连续系统的时域、频域分析报告

合集下载

连续系统频域分析

连续系统频域分析

系统函数定义: H ( j ) Y ( j ) F ( j )
系统函数计算:
(1)h(t)旳傅立叶变换; (2)描述系统频率特性。
1) H ( j ) h(t)e j tdt 2) H ( j ) Y ( j ) F ( j )
3) H ( j) H ( p) p j
响应相量
4) H ( j) 激励相量 10
(t)
t

H j G2c ()e jto
Sac2(S2aCt[S) aGc((t(2tC)tt) Go )]( S2a(G)G 222c2C()( G)) e( 已 ((令 j知)to (2(对 )时称移C性性) ))
ht
c
Sa c
t
t0
20
讨论:
1、h(t)与(t)比较,严重失真; 2、h(t)为抽样函数,峰值为 kωc
A [ H ( j) e j()e jt H ( j) e e j() jt ] 2
H ( j) H ( j) () ()
y(t ) A H ( j) [e j[t ()] e j[t ()] ] 2
A H ( j) cos[t ()]
激励与响应为同频率的 正弦量。
3
二、正弦信号 : f (t) Acos t
h(t) 1 H ( j )e jt d
2
19
二. 单位冲激响应h(t)
h(t) 1
2
H ( j )e j t d 1 c 1 e j t0 e j td
2 c
1
t
1 t0
1 2j
e jC t t0
e jC t t0
c
sin c
c t
t
t0

连续时间系统的时域分析

连续时间系统的时域分析

连续时间系统的时域分析时域分析是对连续时间系统进行分析和研究的一种方法。

通过时域分析,可以了解系统的时间响应特性、稳定性以及系统的动态行为。

本文将从连续时间系统的时域分析方法、常用的时域参数以及时域分析在系统设计中的应用等方面进行详细介绍。

一、连续时间系统的时域分析方法连续时间系统的时域分析方法主要有两种:解析法和数值法。

1. 解析法:通过解析方法可以得到系统的解析表达式,从而分析系统的时间响应特性。

常用的解析方法包括微分方程法、拉普拉斯变换法和傅里叶变换法等。

- 微分方程法:对于线性时不变系统,可以通过设立系统输入和输出之间的微分方程,然后求解微分方程来得到系统的时间响应。

- 拉普拉斯变换法:通过对系统进行拉普拉斯变换,将微分方程转化为代数方程,从而得到系统的传递函数,进而分析系统的时间响应。

- 傅里叶变换法:通过对系统输入和输出进行傅里叶变换,将时域信号转化为频域信号,从而分析系统的频率响应。

2. 数值法:当系统的解析表达式难以获得或无法求解时,可以通过数值方法进行时域分析。

常用的数值方法包括欧拉法、中点法和四阶龙格-库塔法等。

- 欧拉法:通过差分近似,将微分方程转化为差分方程,然后通过计算差分方程的递推关系来得到系统的时间响应。

- 中点法:在欧拉法的基础上,在每个时间步长内,通过计算两个相邻时间点上的导数平均值来改进估计值,从而提高精度。

- 四阶龙格-库塔法:在中点法的基础上,通过对导数进行多次计算和加权平均,从而进一步提高精度。

二、常用的时域参数时域分析除了对系统的时间响应进行分析外,还可以提取一些常用的时域参数来描述系统的性能和特性。

1. 零点:系统的零点是指系统传递函数中使得输出为零的输入值。

2. 极点:系统的极点是指系统传递函数中使得输出无穷大的输入值。

3. 零极点图:零极点图是用来描述系统传递函数中的零点和极点分布情况的图形。

4. 频率响应:频率响应是指系统对不同频率的输入信号的响应。

信号与系统分析第二章 连续时间系统的时域分析

信号与系统分析第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。

实验5-连续时间系统的复频域分析报告

实验5-连续时间系统的复频域分析报告

实验5-连续时间系统的复频域分析报告
本实验的目的是研究连续时间系统的复频域分析。

首先,构建了一个由推力继电器组
成的系统,其模型为图1所示。

再将此系统内建模,得到开环传递函数
G(s)=K/[(s+1)(s+1)(s+2)],其中1为系统参数,s为复频变量。

然后使用MATLAB编程,实现基于Laplace变换计算复频域函数和系统振型,并以一系列频率点绘制系统频率响应
曲线等曲线,从而评估系统性能。

实验结果表明,当系统参数K处于[6.5,9.2]中时,系统的复频响应表现出了各向同
性的性能(图2),表明系统具有更一致的响应特性,并且误差幅值在0.03以内保持稳定,说明系统具有良好的稳定性性能。

此外,系统振型(图3)也说明了系统的稳定性,振型
稳定时间较短,且交叉率较小,说明系统具有良好的稳定性能。

综上,连续时间系统的复频域分析中,MATLAB编程在系统参数K为[6.5,9.2]范围内时,运用Laplace变换和求和函数,成功绘制出系统的复频响应曲线,以及相应的系统振型,从而对系统的复频响应、稳定行为等做出定量性、全面性的评估,为系统运行提供了
可靠的参考。

连续时间信号的时域分析和频域分析

连续时间信号的时域分析和频域分析

时域与频域分析的概述
时域分析
研究信号随时间变化的规律,主 要关注信号的幅度、相位、频率 等参数。
频域分析
将信号从时间域转换到频率域, 研究信号的频率成分和频率变化 规律。
02
连续时间信号的时
域分析
时域信号的定义与表示
定义
时域信号是在时间轴上取值的信号, 通常用 $x(t)$ 表示。
表示
时域信号可以用图形表示,即波形图 ,也可以用数学表达式表示。
05
实际应用案例
音频信号处理
音频信号的时域分析
波形分析:通过观察音频信号的时域波形,可 以初步了解信号的幅度、频率和相位信息。
特征提取:从音频信号中提取出各种特征,如 短时能量、短时过零率等,用于后续的分类或 识别。
音频信号的频域分析
傅里叶变换:将音频信号从时域转换 到频域,便于分析信号的频率成分。
通信系统
在通信系统中,傅里叶变 换用于信号调制和解调, 以及频谱分析和信号恢复。
时频分析方法
01
短时傅里叶变换
通过在时间上滑动窗口来分析信 号的局部特性,能够反映信号的 时频分布。
小波变换
02
03
希尔伯特-黄变换
通过小波基函数的伸缩和平移来 分析信号在不同尺度上的特性, 适用于非平稳信号的分析。
将信号分解成固有模态函数,能 够反映信号的局部特性和包络线 变化。
频域信号的运算
乘法运算
01
在频域中,两个信号的乘积对应于将它们的频域表示
相乘。
卷积运算
02 在频域中,两个信号的卷积对应于将它们的频域表示
相乘后再进行逆傅里叶变换。
滤波器设计
03
在频域中,通过对频域信号进行加权处理,可以设计

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

连续时间信号与系统的频域分析实验报告

连续时间信号与系统的频域分析实验报告

《信号与系统》课程实验报告
一.实验原理 1、傅里叶变换 实验原理如下:
傅里叶变换的调用格式
F=fourier(f):返回关于w 的函数;
F=fourier(f ,v):返回关于符号对象v 的函数,而不是w 的函数。

傅里叶逆变换的调用格式
f=ifourier(F):它是符号函数F 的fourier 逆变换,返回关于x 的函数; f=ifourier(f,u):返回关于u 的函数。

2、连续时间信号的频谱图 实验原理如下:
符号算法求解如下:
ft=sym('4*cos(2*pi*6*t)*(heaviside(t+1/4)-heaviside(t-1/4))'); Fw=simplify(fourier(ft)) subplot(121)
ezplot(ft,[-0.5 0.5]),grid on subplot(122)
ezplot(abs(Fw),[-24*pi 24*pi]),grid on 波形图如下所示:
当信号不能用解析式表达时,无法用MATLAB 符号算法求傅里叶变换,则用MATLAB 的数值计算连续信号的傅里叶变换。

∑⎰

-∞
=-→-∞∞
-==n n j t
j e
n f dt e
t f j F ττωτ
ωτω)(lim
)()(0
若信号是时限的,或当时间大于某个给定值时,信号已衰减的很厉害,可以近似地看成时限信号,设n 的取值为N ,有
1
1()
a jw
++
的分母和分子多项式的系数向量,
1、在调用函数fourier()及ifourier()之前,要用syms命令对所用到的变。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

《MATLAB》连续时间信号的频域分析和连续时间系统的时域分析实验报告

《MATLAB》连续时间信号的频域分析和连续时间系统的时域分析实验报告

《MATLAB 》连续时间信号的频域分析和连续时间系统的时域分析实验报告1、编写程序Q3_1,绘制下面的信号的波形图:其中,ω0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(ω0t)、cos(3ω0t)、cos(5ω0t) 和x(t) 的波形图,给图形加title ,网格线和x 坐标标签,并且程序能够接受从键盘输入式中的项数n。

2、给程序例3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题3-1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。

-+-=)5cos(51)3cos(31)cos()(000t t t t x ωωω∑∞==10)cos()2sin(1n t n n nωπ3.3反复执行程序例3_2,每次执行该程序时,输入不同的N值,并观察所合成的周期方波信号。

通过观察,你了解的吉布斯现象的特点是什么?3.4分别手工计算x1(t) 和x2(t) 的傅里叶级数的系数。

1.利用MATLAB 求齐次微分方程,,起始条件为,,时系统的零输入响应、零状态响应和全响应。

2. 已知某LTI 系统的方程为:其中,。

利用MATLAB 绘出范围内系统零状态响应的波形图。

3.已知系统的微分方程如下,利用MATLAB 求系统冲激响应和阶跃响应的数值解,并绘出其时域波形图。

(1)'''()2''()'()'()y t y t y t x t ++=()()t x t e u t -=(0)1y -='(0)1y -=''(0)2y -=''()5'()6()6()y t y t y t x t ++=()10sin(2)()x t t u t π=05t ≤≤''()3'()2()()y t y t y t x t ++=(2)''()2'()2()'()y t y t y t x t ++=。

系统频域分析实验报告

系统频域分析实验报告

一、实验目的1. 掌握频域分析的基本原理和方法;2. 熟悉MATLAB在频域分析中的应用;3. 分析不同系统的频域特性,评估系统性能;4. 理解频率响应与系统稳定性之间的关系。

二、实验原理频域分析是一种研究系统对信号频率响应特性的方法。

它将时域信号转换为频域信号,通过分析系统对不同频率信号的响应来评估系统的性能。

频域分析方法主要包括傅里叶变换、拉普拉斯变换和Z变换等。

三、实验仪器与软件1. 实验仪器:计算机、MATLAB软件;2. 实验软件:MATLAB R2018a。

四、实验内容1. 信号的产生与处理(1)产生一个连续时间信号f(t) = cos(2π×50t) + sin(2π×100t);(2)使用MATLAB的fourier函数进行傅里叶变换,得到频谱函数F(w);(3)使用MATLAB的ifourier函数进行傅里叶逆变换,得到时域信号f(t)。

2. 系统的频率响应分析(1)定义一个典型二阶系统G(s) = (s+2)/(s^2+2s+2);(2)使用MATLAB的bode函数绘制系统G(s)的Bode图;(3)分析Bode图,评估系统的稳定性、带宽和相位裕度;(4)使用MATLAB的nyquist函数绘制系统G(s)的Nyquist图;(5)分析Nyquist图,评估系统的稳定性。

3. 离散时间系统的频率响应分析(1)定义一个离散时间系统H(z) = (z-0.5)/(z-0.75);(2)使用MATLAB的zplane函数绘制系统H(z)的Z平面图;(3)分析Z平面图,评估系统的稳定性。

五、实验结果与分析1. 信号的产生与处理通过MATLAB产生的连续时间信号f(t)如图1所示,其频谱函数F(w)如图2所示。

图1 连续时间信号f(t)图2 频谱函数F(w)2. 系统的频率响应分析Bode图如图3所示,Nyquist图如图4所示。

图3 系统G(s)的Bode图图4 系统G(s)的Nyquist图从Bode图中可以看出,系统的带宽约为100Hz,相位裕度约为60°。

连续信号与系统的时域分析实验报告

连续信号与系统的时域分析实验报告

实验名称MATLAB对连续信号与系统的时域分析实验目的:1.了解连续时间信号的特点;2.掌握连续时间信号表示的方法;3.掌握连续时间信号时域运算的基本方法;4.掌握连续时间信号波形变换的基本运算;5.熟悉Matlab相关函数的调用格式及作用, 并实现常用连续信号的运算及连续系统的响应。

实验原理:1.常用信号的MATLAB实现及调用:正弦信号f(t)=Asin(ωt+φ) 函数sin 调用形式f=A*sin(ω*t+φ)f(t)=Acos(ωt+φ) 函数cos 调用形式f=A*cos(ω*t+φ)指数信号f(t)=Ae st 函数exp 调用形式f=A*exp(a*t)矩形脉冲信号函数 rectpuls 调用形式 f=restpuls(t,width)2.连续信号运算的MATLAB实现:连续信号的基本运算包括连续信号的相加、相乘、翻转、移位和展缩,以及连续信号的微分和积分。

(1)相加和相乘连续信号f1(t)和f2(t) y1(t)为和信号 y2(t)为积信号y1(t)= f1(t)+ f2(t) y2(t)= f1(t)*f2(t)(2)翻转信号f(t)的自变量t换成-t,得到另一个信号f(-t)(3)移位将信号f(t)的自变量换为t±t0,得到另一个信号f(t±t0)(4)展缩,将信号f(t)的自变量t换位at,得到另一个信号f(at);(5)微分和积分微分调用函数diff 调用形式为diff(f)积分调用函数int 调用形式为int(f);卷积调用函数conv 调用形式为f=conv(f1,f2)3.连续系统的响应:(1)调用函数impulse可求解系统冲击响应,调用形式为:y=impulse(sys,t)(2)调用函数step可求解阶跃响应,调用形式为:y=step(sys,t)(3)调用函数lsim可求解系统零状态响应,调用形式为:y=lsim(sys,x,t)式中:t表示计算系统响应的抽样点向量;x是系统输入信号向量(4)调用函数lsim可求解系统全响应,调用形式为lsim(sys,f,t,z)f为系统输入,z为系统的初始状态。

连续时间信号与系统的频域分析实验报告

连续时间信号与系统的频域分析实验报告

实验四连续时间信号与系统的频域分析一、实验目的掌握连续时间信号的傅里叶变换及傅里叶逆变换的实现方法,掌握连续时间系统的频域分析方法,熟悉MATLAB 相应函数的调用格式和作用,掌握使用MATLAB 来分析连续时间信号与系统的频域特性及绘制信号频谱图的方法。

二、实验原理(一)连续时间信号与系统的频域分析原理1、连续时间信号的额频域分析 连续时间信号的傅里叶变换为:()()dt e t f j F t j ωω-∞∞-⎰=傅里叶逆变换为:()()ωωπωd e j F t f t j ⎰∞∞-=21()ωj F 称为频谱密度函数,简称频谱。

一般是复函数,可记为:()()()ωϕωωj e j F j F =()ωj F 反映信号各频率分量的幅度随频率ω的变化情况,称为信号幅度频谱。

()ωϕ反映信号各频率分量的相位随频率ω的变化情况,称为信号相位频谱。

2、连续时间系统的频域分析 在n 阶系统情况下,数学模型为:()()()()()()()()t f b dtt df b dt t f d b dt t f d b t y a dtt dy a dt t y d a dt t y d a o m m n m m n o n n n n n n ++++=++++------11111111 令初始条件为零,两端取傅里叶变换,得:()()[]()()()[]()ωωωωωωωωj F b j b j b j b j Y a j a j a j a m n m n n n nn01110111++++=++++----表示为()()()()ωωωωj F j b j Y j a kmk kkn k k∑∑===0则 ()()()()()()()()()∑∑==----=++++++++==nk kk mk kk n n n n m m mm j a j b a j a j a j a b j b j b j b j F j Y j H 0001110111ωωωωωωωωωωω3、系统传递函数 系统传递函数定义为:()()()ωωωj H j Y j H =系统传递函数反映了系统内在的固有的特性,它取决于系统自身的结构及参数,与外部 激励无关,是描述系统特性的一个重要参数。

信号与系统实验之连续线性时不变系统的分析

信号与系统实验之连续线性时不变系统的分析

信号与系统实验报告连续线性时不变系统的分析专业:电子信息工程(实验班)姓名:曾雄学号:14122222203班级:电实12-1BF目录一、实验原理与目的 (3)二、实验过程及结果测试 (3)三、思考题 (10)四、实验总结 (10)五、参考文献 (11)一、实验原理与目的深刻理解连续时间系统的系统函数在分析连续系统的时域特性、频域特性及稳定性中的重要作用及意义。

掌握利用MATLAB 分析连续系统的时域响应、频响特性和零极点的基本方法。

二、实验过程及结果测试1.描述某线性时不变系统的微分方程为: ''()3'()2()'()y t y t y t f t f t++=+ 且f(t)=t 2,y(0-)=1,y ’(0-)=1;试求系统的单位冲激响应、单位阶跃响应、全响应、零状态响应、零输入响应、自由响应和强迫响应。

编写相应MATLAB 程序,画出各波形图。

(1)单位冲激响应: 程序如下:%求单位冲激响应a=[1,3,2]; b=[1,2]; sys=tf(b,a); t=0:0.01:10; h=impulse(sys,t);%用画图函数plot( )画单位冲激响应的波形plot(h); %单位冲激响应曲线 xlabel('t'); ylabel('h');title('单位冲激响应h(t)') 程序运行所得波形如图一:200400600800100012000.10.20.30.40.50.60.70.80.91th单位冲激响应h(t )图一 单位冲激响应的波形(2)单位阶跃响应: 程序如下:%求单位阶跃响应a=[1,3,2]; b=[1,2]; sys=tf(b,a); t=0:0.01:10; G=step(sys,t);%用画图函数plot( )画单位阶跃响应的波形plot(G); %单位阶跃响应曲线 xlabel('t'); ylabel('g');title('单位阶跃响应g(t)') 程序运行所得波形如图二:2004006008001000120000.10.20.30.40.50.60.70.80.91tg单位阶跃响应g(t )图二 单位阶跃响应的波形 (3)零状态响应: 程序如下:%求零状态响应yzs=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0') %用符号画图函数ezplot( )画各种响应的波形 t=0:0.01:3;ezplot(yzs,t); %零状态响应曲线 axis([0,3,-1 5]);title('零状态响应曲线yzs'); ylabel('yzs');程序运行所得波形如图三:00.511.522.53-112345t零状态响应曲线yzsy z s图三 零状态响应的波形(4)零输入响应: 程序如下:%求零输入响应yzi=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1') %用符号画图函数ezplot( )画零输入响应的波形 t=0:0.01:3;ezplot(yzi,t);%零输入响应曲线 axis([0,3,-1,2]); title('零输入响应yzi'); ylabel('yzi');程序运行所得波形如图四:图四 零输入响应的波形(5)全响应:程序如下:%求全响应y=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=1,Dy(0)=1') %用符号画图函数ezplot( )画全响应响应的波形00.511.522.53-1-0.50.511.52t零输入响应yziy z it=0:0.01:3;ezplot(y,t); %全响应曲线 axis([0,3,-1,5]); title('全响应y'); ylabel('y');程序运行所得波形如图五:00.511.522.53-112345t全响应yy图五 全响应的波形(6)自由响应:程序如下:%自由响应y=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=1,Dy(0)=1'); %全响应 yht=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1'); % 求齐次通解yt=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0'); % 求非齐次通解 yp=yt-yht;yh=y-yp; % 求齐次解,即自由响应 t=0:0.01:3; ezplot(yh,t); title('自由响应yh'); ylabel('yh');程序运行所得波形如图六:0.511.522.530.511.52t自由响应yhy h图六 自由响应的波形(7)强迫响应: 程序如下:%强迫响应yht=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1'); % 求齐次通解yt=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0'); % 求非齐次通解 yp=yt-yht; % 求特解,即强迫响应 t=0:0.01:3; ezplot(yp,t); title('强迫响应yp'); ylabel('yp');程序运行所得波形如图七:0.511.522.53-112345t强迫响应ypy p图七 强迫响应的波形2.给定一个连续线性时不变系统,描述其输入输出之间关系的微分方程为:编写MATLAB 程序,绘制系统的幅频响应、相频响应、频率响应的实部和频率响应的虚部的波形,确定滤波器的类型。

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)信号与系统实验五__连续时间信号的频域分析实验名称:连续时间信号的频域分析报告人:姓名班级学号一、实验目的1、熟悉傅里叶变换的性质;2、熟悉常见信号的傅里叶变换;3、了解傅里叶变换的MATLAB实现方法。

二、实验内容及运行结果1、编程实现下列信号的幅度频谱:(1)求出f(t)=u(2t+1)-u(2t-1)的频谱函数F(w);请与f1(t) u(2t+1)-u(2t-1)的频谱函数F1(w)进行比较,说明两者的关系。

%(1)f(t)=u(2t+1)-u(2t-1)与f(t)=u(t+1)-u(t-1) syms t w t1 w1Gt=sym('Heaviside(2*t+1)-Heaviside(2*t-1)');Gt1=sym('Heaviside(t1+1)-Heaviside(t1-1)');Fw=fourier(Gt,t,w);Fw1=fourier(Gt1,t1,w1);FFw=maple('convert',Fw,'piecewise');FFw1=maple('convert',Fw1,'piecewise');FFP=abs(FFw);FFP1=abs(FFw1);subplot(2,1,1);ezplot(FFP,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.5]);subplot(2,1,2);ezplot(FFP1,[-10*pi 10*pi]);grid;axis([-10*pi 10*pi 0 2.2]);不同点:F1(w)的图像在扩展,幅值是F(w)的两倍。

(2)三角脉冲f2(t)=1-|t|;|t|=1;ft=sym('(1+t)*Heaviside(t+1)-2*t*Heaviside(t)+(t-1)*Heaviside( t-1)');Fw=fourier(ft);subplot(211)ezplot(abs(Fw)); g2)');ft=ifourier(Fw,w,t)ft =exp(-4*t)*heaviside(t)-exp(4*t)*heaviside(-t)(2)F(w)=((i*w)+5*i*w-8)/((i*w)+6*i*w+5)syms t wFw=sym('((i*w)+5*i*w-8)/((i*w)+6*i*w+5)');ft=ifourier(Fw,w,t)ft =dirac(t)+(2*exp(-5*t)-3*exp(-t))*heaviside(t)三、讨论与总论通过本实验,掌握了信号的傅里叶变换的性质以及方法,对傅里叶变换的性质有进一步的提高。

连续时间系统的频域分析

连续时间系统的频域分析

第三章.连续时间系统的频域分析一、任意信号在完备正交函数系中的表示法(§)信号分解的目的:● 将任意信号分解为单元信号之和,从而考查信号的特性。

●简化电路分析与运算,总响应=单元响应之和。

1.正交函数集任意信号)(t f 可表示为n 维正交函数之和:原函数()()()t g t g t g r Λ21,相互正交:⎩⎨⎧=≠=⋅⎰nm K nm dt t g t g m t t n m ,,0)()(21()t g r 称为完备正交函数集的基底。

一个信号可用完备的正交函数集表示,.正弦函数集有许多方便之处,如易实现等,我们主要讨论如何用正弦函数集表示信号。

2.能量信号和功率和信号(§一)设()t i 为流过电阻R 的电流,瞬时功率为R t i t P )()(2=一般说来,能量总是与某一物理量的平方成正比。

令R = 1Ω,则在整时间域内,实信号()t f 的能量,平均功率为: 讨论上述两个式子,只可能出现两种情况: ✍∞<<W 0(有限值) 0=P✍∞<<P 0(有限值)∞=W满足✍式的称为能量信号,满足✍式称功率信号。

3.帕斯瓦尔定理设{})(t g r 为完备的正交函数集,即信号的能量 基底信号的能量 各分量此式称为帕斯瓦尔定理 P331 式(6-81) (P93, P350) 左边是信号能量,右边是各正交函数的能量。

物理意义:一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率)之和。

二、周期信号的频谱分析——傅里叶级数(1) 周期信号傅里叶级数有两种形式三角形式: ()∑∞=++=1110sin cos )(n n nt n b t n aa t f ωω=∑∞=++110)cos(n n nt n cc ϕω指数形式:t jn n e n F t f 1)()(1ωω∑∞-∞==(2) 周期信号的频谱是离散谱,三个性质收敛性()↓↑)(,1ωn F n谐波性:(离散性)谱线只出现在1ωn 处,唯一性:)(t f 的谱线唯一(3)两种频谱图的关系● 三角形式:ω~n c ,ωφ~n 单边频谱● 指数形式:ωω~)(1n F , ωφ~n 双边频谱两者幅度关系 )(1ωn F =()021≠n c n000a c F ==● 指数形式的幅度谱为偶函数 ●指数形式的相位谱为奇函数(4) 引入负频率对于双边频谱,负频率)(1ωn ,只有数学意义,而无物理意义。

信号与系统的实验报告(2)

信号与系统的实验报告(2)

信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。

L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。

L=laplace(F,t)用t 替换结果中的变量s 。

F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。

F=ilaplace(L,x)用x 替换结果中的变量t 。

2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。

对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。

连续系统的频域分析

连续系统的频域分析

连续系统的频域分析第三章傅⽴叶变换时域分析:f(t) y f(t)=h(t)*f(t)↓分解↑基本信号δ(t)→LTI →h(t)频域分析: f(t) ye jωt =h(t)* H(jω)Fe jωt↓分解↑基本信号 sinωt→LTI →H(jω)e jωte jωtH(jω):系统的频域响应函数,是信号⾓频率ω的函数,与t⽆关.主要内容:⼀、信号的分解为正交函数。

⼆、周期信号的频域分析?付⾥叶级数(求和),频谱的特点。

信号三、⾮周期信号的频域分析?付⾥叶变换(积分),性质。

分析四、LTI系统的频域分析:频域响应H(jω);y(jω)= H(jω)?F(jω). (系统分析)五、抽样定理:连续信号→离散信号.§3.1 信号分解为正交函数⼀、正交:两个函数满⾜φ1(t)φ2(t)dt=0,称φi(t),φj(t)在区间(t1 ,t2)正交。

⼆、正交函数集:⼏个函数φi(t)φi(t)dt= 0 当i≠j;K i 当i=j.三、完备正交函数集:在{φ1(t)…φn(t)}之外,不存在ψ(t)满⾜ψ (t)φi(t)dt= 0 (i=1,2,…n).例、三⾓函数集:{1,cosΩt,cos2Ωt,… ,cosmΩt,…,sinΩt,sin2Ωt,…sin(nΩt),…}区间:(t0,t0+T),t=2π/Ω为周期.满⾜: cosmΩtcosnΩtdt= 0 m≠nT/2 m=n≠0T m=n=0sin(mΩt)sin(nΩt)dt= 0 m≠nT/2 m=n≠0sin(mΩt)cos(nΩt)dt= 0. 所有的m和n.结论:三⾓函数集是完备正交集。

推导: cosmΩtcosnΩtdt=(1/2) [cos(m+n) Ωt+cos(m-n) Ωt]dt=(1/2)sin(m+n)Ωt +(1/2)sin(m-n)Ωt=(1/2)[sin(m+n) Ω(t0+T)-sin(m+n)Ωt0]+(1/2)[sin(m-n) Ω(t0+T)-sin(m-n)Ωt0]=0 当m≠n时.m=n≠0,原式=(1/2) [ cos(m+n)Ωt+1]dt=(1/2)?t =T/2 m=n=0 , 原式=(1/2) [1+1]dt=T.4、复函数的正交函数集:⼏个复函数集{φi(t)},φi(t)φi*(t)dt= 0 i≠jk i i=j例:复函数集{ e jnΩt}(n=0,±1,±2…)区间(t0,t0+T),T=2π/Ω为周期。

连续时间系统的复频域分析

连续时间系统的复频域分析

信号与系统实验报告实验题目: 实验三:连续时间系统的复频域分析实验仪器: 计算机,MATLAB 软件101b s b a s a ++++++称为系统的特征多项式,征根,也称为系统的固有频率(或自然频率)。

为将个特征根,这些特征根称为()F s 极点。

根据求函数21()(1)F s s s =-的拉氏逆变换。

源代码:num = [1]; 结果为:r =-1 1 1 a=conv([1 -1],[1 -1]);den = conv([1 0], a); p =1 1 0 [r,p,k] = residue(num, den); k=03.示例3:求函数2224()(4)s F s s -=+的拉氏逆变换源代码:num = [1 0 -4];den = conv([1 0 4], [1 0 4]); [r,p,k] = residue(num, den);结果为:r =-0.0000-0.0000i 0.5000+0.0000i -0.0000+0.0000i 0.5000-0.0000ip =-0.0000+2.0000i -0.0000+2.0000i -0.0000-2.0000i -0.0000-2.0000i k=04.示例4:已知系统函数为:321()221H s s s s =+++,利用Matlab 画出该系统的零极点分布图,分析系统的稳定性,并求出该系统的单位冲激响应和幅频响应。

源代码: num=[1];den=[1 2 2 1]; sys=tf(num,den); poles=roots(den); figure(1);pzmap(sys);xlabel('Re(s)');ylabel(' Im(s)');title('zero-pole map'); t=0:0.02:10;h=impulse(num,den,t); figure(2);plot(t,h);xlabel('t(s)');ylabel('h(t)');title('Impulse Response'); [H,w]=freqs(num,den);figure(3);plot(w,abs(H));xlabel('\omega(rad/s)');ylabel('|H(j\omega)|');title('Magenitude Response'); 结果为:poles =-1.0000 -0.5000 + 0.8660i -0.5000 - 0.8660i (2) 已知象函数,试调用residue 函数完成部分分式分解,并写出逆变换。

信号与系统实验报告实验三连续时间LTI系统的频域分析

信号与系统实验报告实验三连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生实验报告
实验课程:信号与系统E D A 实验地点:东1教414
学院:
专业:
学号 :
姓名 :
a=[1 0.5];
s=lsim(b,a,x,t); %方程求解
plot(t,s,'y-') %系统输出信号波形绘制
lsim 函数的用法:对于线性时不变系统,任意输入,输出时间响应。

系统方程为状态方程时,可以得到状态轨迹。

2.信号卷积,根据PPT 中的实验2.2和2.3容完成课堂练习,写出程序及运行结果。

用Matlab 实现卷积运算)(*)(t h t f ,其中
)()()],2()([2)(t e t h t t t f t
εεε-=--=,)2()(2t h t h =;对比说明信号)(
t f 分别输入系统)(和)(2t h t h 时的输出有什么区别并分析原因。

>> p=0.01; nf=0:p:4;
f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6;
h=exp(-nh).*(nh>0);
y=conv(f,h);
t=0:length(y)-1;
subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2.1]); subplot(3,1,2),plot(nh,h);title('h(t)');axis([0 6 0 1.1]); subplot(3,1,3),plot(0.01*t,y); title('y(t)=f(t)*h(t)');
>> p=0.01;
nf=0:p:4;
f=2*(heaviside(nf)-heaviside(nf-2));
nh=0:p:6;
h=exp(-2*nh).*(2*nh>0);
y=conv(f,h);
t=0:length(y)-1;
subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2.1]); subplot(3,1,2),plot(nh,h);title('h(t)');axis([0 6 0 1.1]); subplot(3,1,3),plot(0.01*t,y); title('y(t)=f(t)*h(t)');
区别:h (t )横轴缩短一半 y (t )纵轴横轴缩短一半
原因:t 扩大2倍 横轴缩短 其卷积缩小到原来的4倍 故纵轴缩小2倍
3.系统的冲激响应和阶跃响应分析
已知二阶系统方程
)(1
)(1)()('''t LC t u LC t u L R t u c c δ=++
,(1)F C H L R 3/1,1,4==Ω=(2)F C H L R 1,1,2==Ω=(3)
F C H L R 1,1,1==Ω=(4)F
C H L R 1,1,0==Ω=,根据不同情况下的实验结果分析系统参数变化时
系统输出有什么变化规律。

程序:
R=input('电阻R='); % 以交互方式输入电阻R 的值 L=input('电感L='); % 以交互方式输入电阻L 的值
C=input('电容C='); % 以交互方式输入电阻C的值b=[1/(L*C)];
a=[1 R/L 1/(L*C)];
impulse(b,a);
分析:电阻增大峰值降低曲线坡度变缓电容变大峰值变小坡度变缓电阻为0 发生错误
4.信号的频谱分析:根据PPT中程序2.6和2.7完成课堂作业,写出程序及运行结果。

用Matlab分析信号t t
t f
)
sin( )
(=
以及
t t
t
f
2
) 2
sin(
)
(=的频谱。

根据结果分析信号时域变化与信号频谱变化间关系。

关系;时域与频域成反比
•m32.m:
•syms t w f ft; % 定义符号变量
•f=sin(t)/t; %信号
•ft=f*exp(-j*w*t); % 计算被积函数
•F=int(ft,t,-2,2); % 计算傅立叶变换F(w) •F=simple(F);F % 化简
•subplot(2,1,1),ezplot(f,[-2 2]); % 绘制信号
•axis([-3 3 0 1.1]);title('sin(t)/t信号');
•subplot(2,1,2),ezplot(abs(F),[-8:0.01:8]);% 绘制信号的频谱•title('sin(t)/t信号的频谱');
•m32.m:
•syms t w f ft; % 定义符号变量
•f=sin(2*t)/(2*t); %信号
•ft=f*exp(-j*w*t); % 计算被积函数
•F=int(ft,t,-2,2); % 计算傅立叶变换F(w) •F=simple(F);F % 化简
•subplot(2,1,1),ezplot(f,[-2 2]); % 绘制信号
•axis([-3 3 0 1.1]);title('sin(t)/t信号');
•subplot(2,1,2),ezplot(abs(F),[-8:0.01:8]);% 绘制信号的频谱
•title('sin(2*t)/(2*t)信号的频谱');。

相关文档
最新文档