图论着色的计数与色多项式
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由点色数 (G) 和色多项式Pk(G)的定义可得:
(1) 若 k (G) ,则Pk(G)=0 ; (G) mink Pk (G) 1
(2) 若G为空图,则Pk(G)=kn。 (3) Pk(Kn)=k(k-1)…(k-n+1)。
3
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
7
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(2)
G2
Pk (G2) k(k 1)(k 2)(k 3) 2k(k 1)(k 2) k(k 1) k(k 1)(k2 3k 3)
8
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
(二)、色多项式的两种求法
1、递推计数法
定理1 设G为简单图,则对任意 e E(G) 有: Pk (G) Pk (G e) Pk (G e)
证明:设e=uv。则对G-e的着色方式数可以分为两部分: (1) u与v着不同颜色。此时,等于G的着色方式数; (2) u与v着同色。此时,等于G·e 的着色方式数; 所以,得:Pk (G) Pk (G e) Pk (G e)
(2) 求出关于补图的 ri Ni (G), (1 i n)
(3)
写出关于补图的伴随多项式
h(G, x)
n
ri xi
i 1
15
1
0.5 n 0
0.5
0.6 0.4 x 0.2
(3)
G3
—
—
Pk (G3) k(k 1)(k3 5k 2 10k 7)
9
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
注:递推计数法的计算复杂度是指数型的。
2、理想子图计数法
(1) 预备知识 定义1:设H是图G的生成子图。若H的每个分支均为 完全图,则称H是G的一个理想子图。用Nr(G)表示G的具 有r个分支的理想子图的个数。
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
图论及其应用
应用数学学院
1
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
本次课主要内容
着色的计数与色多项式 (一)、色多项式概念 (二)、色多项式的两种求法 (三)、色多项式的性质
G
N5(G)=5
12
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
定理2 设qr(G)表示将单图G的顶点集合V划分为r个不 同色组的色划分个数,则:
qr (G) Nr (G).....(1 r V )
证明:一方面,设G的任一r色划分为:{V1,V2,…,Vr}。 于是,对于1≦i≦r, GVi 是 G 的完全子图。
2
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(一)、色多项式概念
所谓色计数,就是给定标定图G和颜色数k,求出正常 顶点着色的方式数。方式数用Pk(G)表示。
可以证明:Pk(G)是k的多项式,称为图G的色多项式。 知道图的色多项式,就可以求出色数为k时的着色方式数。
r
因为Vi∩Vj=Φ(i≠j),所以
G[Vi ] 是
i 1
G 的理想子图。
这说明:G的任一r色划分必然对应 G 的一个理想子图。 容易知道,这种对应是唯一的;
13
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
另一方面,对于 G 的任一具有r个分支的理想子图, 显然它唯一对应G中一个r色组。
例1 求出下面各图的色多项式。
G1
G2
G3
6
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(1)
G1
Pk (G1) k(k 1)(k 2) k(k 1) k3 2k 2 k
也可由推论: (k 1)Pk (K2 ) k3 2k2 k
G1
14
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
定义2 :设G是单图,令Ni(G)=ri , [k]i=xi 。称
n
h(G, x) ri xi i 1
为图G的伴随多项式。 于是,求Pk(G)就是要求出 G 的伴随多项式。 用理想子图法求Pk(G)的步骤如下: (1) 画出G的补图 G
例2 求N4(G), N5(G)。
G 10
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
解:通过观察枚举求Nr(G)
G
1) N4(G):
G
11
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
N4(G)=6
2) N5(G):
4
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
推论:设G是单图,e=uv是G的一条边,且d(u)=1,则:
Pk (G) (k-1)Pk (G u)
证明:因为G是单图,e=uv, d(u)=1,所以G·e = G-u。 另一方面,Pk(G-e)=kPk(G-u) 所以, Pk (G) Pk (G e) Pk (G e)
kPk (G u) Pk (G u) (k-1)Pk (G u)
注:对递推公式的使用分析:
5
1
0.5 n 0
0.5
1 2 1wk.baidu.com5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(1) 当图G的边数较少时,使用减边递推法:
Pk (G) Pk (G e) Pk (G e)
(2) 当图G的边数较多时,使用加边递推法: Pk (G e) Pk (G) Pk (G e)
所以,我们得到:qr (G) Nr (G).....(1 r V )
(2) 色多项式求法----理想子图法
上面定理2实际上给我们提供了色多项式的求法:用k种颜 色对单图G正常着色,可以这样来计算着色方式数:色组为1 的方式数+色组为2的方式数+…+色则为n的方式数。即有如下 计数公式:
n
Pk (G) Ni (G)[k]i ,其中,[k]i k(k 1)(k 2)...(k i 1) i 1
(1) 若 k (G) ,则Pk(G)=0 ; (G) mink Pk (G) 1
(2) 若G为空图,则Pk(G)=kn。 (3) Pk(Kn)=k(k-1)…(k-n+1)。
3
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
7
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(2)
G2
Pk (G2) k(k 1)(k 2)(k 3) 2k(k 1)(k 2) k(k 1) k(k 1)(k2 3k 3)
8
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
(二)、色多项式的两种求法
1、递推计数法
定理1 设G为简单图,则对任意 e E(G) 有: Pk (G) Pk (G e) Pk (G e)
证明:设e=uv。则对G-e的着色方式数可以分为两部分: (1) u与v着不同颜色。此时,等于G的着色方式数; (2) u与v着同色。此时,等于G·e 的着色方式数; 所以,得:Pk (G) Pk (G e) Pk (G e)
(2) 求出关于补图的 ri Ni (G), (1 i n)
(3)
写出关于补图的伴随多项式
h(G, x)
n
ri xi
i 1
15
1
0.5 n 0
0.5
0.6 0.4 x 0.2
(3)
G3
—
—
Pk (G3) k(k 1)(k3 5k 2 10k 7)
9
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
注:递推计数法的计算复杂度是指数型的。
2、理想子图计数法
(1) 预备知识 定义1:设H是图G的生成子图。若H的每个分支均为 完全图,则称H是G的一个理想子图。用Nr(G)表示G的具 有r个分支的理想子图的个数。
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
图论及其应用
应用数学学院
1
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
本次课主要内容
着色的计数与色多项式 (一)、色多项式概念 (二)、色多项式的两种求法 (三)、色多项式的性质
G
N5(G)=5
12
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
定理2 设qr(G)表示将单图G的顶点集合V划分为r个不 同色组的色划分个数,则:
qr (G) Nr (G).....(1 r V )
证明:一方面,设G的任一r色划分为:{V1,V2,…,Vr}。 于是,对于1≦i≦r, GVi 是 G 的完全子图。
2
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(一)、色多项式概念
所谓色计数,就是给定标定图G和颜色数k,求出正常 顶点着色的方式数。方式数用Pk(G)表示。
可以证明:Pk(G)是k的多项式,称为图G的色多项式。 知道图的色多项式,就可以求出色数为k时的着色方式数。
r
因为Vi∩Vj=Φ(i≠j),所以
G[Vi ] 是
i 1
G 的理想子图。
这说明:G的任一r色划分必然对应 G 的一个理想子图。 容易知道,这种对应是唯一的;
13
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
另一方面,对于 G 的任一具有r个分支的理想子图, 显然它唯一对应G中一个r色组。
例1 求出下面各图的色多项式。
G1
G2
G3
6
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(1)
G1
Pk (G1) k(k 1)(k 2) k(k 1) k3 2k 2 k
也可由推论: (k 1)Pk (K2 ) k3 2k2 k
G1
14
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
定义2 :设G是单图,令Ni(G)=ri , [k]i=xi 。称
n
h(G, x) ri xi i 1
为图G的伴随多项式。 于是,求Pk(G)就是要求出 G 的伴随多项式。 用理想子图法求Pk(G)的步骤如下: (1) 画出G的补图 G
例2 求N4(G), N5(G)。
G 10
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
解:通过观察枚举求Nr(G)
G
1) N4(G):
G
11
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
N4(G)=6
2) N5(G):
4
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
推论:设G是单图,e=uv是G的一条边,且d(u)=1,则:
Pk (G) (k-1)Pk (G u)
证明:因为G是单图,e=uv, d(u)=1,所以G·e = G-u。 另一方面,Pk(G-e)=kPk(G-u) 所以, Pk (G) Pk (G e) Pk (G e)
kPk (G u) Pk (G u) (k-1)Pk (G u)
注:对递推公式的使用分析:
5
1
0.5 n 0
0.5
1 2 1wk.baidu.com5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(1) 当图G的边数较少时,使用减边递推法:
Pk (G) Pk (G e) Pk (G e)
(2) 当图G的边数较多时,使用加边递推法: Pk (G e) Pk (G) Pk (G e)
所以,我们得到:qr (G) Nr (G).....(1 r V )
(2) 色多项式求法----理想子图法
上面定理2实际上给我们提供了色多项式的求法:用k种颜 色对单图G正常着色,可以这样来计算着色方式数:色组为1 的方式数+色组为2的方式数+…+色则为n的方式数。即有如下 计数公式:
n
Pk (G) Ni (G)[k]i ,其中,[k]i k(k 1)(k 2)...(k i 1) i 1