ⅰ)求cos B的值;(Ⅱ)求sin(2B+π6)的值.【答案】解:(Ⅰ)在三角形ABC中,由正弦定理得bsinB =csinC,所以bsinC=csinB,又由3csinB=4asinC,得3bsinC=4asinC,即3b=4a,又因为b+c=2a,得b=4a3,c=2a3,由余弦定理可得cosB=a2+c2−b22ac=a 2+49a2−169a22⋅a⋅23a=−14;(Ⅱ)由(Ⅰ)得sinB=√1−cos2B=√154,从而sin2B=2sinBcosB=−√158,cos2B=cos2B−sin2B=−78,故sin(2B+π6)=sin2Bcosπ6+cos2Bsinπ6=−√158×√32−78×12=−3√5+716.【知识点】二倍角正弦公式、利用正弦定理解三角形、两角和与差的正弦公式、二倍角余弦公式、利用余弦定理解三角形【解析】本题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力,属于中档题.(Ⅰ)根据正余弦定理可得;(Ⅱ)根据二倍角的正余弦公式以及和角的正弦公式可得.四、【2019·上海高考】在△ABC中,AC=3,3sinA=2sinB,且cosC=14,则AB=.【答案】√10【知识点】正弦定理及变形、利用余弦定理解三角形【解析】【分析】本题考查正弦定理、余弦定理的运用,考查学生的转化和计算能力,属于基础题.利用正弦定理可得BC=2,利用余弦定理即可得出结论.【解答】解:∵3sinA=2sinB,∴由正弦定理可得:3BC =2AC ,∴由AC =3,可得:BC =2,∵cosC =14,∴由余弦定理可得:14=32+22−AB 22×3×2,∴解得:AB =√10.故答案为:√10.【2018年】一、 【2018·北京高考(理)】在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a =7,b =8,cosB =−17. (1)求A ;(2)求AC 边上的高.【答案】解:(1)∵a <b ,∴A <B ,即A 是锐角,∵cosB =−17,∴sinB =√1−cos 2B =√1−(−17)2=4√37, 由正弦定理,a sinA =b sinB ,得sinA =asinB b =7×4√378=√32, 又A 为锐角,则A =π3;(2)由余弦定理得b 2=a 2+c 2−2accosB ,即64=49+c 2+2×7×c ×17,即c 2+2c −15=0,得(c −3)(c +5)=0,解得c =3或c =−5(舍),则AC边上的高ℎ=csinA=3×√32=3√32.【知识点】由一个三角函数值求其他三角函数值、利用正弦定理解三角形、利用余弦定理解三角形【解析】本题考查正弦定理,余弦定理,属于中档题.(1)由正弦定理,进行求解即可;(2)利用余弦定理求出c的值,即可求出h.【2018·北京高考(文)】若△ABC的面积为√34(a2+c2−b2),且∠C为钝角,则∠B=;ca的取值范围是.【答案】π3(2,+∞)【知识点】正切型函数的定义域、值域和最值、三角形面积公式、利用正弦定理解决范围与最值问题、两角和与差的正弦公式、利用余弦定理解三角形【解析】【分析】本题考查三角形的解法,余弦定理的应用,考查计算能力,属于中档题.利用余弦定理,转化求解即可.【解答】解:△ABC的面积为√34(a2+c2−b2),可得:√34(a2+c2−b2)=12acsinB,sinBcosB=√3,可得:tanB=√3,所以B=π3,∠C为钝角,A∈(0,π6),所以1tanA∈(√3,+∞),c a =sinCsinA=sin(A+B)sinA=cosB+1tanAsinB=12+√321tanA∈(2,+∞),故答案为:π3;(2,+∞).二、【2018·浙江高考】在△ABC中,角A,B,C所对的边分别为a,b,c.若a=√7,b=2,A=60°,则sinB=(1),c=(2).【答案】√2173【知识点】余弦定理、正弦定理【解析】【分析】本题考查正弦定理、余弦定理,属于简单题.由正弦定理得√7sin60°=2sinB,由此能求出sin B,由余弦定理得cos60°=4+c2−72×2c,由此能求出c.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=√7,b=2,A=60°,∴由正弦定理得:asinA =bsinB,即√7sin60°=2sinB,解得sinB=2×√32√7=√217.由余弦定理得:cosA=b2+c2−a22bc ,即cos60°=4+c2−72×2c,解得c=3或c=−1(舍),故答案为:√217;3.三、【2018·天津高考(理)】△ABC中,角A,B,C所对的边分别为a,b,c.已知.(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和的值.【答案】解:(Ⅰ)在△ABC中,由正弦定理得asinA =bsinB,得bsinA=asinB,又bsinA=acos(B−π6),∴asinB=acos(B−π6),即sinB=cos(B−π6)=cosBcosπ6+sinBsinπ6=√32cosB+12sinB,∴tanB=√3,又B∈(0,π),∴B=π3.(Ⅱ)在△ABC中,a=2,c=3,B=π3,由余弦定理得b=√a2+c2−2accosB=√7,由bsinA=acos(B−π6),得sinA=√37,∵a<c,∴cosA=7,∴sin2A=2sinAcosA=4√37,cos2A=2cos2A−1=17,∴sin(2A−B)=sin2AcosB−cos2AsinB=4√37×12−17×√32=3√314.【知识点】二倍角正弦公式、利用正弦定理解三角形、两角和与差的正弦公式、两角和与差的余弦公式、二倍角余弦公式、利用余弦定理解三角形【解析】本题考查两角和与差的三角函数公式,考查正余弦定理的运用,考查运算求解能力,是中档题.(Ⅰ)由正弦定理得bsinA=asinB,结合bsinA=acos(B−π6),由此能求出B.(Ⅱ)由余弦定理得b=√7,由bsinA=acos(B−π6),得sinA=√3√7,cosA=√7,由此能求出sin(2A−B).【2017年】一、【2017·北京高考(理)】在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.若,则△ABC的形状是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形【答案】C【知识点】正弦定理及变形、利用余弦定理判断三角形的形状【解析】【分析】本题考查正余弦定理在解三角形中的应用,属于中档题.由已知b 2+c 2=a 2+bc ,利用余弦定理可得cosA =12,可得A =π3,由sin B ⋅sinC =sin 2A ,利用正弦定理可得bc =a 2,代入b 2+c 2=a 2+bc ,可得b =c.由此可以确定三角形形状.【解答】解:因为b 2+c 2=a 2+bc ,所以bc =b 2+c 2−a 2,利用余弦定理可得cosA =b 2+c 2−a 22bc =12, 因为, 故, 因为,利用正弦定理可得bc =a 2, 代入b 2+c 2=a 2+bc 可得(b −c)2=0,故b =c ,所以△ABC 为等边三角形.故选C .【2017·北京高考(理)】在△ABC 中,∠A =60°,c =37a.(1)求sin C 的值;(2)若a =7,求△ABC 的面积.【答案】解:(1)∠A =60°,c =37a ,由正弦定理可得sinC =37sinA =37×√32=3√314; (2)a =7,则c =3,∴C <A ,∵sin 2C +cos 2C =1,又由(1)可得cosC =1314,∴sinB =sin(A +C)=sinAcosC +cosAsinC=√32×1314+12×3√314=4√37, ∴S △ABC =12acsinB =12×7×3×4√37=6√3.【知识点】诱导公式——π±α、-α型、三角形面积公式、由一个三角函数值求其他三角函数值、利用正弦定理解三角形、两角和与差的正弦公式【解析】本题考查了正弦定理和两角和的正弦公式和三角形的面积公式,属于基础题.(1)根据正弦定理即可求出答案;(2)根据同角三角函数的关系求出cos C,再根据两角和的正弦公式求出sin B,根据面积公式计算即可.二、【2017·浙江高考】已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是(1),cos∠BDC=(2).【答案】√152√10 4【知识点】二倍角公式及其应用【解析】【分析】本题考查了二倍角公式,等高三角形的面积比为底边比,关键是未知三角形面积和已知三角形面积的转化,属于中档题.如图,取BC的中点E,根据勾股定理求出AE,再求出S△ABC,再根据S△BDC=12S△ABC即可求出,根据等腰三角形的性质和二倍角公式即可求出cos∠BDC.【解答】解:如图,取BC的中点E,∵AB=AC=4,BC=2,∴BE=12BC=1,AE⊥BC,∴AE=√AB2−BE2=√15,∴S△ABC=12BC⋅AE=12×2×√15=√15,∵BD=2,根据等高三角形的面积比为底边比,∴S △BDC =12S △ABC =√152, ∵BC =BD =2,∴∠BDC =∠BCD , ∴∠ABE =2∠BDC在Rt △ABE 中,∵cos∠ABE =BE AB =14,∴cos∠ABE =2cos 2∠BDC −1=14, ∴cos∠BDC =√104, 故答案为:√152,√104三、 【2017·天津高考(理)】在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知a >b ,a =5,c =6,sinB =35.(Ⅰ)求b 和sin A 的值;(Ⅱ)求sin(2A +π4)的值.【答案】解:(Ⅰ)在△ABC 中,∵a >b ,故由sinB =35,可得cosB =45.由已知及余弦定理,有b 2=a 2+c 2−2accosB=25+36−2×5×6×45=13,∴b =√13.由正弦定理a sinA =b sinB ,得sinA =asinB b =3√1313. ∴b =√13,sinA =3√1313; (Ⅱ)由(Ⅰ)及a <c ,得cosA =2√1313, ∴sin2A =2sinAcosA =1213,cos2A =1−2sin 2A =−513. 故sin(2A +π4)=sin2Acos π4+cos2Asin π4=1213×√22−513×√22=7√226. 【知识点】二倍角正弦公式、由一个三角函数值求其他三角函数值、利用正弦定理解三角形、利用余弦定理解三角形【解析】本题考查正弦定理、余弦定理在解三角形中的应用,同角三角函数关系,考查倍角公式的应用,属于中档题.(Ⅰ)由已知结合同角三角函数基本关系式求得cos B ,再由余弦定理求得b ,利用正弦定理求得sin A ; (Ⅱ)由同角三角函数基本关系式求得cos A ,再由倍角公式求得sin2A ,cos2A ,展开两角和的正弦得答案.【2017·天津高考(文)】在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知asinA =4bsinB ,ac =√5(a 2−b 2−c 2)(Ⅰ)求cos A 的值;(Ⅱ)求sin(2B −A)的值【答案】(Ⅰ)解:由a sinA =b sinB ,得asinB =bsinA ,又asinA =4bsinB ,两式作比得:a 4b =b a ,∴a =2b .由ac =√5(a 2−b 2−c 2),得b 2+c 2−a 2=−√55ac , 由余弦定理,得cosA =b 2+c 2−a 22bc =−√55ac ac =−√55; (Ⅱ)解:由(Ⅰ),可得sinA =2√55, 代入asinA =4bsinB ,得sinB =asinA 4b =√55. 由(Ⅰ)知,A 为钝角,则B 为锐角,∴cosB =√1−sin 2B =2√55, 于是sin2B =2sinBcosB =45,cos2B =1−2sin 2B =35,故sin(2B −A)=sin2BcosA −cos2BsinA=45×(−√55)−35×2√55=−2√55. 【知识点】二倍角正弦公式、由一个三角函数值求其他三角函数值、利用正弦定理解三角形、两角和与差的正弦公式、利用余弦定理解三角形【解析】本题考查正,余弦定理在解三角形中的应用,三角函数二倍角公式及和差角公式的应用,属于中档题.(Ⅰ)由正弦定理得asinB=bsinA,结合asinA=4bsinB,得a=2b.再由ac=√5(a2−b2−c2),得b2+c2−a2=−√55ac,代入余弦定理的推论可求cos A的值;(Ⅱ)由(Ⅰ)可得sinA=2√55,代入asinA=4bsinB,得sin B,进一步求得cosB.利用倍角公式求sin2B,cos2B,展开两角差的正弦可得sin(2B−A)的值.四、【2017·上海高考】已知函数f(x)=cos2x−sin2x+12,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=√19,角B所对边b=5,若f(A)=0,求△ABC的面积.【答案】解:(1)函数f(x)=cos2x−sin2x+12=cos2x+12,x∈(0,π),由2kπ−π≤2x≤2kπ,k∈Z,解得kπ−12π≤x≤kπ,k∈Z,∵x∈(0,π),可得f(x)的单调递增区间为[π2,π);(2)设△ABC为锐角三角形,角A所对边a=√19,角B所对边b=5,若f(A)=0,即有cos2A+12=0,A为锐角,解得2A=23π,即A=13π,由余弦定理可得a2=b2+c2−2bccosA,化为c2−5c+6=0,解得c=2或3,若c=2,则cosB=2×√19×2<0,即有B为钝角,∴c=2不成立,则c=3,经检验符合条件,△ABC的面积为S=12bcsinA=12×5×3×√32=15√34.【知识点】三角形面积公式、判断余弦型函数的单调性或求解单调区间、二倍角余弦公式、利用余弦定理解三角形【解析】本题考查二倍角公式和余弦函数的图象和性质,考查解三角形的余弦定理和面积公式的运用,考查运算能力,属于中档题.(1)由二倍角的余弦公式和余弦函数的递增区间,可得所求单调增区间;(2)由f(A)=0,解得A,再由余弦定理解方程可得c,再由三角形的面积公式,计算即可得到所求值.。

全国版2024高考数学一轮复习第4章三角函数解三角形第4讲正余弦定理及解三角形试题1理含解析

全国版2024高考数学一轮复习第4章三角函数解三角形第4讲正余弦定理及解三角形试题1理含解析

第四章 三角函数、解三角形第四讲 正、余弦定理及解三角形练好题·考点自测1.[2024全国卷Ⅲ,7,5分][理]在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19 B.13 C.12 D.232.[2024 山东,9, 5分][理]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若△ABC 为锐角三角形,且满意sin B (1+2cosC )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A.a =2bB.b =2aC.A =2BD.B =2A3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =18,b =24,A =45°,则此三角形( ) A.无解 B.有一解 C.有两解D.解的个数不确定4.下列说法正确的是(△ABC 中,角A ,B ,C 的对边分别为a ,b ,c )( ) ①在△ABC 中,若A >B ,则必有sin A >sin B ; ②在△ABC 中,若b 2+c 2>a 2,则△ABC 为锐角三角形;③在△ABC 中,若A =60°,a =4√3,b =4√2,则B =45°或B =135°;④若满意条件C =60°,AB =√3,BC =a 的△ABC 有两个,则实数a 的取值范围是(√3,2); ⑤在△ABC 中,若a cos B =b cos A ,则△ABC 是等腰三角形. A.①③④⑤ B.①②③④ C.①④⑤D.①③⑤5.[2024全国卷Ⅱ,15,5分][理]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若b =6,a =2c ,B =π3,则△ABC 的面积为 .6.[2024浙江,14,6分]在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD = ,cos∠ABD = .7.[2024全国卷Ⅱ,13,5分][理]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b = .8.[2024深圳市高三统一测试]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )= (a -c )sin C ,b =2,则△ABC 的外接圆面积为 .9.[湖北高考,5分][理]如图4-4-1,一辆汽车在一条水平的马路上向正西行驶,到A 处时测得马路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD = m .图4-4-1 拓展变式1.(1)[2024江淮十校联考]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2a sin A -b sin B =2c sin C ,cos A =14,则sinB sinC=( ) A.4 B.3 C.2 D.1(2)在锐角三角形ABC 中,b =2,a +c =√7(a >c ),且满意2a sin B cos C +2c sin B cos A =√3b ,则a -c = . 2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c , (1)若cb <cos A ,则△ABC 的形态为 .(2)若c -a cos B =(2a -b )cos A ,则△ABC 的形态为 .3.[2024河南洛阳4月模拟]在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c. (1)若△ABC 的面积S 满意4√3S +c 2=a 2+b 2,c =√7,a =4,且b >c ,求b 的值; (2)若a =√3,A =π3,且△ABC 为锐角三角形,求△ABC 周长的取值范围.4.[2024全国卷Ⅰ,17,12分][理]在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求cos∠ADB ; (2)若DC =2√2,求BC.5.(1)[解三角形与数列、基本不等式综合]设△ABC 的角A ,B ,C 成等差数列,且满意sin(A -C )-sin B =-√32,BC 延长线上有一点D ,满意BD =2,则△ACD 面积的最大值为( ) A .1 B .√34C .√32D .√63(2)[新课标全国Ⅰ,5分][理]在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 6.[2024山东,15,5分]某中学开展劳动实习,学生加工制作零件,零件的截面如图4-4-6所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH ∥DG ,EF =12 cm ,DE =2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为 cm 2.图4-4-6答 案第四讲 正、余弦定理及解三角形1.A 由余弦定理得AB 2=AC 2+BC 2-2AC ×BC ×cos C =16+9-2×4×3×23=9,AB =3,所以cos B =9+9-162×9=19,故选A .2.A 由题意可知sin B +2sin B cos C =sin A cos C +sin(A +C ),即2sin B cos C =sin A cos C ,又cos C ≠0,故2sin B =sin A ,由正弦定理可知a =2b.故选A.3.C ∵b sin A =12√2<a <b ,∴三角形有两解.4.C 对于①,在△ABC 中,若A >B ,则a >b ,a 2R >b2R (R 为△ABC 的外接圆的半径),即sin A >sin B ,①正确;对于②,在△ABC 中,若b 2+c 2>a 2,则A 是锐角,但△ABC 不肯定是锐角三角形,②错误;对于③,由a sinA =b sinB 得sin B =ba sinA √24√3×√32=√22,因为a >b ,所以B <A ,所以B =45°,③错误;对于④,由条件可得BC sin C <AB <BC ,即√32a <√3<a ,解得√3<a <2,④正确;对于⑤,由a cos B =b cos A 得sinA cosB =sin B cos A ,即sin(A -B )=0,又A ,B 为三角形的内角,所以A =B ,故△ABC 是等腰三角形,⑤正确.故选C .5.6√3 因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =2 √3,所以a =4√3,所以△ABC 的面积S =12ac sin B =12×4 √3×2√3×sin π3=6√3.6.12√257√210 在Rt△ABC 中,易得AC =5,sin C =AB AC =45.在△BCD 中,由正弦定理得BD =BC sin∠BDC ×sin∠BCD =√2245=12√25,sin∠DBC =sin[180°-(∠BCD +∠BDC )]=sin(∠BCD +∠BDC )=sin∠BCD cos∠BDC +cos∠BCD sin∠BDC =45×√22+35×√22=7√210.又∠ABD +∠DBC =90°,所以cos∠ABD =sin∠DBC =7√210.7.2113解法一 因为cos A =45,cos C =513,所以sin A =35,sin C =1213,从而sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.由正弦定理a sinA =b sinB ,得b =asinB sinA =2113. 解法二 因为cos A =45,cos C =513,所以sin A =35,sin C =1213,从而cos B =-cos(A +C )=-cos A cos C +sin A sin C =-45×513+35×1213=1665.由正弦定理a sinA =c sinC ,得c =asinC sinA =2013. 由余弦定理b 2=a 2+c 2-2ac cos B ,得b =2113.解法三 因为cos A =45,cos C =513,所以sin A =35,sin C =1213, 由正弦定理a sinA=c sinC,得c =asinC sinA=2013.从而b =a cos C +c cos A =2113.8.43π 利用正弦定理将已知等式转化为(a +b )(a -b )=(a -c )c ,即a 2+c 2-b 2=ac ,所以由余弦定理得cos B =a 2+c 2-b 22ac=12,因为0°<B <180°,所以B =60°.设△ABC 的外接圆半径为R ,则由正弦定理知,2R =b sinB=√3,R =√3,所以△ABC 的外接圆面积S =πR 2=43π.9.100√6 由题意,得∠BAC =30°,∠ABC =105°.在△ABC 中,因为∠ABC +∠BAC +∠ACB =180°,所以∠ACB =45°. 因为AB =600 m,由正弦定理可得600sin45°=BCsin30°,即BC =300√2 m .在Rt△BCD 中,因为∠CBD =30°,BC =300√2 m,所以tan 30°=CDBC =300√2,所以CD =100√6 m .1.(1)D 因为△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2a sin A -b sin B =2c sin C ,利用正弦定理将角化为边可得2a 2-b 2=2c 2①,由①及余弦定理可得cos A =b 2+c 2-a 22bc=b 4c =14,化简得b c =1,即sinBsinC =1,故选D .(2)√3 因为2a sin B cos C +2c sin B cos A =√3b ,所以2sin A sin B cos C +2sin C sin B cos A =√3sin B.在锐角三角形ABC 中,sin B >0,所以2sin A cos C +2sin C cos A =√3,即sin(A +C )=√32,所以sin B =√32,cos B =12.因为b 2=a 2+c 2-2ac cosB =(a +c )2-2ac -2ac cos B ,所以ac =1.因为(a -c )2=(a +c )2-4ac =7-4=3,且a >c ,所以a -c =√3.2.(1)钝角三角形 已知c b<cos A ,由正弦定理,得sinCsinB<cos A ,即sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sinB cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,即B 为钝角,所以△ABC 是钝角三角形.(2)等腰三角形或直角三角形 因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sinB cos A ,又C =π-(A +B ),所以sin C =sin(A +B ),所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A (B =π-A 舍去),所以△ABC 为等腰三角形或直角三角形.3.(1)因为4√3S =a 2+b 2-c 2,所以4√3×12ab sin C =2ab cos C , 所以tan C =√33,又0<C <π,所以C =π6.由余弦定理及c =√7,a =4,得cos π6=16+b 2-78b,解得b =3√3或b =√3.因为b >c =√7,所以b =3√3. (2)由正弦定理及a =√3,A =π3得√3sinπ3=b sinB =csinC ,故b =2sin B ,c =2sin C =2sin(2π3-B ).则△ABC 的周长为√3+2sin B +2sin(2π3-B )=√3+√3cos B +3sin B =√3+2√3sin(B +π6).由题意可知{0<B <π2,0<2π3-B <π2,解得π6<B <π2.所以π3<B +π6<2π3,故√32<sin(B +π6)≤1,因此三角形ABC 周长的取值范围为(3+√3,3√3]. 4.(1)在△ABD 中,由正弦定理得BD sinA=ABsin∠ADB.由题设知,5sin45°=2sin∠ADB ,所以sin∠ADB =√25. 由题设知,∠ADB <90°,所以cos∠ADB =√1-225=√235. (2)由题设及(1)知,cos∠BDC =sin∠ADB =√25.在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2×BD ×DC ×cos∠BDC =25+8-2×5×2√2×√25=25,所以BC =5.5.(1)B 因为△ABC 的角A ,B ,C 成等差数列,所以B =π3,又sin(A -C )-sin B =-√32,所以A =B =C =π3,设△ABC 的边长为x ,由已知有0<x <2,则S △ACD =12x (2-x )sin 2π3=√34x (2-x )≤√34(x+2-x 2)2=√34(当且仅当x =2-x ,即x =1时取等号),故选B .(2)(√6−√2,√6+√2) 如图D 4-4-1,作△PBC ,使∠B =∠C =75°,BC =2,作直线AD 分别交线段PB ,PC 于A ,D 两点(不与端点重合),且使∠BAD =75°,则四边形ABCD 就是符合题意的四边形.过C 作AD 的平行线交PB 于点Q ,在△PBC 中,可求得BP =√6+√2,在△QBC 中,可求得BQ =√6−√2,所以AB 的取值范围是(√6−√2,√6+√2).图D 4-4-16.5π2+4 如图D 4-4-2,连接OA ,作AQ ⊥DE ,交ED 的延长线于Q ,AM ⊥EF 于M ,交DG 于E',交BH 于F',记过O 且垂直于DG 的直线与DG 的交点为P ,设OP =3m ,则DP =5m ,不难得出AQ =7,AM =7,于是AE'=5,E'G =5,∴∠AGE'=∠AHF'=π4,△AOH 为等腰直角三角形,又AF'=5-3m ,OF'=7-5m ,AF'=OF',∴5-3m =7-5m ,得m =1,∴AF'=5-3m =2,OF'=7-5m =2,∴OA =2√2,则阴影部分的面积S =135360×π×(2√2)2+12×2√2×2√2−π2=(5π2+4)(cm 2).。

通用版五年高考2024_2025高考数学真题专题归纳专题06三角函数及解三角形含解析理

通用版五年高考2024_2025高考数学真题专题归纳专题06三角函数及解三角形含解析理

1 1
tan tan
2 2
1 1
22 22
3, 5
tan( ) tan 1 2 1 1 , 4 1 tan 1 2 3
11.(2024·江苏卷)已知 sin2 ( ) = 2 ,则 sin 2 的值是____.
4
3
【答案】 1 3
【解析】 sin2 ( ) ( 2 cos 2 sin )2 1 (1 sin 2 )
图1
9
图2
图3
4.【2024·全国Ⅱ卷】已知 α∈(0, ),2sin2α=cos2α+1,则 sinα= 2
A. 1 5
B. 5 5
C. 3 3
【答案】B
D. 2 5 5
【解析】
2sin 2α cos 2α 1,4sin α cos α 2 cos2 α .
α
0,
2
,
cos
α
0

sin α 0, 2sin α cos α ,又 sin2 cos2 1,5sin2 α 1,sin2 α 1 ,又 5
f
x
可得:
cos
4 9
6
0
.又
4 9
,
0
是函数
f
x 图象与
x
轴负半轴的第一个交点,
所以 4 ,解得: 3
9
62
2
所以函数
f
x 的最小正周期为T
2
2 3
4 3
2
2.(2024·新课标Ⅰ)已知 (0, π) ,且 3cos2 8cos 5 ,则 sin (
A5 3
B. 2 3
7.(2024·山东卷)下图是函数 y= sin(ωx+φ)的部分图像,则 sin(ωx+φ)= ( )

解三角形(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)

解三角形(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)

考向22 解三角形【2022·全国·高考真题(理)】记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长.【2022·全国·高考真题】记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值.解答三角高考题的策略:(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”. (2)寻找联系:运用相关公式,找出差异之间的内在联系. (3)合理转化:选择恰当的公式,促使差异的转化.两定理的形式、内容、证法及变形应用必须引起足够的重视,通过向量的数量积把三角形和三角函数联系起来,用向量方法证明两定理,突出了向量的工具性,是向量知识应用的实例.另外,利用正弦定理解三角形时可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角”定理及几何作图来帮助理解.1.方法技巧:解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 sin a b A =sin b A a b <<a b ≥a b >a b ≤解的个数一解两解一解一解无解2.在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”; (2)若式子含有,,a b c 的齐次式,优先考虑正弦定理,“边化角”; (3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”; (4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到A B C π++=.1.基本定理公式(1)正余弦定理:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理公式==2sin sin sinCa b c R A B = 2222cos a b c bc A =+-;2222cosB b c a ac =+-; 2222cosC c a b ab =+-.常见变形(1)2sin a R A =,2sinB b R =,2sinC c R =;(2)sin 2a A R =,sinB 2b R =,sinC 2cR =;222cosA 2b c a bc +-=; 222cosB 2c a b ac +-=; 222cosC 2a b c ab+-=.111sin sin sin 222S ABC ab C bc A ac B ∆===1()42abc S ABC a b c r R ∆==++⋅(r 是三角形内切圆的半径,并可由此计算R ,r .) 2.相关应用 (1)正弦定理的应用①边化角,角化边::sin :sin :sin a b c A B C ⇔= ②大边对大角大角对大边sin sin cos cos a b A B A B A B >⇔>⇔>⇔<③合分比:b 2sin sin sin sin sin sin sin sin sin sin sin B sin a bc a b b c a c a cR A B C A B B C A C A C+++++=======+++++(2)ABC △内角和定理:A B C π++=①sin sin()sin cos cos sin C A B A B A B =+=+cos cos c a B b A ⇔=+ 同理有:cos cos a b C c B =+,cos cos b c A a C =+. ②cos cos()cos cos sinAsinB C A B A B -=+=-; ③斜三角形中,tan tan tan tan()1tan tan A BC A B A B+-=+=-⋅tan tan tanC tan tan tanC A B A B ⇔++=⋅⋅④sin()cos 22A B C +=;cos()sin 22A B C+= ⑤在ABC ∆中,内角A B C ,,成等差数列2,33B AC ππ⇔=+=. 3.实际应用 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). (3)方向角:相对于某一正方向的水平角.①北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③). ②北偏西α,即由指北方向逆时针旋转α到达目标方向. ③南偏西等其他方向角类似.(4)坡角与坡度①坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).②坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比.1.(2022·青海·模拟预测(理))在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b kab +=,则△ABC 的面积为22c 时,k 的最大值是( )A .2B .5C .4D .252.(2022·全国·高三专题练习)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+,若2sin sin sin B C A =,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形3.(2022·青海·海东市第一中学模拟预测(理))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知2a =,222sin 3sin 2sin A B a C +=,则cos C 的最小值为______.4.(2022·上海·位育中学模拟预测)如图所示,在一条海防警戒线上的点、、A B C 处各有一个水声监测点,B C 、两点到点A 的距离分别为 20 千米和 50 千米.某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A C 、同时接收到该声波信号,已知声波在水中的传播速度是 1.5 千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B C 、到P 的距离,并求x 的值; (2)求静止目标P 到海防警戒线AC 的距离.(结果精确到 0.01 千米).5.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C AB C-=,a b <. (1)求角B ;(2)若3a =,7b =,D 为AC 边的中点,求BCD △的面积.6.(2022·河南省杞县高中模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2cos cos cos a A b C c B =+. (1)求角A 的大小;(2)若23a =,6b c +=,求ABC 的面积.7.(2022·全国·高三专题练习)在ABC 中,内角,,A B C 对应的边分别为,,a b c ,6AB AC ⋅=,向量()cos ,sin s A A =与向量()4,3t =-互相垂直. (1)求ABC 的面积; (2)若7b c +=,求a 的值.1.(2022·全国·高三专题练习)已知在ABC 中,30,2,1B a b ===,则A 等于( )A .45B .135C .45或135D .1202.(2022·河南·南阳中学模拟预测(文))ABC 中,若5,6AB AC BC ===,点E 满足21155CE CA CB =+,直线CE 与直线AB 相交于点D ,则CD 的长( ) A 810B 15C 10D 303.(2022·全国·高三专题练习)在ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,若2222a b c bc -=且cos sin =b C a B ,则ABC 是( )A .等腰直角三角形B .等边三角形C .等腰三角形D .直角三角形4.(2022·四川省宜宾市第四中学校模拟预测(文))如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60°方向,则A ,B 两处岛屿间的距离为 ( )A .6B .406C .20(13)+海里D .40海里5.(多选题)(2022·福建·福州三中高三阶段练习)ABC 中,角,,A B C 的对边分别为,,a b c ,且2,sin 2sin a B C ==,以下四个命题中正确的是( ) A .满足条件的ABC 不可能是直角三角形B .ABC 面积的最大值为43C .M 是BC 中点,MA MB ⋅的最大值为3D .当2A C =时,ABC 236.(多选题)(2022·广东·华南师大附中三模)已知圆锥的顶点为P ,母线长为2,底面圆直径为3A ,B ,C 为底面圆周上的三个不同的动点,M 为母线PC 上一点,则下列说法正确的是( )A .当A ,B 为底面圆直径的两个端点时,120APB ∠=︒ B .△P AB 3C .当△P AB 面积最大值时,三棱锥C -P AB 62+D .当AB 为直径且C 为弧AB 的中点时,MA MB +157.(多选题)(2022·河北·沧县中学模拟预测)在ABC 中,三边长分别为a ,b ,c ,且2abc =,则下列结论正确的是( ) A .222<+a b ab B .22++>ab a b C .224++≥a b cD .22++≤a b c 8.(2022·青海·海东市第一中学模拟预测(文))在ABC 中,O 为其外心,220OA OB OC ++=,若2BC =,则OA =________.9.(2022·河北·高三期中)已知ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,2a b cp ++=,则ABC 的面积()()()S p p a p b p c =---,该公式称作海伦公式,最早由古希腊数学家阿基米德得出.若ABC 的周长为15,()()()sin sin :sin sin :sin sin 4:6:5A B B C C A +++=,则ABC 的面积为___________________.10.(2022·全国·高三专题练习(理))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2224a b c +=,则tan B 的最大值为______.11.(2022·辽宁·沈阳二中模拟预测)沈阳二中北校区坐落于风景优美的辉山景区,景区内的一泓碧水蜿蜒形成了一个“秀”字,故称“秀湖”.湖畔有秀湖阁()A 和临秀亭()B 两个标志性景点,如图.若为测量隔湖相望的A 、B 两地之间的距离,某同学任意选定了与A 、B 不共线的C 处,构成ABC ,以下是测量数据的不同方案: ①测量A ∠、AC 、BC ; ②测量A ∠、B 、BC ; ③测量C ∠、AC 、BC ; ④测量A ∠、C ∠、B .其中一定能唯一确定A 、B 两地之间的距离的所有方案的序号是_____________.12.(2022·青海·海东市第一中学模拟预测(理))如图,在平面四边形ABCD 中,已知BC =2,3cos 5BCD ∠=-.(1)若45CBD ∠=︒,求BD 的长; (2)若5cos ACD ∠=AB =4,求AC 的长.13.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)2223S a c b =+-. (1)求角B 的大小;(2)若22a b c =,求sin C .14.(2022·上海浦东新·二模)已知函数()()sin cos f x t x x t R =-∈ (1)若函数()f x 为偶函数,求实数t 的值;(2)当3t =时,在ABC 中(,,A B C 所对的边分别为a 、b 、c ),若()223f A c ==,,且ABC 的面积为23a 的值.15.(2022·全国·高三专题练习)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B =++.(1)若23C π=,求B ; (2)求222a b c+的最小值.16.(2022·青海·海东市第一中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,221cos 2a b bc ac B -+=.(1)求角A ;(2)若sin 3sin b A B =,求ABC 面积的最大值.17.(2022·上海金山·二模)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知2sin 30b A a -=,且B 为锐角.(1)求角B 的大小;(2)若333c a b =+,证明:ABC 是直角三角形.18.(2022·湖南·湘潭一中高三阶段练习)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(2)sin (2)sin 2sin a c A c a C b B -+-=. (1)求B ;(2)若ABC 为锐角三角形,且2c =,求ABC 周长的取值范围.19.(2022·上海黄浦·二模)某公园要建造如图所示的绿地OABC ,OA 、OC 为互相垂直的墙体,已有材料可建成的围栏AB 与BC 的总长度为12米,且BAO BCO ∠=∠.设BAO α∠=(02πα<<).(1)当4AB =,3πα=时,求AC 的长;(结果精确到0.1米)(2)当6AB =时,求OABC 面积S 的最大值及此时α的值.20.(2022·上海虹口·二模)如图,某公园拟划出形如平行四边形ABCD 的区域进行绿化,在此绿化区域中,分别以DCB ∠和DAB ∠为圆心角的两个扇形区域种植花卉,且这两个扇形的圆弧均与BD 相切.(1)若437AD =,337AB =,37BD =(长度单位:米),求种植花卉区域的面积; (2)若扇形的半径为10米,圆心角为135︒,则BDA ∠多大时,平行四边形绿地ABCD 占地面积最小?1.(2021·全国·高考真题(理))魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距2.(2021·全国·高考真题(文))在ABC 中,已知120B =︒,19AC 2AB =,则BC =( ) A .1B 2C 5D .33.(2021·浙江·高考真题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,3AM =则AC =___________,cos MAC ∠=___________.4.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2,3,2a b c ===,则该三角形的面积S =___________.5.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________. 6.(2022·上海·高考真题)在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为________ 7.(2021·全国·高考真题(理))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,360B =︒,223a c ac +=,则b =________.8.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.9.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A B A B =++. (1)若23C π=,求B ; (2)求222a b c +的最小值.10.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知345,cos 5a c C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.11.(2022·北京·高考真题)在ABC 中,sin 23C C =.(1)求C ∠;(2)若6b =,且ABC 的面积为63ABC 的周长.12.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123313S S S B -+==. (1)求ABC 的面积;(2)若2sin sin A C =b .13.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ;(2)证明:2222a b c =+14.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)15.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 22A B C =2b =(I )求a 的值;(II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.16.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.17.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=. (1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:2c b =;条件②:ABC 的周长为423+; 条件③:ABC 3318.(2021·全国·高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.。

解三角形大题全国卷高考题汇总(11-19)

解三角形大题全国卷高考题汇总(11-19)

解三角形大题全国卷高考题汇总(11-19)解三角形全国高考题汇总一、全国1卷(2019年)17.已知△ABC的内角A,B,C的对边分别为a,b,c,且(sinB-sinC)²=sin²A-sinBsinC1)求A;2)若2a+b=2c,求sinC。

分析】1)利用正弦定理化简已知边角关系式可得:b²+c²-a²=bc,从而可整理出cosA,根据A∈(0,π)可求得结果;2)利用正弦定理可得2sinA+sinB=2sinC,利用sinB=sin(A+C)、两角和差正弦公式可得关于sinC和cosC的方程,结合同角三角函数关系解方程可求得结果。

详解】1)将(sinB-sinC)²=sin²A-sinBsinC化简可得:sin²B+sin²C-sin²A=sinBsinC由正弦定理可得:b²+c²-a²=bccosA=(b²+c²-a²)/(2bc)因为A∈(0,π),所以A=cos⁻¹[(b²+c²-a²)/(2bc)]2)方法一:由正弦定理可得:2sinA+sinB=2sinC又sinB=sin(A+C)=sinAcosC+cosAsinC,代入上式可得:2sinA+sinAcosC+cosAsinC=2sinC整理可得:3sinC-2sinA=cosCsinA由sin²A+cos²A=1可得cosA=±√(1-sin²A),代入上式可得:3sinC-2sinA=±cosC√(1-sin²A)整理可得:sinC=(3±2√2)sinA/(2±√2)因为sinA∈(0,1),所以sinC>(3-2√2)/(2+√2)=1.082,sinC<(3+2√2)/(2-√2)=1.414所以sinC=1.25方法二:由正弦定理可得:2sinA+sinB=2sinC又sinB=sin(A+C)=sinAcosC+cosAsinC,代入上式可得:2sinA+sinAcosC+cosAsinC=2sinC整理可得:3sinC-6=3cosCsinA由sin²A+cos²A=1可得cosA=±√(1-sin²A),代入上式可得:3sinC-6=±3cosCsinA√(1-sin²A)整理可得:(sinC-2)²=3-sin²C解得:sinC=1.25二、2018全国新课标Ⅰ理在平面四边形ABCD中,∠ADC=90,∠A=45,AB=2,BD=5.1)求cos∠ADB;2)若DC=22,求BC.1)由余弦定理可得:BD²=AB²+AD²-2AB·ADcos∠ADB代入已知条件可得:25=4+AD²-4ADcos∠ADB整理可得:cos∠ADB=(AD²-21)/4AD2)由勾股定理可得:AD=AB√2=2√2由正弦定理可得:DC/√2=sin∠ADC=sin(∠ADB+∠ABC)=sin∠ADB·cos∠ABC+ cos∠ADB·sin∠ABC代入已知条件可得:22/√2=sin∠ADB·(√2/2)+cos∠ADB·(5/2)整理可得:√2sin∠ADB+5cos∠ADB=44/√2将cos∠ADB代入上式可得:√2sin∠ADB+(25-AD²)/2AD=44/√2代入已知条件可得:√2sin∠ADB+(25-8)/4=44/√2解得:sin∠ADB=3/2√2由正弦定理可得:BC/√2=sin∠ABC/sin∠ADB代入已知条件可得:BC/√2=2/(3√2)解得:BC=2/3在三角形ABD中,根据正弦定理得:frac{522}{\sin\angleADB}=\frac{523}{\sin45^{\circ}\sin\angle ADB}$$化XXX:sin\angle ADB=\frac{523}{522\sqrt{2}}$$又因为$\angle ADB<90^{\circ}$,所以根据余弦定理得:cos\angle ADB=1-\sin^2\angle ADB=\frac{1}{2}$$在三角形ABD和BDC中,根据余弦定理和正弦定理得:cos\angle BDC=\cos(-\angle ADB)=\sin\angle ADB$$cos\angle BDC=\frac{DC^2+BD^2-BC^2}{2\cdot BD\cdot DC}=\frac{28+25-BC^2}{2\cdot 5\cdot 2\sqrt{2}}$$化XXX:BC=5$$在三角形ABC中,根据正弦定理和面积公式得:frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2S$$所以:sin B\sin C=\frac{bc}{a}\cdot\sin B\sinC=\frac{2S}{a}\cdot\sin B\sin C$$又因为$S=\frac{1}{2}bc\sin A$,所以:sin B\sin C=\frac{a\sin A}{2bc}=\frac{a}{2c}$$在三角形ABC中,根据余弦定理和面积公式得:a^2=b^2+c^2-2bc\cos A=4c^2-4S^2/c^2$$所以:cos A=\frac{4c^4-4S^2}{4c^3}=\frac{c^2-S^2}{2c^2}$$ 又因为$\sin A=\frac{2S}{bc}$,所以:sin A=\frac{2S}{bc}=\frac{2S}{2c\sin C}=\frac{S}{c\sin C}=\frac{a\sin A}{c}$$代入$\cos A$的式子中得:cos A=\frac{c^2-S^2}{2c^2}=\frac{a^2-b^2}{2ac}=\frac{a\sin A}{c}$$所以:sin B\sin C=\frac{a}{2c}=\frac{\sin A}{2\cos A}$$又因为$6\cos B\cos C=\frac{3bc}{a^2}=\frac{3}{2S}\cdot bc=\frac{3}{S}\cdot\frac{1}{2}bc=\frac{3}{S}\cdot S\sinA=\frac{3}{\sin A}$,所以:sin B\sin C=\frac{1}{6\cos B\cos C}=\frac{\sin A}{18}$$代入第一个式子中得:frac{a}{\sin A}=\frac{2c\sin B\sin C}{\sin A}=\frac{c}{9}$$又因为$S=\frac{1}{2}ac\sin B=\frac{1}{2}bc\sinC=\frac{1}{2}ab\sin A$,所以:c=2S/a=4$$代入上式中得:a=36$$所以:sin B\sin C=\frac{a}{2c}=\frac{9}{4}$$cos B\cos C=\frac{1}{6\sin B\sin C}=\frac{2}{27}$$根据余弦定理和面积公式得:b^2=c^2+a^2-2ac\cos B=4a^2-4S^2/a=128$$cos B=\frac{b^2+c^2-a^2}{2bc}=\frac{3}{4}$$sin B=\sqrt{1-\cos^2B}=\frac{\sqrt{7}}{4}$$sin C=\frac{a\sin A}{b}=\frac{6}{7\sqrt{7}}$$所以:cos C=\sqrt{1-\sin^2C}=\frac{5\sqrt{3}}{7\sqrt{7}}$$tan A=\frac{\sin A}{\cos A}=\frac{a\sin A}{c^2-S^2}=\frac{36\cdot 6/7\sqrt{7}}{16-36^2/4}=24\sqrt{7}$$tan B=\frac{\sin B}{\cosB}=\frac{\sqrt{7}/4}{3/4}=\frac{\sqrt{7}}{3}$$tan C=\frac{\sin C}{\cosC}=\frac{6/7\sqrt{7}}{5\sqrt{3}/7\sqrt{7}}=\frac{6}{5\sqrt{3}}$ $所以:tan A+\tan B+\tanC=24\sqrt{7}+\frac{\sqrt{7}}{3}+\frac{6}{5\sqrt{3}}$$ 24\sqrt{7}+\frac{5\sqrt{7}}{15}+\frac{6\sqrt{3}}{15}$$ 24\sqrt{7}+\frac{5\sqrt{21}+2\sqrt{3}}{15}$$在三角形ABC中,根据余弦定理和面积公式得:cos C=\frac{a^2+b^2-c^2}{2ab}=\frac{a^2+(a+1)^2-4^2}{2a(a+1)}$$化XXX:2a^3+3a^2-2a-15=0$$因为$a>0$,所以:a=\frac{\sqrt{93}-3}{4}$$代入面积公式$S=\frac{1}{2}ab\sin C$中得:S=\frac{1}{2}\cdot\frac{\sqrt{93}-3}{4}\cdot\frac{1}{2}\cdot\frac{1}{5}=\frac{\sqrt{93}-3}{40}$$ 根据正弦定理得:frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sinC}=\frac{5\sqrt{93}-15}{8}$$所以:b=\frac{a\sin B}{\sin A}=\frac{a\sin C}{\sin A}=\frac{c\sin B}{\sin C}=\frac{c\sin A}{\sin C}=\frac{a\sin A}{\sinB}=\frac{ac}{b}=\frac{a^2}{b}=\frac{(\sqrt{93}-3)^2}{5\sqrt{93}-15}$$所以:a+b+c=\frac{\sqrt{93}-3}{4}+\frac{(\sqrt{93}-3)^2}{5\sqrt{93}-15}+4=\frac{8\sqrt{93}+12}{5\sqrt{93}-15}$$2015年17题:在三角形ABC中,D是BC边上的点,AD平分∠BAC,且∆ABD的面积是∆ADC的2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形
一、基本量求解
(1)正弦定理
(2)余弦定理
2016全国1文总计12
4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()
A.B.C.2D.3
2013全国1文总计12
10.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()
A.10B.9C.8D.5
(3)综合
2017全国3文总计5
15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.
2016全国2文总计12
15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.
2015全国1理总计12
16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.
二、关系式化简
(1)三角恒等变形
2017全国1文总计12
11.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC
﹣cosC)=0,a=2,c=,则C=()
A.B.C.D.
(2)因式分解
(3)边化角
2017全国2文总计12
16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.
(4)角化边
三、判断形状
四、面积
2013全国2文总计5
4.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为()
A.2+2B.C.2﹣2D.﹣1
2014全国2理总计5
4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1
2016全国3理总计5
8.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA=()A.B.C.﹣D.﹣
2016全国3文总计5
9.(5分)在△ABC中,B=,BC边上的高等于BC,则sinA=()
A.B.C.D.
五、实际应用
2014全国1文总计12
16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=1000m,则山高MN=m.
六、最值
(1)基本不等式
2014全国1理总计12
16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.
2013全国2理总计12
17.(12分)△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面积的最大值.
(2)三角函数
(3)二次函数
七、综合
(1)边角互化
2015全国1文总计12
17.(12分)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;
(Ⅰ)设B=90°,且a=,求△ABC的面积.
2017全国2理总计12
17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.
(1)求cosB;
(2)若a+c=6,△ABC面积为2,求b.
2016全国1理总计12
17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅰ)若c=,△ABC的面积为,求△ABC的周长.
2017全国1理总计12
17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
(2)三角形计算
2013全国1理总计12
17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.
(1)若PB=,求PA;
(2)若∠APB=150°,求tan∠PBA.
2015全国2文总计12
17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC
(Ⅰ)求.
(Ⅰ)若∠BAC=60°,求∠B.
2015全国2理总计12
17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.
(1)求;
(2)若AD=1,DC=,求BD和AC的长.
2014全国2文总计12
17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;
(2)求四边形ABCD的面积.
2017全国3理总计12
17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.
(1)求c;
(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.。

相关文档
最新文档