【典型题】高一数学上期末试卷(含答案)

合集下载

2023-2024学年北京市延庆区高一(上)期末数学试卷【答案版】

2023-2024学年北京市延庆区高一(上)期末数学试卷【答案版】

2023-2024学年北京市延庆区高一(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A =(﹣2,0),集合B =[﹣1,2),则A ∪B =( )A .[﹣1,0]B .(﹣1,0)C .(﹣2,2)D .[﹣2,2]2.当a >1时,在同一坐标系中,函数y =a x 与y =log a x 的图象可能是( )A .B .C .D .3.下列函数中是奇函数且在(0,+∞)上单调递增的是( )A .y =x 2B .y =x 13C .y =e xD .y =|lnx | 4.向量a →=(2,1),b →=(1,x ),若a →⊥b →,则( )A .x =12B .x =−12C .x =2D .x =﹣25.a =(12)3,b =20.5,c =log 312的大小关系为( ) A .a <b <c B .c <b <a C .a <c <b D .c <a <b6.已知函数f (x )={log 2x(x >0)3x (x ≤0),则f (14)的值是( ) A .2 B .﹣2 C .−12 D .127.甲、乙两人在5天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字状示零件个数的个位数,则下列结论正确的是( )A .在这5天中,甲加工零件数的极差小于乙加工零件数的极差B .在这5天中,甲、乙两人加工零件数的中位数相同C .在这5天中,甲日均加工零件数大于乙日均加工零件数D .在这5天中,甲加工零件数的方差小于乙加工零件数的方差8.一个袋子中有大小和质地相同的4个球其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地依次随机揽出2个球,每次摸出一个球,设事件S =“第一次摸到红球”,T =“第二次摸到红球”,R =“两次都摸到红球”,G =“两次都摸到绿球”,M =“两球颜色相同”,N =“两球颜色不同”,则下列说法错误的是( )A .M =NB .R 与G 互斥但不对立C .R ∪G =MD .S 与T 相互独立9.已知等边△ABC 的边长为6,D 在AC 上且AD =2DC ,E 为线段AB 上的动点,则|AE →+BD →|的取值范围为( )A .[2√3,4]B .[2√3,2√7]C .[4,2√7]D .[4,6]10.假设有机体生存时碳14的含量为m 0,那么有机体死亡x 年后体内碳14的含征少满足的关系为y =m 0a ˣ(其中m 0,a 都是非零实数).若测得死亡5730年后的古生物样品,体内碳14的含量为0.5,又测得死亡11460年后这类古生物样品.体内碳14的含量为0.25.如果测得某古生物样品碳14的含量为0.3,推测此古生物的死亡时间为(取lg 2≈0.3,lg 3=0.5)( )A .10550年B .7550年C .8550年D .9550年二、填空题共5小题,每小题5分,共25分。

安徽省部分重点中学2023-2024学年高一上学期期末测试数学试卷含答案

安徽省部分重点中学2023-2024学年高一上学期期末测试数学试卷含答案

姓名______座位号______(在此卷上答题无效)高一数学(答案在最后)(人教版A )本试卷共4页,22题.全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,先将自己的姓名,准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂照.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}250A x x x =-=,则()A.{}0A∈ B.5A∉ C.{}5A∈ D.0A∈【答案】D 【解析】【分析】用列举法表示出集合A ,再利用元素与集合、集合与集合的关系逐项判断即得.【详解】依题意,{0,5}A =,所以0A ∈,5A ∈,B 错误,D 正确;显然{}0A ⊆,{}5A ⊆,AC 错误.故选:D2.12+=()A.4B.6C.8D.10【答案】B 【解析】【分析】根据给定条件,利用指数运算、指数式与对数式的互化及换底公式计算即得.【详解】因为1222122log3log3log2==,所以22l11lo3og3g2223622++==⨯=⨯=.故选:B3.中文“函数”一词,最早是由近代数学家李善兰翻译的,之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,下列选项中是同一个函数的是()A.01y x=-与0y=B.y=与y=C.y x=与z=D.2y x x=+与32x xyx+=【答案】C【解析】【分析】利用同一函数的定义,逐项分析判断即得.【详解】对于A,函数01y x=-的定义域为{R|0}x x∈≠,函数0y=的定义域为R,两个函数定义域不同,A不是;对于B,函数y=的定义域为{|2}x x≥,函数y=的定义域为{|2x x≤-或2}x≥,两个函数定义域不同,B不是;对于C,函数y x=的定义域为R,函数z=R,且z y==,两个函数定义域相同,对应法则也相同,C是;对于D,函数2y x x=+的定义域为R,函数32x xyx+=的定义域为{R|0}x x∈≠,两个函数定义域不同,D不是.故选:C4.已知角α的顶点与原点重合,始边与x轴的非负半轴重合,点(1,P在角α的终边上,则5πsin(2)6α+=()A.14 B.14- C.12D.12-【答案】C【分析】根据给定条件,利用正切函数定义求出tan α,再利用二倍角公式结合齐次式法及和角的正弦公式求解即得.【详解】依题意,tan α=,则2222sin cos 2tan sin 22sin cos sin cos tan 12ααααααααα====-++,22222222cos sin 1tan 1cos 2cos sin sin cos tan 12ααααααααα--=-===-++所以5π5π5π111sin(2sin 2cos cos 2sin (66622222ααα+=+=-⨯--⨯=.故选:C5.已知“0x ∃∈R ,200202420240x x a --<”为真命题,则实数a 的取值范围为()A.506a >-B.506a -≥ C.506a -≤ D.506a <-【答案】A 【解析】【分析】根据给定条件,分离参数,借助二次函数求出最小值即得.【详解】“0x ∃∈R ,200202420240x x a --<”为真命题,则“0x ∃∈R ,20020242024a x x >-”为真命题,而2020012024()506506422022024x x x =≥----,当且仅当012x =时取等号,则506a >-,所以实数a 的取值范围为506a >-.故选:A6.函数()4e xf x x =-在[]3,3-上的大致图象为()A. B.C. D.【答案】D【分析】根据给定函数的奇偶性,结合(0)1f =-即可判断得解.【详解】依题意,||||()()4||e 4||e x x x f x x f x -=-=---=,因此函数()f x 是偶函数,其图象关于y 轴对称,排除AB ;又(0)1f =-,选项C 不满足,D 符合题意.故选:D7.《梦溪笔谈》是我国科技史上的杰作,其中收录了扇形弧长的近似计算公式:22ABl ⨯=+矢弦径.如图,公式中“弦”是指扇形中 AB 所对弦AB 的长,“矢”是指 AB 所在圆O 的半径与圆心O 到弦的距离之差,“径”是指扇形所在圆O 的直径.若扇形的弦AB =,扇形的圆心角为2π3,利用上面公式,求得该扇形的弧长的近似值与实际值的误差为()A.16π13-B.8π13--C.16π132-D.8π132--【答案】B 【解析】【分析】利用等腰三角形性质求出圆半径及点O 到弦AB 的距离并求出 AB l ,再由弧长公式求出 AB 的实际值即可计算得解.【详解】取弧AB 的中点C ,连接OC 交AB 于D ,则D 是AB 的中点,且OC AB ⊥,在等腰AOB中,2π3AB AOB =∠=,则π6OAB ∠=,圆O 半径124πcos 6ABR OA ===,122OD R ==,2CD R OD =-=,因此 2212AB CD l AB R=+=,而扇形弧长的实际值为2π8π33R =,所以该扇形的弧长的近似值与实际值的误差为8π13-.故选:B8.定义在R 上的偶函数()f x 在(],0-∞上单调递减,且()50f -=,则不等式()()160x f x +-≤的解集是()A.(][],11,11-∞-B.(],11-∞C.[]1,11- D.(][),111,-∞-+∞ 【答案】A 【解析】【分析】利用()f x 的奇偶性与单调性得到()f x 在(0,)+∞上单调递增与()50f =,再分类讨论1x +的取值范围,结合偶函数的性质()()fx f x =即可得解.【详解】因为定义在R 上的偶函数()f x 在(],0-∞上单调递减,且()50f -=,所以()f x 在(0,)+∞上单调递增,()()550f f =-=,因为()()160x f x +-≤,当10x +>,即1x >-时,()60f x -≤,即()()65fx f -≤,所以65x -≤,即565x -≤-≤,解得111x ≤≤,故111x ≤≤;当10x +≤,即1x ≤-时,()60f x -≥,即()()65fx f -≥,所以65x -≥,即65x -≤-或65x -≥,解得1x ≤或11x ≥,故1x ≤-;综上:1x ≤-或111x ≤≤.故选:A.【点睛】关键点点睛:本题解决的关键是充分利用偶函数的性质()()fx f x =,从而简化运算得解.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.已知a b c >>,则下列结论错误的是()A.33b c >B.22a c > C.> D.a c b->【答案】BCD 【解析】【分析】根据给定条件,利用不等式性质判断A ;举例说明判断BCD.【详解】由b c >及3y x =在R 上单调递增,可得33b c >,A 正确;取1,2a c ==-,满足a c >,而2214a c =<=,B 错误;由a b >,知,a b 是否是非负数不确定,当0b <>C 错误;取3,2,1a b c ===,满足a b c >>,而2a c b -==,D 错误.故选:BCD10.已知集合{}29A x x =<,A B ⊆,则()A.集合A B B ⋃=B.{}33A B x x ⋂=-<<C.集合A B ⋃可能是{}22x x -<<D.{}44x x -<<可能是B 的子集【答案】ABD 【解析】【分析】解不等式化简集合A ,由已知结合集合运算逐项判断即得.【详解】集合29{|}{3}3|A x x x x ==<<<-,A B ⊆,则A B B ⋃=,{|33}A B A x x ==-<< ,AB 正确;显然()A A B ⊆ ,即{|33}()x x A B -<<⊆ ,而{}22x x -<<是{|33}-<<x x 的真子集,C 错误;由于{|33}x x B -<<⊆,{}{|33}44x x x x -<<⊆-<<,因此{}44x x -<<可能是B 的子集,D 正确.故选:ABD11.函数()sin()f x A x ωϕ=+(0A >,0ω>,π2ϕ<)的部分图象如图所示,将函数()f x 的图象上所有点的横坐标变为原来的3倍,纵坐标变为原来的2倍,然后向左平移3π4个单位长度,得到函数()g x 的图象,则()A.1A =B.()g x 的解析式为2π2sin 33y x ⎛⎫=+⎪⎝⎭C.7π,02⎛⎫⎪⎝⎭是()g x 图象的一个对称中心D.()g x 的单调递减区间是11π5π3π,3π44k k ⎡⎤--⎢⎥⎣⎦,Z k ∈【答案】ABD 【解析】【分析】先利用三角函数的图象求得()f x 的解析式,再利用三角函数平移的性质与正弦函数的性质即可得解.【详解】依题意,由图象可知1A =,3π5π3π43124T ⎛⎫=--= ⎪⎝⎭,则πT =,故A 正确;因为0ω>,所以2ππω=,则2ω=,所以()sin(2)f x x ϕ=+,因为()f x 的图象过点π,13⎛⎫⎪⎝⎭,所以sin 21π3ϕ⎛⎫⨯+= ⎪⎝⎭,则2ππ2π,Z 32k k ϕ+=+∈,即π2π,Z 6k k ϕ=-+∈,又π2ϕ<,则π6ϕ=-,所以()sin 26πf x x ⎛⎫=- ⎪⎝⎭,将函数()f x 的图象上所有点的横坐标变为原来的3倍,得到2πsin 36y x ⎛⎫=-⎪⎝⎭的图象,纵坐标变为原来的2倍,得到2π2sin 36y x ⎛⎫=-⎪⎝⎭的图象,向左平移3π4个单位长度,得到函数()23ππ2π2sin 2sin 34633g x x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,故B 正确;因为7π27ππ8π2sin 2sin 023233g ⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭,故C 错误;令3π2ππ2π2π,Z 2332k x k k -+≤+≤-+∈,解得11π5π3π3π,Z 44k x k k -≤≤-∈,所以()g x 的单调递减区间是11π5π3π,3π44k k ⎡⎤--⎢⎣⎦,Z k ∈,故D 正确.故选:ABD.12.已知函数21,0(),0ax x f x x bx x -≤⎧=⎨+>⎩,则下列结论中正确的是()A.若函数()f x 在(,1)-∞上单调递减,则0a >且2b ≤-B.若函数()f x 有2个零点,则a<0且0b <C.若函数()f x 有1个零点,则a<0且0b ≥D.若函数()f x 在(,2]-∞的最大值为1,则a<0且32b ≤-【答案】AB 【解析】【分析】分类探讨分段函数()f x 的性质,再结合分段函数单调性、零点及最大值逐项分析判断即得.【详解】当0x ≤时,()1f x ax =-,当a<0时,()f x 单调递增,函数值集合为(,1]-∞,当0a =时,()1f x =,当0a >时,()f x 单调递减,函数值集合为[1,)+∞;当0x >时,2()f x x bx =+,当0b ≥时,()f x 在(0,)+∞上单调递增,当0b <时,()f x 在(0,)2b -上单调递减,在[,)2b-+∞上单调递增,对于A ,由函数()f x 在(,1)-∞上单调递减,得012a b >⎧⎪⎨-≥⎪⎩,解得0a >且2b ≤-,A 正确;对于B ,当0x >时,2()f x x bx =+,函数()f x 在(0,)+∞上最多一个零点,由函数()f x 有2个零点,得函数()f x 在(,0]-∞上有一个零点,在(0,)+∞上有一个零点,因此a<0且0b <,B 正确;对于C ,当0a ≤时,()1f x ax =-在(,0]-∞上无零点,当0b <时,()f x 在(0,)+∞上有一个零点,则当0a ≤且0b <时,函数()f x 也只有1个零点,C 错误;对于D ,由于函数()f x 在(,2]-∞的最大值为1,则()f x 在(,0]-∞上不能单调递减,即0a ≤,且(0)1f =,当0b ≥时,()f x 在(0,2]上单调递增,(2)424f b =+≥,不符合题意,当0b <时,若22b-≥,即4b ≤-,则()f x 在(0,2]上单调递减,()0f x <,此时()f x 在(,2]-∞的最大值为1,因此4b ≤-,若22b -<,即40b -<<,则()f x 在(0,]2b -上单调递减,在[,2]2b-上单调递增,必有(2)421f b =+≤,解得32b ≤-,则342b -<≤-,此时()f x 在(,2]-∞的最大值为1,因此342b -<≤-,综上所述,函数()f x 在(,2]-∞的最大值为1,则0a ≤且32b ≤-,D 错误.故选:AB【点睛】方法点睛:对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.三、填空题:本题共4小题,每小题5分,共20分.13.已知幂函数的图象经过点1(243,)3,那么()f x 的解析式为______;不等式(|)3|f x ≤的解集为______.【答案】①.15()f x x-=②.11(,[,)243243-∞-+∞ 【解析】【分析】利用幂函数过的点求出()f x 的解析式,再利用单调性解不等式即可.【详解】设幂函数()f x x α=,依题意,12433α=,即5133α-=,因此51α=-,解得15α=-,所以函数()f x 的解析式为15()f x x -=;显然函数()f x 在(0,)+∞上单调递减,且1()3243f =,于是不等式(|)3|f x ≤为:2(||)1()43f f x ≤,解得|4|123x ≥,即1243x ≤-或1243x ≥,所以不等式(|)3|f x ≤的解集为11(,][,)243243-∞-+∞ .故答案为:15()f x x -=;11(,][,)243243-∞-+∞ 14.若π02α<<,02βπ<<,()3cos 5αβ+=-,5cos 13β=,则cos()4πα+=______.【答案】232130-##【解析】【分析】根据给定条件,利用同角公式及和差角的余弦公式计算得解.【详解】由π02α<<,02βπ<<,得0παβ<+<,而()3cos 5αβ+=-,5cos 13β=,则4sin()5αβ+==,12sin 13β==,因此3541233cos cos[()]51351365ααββ=+-=-+=,56sin 65α==,所以πππ23356232cos()cos cos sin sin (44426565130ααα+=-=-=-.故答案为:130-15.已知函数())f x x =,若0m >,0n >,且41()(1)(0)f f f m n+-=,则16m n +的最小值为______.【答案】36【解析】【分析】根据给定条件,探讨函数()f x 的奇偶性及单调性,由此求出,m n 的关系式,再利用基本不等式“1”的妙用求解即得.【详解】函数())f x x =中,R x ∀∈||x x >≥,则函数()f x 的定义域为R ,而()()))ln10f x f x x x -+=++-==,则函数()f x 是奇函数,显然函数y y x ==-在(,0]-∞上都单调递减,则函数t x =-在(,0]-∞上单调递减,而函数ln y t =在(0,)+∞上单调递增,则函数()f x 在(],0-∞上单调递减,于是函数()f x 在[)0,+∞上单调递减,因此函数()f x 在R 上单调递减,(0)0f =,由41((1)(0)f f f m n +-=,得411()(1)(1)f f f m n n =--=-,则411m n=-,即411m n +=,于是441616(16)2020236n m m n n m n m n m +++=+=+≥+,当且仅当64n mm n=,即812m n ==时取等号,所以16m n +的最小值为36.故答案为:3616.已知直线y a =与函数()()tan f x x ωϕ=+(0ω>,π02ϕ<<)的图象所有交点之间的最小距离为2,且其中一个交点为()1,1-,则函数()y f x =的图象与函数223y x =-(3922x -<<)的图象所有交点的横坐标之和为______.【答案】6【解析】【分析】根据给定条件,结合正切函数的图象性质求出()f x ,确定函数()y f x =与223y x =-共同具有的性质,再借助图象求解即可.【详解】依题意,函数()tan()f x x ωϕ=+的最小正周期为2,则π2ω=,解得π2=ω,于是π()tan()2f x x ϕ=+,由π(1)tan()12f ϕ=+=-,得π3ππ,Z 24k k ϕ+=+∈,而π02ϕ<<,取π0,4k ϕ==,因此ππ()tan()24f x x =+,显然33ππ()tan()0244f =+=,则函数()y f x =的图象关于点3(,0)2成中心对称,又函数223y x =-的图象关于点3(,0)2成中心对称,在同一坐标系内作出函数()y f x =和223y x =-的图象,观察图象知,两个函数在39(,)22-的图象共有4个公共点,且关于点3(,0)2成中心对称,所以4个交点的横坐标之和为3462⨯=.故答案为:6【点睛】思路点睛:给定)t )a ()(n(0f x x ωϕω=>+的性质求解解析式,一般是求出周期定ω,由图象上特殊点求ϕ.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1)1105448132()()πlog 816243-++-;(2)2log 33810log log 274lglg303-⋅---.【答案】(1)52;(2)212-.【解析】【分析】(1)利用指数运算法则、对数换底公式计算即得.(2)利用对数运算法则、对数换底公式计算即得.【小问1详解】2421111045355448132333335(()πlog 8[(][()]1log 2116243222222-++-=++-=+-=.【小问2详解】2log 3810log log 274lglg303-⋅---2312312log 332232310log 3log 3log 22lg(30)3=-⋅--⨯2log 32232)23321log 3log 2(2lg10013222=-⋅--=---=-.18.已知3πtan()74α-=.(1)求sin 2cos sin 3cos αααα+-的值;(2)若π(π,)2α∈--,求sin 2cos 2αα+的值.【答案】(1)119-;(2)24102510+.【解析】【分析】(1)利用差角的正切公式求出tan α,再利用齐次式法计算即得.(2)利用同角公式求出sin ,cos αα,再利用二倍角公式计算即得.【小问1详解】由3πtan()74α-=,得tan tantan 17n 3π1tan 1ta π4n 3t 4a αααα-+==-+,解得3tan 4α=,所以32sin 2cos tan 21143sin 3cos tan 3934αααααα+++===----.【小问2详解】由π(π,)2α∈--,得ππ(,)224α∈--,则sin 0,cos 0,cos 02ααα<<>,由3tan 4α=,得3sin cos 4αα=,而22sin cos 1αα+=,解得34sin ,cos 55αα=-=-,于是3424sin 22sin cos 2(()5525ααα==⨯-⨯-=,又21cos 1cos 2210αα+==,则cos 210α=,所以0sin 2cos224251αα++=.19.已知函数()f x 的定义域为()0,∞+,x ∀,()0,y ∈+∞,总有()()x f f x f y y ⎛⎫=- ⎪⎝⎭成立.若1x >时,()0f x <.(1)判断并证明函数()f x 的单调性;(2)若132f ⎛⎫= ⎪⎝⎭,求解关于x 的不等式()364f x x f ⎛⎫+-< ⎪⎝⎭的解集.【答案】(1)()f x 在()0,∞+上单调递减,证明见解析(2)()1,+∞【解析】【分析】(1)利用单调性的定义结合已知即可证明;(2)利用赋值法求出164f ⎛⎫= ⎪⎝⎭,根据已知结合函数的单调性,将不等式化得到关于x 的不等式组,解之即可得解.【小问1详解】()f x 在()0,∞+上单调递减,证明如下:因为x ∀,()0,y ∈+∞,总有()()x f f x f y y ⎛⎫=- ⎪⎝⎭成立,当1x >时,()0f x <,12,0x x ∀>,且12x x <,则211x x >,则()()22110x f x f x f x ⎛⎫-=< ⎪⎝⎭,即()()12f x f x >,所以()f x 在()0,∞+上单调递减.【小问2详解】因为因为x ∀,()0,y ∈+∞,总有()()x f f x f y y ⎛⎫=- ⎪⎝⎭成立,所以()()x f f y f x y ⎛⎫+= ⎪⎝⎭,则()()()f x f y f xy +=,因为132f ⎛⎫=⎪⎝⎭,所以1116422f f f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以不等式()364f x x f ⎛⎫+-< ⎪⎝⎭可化为3144x f f x ⎛⎫⎛⎫-< ⎪ ⎪⎢⎝⎭⎝⎡⎤⎣⎦⎭⎥,所以31440304x x x x ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎪>⎨⎪⎪->⎪⎩,解得1x >.所以不等式()364f x x f ⎛⎫+-< ⎪⎝⎭的解集为()1,+∞.20.已知函数()22f x x ax =+-.(1)若关于()f x 的不等式()0f x <的解集为(),2b ,求a ,b 的值;(2)已知当[]1,2x ∈-时,()336xxf -≤恒成立,求实数a 的取值范围.【答案】(1)1a =-,1b =-(2)43,3⎛⎤--∞ ⎥⎝⎦【解析】【分析】(1)根据已知结合三个二次之间的关系,列出关于,a b 的方程组,解之即可得解;(2)利用换元法将问题转化为41a t t -≥+在1,93⎡⎤⎢⎥⎣⎦上恒成立,再利用对勾函数的性质求得max4t t ⎛⎫+ ⎪⎝⎭,从而得解.【小问1详解】因为()22f x x ax =+-,且()0f x <的解集为(),2b ,所以b 和2是方程220x ax +-=的两个不等实根,且2b <,由韦达定理可得222b a b +=-⎧⎨=-⎩,解得11a b =-⎧⎨=-⎩,故1a =-,1b =-.【小问2详解】因为()22f x x ax =+-,所以()()23332x xx f a ⋅=+-,则()336xxf -≤可化为()233362x x x a ≤+--⋅,整理可得()()21334xx a +⋅≤-,令3x t =,[]1,2x ∈-,所以1,93t ⎡⎤∈⎢⎥⎣⎦,则上式可化为()241t a t ≤+-⋅在1,93⎡⎤⎢⎥⎣⎦上恒成立,即41a t t -≥+在1,93⎡⎤⎢⎥⎣⎦上恒成立,因为44t t +≥=,当且仅当4t t =,即2t =时,等号成立,所以由对勾函数的性质可知4y t t =+在1,23⎡⎫⎪⎢⎣⎭上单调递减,在(]2,9上单调递增,而当13t =时,7313343y +==⨯;当9t =时,485999y +==;所以max 4373t t ⎛⎫+= ⎪⎝⎭,故3713a -≥,所以343a ≤-,所以实数a 的取值范围为43,3⎛⎤--∞ ⎥⎝⎦.21.某学校校园内有一个扇形空地AOB (πAOB ∠<),该扇形的周长为10π203+,面积为50π3,现要在扇形空地AOB 内部修建一矩形运动场馆CDEF ,如图所示.(1)求扇形空地AOB 的半径和圆心角;(2)取CD 的中点M ,记MOD θ∠=.(i )写出运动场馆CDEF 的面积S 与角θ的函数关系式;(ii )求当角θ为何值时,运动场馆CDEF 的面积最大?并求出最大面积.【答案】(1)扇形空地AOB 的半径为10,圆心角为π3;(2)(i)π200sin(23S θ=+-π(0,6θ∈;(ii )π12θ=,200-【解析】【分析】(1)利用扇形弧长公式、扇形面积公式列出方程求解并验证即得.(2)(i )借助直角三角形的边角关系求出函数关系式;(ii )利用正弦函数的性质求解最值.【小问1详解】设扇形空地AOB 所在圆半径为r ,扇形弧长为l ,依题意,10π2203150π23r l rl ⎧+=+⎪⎪⎨⎪=⎪⎩,解得1010π3r l =⎧⎪⎨=⎪⎩或5π320r l ⎧=⎪⎨⎪=⎩,当5π320r l ⎧=⎪⎨⎪=⎩时,圆心角12ππl AOB r ∠==>,不符合题意,当1010π3r l =⎧⎪⎨=⎪⎩时,圆心角ππ3l AOB r ∠==<,符合题意,所以扇形空地AOB 的半径为10,圆心角为π3.【小问2详解】(i )由(1)知,π3AOB ∠=,则π(0,6θ∈,在Rt MOD △中,10cos ,10sin OM DM θθ==,则10sin EN DM θ==,在Rt EON △中,π6EON ∠=,tan ENON EONθ==∠,于是10cos MN OM ON θθ=-=-,所以220sin (10cos )S EN MN θθθ=⋅=-2200sin cos 100sin 2cos 2)θθθθθ=-=--π100(sin 22)200sin(23θθθ=+-=+-,π(0,)6θ∈.(ii )由(i )知,当π(0,)6θ∈时,ππ2π2(,)333θ+∈,则当ππ232θ+=,即π12θ=时,max 200S =-所以当π12θ=时,运动场馆CDEF 的面积最大,最大面积为200-【点睛】思路点睛:涉及求正(余)型函数在指定区间上的最值问题,根据给定的自变量取值区间求出相位的范围,再利用正(余)函数性质求解即得.22.已知函数4(2)4log af x x xb -=+(0a >,1a ≠,2b ≠-)是定义在(2,2)-上的奇函数.(1)求(0)f 和实数b 的值;(2)若()f x 满足2(2)(32)0f t f t -+-<,求实数t 的取值范围;(3)若01a <<,问是否存在实数m ,使得对定义域内的一切t ,都有2(2)(10)f t f mt +++>恒成立?【答案】(1)(0)0f =,2b =;(2)当01a <<时,01t <<,当1a >时,413<<t ;(3)存在,116m =.【解析】【分析】(1)根据给定条件,结合奇函数的定义求解即得.(2)按01,1a a <<>分类,利用单调性解不等式即得.(3)利用奇函数及意识性脱去法则,转化为恒成立的不等式组,再借助二次函数分类求解.【小问1详解】依题意,420(0)log log 1004aa fb -⨯===⨯+,又()f x 是(2,2)-上的奇函数,则()()f x f x -=-,即42()42log log ()44a a x xb x bx ---=--++,亦即424log log 442aa x bx bx x++=-+-,整理得22216416x b x -=-,于是24b =,而2b ≠-,所以2b =.【小问2详解】由(1)知,424288()log log log (1)(0,1)242424a a a x x f x a a x x x ---+===->≠+++,显然函数8124y x =-+在(2,2)-上单调递减,由奇函数性质及2(2)(32)0f t f t -+-<,得2(2)(32)(23)f t f t f t -<--=-,当01a <<时,函数log a y x =在(0,)+∞上单调递减,则()f x 在(2,2)-上单调递增,不等式化为222232t t -<-<-<,解得01t <<,当1a >时,函数log a y x =在(0,)+∞上单调递增,则()f x 在(2,2)-上单调递减,不等式化为222322t t -<-<-<,解得413t <<,所以当01a <<时,01t <<;当1a >时,413<<t .【小问3详解】假定存在实数m ,对定义域内的一切t ,都有2(2)(10)f t f mt +++>恒成立,即2(1(2)()2)f mt f t f t +>-+=--恒成立,当01a <<时,由(2)知函数()f x 在(2,2)-上单调递增,不等式化为2212212222mt t mt t ⎧+>--⎪-<+<⎨⎪-<--<⎩,整理得22303140mt t mt t ⎧++>⎪-<<⎨⎪-<<⎩,于是有231mt -<<对任意40t -<<恒成立,则2231m t t-<<,当40t -<<时,223311(,),(,)1616t t -∈-∞-∈+∞,因此311616m -≤≤;有230mt t ++>对任意40t -<<恒成立,设2()3g t mt t =++,①当0m >时,函数2()3g t mt t =++的图象开口向上,对称轴102t m=-<,(i )当1120m ∆=->,即112m <时,必有(4)1610142g m m-=-≥⎧⎪⎨-≤-⎪⎩,则111612m ≤<;(ii )当1120m ∆=-=,即112m =时,2211()3(6)01212g t t t t =++=+>在(4,0)t ∈-上恒成立,则112m =;(iii )当1120m ∆=-<,即112m >时,()0g t >在(4,0)t ∈-上恒成立,则112m >;②当0m ≤时,(4)16110g m -=-≤-<,不满足()0g t >在(4,0)t ∈-上恒成立,综上得311616m -≤≤且116m ≥,所以存在116m =使得对定义域内的一切t ,都有()2(2)10f t f mt +++>恒成立.。

2023-2024学年山东省临沂市高一(上)期末数学试卷【答案版】

2023-2024学年山东省临沂市高一(上)期末数学试卷【答案版】

2023-2024学年山东省临沂市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项1.设集合A={x∈N||x|≤2},B={x∈R|1﹣x≥0},则A∩B=()A.{0,1}B.{x|﹣2≤x≤1}C.{1,2}D.{x|0≤x≤1}2.命题“∀x∈R,3x﹣x≥0”的否定是()A.“∀x∈R,3x﹣x≤0”B.“∀x∈R,3x﹣x<0”C.“∃x∈R,3x﹣x≤0”D.“∃x∈R,3x﹣x<0”3.函数D(x)={1,x∈Q0,x∈∁R Q被称为狄利克雷函数,则D(D(√2))=()A.2B.√2C.1D.04.已知函数f(x)=(m﹣2)x m为幂函数,若函数g(x)=lgx+x﹣m,则g(x)的零点所在区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.函数y=6xx2+1的图象大致为()A.B.C.D.6.“a≥2”是“函数f(x)=ln(x2﹣4x﹣5)在(a,+∞)上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.扇面书画在中国传统绘画中由来已久.最早关于扇面书画的文献记载,是《王羲之书六角扇》.扇面书画发展到明清时期,折扇开始逐渐的成为主流.如图,该折扇扇面画的外弧长为51,内弧长为21,且该扇面所在扇形的圆心角约为135°,则该扇面画的面积约为()(π≈3)A.960B.480C.320D.2408.已知89<710,设a =log 87,b =log 98,c =0.9,则( ) A .c <a <bB .c <b <aC .b <a <cD .b <c <a二、选择题:本共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目 9.已知函数f(x)=tan(x +π3),则( )A .f (x )的最小正周期为πB .f (x )的定义域为{x|x ≠π6+kπ,k ∈Z}C .f (x )是增函数D .f(π4)<f(π3)10.已知关于x 的一元二次不等式ax 2+bx +c ≥0的解集为{x |x ≤﹣2或x ≥1},则( ) A .b >0且c <0B .4a +2b +c =0C .不等式bx +c >0的解集为{x |x >2}D .不等式cx 2﹣bx +a <0的解集为{x|−1<x <12}11.若正实数a ,b 满足a +2b =2,则( ) A .1a +2b有最小值9B .ab 有最大值12C .2a +4b 的最小值是4D .a 2+b 2的最小值是2512.已知函数f (x ),假如存在实数λ,使得f (x +λ)+λf (x )=0对任意的实数x 恒成立,称f (x )满足性质R (λ),则下列说法正确的是( )A .若f (x )满足性质R (2),且f (0)=2,则f (2)=﹣4B .若f (x )=sin πx ,则f (x )不满足性质R (λ)C .若f (x )=a x (a >1)满足性质R (λ),则λ<0D .若f (x )满足性质R(−12),且x ∈[0,12)时,f(x)=11−2x ,则当x ∈[32,2)时,f(x)=42−x三、填空题:本题共4小题,每小题5分,共20分。

高一上学期期末考试数学试题(含答案)

高一上学期期末考试数学试题(含答案)

高一上学期期末考试数学试题(含答案) 高一上学期期末考试数学试题(含答案)第I卷选择题(共60分)1.sin480的值为()A。

-1133B。

-2222C。

2222D。

11332.若集合M={y|y=2,x∈R},P={x|y=x-1},则M∩P=()A。

(1,+∞)B。

[1,+∞)C。

(-∞,+∞)D。

(-∞。

+∞)3.已知幂函数通过点(2,22),则幂函数的解析式为()A。

y=2xB。

y=xC。

y=x2D。

y=x1/24.已知sinα=-1/2,且α是第二象限角,那么tanα的值等于()A。

-5/3B。

-4/3C。

4/3D。

5/35.已知点A(1,3),B(4,-1),则与向量AB同方向的单位向量为()A。

(3/5,-4/5)B。

(-3/5,4/5)C。

(-4/5,-3/5)D。

(4/5,3/5)6.设tanα,tanβ是方程x2-3x+2=0的两根,则tan(α+β)的值为()A。

-3B。

-1C。

1D。

37.已知锐角三角形ABC中,|AB|=4,|AC|=1,△ABC的面积为3,则AB·AC的值为()A。

2B。

-2C。

4D。

-48.已知函数f(x)=asin(πx+β)+bcos(πx+β),且f(4)=3,则f(2015)的值为()A。

-1B。

1C。

3D。

-39.下列函数中,图象的一部分如图所示的是()无法确定图像,无法判断正确选项)10.在斜△ABC中,sinA=-2cosB·cosC,且tanB·tanC=1-2,则角A的值为()A。

π/4B。

π/3C。

π/2D。

2π/311.已知f(x)=log2(x2-ax+3a)在区间[2,+∞)上是减函数,则实数a的取值范围是()A。

(-∞,4]B。

(-∞,4)C。

(-4,4]D。

[-4,4]12.已知函数f(x)=1+cos2x-2sin(x-π/6),其中x∈R,则下列结论中正确的是()A。

f(x)是最小正周期为π的偶函数B。

高一数学上学期期末试题及答案

高一数学上学期期末试题及答案

高一数学上学期期末试题及答案一、选择题(每题4分,共40分)1. 若f(x)=x^2-4x+3,则f(1)的值为:A. 0B. -2C. 1D. 22. 函数y=x^3-3x^2+2的导数为:A. 3x^2-6xB. x^2-6x+2C. 3x^2-6x+2D. x^3-6x^2+63. 已知集合A={x|x<0},B={x|x>0},则A∩B的元素个数为:A. 0C. 2D. 无数个4. 以下哪个不是等差数列:A. 2, 4, 6, 8B. 1, 3, 5, 7C. 3, 6, 9, 12D. 1, 4, 7, 105. 已知圆的方程为(x-2)^2+(y-3)^2=25,圆心坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)6. 若a, b, c是等比数列,且a+b+c=14,b^2=ac,则b的值为:A. 2C. 7D. 147. 函数y=2^x的反函数为:A. y=log2(x)B. y=2^(-x)C. y=-2^xD. y=x^(1/2)8. 已知向量a=(3, -1),b=(2, 4),则向量a+b的坐标为:A. (5, 3)B. (1, 3)C. (5, -3)D. (1, -3)9. 函数y=x^2-6x+8的顶点坐标为:A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)10. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,且a=2,b=1,则双曲线的离心率为:A. √2B. √3C. 2D. 3二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x^2+2,求f'(x)=________。

12. 已知等差数列{an}的首项a1=3,公差d=2,则a5=________。

13. 已知向量a=(1, 2),b=(3, -2),则向量a·b=________。

高一数学上册期末试卷(附答案)

高一数学上册期末试卷(附答案)

高一数学上册期末试卷(附答案)高一数学期末考试试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.函数的定义域为( )A.( ,1)B.( ,∞)C.(1,+∞ )D.( ,1)∪( 1,+∞)2.以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为( )A.( ,1,1)B.(1,,1)C.(1,1, )D.( ,,1)3.若,,,则与的位置关系为( )A.相交B.平行或异面C.异面D.平行4.如果直线同时平行于直线,则的值为( )A. B.C. D.5.设,则的大小关系是( )A. B. C. D.6.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则直线EF与CD所成的角为( )A.45°B.30°C.60°D.90°7.如果函数在区间上是单调递增的,则实数的取值范围是( )A. B. C. D.8.圆:和圆:交于A,B两点,则AB的垂直平分线的方程是( )A. B.C. D.9.已知,则直线与圆的位置关系是( )A.相交但不过圆心B.过圆心C.相切D.相离10.某三棱锥的三视图如右图所示,则该三棱锥的表面积是( )A.28+65B.60+125C.56+125D.30+6511.若曲线与曲线有四个不同的交点,则实数m的取值范围是( )A. B.C. D.12.已知直线与函数的图象恰好有3个不同的公共点,则实数m 的取值范围是( )A. B.C. D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若是奇函数,则 .14.已知,则 .15.已知过球面上三点A,B,C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=3 cm,则球的体积是 .16.如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三种说法:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是26.其中正确的序号是________(写出所有正确说法的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)根据下列条件,求直线的方程:(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1;(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.18.(本小题12分)已知且,若函数在区间的最大值为10,求的值.19.(本小题12分)定义在上的函数满足 ,且 .若是上的减函数,求实数的取值范围.20.(本小题12分)如图,在直三棱柱(侧棱垂直于底面的三棱柱) 中,,分别是棱上的点(点不同于点 ),且为的中点.求证:(1)平面平面 ;(2)直线平面 .21.(本小题12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形A BCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.22.(本小题12分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.高一数学期末考试试题答案一、选择题ACBAD BDCAD BC二、填空题13. 14.13 15. 16.①②三、解答题17.(本小题10分)(1)x+2y-2=0或2x+y+2=0.(2)3x-y+2=0.18.(本小题12分)当0当x=-1时,函数f(x)取得最大值,则由2a-1-5=10,得a=215,当a>1时,f(x)在[-1,2]上是增函数,当x=2时,函数取得最大值,则由2a2-5=10,得a=302或a=-302(舍),综上所述,a=215或302.19.(本小题12分)由f(1-a)+f(1-2a)<0,得f(1-a)<-f(1-2a).∵f(-x)=-f(x),x∈(-1,1),∴f(1-a)又∵f(x)是(-1,1)上的减函数,∴-1<1-a<1,-1<1-2a<1,1-a>2a-1,解得0故实数a的取值范围是0,23.20.(本小题12分)(1)∵ 是直三棱柱,∴ 平面。

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。

(−∞,3)∪(5,+∞)B。

(−∞,3)∪[5,+∞)C。

(−∞,3]∪[5,+∞)D。

(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。

a^3B。

a^3/2C。

a^3/4D。

都不对3.下列指数式与对数式互化不正确的一组是A。

e=1与ln1=0B。

8^(1/3)=2与log2^8=3C。

log3^9=2与9=3D。

log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。

x^2B。

x^3C。

e^xD。

1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。

log2B。

−1/lg2C。

lg2D。

−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。

y=−3x^−2B。

y=3^xC。

y=log_3xD。

y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。

2023-2024学年河南省洛阳市高一(上)期末数学试卷【答案版】

2023-2024学年河南省洛阳市高一(上)期末数学试卷【答案版】

2023-2024学年河南省洛阳市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={0,1,2,3},集合B={1,3,则A∪B=()A.{1,3}B.{0,1,2,3,5}C.{1,2,3,5}D.{0,1,2,3}2.命题“∀x>2,x2﹣4≠0”的否定形式是()A.∃x>2,x2﹣4≠0B.∀x≤2,x2﹣4=0C.∃x>2,x2﹣4=0D.∃x≤2,x2﹣4=03.已知集合,若M=N,则ab=()A.﹣4B.﹣1C.1D.44.已知函数f(x)是奇函数,当x<0时,f(x)3+1,若f(2)=5()A.B.C.D.5.今年某地因天气干旱导致白菜价格不稳定,假设第一周、第二周的白菜价格分别为a元/斤、b元/斤(a ≠b),王大妈每周购买10元的白菜,王大妈和李阿姨两周买白菜的平均价格分别记为m1,m2,则m1与m2的大小关系为()A.m1=m2B.m1>m2C.m1<m2D.无法确定6.已知,则+2cos2α=()A.﹣B.﹣C.﹣D.07.已知函数在区间(0,+∞)内的零点分别是a,b,c,b,c的大小关系为()A.a>b>c B.b>c>a C.c>a>b D.b>a>c8.已知函数在上存在最值,且在,则ω的取值范围是()A.B.C.D.二、多项选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知函数.f(x)=cos4x﹣sin4x,则下列结论正确的是()A.f(x)的最小正周期为πB.f(x)的对称中心为C.f(x)的对称轴为直线D.f(x)的单调递增区间为10.已知函数f(x)=2cos(ωx+φ)的部分图象如图所示.则f(x)=()A.2cos(x﹣)B.2cos(2x﹣)C.2sin(﹣2x)D.2sin(2x+)11.已知函数,则()A.f(x)是偶函数B.f(x)是增函数C.若f(x2)+f(2x﹣3)>0,则x∈(﹣3,1)D.∀x1,x2∈R,且x1+x2≠0,(x1+x2)[f(x1)+f(x2)]>012.已知函数f(x)=,g(x)=f(x)﹣k,则()A.f(x)的值域为(﹣1,+∞)B.若g(x)有1个零点,则k<0或k>1C.若g(x)有2个零点,则k=0或k=1D.若g(x)的3个零点分别为:x1,x2,x3(x1<x2<x3),则x1x2x3的取值范围为(2,3)三、填空题:本题共4小题,每小题5分,共20分。

2023-2024学年黑龙江省哈尔滨市高一上学期期末数学试题+答案解析(附后)

2023-2024学年黑龙江省哈尔滨市高一上学期期末数学试题+答案解析(附后)

一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求2023-2024学年黑龙江省哈尔滨市高一上学期期末数学试题❖的。

1.集合,集合,则( )A. B.C.D.2.命题“”的否定是( )A. B.C.D.3.是的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4.不等式的解集为( )A. B.C. 或D.或5.计算:( )A. 0 B. 6C.D.6.若点在幂函数的图象上,则的图象大致是( )A. B.C. D.7.函数的最小值为( )A. 12B. 10C. 8D. 48.关于函数,给出以下四个命题:①当时,严格单调递减且没有最值;②方程一定有解;③如果方程有解,则解的个数一定是偶数;④是偶函数且有最小值,其中真命题是( )A. ②③B. ②④C. ①③D. ③④二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知,则下列计算正确的是( )A. B.C. D.10.已知函数下列叙述正确的是( )A.B. 的零点有3个C. 的解集为或D. 若a,b,c互不相等,且,则的取值范围是11.将函数的图象上所有点的纵坐标不变,横坐标缩短到原来的,再将所得图象向右平移个单位长度后得到函数的图象,则下列叙述正确的是( )A. 函数是偶函数B. 函数的一个对称中心是C. 若,则D. 函数的一个对称中心是12.已知函数若关于x的方程有四个不相等的实根,则m的值可以是A. B. C. D. 0三、填空题:本题共4小题,每小题5分,共20分。

13.__________.14.函数的定义域为__________.15.已知定义在R上的函数满足,设,则的大小顺序是__________用“>”号连接16.已知图象上有一最低点,若图象上各点纵坐标不变,横坐标缩短到原来的,再将所得图象向左平移1个单位得到的图象,又的所有根从小到大依次相差3个单位,则的解析式为__________.四、解答题:本题共6小题,共70分。

高一数学上册期末考试试卷及答案解析(经典,通用)

高一数学上册期末考试试卷及答案解析(经典,通用)

高一数学上册期末考试试卷及答案解析一、单选题 1.设全集2,1,0,1,2U,集合{}{}0,1,21,2A =-,B=,则()U A B =( )A .{}01, B .{}0,1,2 C .{}1,1,2- D .{}0,1,1,2-2.“5x >”是“3x >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对 4.下列命题中,既是全称量词命题又是真命题的是( ) A .矩形的两条对角线垂直 B .对任意a ,b ∈R ,都有a 2 + b 2≥ 2(a ﹣b ﹣1) C .∃x ∈R , |x | + x = 0 D .至少有一个x ∈Z ,使得x 2 ≤2成立5.已知02x <<,则y = )A .2B .4C .5D .66.若110a b <<,则下列结论不正确的是( ) A .22a b <B .1ba <C .2b aa b +>D .2ab b <7.命题p :“2R,240x ax ax ∃∈+-≥”为假命题的一个充分不必要条件是( ) A .40aB .40a -≤<C .30a -≤≤D .40a -≤≤8.集合{1,2,4}A =,{}2B x x A =∈,将集合A ,B 分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是( ) A .B .C .D .二、多选题9.已知集合222{2,1,4},{0,2}A a a a B a a =+-=--,5A ∈,则a 为( ) A .2B .2-C .5D .1-10.若正实数,a b 满足1a b +=,则下列说法正确的是( ) A .ab 有最小值14 B C .1122a b a b +++有最小值43D .22a b +有最小值1211.下列命题为真命题的是( ). A .若a b >,则11b a >B .若0a b >>,0c d <<,则abd c < C .若0a b >>,且0c <,则22cc a b > D .若a b >,且11a b>,则0ab < 12.若“x M x x ∀∈>,”为真命题,“3x M x ∃∈>,”为假命题,则集合M 可以是( )A .()5-∞-,B .(]31--,C .()3+∞,D .[]03,三、填空题13.若命题2:0,30p x x ax ∀≥-+>,则其否定为p ⌝:__________________.14.已知:282p x -≤-≤,:1q x >,:2r a x a <<.若r 是p 的必要不充分条件,且r 是q 的充分不必要条件,则实数a 的取值范围为______. 15.设集合{}{}21,2,R (1)0A B x x a x a ==∈-++=,若集合C = A B ,且C 的子集有4个,则实数a 的取值集合为______________. 16.若a ∈R ,0b >,3a b +=,则当=a ______时,1||3||a a b +取得最小值.四、解答题17.求解下列问题:(1)已知0b a <<,比较1a 与1b 的大小; (2)比较()()37x x ++和()()46x x ++的大小.18.已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-. (1)求A B ,R ()A B ⋃: (2)若BC C =,求实数m 的取值范围.19.已知不等式20x ax b -+<的解集为{}17x x <<. (1)求实数,a b 的值.(2)求不等式101ax bx +>-的解集.20.已知0,0x y >>,且280x y xy +-=,求(1)xy 的最小值; (2)x y +的最小值. 21.22.“绿水青山就是金山银山”,为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碳化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+,3050x ≤≤,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)当处理量为多少吨时,每吨的平均处理成本最少?(2)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?参考答案:1.A 【分析】先求出UB ,再根据交集的定义可求()U A B ∩.【详解】{}2,0,1UB =-,故(){}0,1UAB =,故选:A.2.A 【分析】根据集合与充分必要条件的关系,判断选项. 【详解】{}5x x > {}3x x >,所以“5x >”是“3x >”的充分不必要条件. 故选:A3.C 【分析】由集合的表示方法判断①,④;由集合中元素的特点判断②,③.【详解】①{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确; ③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示. 故选:C .4.B 【分析】根据全称量词和特称量词命题的定义判断,全称量词命题要为真命题必须对所以的成立,对选项逐一判断即可.【详解】A 选项为全称量词命题,却是假命题,矩形的两条对角线相等,并不垂直,故A 错误.C,D 选项是特称量词命题,故错误. B 选项是全称量词命题,用反证法证明, 因为()()2222222110a b a b a b +-++=-++≥所以对,a b ∀∈R ,()2221a b a b +--≥,故B 正确.故选:B. 5.【答案】A 【分析】设直角三角形的两个直角边为x ,y ,由此可得2225x y +=,又面积1=2S xy ,利用基本不等式可求面积的最大值. 【详解】设直角三角形的两个直角边为x ,y ,则2225x y +=, 又1=2S xy由基本不等式可得221125=2224x y S xy ⎛⎫+≤= ⎪⎝⎭(当且仅当x =y 立) 故选:A.6.B 【分析】由110a b <<得出0b a <<,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误. 【详解】110a b<<,0b a ∴<<,0b a ∴->->,22a b ∴<,A 选项正确;1b b a a-=>-,B 选项错误;由基本不等式可得2baa b +≥=,当且仅当1b a =时等号成立,1b a >,则等号不成立,所以2baa b +>,C 选项正确;0b a <<,2b ab ∴>,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.7.C 【分析】由题意,p ⌝为真命题,进而可得p ⌝为真命题时的充要条件,再根据充分与必要条件的性质判断选项即可. 【详解】命题2:R,240p x ax ax ∃∈+-≥为假命题,即命题2:R,240p x ax ax ⌝∀∈+-<为真命题.首先,0a =时,40-<恒成立,符合题意; 其次0a ≠时,则0a <且2(2)160a a ∆=+<,即40a ,综上可知,40a .结合选项可得,{}{}3040a a a a -≤≤⊆-<≤,即:30a -≤≤是40a 的一个充分不必要条件. 故选:C8.C 【分析】记U A B =⋃,然后分析每个选项对应的集合的运算并求解出结果进行判断即可.【详解】因为{}1,2,4A =,{}2B x x A=∈,所以{}2,B =--,记{}2,U AB ==--,对于A 选项,其表示(){}4U A B =,不满足;对于B 选项,其表示(){}2,U A B =--,不满足;对于C 选项,其表示(){2,U A B =--,满足;对于D 选项,其表示{}1,2A B =,不满足;故选:C.9.BC 【分析】结合元素与集合的关系,集合元素的互异性来求得a 的值.【详解】依题意5A ∈,当215a+=时,2a =或2a =-,若2a =-,则{}{}2,5,12,0,4A B ==,符合题意;若2a =,则220a a --=,对于集合B ,不满足集合元素的互异性,所以2a =不符合.当245a a -=时,1a =-或5a =,若1a =-,则212a +=,对于集合A ,不满足集合元素的互异性,所以1a =-不符合.若5a =,则{}{}2,26,5,0,18A B ==,符合题意. 综上所述,a 的值为2-或5. 故选:BC10.BCD 【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【详解】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误;由()222a b a b =+++=12a b ==时,,故B 选项正确;由11111(33)22322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭111[(2)(2)]3221222322a b a b a b a b a b a b a b a b ⎛⎫=++++ ⎪++⎝⎭++⎛⎫=++ ⎪++⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,所以1122a b a b +++有最小值43,故C 选项正确;由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确. 故选:BCD.11.BCD 【解析】举反例说明选项A 错误;利用不等式的性质证明出选项B ,C 正确;利用作差法证明出选项D 正确.【详解】选项A :当取1a =,1b =-时,11b a <,∴本命题是假命题. 选项B :已知0a b >>,0cd <<,所以110dc->->,∴abd c ->-,故abd c <,∴本命题是真命题. 选项C :222211000a b a b a b >>⇒>>⇒<<,∵0c <,∴22cca b >,∴本命题是真命题. 选项D :111100b aa b a b ab->⇒->⇒>, ∵a b >,∴0b a -<,∴0ab <,∴本命题是真命题. 故选:BCD【点睛】本题考查不等式的性质,考查命题的真假,属于基础题. 12.AB 【解析】根据假命题的否定为真命题可知3x M x ∀∈≤,,又x M x x ∀∈>,,求出命题成立的条件,求交集即可知M 满足的条件.【详解】3x M x ∃∈>,为假命题,3x M x ∴∀∈≤,为真命题,可得(,3]M ⊆-∞,又x M x x ∀∈>,为真命题, 可得(,0)M ⊆-∞, 所以(,0)M ⊆-∞,故选:AB【点睛】本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.13.20,30x x ax ∃≥-+≤【分析】直接利用存在量词写出其否定即可. 【详解】因为命题2:0,30p x x ax ∀≥-+>, 所以其否定p ⌝:20,30x x ax ∃≥-+≤.故答案为:20,30x x ax ∃≥-+≤.14.()5,6【分析】根据充分与必要条件,可得p ,q ,r 中集合的包含关系,再根据区间端点列式求解即可.【详解】易得:610p x ≤≤.记p ,q ,r 中x 的取值构成的集合分别为A ,B ,C ,由于r 是p 的必要不充分条件,r 是q 的充分不必要条件,则AC ,CB ,则016210a a a >⎧⎪≤<⎨⎪>⎩,解得56a <<,即实数a 的取值范围是()5,6.故答案为:()5,615.{}1,2【分析】先求出集合B 中的元素,再由C 的子集有4个,可知集合C 中只有2个元素,然后分1,2a a ==和1a ≠且2a ≠三种情况求解即可.【详解】由2(1)0x a x a -++=,得1x =或x a =, 因为集合C = A B ,且C 的子集有4个, 所以集合C 中只有2个元素, ①当1a =时,{}1B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以1a =满足题意,②当2a =时,{}1,2B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以2a =满足题意, ③当1a ≠且2a ≠时,{}1,B a =, 因为{}1,2A =,所以{}1,2,A B a =,即{}1,2,C a =,不合题意,综上,1a =或2a =,所以实数a 的取值集合为{}1,2, 故答案为:{}1,216.32-【分析】由题知3a <,进而分0<<3a 和0a <两种情况,结合基本不等式求解即可.【详解】解:因为3a b +=,0b >,所以30b a =->,即3a <.当0<<3a 时,11173||99999a ab a b a a b a b a b ++=+=++≥+, 当且仅当34a =时取等号,所以当34a =时,13a a b+取得最小值79;当0a <时,11139999a a b a b a a ba b a b ++=--=---≥-+59=, 当且仅当32a =-时取等号,所以当32a =-时,13a a b+取得最小值59.综上所述,当32a =-时,13a a b+取得最小值.故答案为:32-17.(1)11a b <(2)()()()()3746x x x x ++<++【分析】(1)利用差比较法比较大小. (2)利用差比较法比较大小.(1)11110,0,0,0,b a b a ab b a a b ab a b-<<>-<-=<<.(2)()()()()()()()()4630,737634x x x x x x x x ++=-<-+<+++++.18.(1){|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或;(2)52m ≤. 【分析】(1)由并集的定义及补集的定义进行计算即可; (2)BC C =等价于C B ⊆,按B =∅和B ≠∅讨论,分别列出不等式,解出实数m 的取值范围. (1)∵集合{|15}A x x =<≤,{}|04B x x =<<, ∴{|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或.(2) 因为BC C =,所以C B ⊆,当B =∅时,则121m m +≥-,即2m ≤;当B ≠∅时,则12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,解得522m <≤;综上,实数m 的取值范围为52m ≤.19.(1)8,7a b ==;(2)11(,)(,)87-∞-⋃+∞【分析】(1)由解集得到方程20x ax b -+=的根,利用韦达定理可求,a b .(2)利用(1)中的结果并把分式不等式转化为一元二次不等式可求解集.【详解】(1)因为不等式20x ax b -+<的解集是{}17x x <<. 所以20x ax b -+=的解是1和7.故1771ab +=⎧⎨⨯=⎩,解得 87a b =⎧⎨=⎩. (2)由101ax bx +>-得81071x x +>-,即()()81710x x +->, 解得18x <-或17x >,故原不等式的解集为11(,)(,)87-∞-⋃+∞. 20.(1)64;(2)18.【解析】(1)由280x y xy +-=,得到821x y +=,利用基本不等式,即可求解. (2)由280x y xy +-=,得821x y +=,根据8282()()10y xx y x y x y x y +=++=++,结合不等式,即可求解.【详解】(1)由280x y xy +-=,可得821x y +=,又由0,0x y >>,可得821x y =+≥,当且仅当82x y =,即4x y =时,等号成立,即64xy ≥, 所以xy 的最小值为64. (2)由280x y xy +-=,得821x y +=,因为0,0x y >>,可得8282()()101018y x x y x y x y x y +=++=++≥+, 当且仅当82y xx y =,即12,6x y ==时等号成立,所以x y +的最小值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 21.(1)[0,254] (2){}|2a a <【分析】(1)首先求解集合A ,再求二次函数的值域;(2)首先将不等式,参变分离得2452x x a x -+-<-,转化为求函数的最值,即可求解. (1)2230x x --≤等价于()()2310x x -⋅+≤,.解得312x -≤≤所以3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭. ∴二次函数223253424y x x x ⎛⎫=-++=--+ ⎪⎝⎭, 函数在区间31,2⎡⎤-⎢⎥⎣⎦单调递增,所以当32x =时,y 取最大值为254, 当1x =-时,y 取最小值为0,所以二次函数234y x x =-++.x A ∈的值域是[0,254]. (2)由(1)知3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭ ∵()24520x a x a +-+->恒成立. 即24520x ax x a +-+->恒成立.∴()2245x a x x -⋅>-+-恒成立. .∵312x -≤≤.∴20x -<.()()222214545122222x x x x x a x x x x x-+-+--+∴<===-+----∵20x ->,∴()1222x x-+≥-.. 当且仅当122x x -=-且312x -≤≤时,即1x =时,等号成立,. ∴2a <,故a 的取值范围为{}|2a a < 22.(1)31a b ==, (2)32a -≤<-或45a <≤ (3)53a ≥-【分析】(1)根据二次函数与对应不等式和方程的关系,利用根与系数的关系,即可求出a 、b 的值;(2)由()1f x b <-得()23220x a x a -+++<,令()()2322h x x a x a =-+++,求出()0h x <解集中恰有3个整数时a 的取值范围即可.(3)由()f x b ≥在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立,化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,,()2111t t g t t t t+-==-+,求出()g t 的最大值,进一步求出实数a 的取值范围;(1)解:因为函数()()2321f x x a x a b =-++++,a ,b R ∈,又()0f x >的解集为{2|x x <或4}x >,所以2,4方程()23210x a x a b -++++=的两根,由()2432421a a b ⎧+=+⎨⨯=++⎩, 解得31;a b ==, (2)由()1f x b <-得()23220x a x a -+++<, 令()()2322h x x a x a =-+++,则()()()()12h x x a x =-+-,知()20h =,故()0h x <解集中的3个整数只能是3,4,5或1-,0,1;①若解集中的3个整数是3,4,5,则516a <+≤,得45a <≤;②解集中的3个整数是1-,0,1;则211a -≤+<-,得32a -≤<-;综上,由①②知,实数a 的取值范围为32a -≤<-或45a <≤. (3)因为函数()()2321f x x a x a b =-++++,a ,b R ∈,由()f x b 在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立, 化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,, 设()2111t t g t t t t +-==-+,因为在()g t 在[]53--,上单调递增, 即()153133g t --+=--,所以53a ≥-. 23.(1)40吨(2)不会获利,700万元【分析】(1)根据已知条件,结合基本不等式的公式,即可求解.(2)当3050x ≤≤时,该工厂获利S ,则()2220401600(30)700S x x x x =--+=---,再结合二次函数的性质,即可求解. (1)由题意可得,二氧化碳的平均处理成本1600()40yP x x x x==+-,3050x ≤≤,当3050x ≤≤时,1600()404040P x x x =+-≥=, 当且仅当1600x x=,即40x =等号成立, 故()P x 取得最小值为(40)40P =,故当处理量为40吨时,每吨的平均处理成本最少. (2)当3050x ≤≤时,该工厂获利S , 则()2220401600(30)700S x xx x =--+=---,当3050x ≤≤时,max 7000S =-<,故该工厂不会获利,国家至少需要补贴700万元,该工厂不会亏损.。

高一上期末数学试卷带答案

高一上期末数学试卷带答案

一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -1/2D. 0答案:D2. 若函数f(x) = x^2 - 4x + 4的图像的对称轴是()A. x = 2B. y = 2C. x = -2D. y = -2答案:A3. 已知等差数列{an}的前三项分别是2,5,8,则该数列的公差是()A. 1B. 2C. 3D. 4答案:B4. 在三角形ABC中,若角A、B、C的对边分别为a、b、c,且a^2 + b^2 = c^2,则三角形ABC是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 无法确定答案:B5. 下列函数中,在定义域内单调递减的是()A. y = x^2B. y = 2xC. y = -x^2D. y = x^3答案:C6. 已知等比数列{an}的前三项分别是1,2,4,则该数列的公比是()A. 1B. 2C. 4D. 1/2答案:D7. 在直角坐标系中,点P(2,3)关于直线y=x的对称点是()A. (3,2)B. (2,3)C. (3,3)D. (2,2)答案:A8. 若函数f(x) = |x| + 1在x=0处的导数等于()A. 1B. 0C. -1D. 不存在答案:A9. 在等差数列{an}中,若a1 = 3,d = 2,则第10项an等于()A. 19B. 20C. 21D. 22答案:C10. 已知函数f(x) = x^3 - 3x + 2,则f'(x) =()A. 3x^2 - 3B. 3x^2 - 2C. 3x^2 + 3D. 3x^2 + 2答案:A二、填空题(每题5分,共50分)11. 函数y = (x - 1)^2 + 2的最小值是__________。

答案:212. 等差数列{an}的前10项和S10 = 110,则第5项a5 =__________。

答案:1113. 若等比数列{an}的首项a1 = 3,公比q = 2,则第4项a4 =__________。

2023-2024学年山东省菏泽市高一(上)期末数学试卷【答案版】

2023-2024学年山东省菏泽市高一(上)期末数学试卷【答案版】

2023-2024学年山东省菏泽市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin(−16π3)=( ) A .−12B .12C .−√32D .√322.为了得到函数y =3sin (2x +π5),x ∈R 的图象,只需把函数y =3sin (x +π5),x ∈R 的图象上所有的点的( )A .横坐标伸长到原来的2倍,纵坐标不变B .横坐标缩短到原来的12,纵坐标不变C .纵坐标伸长到原来的2倍,横坐标不变D .纵坐标缩短到原来的12,横坐标不变3.已知a >b >0,则下列不等式成立的是( ) A .a >a+b2>√ab >b B .a >b >a+b2>√abC .a >a+b2>b >√ab D .a >√ab >a+b2>b 4.集合A ={x|−3π2≤x <3π2},B ={x|x =kπ+π2,k ∈Z},C =A ∩B ,则集合C 中的元素个数为( ) A .4B .3C .2D .15.p :A ∪B =A ,q :B ⊆A ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件6.已知α、β都是锐角,sin α=45,cos (α+β)=513,则sin β的值为( )A .5365B .3365C .1665D .−13657.定义在R 上的函数f (x )满足f (1+x )=f (1﹣x ),当x ≥1时,f (x )=3x ﹣1,则下列各式正确的是( )A .f(13)>f(25)>f(32)B .f(13)>f(32)>f(25)C .f(32)>f(13)>f(25)D .f(25)>f(32)>f(13)8.已知θ∈(0,π4),sin 4θ+cos 4θ=1725,则tan (θ+π4)=( )A .13B .12C .2D .3二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.英国数学家哈利奥特最先使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.已知a <b <0,c <d <0,则下列不等式一定成立的有( ) A .a +c <b +dB .ac >bdC .d a >c aD .a 2>ab >b 210.已知θ为第一象限角,sinθ−cosθ=15,则下列各式正确的有( )A .sinθ+cosθ=75B .sin2θ=1225C .cos2θ=−725 D .tanθ=3411.已知指数函数f (x )=a x ,g (x )=b x ,(a >0,b >0且a ≠1,b ≠1),且f (2)=4,3f (1)=2g (1).则下列结论正确的有( ) A .f (x )=2x ,g (x )=3xB .若f (m )=g (n ),则一定有m =nC .若f (x )=g (y )=f (z )g (z )≠1,则1x +1y =1zD .若ℎ(x)=(b a )2x −3(ba)x +5,x ∈[0,2],则h (x )的最大值为312.已知函数f (x )对任意实数x 、y 都满足f(x)+f(y)=2f(x+y 2)f(x−y2),且f (1)=﹣1,以下结论正确的有( ) A .f(12)=0B .f (x +2)是偶函数C .f (x +1)是奇函数D .f (1)+f (2)+f (3)+…+f (2025)=﹣1三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=ln(2x 2+kx +38)的定义域为R ,则实数k 的取值范围是 .14.已知f (x )=sin x +2cos x ,当x =θ时,f (x )取得最大值,则tan θ= . 15.已知log a 1b 1=log a 2b 2=⋯=log a 10b 10=√22,则log a 1a 2⋯a 10(b 1b 2⋯b 10)= .16.若x 1、x 2、…、x 2024均为正实数,则x 1+x 2x 1+x 3x 1x 2+x 4x 1x 2x 3+⋯+x 2024x 1x 2⋯x 2023+4x 1x 2⋯x 2024的最小值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)求下列各式的值:(1)432+0.25−12−343×3−13;(2)(log 43+log 83)(log 32+log 92)(lg 14−lg25).18.(12分)已知cosα=35,且tan α<0,求下列各式的值:(1)cos(π2+α)sin(π2−α); (2)sin(2π5+α)−2sin π5cos(π5+α). 19.(12分)已知f(x)={lnx ,x >0e x,x ≤0.(1)写出函数y =f (x )的单调区间;(2)当函数g (x )=f (x )﹣a 有两个零点时,求a 的取值范围; (3)求h (x )=lnf (x )的解析式.20.(12分)如图,任意角x 的终边OP 与以O 为圆心2为半径的圆相交于点P ,过P 作x 轴的垂线,垂足为Q ,记△POQ 的面积为f (x )(规定当点P 落在坐标轴上时,f (x )=0). (1)求f (x )的解析式; (2)求f (x )取最大值时x 的值; (3)求f (x )的单调递减区间.21.(12分)已知函数f(x)=2sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)求f (x )在[0,π2]上的最大值和最小值;(3)若g(x)=f(x)+65在区间(−2π3,π3)上恰有两个零点x 1、x 2(x 1<x 2),求cos[2(x 1﹣x 2)].22.(12分)已知f(x)=e2x﹣te x+1.(1)当t=5时,f(x)≥﹣3时,求x的取值范围;(2)对任意x∈R,且x≠0,有f(x+1x)≥0,求t的取值范围;(3)g(x)=f(lnx)+|x﹣t|,g(x)的最小值为h(t),求h(t)的最大值.2023-2024学年山东省菏泽市高一(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin(−16π3)=( ) A .−12B .12C .−√32D .√32解:sin (−16π3)=sin (﹣5π−π3)=﹣sin (5π+π3)=﹣sin (π+π3)=sin π3=√32. 故选:D .2.为了得到函数y =3sin (2x +π5),x ∈R 的图象,只需把函数y =3sin (x +π5),x ∈R 的图象上所有的点的( )A .横坐标伸长到原来的2倍,纵坐标不变B .横坐标缩短到原来的12,纵坐标不变C .纵坐标伸长到原来的2倍,横坐标不变D .纵坐标缩短到原来的12,横坐标不变解:由函数图象变换的规则函数y =3sin(2x +π5),x ∈R 的图象,可以由函数y =3sin(x +π5),x ∈R 的图象上所有的点横坐标缩短到原来的12,纵坐标不变得到故选:B .3.已知a >b >0,则下列不等式成立的是( ) A .a >a+b2>√ab >b B .a >b >a+b2>√abC .a >a+b2>b >√ab D .a >√ab >a+b2>b 解:∵a >b >0易知a+b2>√ab ,又∵ab ﹣b 2=b (a ﹣b )>0 ∴ab >b 2⇒√ab >b ∴a >a+b2>√ab >b , 故选:A . 4.集合A ={x|−3π2≤x <3π2},B ={x|x =kπ+π2,k ∈Z},C =A ∩B ,则集合C 中的元素个数为( ) A .4B .3C .2D .1解:解不等式−3π2≤kπ+π2<3π2(k ∈Z),可得﹣2≤k <1, 所以,整数k 的取值有﹣2、﹣1、0, 又因为集合A ={x|−3π2≤x <3π2},B ={x|x =kπ+π2,k ∈Z}, 则C =A ∩B ={−3π2,−π2,π2},即集合C 中的元素个数为3. 故选:B .5.p :A ∪B =A ,q :B ⊆A ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件解:由A ∪B =A 可以推出B ⊆A ,由B ⊆A 可以推出A ∪B =A ,所以p 是q 的充要条件. 故选:C .6.已知α、β都是锐角,sin α=45,cos (α+β)=513,则sin β的值为( )A .5365B .3365C .1665D .−1365解:∵α、β都是锐角,又∵sinα=45,cos(α+β)=513,∴cos α=35,sin (α+β)=1213∴sin β=sin[(α+β)﹣α]=sin (α+β)•cos α﹣cos (α+β)•sin α=1213⋅35−513⋅45=1665故选:C .7.定义在R 上的函数f (x )满足f (1+x )=f (1﹣x ),当x ≥1时,f (x )=3x ﹣1,则下列各式正确的是( )A .f(13)>f(25)>f(32)B .f(13)>f(32)>f(25)C .f(32)>f(13)>f(25)D .f(25)>f(32)>f(13)解:因为定义在R 上的函数f (x )满足f (1+x )=f (1﹣x ),则函数f (x )的图象关于直线x =1对称, 当x ≥1时,f (x )=3x ﹣1,则函数f (x )在[1,+∞)上单调递增, 因为f(13)=f(2−13)=f(53),f(25)=f(2−25)=f(85),且53>85>32>1,则f(53)>f(85)>f(32),即f(13)>f(25)>f(32).故选:A .8.已知θ∈(0,π4),sin 4θ+cos 4θ=1725,则tan (θ+π4)=( )A .13B .12C .2D .3解:由已知可得{ sin 4θ+cos 4θ=1725sin 2θ+cos 2θ=10<sinθ<√22√22<cosθ<1,解得{sinθ=√55cosθ=2√55, 所以,tanθ=sinθcosθ=√55525=12, 故tan(θ+π4)=tanθ+tan π41−tanθtan π4=12+11−12×1=3. 故选:D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.英国数学家哈利奥特最先使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.已知a <b <0,c <d <0,则下列不等式一定成立的有( ) A .a +c <b +dB .ac >bdC .d a >caD .a 2>ab >b 2解:因为a <b <0,c <d <0,对于A 选项,由不等式的基本性质可得a +c <b +d ,A 对;对于B 选项,﹣a >﹣b >0,﹣c >﹣d >0,由不等式的基本性质可得ac >bd ,B 对; 对于C 选项,因为1a <0,由不等式的基本性质可得d a <ca,C 错;对于D 选项,由不等式的基本性质可得a 2>ab ,ab >b 2,即a 2>ab >b 2,D 对. 故选:ABD .10.已知θ为第一象限角,sinθ−cosθ=15,则下列各式正确的有( )A .sinθ+cosθ=75B .sin2θ=1225C .cos2θ=−725 D .tanθ=34解:由sinθ−cosθ=15得sinθ=15+cosθ,代入sin 2θ+cos 2θ=1得(15+cosθ)2+cos 2θ=1,解得cosθ=−45或cosθ=35,因为θ为第一象限角,所以cosθ=35,sinθ=15+cosθ=15+35=45,所以sinθ+cosθ=45+35=75,sin2θ=2sinθcosθ=2×45×35=2425, cos2θ=2cos 2θ−1=2×925−1=−725,tanθ=sinθcosθ=4535=43. 故选:AC .11.已知指数函数f (x )=a x ,g (x )=b x ,(a >0,b >0且a ≠1,b ≠1),且f (2)=4,3f (1)=2g (1).则下列结论正确的有( ) A .f (x )=2x ,g (x )=3xB .若f (m )=g (n ),则一定有m =nC .若f (x )=g (y )=f (z )g (z )≠1,则1x +1y =1zD .若ℎ(x)=(b a )2x −3(ba)x +5,x ∈[0,2],则h (x )的最大值为3解:对于A 选项,因为指数函数f (x )=a x ,g (x )=b x ,(a >0,b >0且a ≠1,b ≠1), 则f (2)=a 2=4,可得a =2,由3f (1)=2g (1)可得3a =2b ,则b =3, 所以,f (x )=2x ,g (x )=3x ,A 对;对于B 选项,由f (m )=g (n ),可得2m =3n ,可得出lg 2m =lg 3n ,即mlg 2=nlg 3, 当m =0时,则n =0,此时,m =n ,当m ≠0时,则n ≠0,则m n =lg3lg2≠1,则m ≠n .B 错;对于C 选项,由f (x )=g (y )=f (z )g (z )≠1,可得2x =3y =2z •3z =6z ≠1, 设t =2x =3y =2z •3z =6z ≠1,则t >0,所以,x =log 2t ,y =log 3t ,z =log 6t , 所以,1x +1y =log t 2+log t 3=log t 6=1z,C 对;对于D 选项,ℎ(x)=(b a )2x −3(b a )x +5=(32)2x −3(32)x +5,因为x ∈[0,2],令t =(32)x ∈[1,94],令y =t 2﹣3t +5,其中t ∈[1,94],则函数y =t 2﹣3t +5在[1,32]上为减函数,在[32,94]上为增函数,当t =1时,y =1﹣3+5=3;当t =94时,y =8116−3×94+5=5316>3,所以,h (x )的最大值为5316,D 错.故选:AC .12.已知函数f (x )对任意实数x 、y 都满足f(x)+f(y)=2f(x+y 2)f(x−y2),且f (1)=﹣1,以下结论正确的有()A.f(12)=0B.f(x+2)是偶函数C.f(x+1)是奇函数D.f(1)+f(2)+f(3)+…+f(2025)=﹣1解:对于A选项,令x=y=1可得2f(1)=2f(1)f(0),因为f(1)=﹣1,则f(0)=1,令x=1,y=0,可得2[f(12)]2=f(1)+f(0)=0,则f(12)=0,A对;对于B选项,令y=x可得f(x)+f(﹣x)=2f(0)f(x)=2f(x),所以,f(﹣x)=f(x),故函数f(x)为偶函数,令y=x+1可得f(x)+f(x+1)=2f(x+12)f(−12)=2f(x+12)f(12)=0,即f(x+1)=﹣f(x),故f(x+2)=﹣f(x+1)=f(x),因为函数f(x)为偶函数,则函数f(x+2)为偶函数,B对;对于C选项,因为f(x+1)=﹣f(x),因为函数f(x)为偶函数,则函数f(x+1)也为偶函数,C错;对于D选项,由B选项可知,函数f(x)是周期为2的周期函数,因为f(1)=﹣1,f(1)+f(2)=0,所以,f(1)+f(2)+f(3)+•+f(2025)=1012[f(1)+f(2)]+f(1)=﹣1,D对.故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=ln(2x2+kx+38)的定义域为R,则实数k的取值范围是(−√3,√3).解:由题意可知,对任意的x∈R,2x2+kx+38>0,则Δ=k2−4×2×38=k2−3<0,解得−√3<k<√3.所以,实数k的取值范围是(−√3,√3).故答案为:(−√3,√3).14.已知f(x)=sin x+2cos x,当x=θ时,f(x)取得最大值,则tanθ=12.解:令cosα=√55,sinα=2√55,其中α为锐角,则f(x)=sinx+2cosx=√5(√55sinx+2√55cosx)=√5(sinxcosα+cosxsinα)=√5sin(x+α),因为当x=θ时,f(x)取得最大值,则θ+α=2kπ+π(k∈Z),所以,θ=2kπ+π2−α(k∈Z),所以,sinθ=sin(2kπ+π2−α)=cosα=√55,cosθ=cos(2kπ+π2−α)=sinα=2√55,故tanθ=sinθcosθ=√5552√5=12.故答案为:1 2.15.已知log a1b1=log a2b2=⋯=log a10b10=√22,则log a1a2⋯a10(b1b2⋯b10)=√22.解:因为log a1b1=log a2b2=⋅⋅⋅=log a10b10=√22,则b i=ai√22(i=1,2,3,⋯,10),所以,log a1a2⋅⋅⋅a10(b1b2⋅⋅⋅b10)=lg(b1b2⋅⋅⋅b10)lg(a1a2⋅⋅⋅a10)=lg(a1√22a2√22⋅⋅⋅a10√22)lg(a1a2⋅⋅⋅a10)=lg(a1a2⋅⋅⋅a10)√22lg(a1a2⋅⋅⋅a10)=√22.故答案为:√2 2.16.若x1、x2、…、x2024均为正实数,则x1+x2x1+x3x1x2+x4x1x2x3+⋯+x2024x1x2⋯x2023+4x1x2⋯x2024的最小值为4.解:原式=4x1x2⋅⋅⋅x2024+x2024x1x2⋅⋅⋅x2023+⋯+x4x1x2x3+x3x1x2+x2x1+x1≥2√4x1x2⋅⋅⋅x2024⋅x2024x1x2⋅⋅⋅x2023+x2023x1x2⋅⋅⋅x2022+⋯+x4x1x2x3+x3x1x2+x2x1+x1=4x1x2⋯x2023+x2023x1x2⋅⋅⋅x2022+⋯+x4x1x2x3+x3x1x2+x2x1+x1≥2√4x1x2⋯x2023⋅x2023x1x2⋅⋅⋅x2022+⋯+x4x1x2x3+x3x1x2+x2x1+x1=4x1x2⋯x2022+⋯+x4x1x2x3+x3x1x2+x2x1+x1≥⋯≥4x1+x1≥2√4x1⋅x1=4,当且仅当4x i=x i(i=1,2,3,⋯,2024,x i>0)时,即当x1=x2=⋯=x2023=2时,等号成立,故x1+x2x1+x3x1x2+x4x1x2x3+⋅⋅⋅+x2024x1x2⋅⋅⋅x2023+4x1x2⋅⋅⋅x2024的最小值为4.故答案为:4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)求下列各式的值:(1)432+0.25−12−343×3−13;(2)(log43+log83)(log32+log92)(lg 14−lg25).解:(1)原式=23+2﹣3=7.(2)原式=(12log 23+13log 23)(log 32+12log 32)(lg 1100)=56log 23×32log 32×(−2)=−52.18.(12分)已知cosα=35,且tan α<0,求下列各式的值:(1)cos(π2+α)sin(π2−α); (2)sin(2π5+α)−2sin π5cos(π5+α). 解:(1)因为cosα=35>0,且tan α<0,所以α为第四象限角,可得sinα=−√1−cos 2α=−√1−925=−45,cos(π2+α)sin(π2−α)=−sinαcosα=4535=43; (2)根据题意,可得:原式=sin(π5+π5+α)−2sin π5cos(π5+α)=sin π5cos(π5+α)+cos π5sin(π5+α)−2sin π5cos(π5+α)=cos π5sin(π5+α)−sin π5cos(π5+α)=sinα=−45.19.(12分)已知f(x)={lnx ,x >0e x,x ≤0.(1)写出函数y =f (x )的单调区间;(2)当函数g (x )=f (x )﹣a 有两个零点时,求a 的取值范围; (3)求h (x )=lnf (x )的解析式. 解:(1)∵f(x)={lnx ,x >0e x ,x ≤0.∴f (x )的单调递增区间为(﹣∞,0],(0,+∞).(2)∵f(x)={lnx ,x >0e x,x ≤0在区间(﹣∞,0],(0,+∞)递增,∴lnx =a (x >0)有一解,则a ∈R ; e x =a (x ≤0)有一解,则0<a ≤1; ∴当函数g (x )=f (x )﹣a 有两个零点时, a 的取值范围为(0,1].(3)∵h (x )=lnf (x ),f(x)={lnx ,x >0e x ,x ≤0,∴ℎ(x)={ln(lnx),x >1lne x,x ≤0,即ℎ(x)={ln(lnx),x >1x ,x ≤0.20.(12分)如图,任意角x 的终边OP 与以O 为圆心2为半径的圆相交于点P ,过P 作x 轴的垂线,垂足为Q ,记△POQ 的面积为f (x )(规定当点P 落在坐标轴上时,f (x )=0). (1)求f (x )的解析式; (2)求f (x )取最大值时x 的值; (3)求f (x )的单调递减区间.解:(1)由三角函数的定义知,△POQ 的面积S =12|OQ ||QP |=12×|2cos x |×|2sin x |=|sin2x |,所以f (x )=|sin2x |;(2)当sin2x =±1时,f (x )最大,此时2x =kπ+π2,k ∈Z ,即x =kπ2+π4,k ∈Z ;(3)由f (x )=|sin2x |知,f (x )的周期T =π2,当0<x <π2时,f (x )在[0,π4]上为增函数,在[π4,π2]上为减函数.∴f (x )的单调递减区间为[kπ2+π4,kπ2+π2],k ∈Z .21.(12分)已知函数f(x)=2sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)求f (x )在[0,π2]上的最大值和最小值;(3)若g(x)=f(x)+65在区间(−2π3,π3)上恰有两个零点x 1、x 2(x 1<x 2),求cos[2(x 1﹣x 2)].解:(1)由图象可知,函数f (x )的最小正周期T 满足34T =π3+5π12=3π4,则T=π,而ω=2πT=2ππ=2,所以f(x)=2sin(2x+φ),则f(π3)=2sin(2π3+φ)=2,可得2π3+φ=π2+2kπ,k∈Z,因为−π2<φ<π2,解得φ=−π6,因此f(x)=2sin(2x−π6);(2)因为0≤x≤π2,则−π6≤2x−π6≤5π6,所以−12≤sin(2x−π6)≤1,即﹣1≤f(x)≤2,所以f(x)的最大值为2,最小值为﹣1;(3)因为g(x)=2sin(2x−π6)+65,当g(x)=0时,sin(2x−π6)=−35,令2x−π6=kπ+π2(k∈Z),所以x=kπ2+π3(k∈Z),因为g(x)在区间(−2π3,π3)上恰有两个零点x1,x2,函数g(x)图象在区间(−2π3,π3)内的对称轴为直线x=−π6,由正弦型函数的对称性可知,点(x1,0),(x2,0)关于直线x=−π6对称,则x1+x2=−π3,所以x1−x2=x1−(−π3−x1)=2x1+π3,由g(x1)=0得,sin(2x1−π6)=−35,所以cos(x1−x2)=cos(2x1+π3)=cos(2x1−π6+π2)=−sin(2x1−π6)=35,所以cos[2(x1−x2)]=2cos2(x1−x2)−1=2×(35)2−1=−725.22.(12分)已知f(x)=e2x﹣te x+1.(1)当t=5时,f(x)≥﹣3时,求x的取值范围;(2)对任意x ∈R ,且x ≠0,有f(x +1x)≥0,求t 的取值范围;(3)g (x )=f (lnx )+|x ﹣t |,g (x )的最小值为h (t ),求h (t )的最大值. 解:(1)由t =5,f (x )≥﹣3可得e 2x ﹣5e x +4≥0,解得e x ≤1或e x ≥4, 所以x ≤0或x ≥2ln 2; (2)由e2(x+1x)−t ⋅ex+1x+1≥0,x ≠0时恒成立则t ≤ex+1x+1e x+1x,令s =ex+1x .则当x >0时,由x +1x≥2可得:e x+1x ≥e 2,即得:s ≥e 2(x =1时取等号), 当x <0时,x +1x ≤−2,可得:e x+1x ≥1e 2即得:0<s ≤1e2.(x =﹣1时取等号).故ex+1x+1e x+1x=s +1s ,因y =s +1s 在(0,1e2]上递减,在[e 2,+∞)上递增,而s =1e 2时y =e 2+e ﹣2;s =e 2时,y =e 2+e ﹣2,即e x+1x +1e x+1x≥e 2+e −2, 故t ≤e 2+e ﹣2.(3)由g (x )=x 2﹣tx +1+|x ﹣t |(x >0). 可得:g(x)={x 2−(t −1)x +1−t ,x ≥tx 2−(t +1)x +1+t ,x <t,①当t ≤0时,g (x )=x 2﹣(t ﹣1)x +1﹣t 在(0,+∞)单调递增,所以此时无最值; ②当0<t <1时,由t−12<0,t+12>t .所以g (x )在(t ,+∞)上单调递增,(0,t )上单调递减,此时,h (t )=g (t )=1; ③当t ≥1时.t−12≥0,t−12≤t ,t+12≤t .所以g (x )在(0,t+12)上单调递减,在(t+12,+∞)上单调递增,此时,ℎ(t)=g(t+12)=−t 24+t 2+34, 综上,ℎ(t)={1,0<t <1−t 24+t 2+34,t ≥1,因t ≥1时,ℎ(t)=−t 24+t 2+34=−14(t −1)2+1≤1,故h (t )最大值为1.。

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一第一学期期末考试数学试卷 满分:150分 时间: 120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|27,|1,A x x B x x x N =-<<=>∈,则AB 的元素的个数为( )A.3B.4C.5D.62.两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( ) A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α⊂3.方程的1xe x =的根所在的区间是( ). A.)21,0( B.)1,21( C.)23,1( D.)2,23(4.函数y=x (x 2-1)的大致图象是( )5.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为( ) A.90°B.60°C.45°D.30°6.长方体1111ABCD A B C D -中,2AB =,1AA =3AD =,则 长方体1111ABCD A B C D - 的外接球的直径为 ( ) A.2 B.3 C.4 D.57.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1角为60°9.若方程1ln 02xx a ⎛⎫-+= ⎪⎝⎭有两个不等的实数根,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.()1,+∞C.1,2⎛⎫-∞ ⎪⎝⎭D.(),1-∞10.某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是( )A.65B.6C.2D.511.已知函数()22log f x x x =+,则不等式()()120f x f +-<的解集为( )A. ()(),13,-∞-⋃+∞B. ()(),31,-∞-⋃+∞C. ()()3,11,1--⋃-D. ()()1,11,3-⋃12.已知()()()2,log 0,1x a f x ag x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是( )二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .14.2lg 2= _________15.函数()lg 21y x =+的定义域是______________________. 16.函数x21f x =-log x+23⎛⎫⎪⎝⎭()()在区间[-1,1]上的最大值为________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)全集R U =,函数()lg(3)f x x =+-的定义域为集合A ,集合{}02<-=a x x B .(1)求U A ð; (2)若A B A = ,求实数a 的取值范围.18.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+≤-=)0(,1)1(log )0(,2)21()(2x x x x f x(1)求)(x f 的零点; (2)求不等式()0f x >的解集.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AD =AB ,∠A =90°,BD ⊥DC ,将△ABD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面BDC. (1) 求证:平面EBD ⊥平面EDC ; (2) 求ED 与BC 所成的角.20.(12分)一块边长为10 cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数; (2)若x =6,求图2的正视图的面积.21.(本小题满分12分)在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,1AB =,1AA ,D 为1AA 的中点,BD 与1AB 交于点O ,⊥CO 侧面11A ABB .(Ⅰ)证明:1AB BC ⊥; (Ⅱ)若OA OC =,求点1B 到平面ABC 的距离.1A A1B B1C COD22.(本小题满分12分)已知函数4()log (41)x f x kx =++(k ∈R ),且满足(1)(1)f f -=. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求a 的取值范围; (3)若函数1()2()421f x xx h x m +=+⋅-,[]20,log 3x ∈,是否存在实数m 使得()h x 最小值为0,若存在,求出m 的值;若不存在,请说明理由.高一第一学期期末考试 数学试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 1 14. 2 15. 16. 316.解析:∵y =⎝ ⎛⎭⎪⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f(x)=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上是减函数,∴函数f(x)在区间[-1,1]上的最大值为f(-1)=3.答案:3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)∵⎩⎨⎧>->+0302x x ∴23x -<<…………………………………3分∴A=(-2,3) ∴(][)23u C A =-∞-+∞,,……………………………5分 (2)当0≤a 时,φ=B 满足A B A = ……………………………6分当0>a 时,)(a a B ,-= ∵AB A = ∴A B ⊆[]∴⎪⎩⎪⎨⎧≤-≥-32a a , ∴40≤<a ……………………………9分 综上所述:实数a 的范围是4≤a ……………………………………10分18.解:(1)由0)(=x f 得,⎪⎩⎪⎨⎧=-≤02)21(0x x 或⎩⎨⎧=-+>01)1(log 02x x ,解得1-=x 或1=x .所以,函数)(x f 的零点是—1,1..................................6分(2)由()0f x >得,01()202xx ≤⎧⎪⎨->⎪⎩或20log (1)10x x >⎧⎨+->⎩,解得1x <-或1x >.所以,不等式1)(>x f 的解集是{x |1x <-或1x >}.................................12分19.(1) 证明:∵平面EBD ⊥平面BDC ,且平面EBD ∩平面BDC =BD ,CD ⊥BD , ∴CD ⊥平面EBD , ∵CD 平面EDC ,∴平面EBD ⊥平面EDC.……………………………6分 (2) 解:如答图,连接EA ,取BD 的中点M ,连接AM ,EM , ∵AD ∥BC ,∴∠EDA 即为ED 与BC 所成的角. 又∵AD =AB ,∴ED =EB. ∴EM ⊥BD ,∴EM ⊥平面ABCD.设AB =a ,则ED =AD =a ,EM =MA , ∴AE =a ,∴∠EDA =60°.即ED 与BC 所成的角为60°……………………………12分20.(12分)解 (1)设所截等腰三角形的底边边长为x cm. 在Rt △EOF 中,EF =5 cm ,OF =12x cm ,所以EO =25-14x 2.于是V =13x225-14x 2(cm 3).依题意函数的定义域为{x|0<x<10}.……………………………6分(2)正视图为等腰三角形,腰长为斜高,底边长=AB =6, 底边上的高为四棱锥的高=EO =25-14x 2=4,S =4×62=12(cm 2).……………………………12分21.解:(1),由 得又即又又BD 与CO 交于O 点,又……………………………6分(2),,又AB=1,可得,由得……………………………12分22.解析:(1)(1)(1)f f -=,即144log (41)log (41)k k -+-=++444512log log 5log 144k ∴=-==- ∴12k =- ………………………………………………………………………… ………5分(2)由题意知方程411log (41)22x x x a +-=+即方程4=log (41)x a x +-无解, 令4()log (41)x g x x =+-,则函数()y g x =的图象与直线y a =无交点444411()log 41)log log (1)44x x x xg x x +=+-==+( 任取1x 、2x ∈R ,且12x x <,则12044x x <<,121144x x ∴>. 12124411()()log 1log 1044x x g x g x ⎛⎫⎛⎫∴-=+-+> ⎪ ⎪⎝⎭⎝⎭,()g x ∴在(),-∞+∞上是单调减函数.1114x +>, 41()log 104xg x ⎛⎫∴=+> ⎪⎝⎭. ∴a 的取值范围是(],0.-∞ ……………………………………………………………… 9分注意:如果从复合函数角度分析出单调性,给全分。

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套(满分:100分 时间:90分钟)一、选择题(每题4分,共40分)1.设集合{}{}3,22,1,0==B A ,,则=⋃B A ( ) {}3,2,1,0.A {}3,1,0.B {}1,0.C {}2.D2.(普通班)直线AB 的倾斜角为ο45,则直线AB 的斜率等于( )1.A 1.-B 5.C 5.-D(兰天班)已知直线0y =++C B Ax 不经过第一象限,且C B A ,,均不为零,则有( )0.<C A 0.>C B 0.>BC C 0.<BC D3.下列函数中,既是奇函数又是增函数的是( )3.x y A = 1.-=x y B x y C 3log .= xy D ⎪⎭⎫⎝⎛=21.4.若直线02=++a y x 经过圆04222=-++y x y x 的圆心,则a 的值为( ) 4.A 0.B 4.-C 3.D5.下列说法中,正确的是( ).A 经过不同的三点有且只有一个平面 .B 分别在两个平面内的两条直线是异面直线 .C 垂直于同一个平面的两条直线平行.D 垂直于同一个平面的两个平面平行6.已知一个几何体的三视图如图所示,则该几何体的体积为( )π12.A π8.B π38.C π320.D7.点()1,2-P 为圆()25122=+-y x 的弦AB 的中点,则直线AB 的方程为( ) 01.=-+y x A 032.=-+y x B 03.=--y x C 052.=--y x D8.(普通班)圆02:22=-+x y x A 和圆04:22=-+y y x B 的公切线条数是( ) A .4条 B .3条 C .2条 D .1条(兰天班)已知半径为1的动圆与定圆()()167522=++-y x 相切,则动圆圆心的轨迹方程是()()()2575.22=++-y x A ()()()()1575375.2222=++-=++-y x y x B 或()()975.22=++-y x C ()()()()9752575.2222=++-=++-y x y x D 或9.已知点()b a M ,在直线1543=+y x 上,则22b a +的最小值为( )2.A3.B415.C 5.D10.定义在R 上的奇函数()x f ,满足()01=f ,且在()∞+,0上单调递增,则()0>⋅x f x 的解集为( ){}11.>-<x x x A 或 {}0110.<<-<<x x x B 或{}110.-<<<x x x C 或 {}101.><<-x x x D 或二、填空题(每题4分,共16分)11.(普通班)在正方体1111D C B A ABCD -中,异面直线C B AD 11,所成的角的大小为 . (兰天班)直三棱柱111C B A ABC -中,1AA AB AC ==,且异面直线B A AC 11与所成角为ο60,则CAB ∠等于 .12. 若直线()03412:1=+-+m y x m l 与直线()035:2=-++m y m x l 平行,则m 的值为 .13. (普通班)一个正方体的顶点都在同一个球面上,且棱长为4,这个球的体积为 . (兰天班)球的内接圆柱的底面积为π4,侧面积为π12,则该球的表面积为 . 14. 设点()()2,2,5,3---B A ,直线l 过点()1,1P 且与线段AB 相交,则直线l 的斜率k 的取值范围是(用区间表示) .三、解答题(共44分)15.(10分)已知圆()()()025522>=-+-a y a x ,截直线05=-+y x 的弦长为25.(1)求圆的一般式方程;(2)求过点()15,10P 的圆的切线所在的直线一般式方程.16.(10分)(普通班)如图,在三棱锥ABC V -中,ABC 平面平面⊥VAB ,VAB ∆为正三角形,2==⊥BC AC BC AC 且,M O 、分别为VA AB 、的中点 .(1)求证:MOC VB 平面//; (2)求证:VAB MOC 平面平面⊥ .(兰天班)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为21,F F ,且221=F F ,点⎪⎭⎫ ⎝⎛23,1在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)过1F 的直线l 与椭圆C 相交于B A ,两点,且B AF 2∆的面积为7212,求以2F 为圆心与直线l 相切的圆的方程.17.(12分)如图,边长为2的正方形中,BC BF BE 41==,M 是BD 和EF 的交点,将DCF AED ∆∆、分别沿DF DE 、折起,使C A 、两点重合与点A '. (1)求证:MD A EF '⊥面; (2)求三棱锥EFD A -'的体积;(3)求二面角E DF A --'的平面角的余弦值.18. (12分)已知函数()11log 21--=x axx f ,其中a 为常数且0<a ,若函数的图像关于原点对称. (1)求a 的值;(2)当()+∞∈,1x 时,()()mx x f <-+1log 21恒成立,求实数m 的取值范围;(3)若关于x 的方程()()k x x f +=21log 在[]3,2上有解,求k 的取值范围.答案一、 选择题1、A2、A C3、A4、B5、C6、D7、C8、CD9、B 10、A 二、填空题11、(普通班)60°(兰天班)90°12、m=﹣ , 13、32π. 25π 14、K -3或k 1三、解答题15、(1)解:,圆心 到直线距离,,圆的一般式方程为(2)解:若切线斜率不存在, ,符合若切线斜率存在,设,切线:或切线的一般式方程为x-10=0或16、(普通班)(1)证明:因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB .又因为OM ⊂平面MOC ,VB ⊄平面MOC ,所以VB ∥平面MOC .(2)证明:因为AC=BC ,O 为AB 中点, 所以OC ⊥AB .因为平面VAB ⊥平面ABC ,平面VAB∩平面ABC=AB ,OC ⊂平面ABC ,所以OC ⊥平面VAB .因为OC ⊂平面MOC ,所以平面MOC ⊥平面VAB(兰天班)(1)设椭圆的方程为, 由题意可得:椭圆C 两焦点坐标分别为,所以,所以,又,17、18、(1)解:∵函数f(x)的图象关于原点对称,∴函数f(x)为奇函数,∴f(﹣x)=﹣f(x),即log =﹣log = log ,解得:a=﹣1或a=1(舍)(2)解:f(x)+ log (x-1)= log (1+x),x>1时,它是减函数,log (1+x)<﹣1,∵x∈(1,+∞)时,f(x)+ log (x﹣1)<m恒成立,∴m≥﹣1;(3)解:由(1)得:f(x)= log (x+k),即log = log (x+k),即=x+k,即k= ﹣x+1在[2,3]上有解,g(x)= ﹣x+1在[2,3]上递减,g(x)的值域是[﹣1,1],∴k∈[﹣1,1]高一数学第一学期期末试卷及答案一.选择题:共12小题,每小题5分,共60分。

2023-2024学年山东省临沂高一上学期期末数学质量测试题(含答案)

2023-2024学年山东省临沂高一上学期期末数学质量测试题(含答案)

2023-2024学年山东省临沂高一上册期末数学质量测试题一、单选题1.已知1sin3α=,,2παπ⎛⎫∈ ⎪⎝⎭,则tanα的值为()A.4BC.-D.【正确答案】A根据同角三角函数的基本关系求出cosα,tanα;【详解】解:因为1sin3α=,22sin cos1αα+=,所以cos3α=±,因为,2παπ⎛⎫∈ ⎪⎝⎭,所以cos3α=-,所以1sin3tancos43ααα==-故选:A2.已知命题:0p x∀>,2log2x x>,则命题p的否定为()A.0x∀>,2log2x x≤B.00x∃>,002log2x x≤C.00x∃>,002log2x x<D.00x∃≤,002log2x x≤【正确答案】B根据全称命题的否定是特称命题,可得选项.【详解】因为全称命题的否定是特称命题,所以命题:0p x∀>,2log2x x>,则命题p的否定为“00x∃>,002log2x x≤”,故选:B.3.已知函数()xf x a=(0a>且1a≠)在(0,2)内的值域是2(1,)a,则函数()y f x=的函数大致是()A .B.C .D .【正确答案】B【详解】试题分析:由题意可知21a>,所以1a>,所以()f x是指数型的增函数.故选B.指数函数的图象与性质.4.若正实数a ,b ,c 满足1b a c c c <<<,则a ,b 的大小关系为()A .01a b <<<B .01b a <<<C .1b a <<D .1a b<<【正确答案】A【分析】根据已知可得01c <<,根据指数函数的单调性,即可得出答案.【详解】因为c 是正实数,且1c <,所以01c <<,则函数x y c =单调递减.由1b a c c c <<<,可得10b a c c c c <<<,所以01a b <<<.故选:A.5.若0a >且1a ≠,函数()(),140.52,1x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩,满足对任意的实数12x x ≠都有11222112()()()()x f x x f x x f x x f x +>+成立,则实数a 的取值范围是()A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)【正确答案】D【分析】由已知可得函数()f x 在R 上单调递增,根据分段函数的单调性列出不等式组,即可求得实数a 的取值范围.【详解】解:11222112()()()()x f x x f x x f x x f x +>+ ,∴对任意的实数12x x ≠都有1212()[()()]0x x f x f x -->成立,可知函数()f x 在R 上单调递增,1140.50(40.5)12a a a a >⎧⎪∴->⎨⎪≥-⨯+⎩,解得[4,8)a ∈,故选:D.6.已知1:12p x ≥-,:2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为()A .(],4-∞B .[]1,4C .(]1,4D .()1,4【正确答案】C【分析】求出p 、q 中的不等式,根据p 是q 的充分不必要条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】解不等式112x ≥-,即131022x x x --=≤--,解得23x <≤,解不等式2x a -<,即22x a -<-<,解得22a x a -<<+,由于p 是q 的充分不必要条件,则(]2,3()2,2a a -+,所以2223a a -≤⎧⎨+>⎩,解得14a <≤.因此,实数a 的取值范围是(]1,4.故选:C.本题考查利用充分不必要条件求参数,同时也考查了分式不等式和绝对值不等式的求解,考查计算能力,属于中等题.7.已知函数π()cos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,且当π3x =时,函数()f x 取最小值,若函数()f x 在[,0]a 上单调递减,则a 的最小值是()A .π6-B .5π6-C .2π3-D .π3-【正确答案】A【分析】根据最小正周期求出2ω=,根据当π3x =时,函数取最小值,求出π3ϕ=,从而π()cos 23f x x ⎛⎫=+ ⎪⎝⎭,由[,0]x a ∈得到22,33πππ3x a ⎡⎤+∈+⎢⎥⎣⎦,由单调性列出不等式,求出06π,a ⎡⎫∈-⎪⎢⎣⎭,得到答案.【详解】因为0ω>,所以2π2π2πT ω===,故13πcos(2)ϕ⨯+=-,所以2ππ2π,Z 3k k ϕ+=+∈,解得:ππ,Z k k ϕ=+∈23,因为π||2ϕ<,所以只有当0k =时,π3ϕ=满足要求,故π()cos 23f x x ⎛⎫=+ ⎪⎝⎭,因为[,0]x a ∈,所以22,33πππ3x a ⎡⎤+∈+⎢⎥⎣⎦,故π2,33π0a ⎡⎫∈⎪⎢⎣⎭+,解得:06π,a ⎡⎫∈-⎪⎢⎣⎭,故a 的最小值为π6-.故选:A8.质数也叫素数,17世纪法国数学家马林·梅森曾对“21p -”(p 是素数)型素数作过较为系统而深入的研究,因此数学界将“21p -”(p 是素数)形式的素数称为梅森素数.已知第6个梅森素数为1721M =-,第14个梅森素数为60721N =-,则下列各数中与NM最接近的数为()(参考数据:lg 20.3010≈)A .18010B .17710C .14110D .14610【正确答案】B【分析】根据题意,得到6076075901717212==2212N M -≈-,再结合对数的运算公式,即可求解.【详解】由第6个梅森素数为1721M =-,第14个梅森素数为60721N =-,,可得6076075901717212=212N M -≈-,令5902k =,两边同时取对数,则590lg 2lg k =,可得lg 590lg 2k =,又lg 20.3010≈,所以lg 5900.3010177.59k ≈⨯=,17710k ≈与NM最接近的数为17710.故选:B.二、多选题9.下列结论正确的是()A .若,a b 为正实数,a b ¹,则3223+a b a b b a +>B .若,,a b m 为正实数,a b <,则a m ab m b+<+C .若,a b R ∈,则“0a b >>”是“11a b <”的充分不必要条件D .当0,2x π⎛⎫∈ ⎪⎝⎭时,2sin sin x x +的最小值是【正确答案】AC利用作差法可考查选项A 是否正确;利用作差法结合不等式的性质可考查选项B 是否正确;利用不等式的性质可考查选项C 是否正确;利用均值不等式的结论可考查选项D 是否正确.【详解】对于A ,若a ,b 为正实数,a b ¹,()()()233220a b a b ab a b a b +-+=-+>,3322a b a b ab ∴+>+,故A 正确;对于B ,若a ,b ,m 为正实数,a b <,()()0m b a a m a b m b b b m -+-=>++,则a m ab m b+>+,故B 错误;对于C ,若11a b <,则110b aa b ab--=<,不能推出0a b >>,而当0a b >>时,有0>0b a ab -<,,所以0b aab -<成立,即11a b<,所以“0a b >>”是“11a b<”的充分不必要条件,故C 正确;对于D ,当0,2x π⎛⎫∈ ⎪⎝⎭时,0sin 1x <<,2sin sin x x +≥=,当且仅当()sin 0,1x =时取等号,故D 不正确.故选:AC.易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10.已知关于x 的方程23xm -=有两个不等实根,则实数m 的取值可能是()A .2B .3C .4D .5【正确答案】CD【分析】化简方程得23x m =±,利用指数函数的值域,列式求解得出答案.【详解】23xm -= ,23x m ∴-=±,23x m -= 有两个不等实根,即23x m =±有两个不等实根,则3030m m +>⎧⎨->⎩,解得3m >,显然选项A ,B 不满足,选项C ,D 满足.故选:CD.11.定义在R 上的函数()f x 满足()(2)f x f x =+,当[3,5]x ∈时,()2|4|f x x =--,则下列说法正确的是()A .ππsin cos 66f f⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭B .(sin1)(cos1)f f <C .2π2πcos sin 33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D .(cos 2)(sin 2)f f >【正确答案】BD【分析】根据函数的周期性可得()f x 在[]1,1-上的解析式以及函数在[0,1]上的单调性.比较自变量的大小,即可根据单调性判断A 、B 项;又易知()f x 在[1,1]-上为偶函数,则根据()()f x f x =,可将[1,0]-上的自变量转化为[0,1]上,进而根据单调性,即可判断C 、D 项.【详解】当[1,1]x ∈-时,则[45]3,x +∈,于是()(2)(4)2||f x f x f x x =+=+=-,当01x ≤≤时,()2f x x =-,所以函数()f x 在[0,1]上单调递减;当10x -≤<时,()2f x x =+,所以函数()f x 在[1,0]-上是增函数.()f x 的定义域[1,1]-关于原点对称,且此时()()22-=--=-=f x x x f x则()f x 在[1,1]-上为偶函数.对于A 项,因为ππ0sincos 166<<<,所以ππsin cos 66f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B 项,因为0cos1sin11<<<,所以(cos1)(sin1)f f >,故B 正确;对于C项,因为2π12π0cossin 1323<==<,所以2π2πcossin 33f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,所以2π2πcos sin 33f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 错误;因为ππ0|cos 2|cos sin |sin 2|144<<=<<,所以(|cos2|)(|sin 2|)f f >,所以(cos 2)(sin 2)f f >,故D 正确.故选:BD.12.已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<≤⎪=⎨>⎪-⎩,下列说法中错误的是()A .当121122x x -<<<时,恒有()()12f x f x >B .若当(0,]x m ∈时,()f x 的最小值为34,则m 的取值范围为17,26⎡⎤⎢⎥⎣⎦C .存在实数k ,使函数()()F x f x kx =-有5个不相等的零点D .若关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和为0,则34a =-【正确答案】ACD【分析】根据奇函数的定义确定()f x 在(1,0)-上单调性与性质,然后由函数值大小可判断A ,由函数解析式分段求函数值的范围后可判断B ,由直线y kx =与函数()f x 的图象交点个数判断C ,求出3()4f x =的根是17,26,然后确定a 值使()f x a =根的和为53-即可判断D .【详解】选项A ,()f x 是奇函数,10x -≤<时,22()()[()()1]1f x f x x x x x =--=----+=---213()24x =-+-,在1(,0)2-上递减,且()0f x <,()f x 是奇函数,则(0)0f =,01x <≤时,2213()1()24f x x x x =-+=-+,在1(0,)2上递减,但()0f x >,因此()f x 在11(,)22-上不是增函数,A 错;选项B ,当01x <≤时,2213()1()24f x x x x =-+=-+,13()24f =,因此12m ≥,当1m >时,1()21f x x =-是减函数,由13214x =-得76x =,因此76m ≤,综上有1726m ≤≤,B 正确;选项C ,易知0x =是()F x 的一个零点,由于(1)1f =,y kx =过点(1,1)时,1k =,此时由21y xy x x =⎧⎨=-+⎩得21x x x -+=,2(1)0x -=,121x x ==,即直线y x =与21y x x =-+在点(1,1)处相切,因此1k >时,直线y kx =与21(01)y x x x =-+<<的图象只有一交点,在01k <<时,直线y kx =与1(1)21y x x =>-只有一个交点,从而0k >时,直线y kx =与()F x 的图象有三个交点,而0x >时,()0f x >,因此0k ≤,直线y kx =与()F x 的图象无交点,所以直线y kx =与()F x 的图象不可能是5个交点,即函数()()F x f x kx =-不可能有5个不相等的零点,C 错;选项D ,由上讨论知3()4f x =的解为12x =和76x =,因此若关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和为0,由()f x 是奇函数知若34a =-,则()f x a =的解是12x =-和76x =-,符合题意,但513(537213f ==⨯-(由此讨论知3()7f x =只有一解),即53()37f -=-,即37a =-时,关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和也为0,D 错.故选:ACD .方法点睛:解决分段函数的零点与交点问题,把零点问题转化为直线与函数图象交点问题进行处理,从而利用函数的性质确定出函数解析式,作出函数图象,观察出结论并找到解题思路.三、填空题13.已知弧长为πcm 3的弧所对圆周角为6π,则这条弧所在圆的半径为____________cm .【正确答案】1【分析】由弧度制公式lrα=求解即可得出答案.【详解】已知弧长为πcm 3的弧所对圆周角为6π,则所对的圆心角为π3,lrα=,313l r ππα∴===,故1.14.已知函数()()22,1log 1,1x ax f x x x ⎧+≤⎪=⎨->⎪⎩,若()02f f ⎡⎤=⎣⎦,则实数a 的值为_________.先求()03f =,再代入求()3f ,求实数a 的值.【详解】()00223f =+=,()()03log 22a f f f ⎡⎤===⎣⎦,即22a =,又0a >,且1a ≠,所以a =15.若函数()log a f x x =(0a >且1a ≠)在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为m,函数()(32g x m =+[0,)+∞上是增函数,则a m -的值是____________.【正确答案】3【分析】根据对数函数的单调性,分类讨论,再结合已知进行求解得出a 和m 的值,最后根据()g x 的单调性检验即可得到.【详解】当1a >时,函数()log a f x x =是正实数集上的增函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有(4)log 42a f ==,解得2a =,所以21log 12m ==-,此时()g x =[)0,∞+上是增函数,符合题意,因此()213a m -=--=;当01a <<时,函数()log a f x x =是正实数集上的减函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有11log 222a f ⎛⎫== ⎪⎝⎭,a =44m ==-,此时()g x =-在[)0,∞+上是减函数,不符合题意.综上所述,2a =,1m =-,3a m -=.故3.16.若函数()()()sin cos 0f x x x ϕϕ<π=++<的最大值为2,则常数ϕ的值为_______.【正确答案】2π根据两角和的正弦公式以及辅助角公式即可求得()()f x x θ=+,可得2=,即可解出.【详解】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,因为0ϕπ<<,所以2ϕπ=.故答案为.2π四、解答题17.在①22{|1}1x A x x -=<+,②{||1|2}A x x =-<,③23{|log }1xA x y x -==+这三个条件中任选一个,补充在下面的横线上,并回答下列问题.设全集U =R ,______,22{|0}.B x x x a a =++-<(1)若2a =,求()()U UC A C B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.【正确答案】(1)1{}1|x x x ≤-≥或(2)(][),34,-∞-⋃+∞【分析】(1)根据除法不等式,绝对值不等式,对数函数的定义域即可分别求出三种情形下的集合A ;(2)对集合B 中不等式进行因式分解,再根据充分必要条件和集合包含关系即可求解.【详解】(1)若选①:222213{|1}{|0}{|0}{|13}1111x x x x A x x x x x x x x x --+-=<=-<=<=-<<++++,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.若选②:{|12}{|212}{|13}A x x x x x x =-<=-<-<=-<<()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.若选③:()(){}233{|log }031011x x A x y x x x x x x ⎧⎫--====-+=⎨⎬++⎩⎭{|13}x x -<<,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.(2)由(1)知{|13}A x x =-<<,()22{|0}{|()10}B x x x a a x x a x a ⎡⎤=++-<=++-<⎣⎦,因为“x A ∈”是“x B ∈”的充分不必要条件,(i )若(1)a a -<--,即12a >,此时{|(1)}B x a x a =-<<--,所以1,3(1)aa -≥-⎧⎨≤--⎩等号不同时取得,解得4a ≥.故4a ≥.(ii )若(1)a a -=--,则B =∅,不合题意舍去;(iii )若(1)a a ->--,即12a <,此时{|(1)}B x a x a =--<<-,1(1),3a a -≥--⎧⎨≤-⎩等号不同时取得,解得3a ≤-.综上所述,a 的取值范围是(][),34,-∞-⋃+∞.18.(1)已知sin 2cos 0αα-=,求22sin cos sin 3sin cos 2cos αααααα--的值;(2)已知4sin()5απ+=,且sin cos 0αα<,求()()()2sin 3tan 34cos παπααπ----的值.【正确答案】(1)12-;(2)73.【分析】(1)先求出tan 2α=,再进行弦化切代入即可求解;(2)先求出4sin 5α=-,3cos 5α=,得到4tan 3α=-,再进行诱导公式和弦化切变换,代入即可求解.【详解】(1)由sin 2cos 0αα-=知tan 2α=∴原式=2tan 21tan 3tan 24622ααα==-----(2) 4sin()5απ+=∴4sin 05α=-<又sin cos 0αα<∴cos 0α>∴3cos 5α==∴4tan 3α=-原式=()()2sin 3tan 4cos απαπα---=2sin 3tan 4cos ααα+-=44237533345⎛⎫⎛⎫⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭=-⨯19.已知函数()323log 1x f x x -=-.(1)求函数()f x 的解析式及定义域;(2)求函数()f x 在()(),00,2x ∈-∞⋃时的值域.【正确答案】(1)()()12031xf x x =-≠-,()f x 的定义域为()(),00,∞-+∞U (2)()15,3,8⎛⎫-∞⋃+∞ ⎪⎝⎭【分析】(1)利用换元法求得函数的解析式,根据函数定义域的求法,求得函数的定义域.(2)结合3x 的取值范围来求得()f x 在()(),00,2x ∈-∞⋃时的值域.【详解】(1)对于3log x ,需0x >;对231x x --,需1x ≠;则()()3log ,00,x ∈-∞⋃+∞,令3log t x =,则0t ≠,3t x =,()()231123312313131tt t t t f t ⋅--⋅-===----,所以()()12031x f x x =-≠-,即()f x 的定义域为()(),00,∞-+∞U .(2)当0x <时,11031,1310,1,13131x xxx <<-<-<<-->--,12331x ->-.当02x <<时,1111139,0318,,318318x xx x <<<-<>-<---,1115223188x-<-=-.所以()f x 在()(),00,2x ∈-∞⋃时的值域为()15,3,8⎛⎫-∞⋃+∞ ⎪⎝⎭.20.已知函数()24f x x π⎛⎫=- ⎪⎝⎭,x R ∈.(1)求函数()f x 的最小正周期和单调递减区间;(2)求函数()f x 在区间,82ππ⎡⎤-⎢⎣⎦上的最小值和最大值,并求出取得最值时x 的值.【正确答案】(1)最小正周期为π,单调减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;(2)max ()f x =,此时8x π=,min ()1f x =-,此时2x π=.【分析】(1)直接利用周期公式计算周期,再利用整体代入法求余弦型函数的单调减区间即可;(2)先求出24x π-的取值范围,再利用余弦函数的性质求最值及取最值的条件即可.【详解】解:(1)()f x 的最小正周期22||2T πππω===.令2224k x k ππππ≤-≤+,解得588k x k ππππ+≤≤+,Z k ∈,此时时,()f x 单调递减,()f x ∴的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;(2),82x ππ⎡⎤∈-⎢⎥⎣⎦,则32,424x πππ⎡⎤-∈-⎢⎥⎣⎦,故cos 2,142x π⎡⎤⎛⎫-∈⎢⎥ ⎪⎝⎭⎣⎦,()24f x x π⎛⎫⎡=-∈- ⎪⎣⎝⎭,max ()f x ∴=cos 214x π⎛⎫-= ⎪⎝⎭,即204x π-=,即8x π=;min ()1f x =-,此时cos 242x π⎛⎫-=- ⎪⎝⎭,即3244x ππ-=,即2x π=.方法点睛:解决三角函数()cos y A x ωϕ=+的图象性质,通常利用余弦函数的图象性质,采用整体代入法进行求解,或者带入验证.21.2022年冬天新冠疫情卷土重来,我国大量城市和地区遭受了奥密克戎新冠病毒的袭击,为了控制疫情,某单位购入了一种新型的空气消毒剂用于环境消毒,已知在一定范围内,每喷洒1个单位的消毒剂,空气中释放的浓度(y 单位:毫克/立方米)随着时间(x 单位:小时)变化的关系如下:当04x 时,1618y x =--;当410x <时,15.2y x =-若多次喷洒,则某一时刻空气中的消毒剂浓度为每次投放的消毒剂在相应时刻所释放的浓度之和.由实验知,当空气中消毒剂的浓度不低于4(毫克/立方米)时,它才能起到杀灭空气中的病毒的作用.(1)若一次喷洒4个单位的消毒剂,则有效杀灭时间可达几小时?(2)若第一次喷洒2个单位的消毒剂,6小时后再喷洒(14)a a 个单位的消毒剂,要使接下来的4小时中能够持续有效消毒,试求a 的最小值.(精确到0.1取1.4)【正确答案】(1)8(2)1.6【分析】(1)根据喷洒4个单位的净化剂后浓度为()644,048202,410x f x x x x ⎧-≤≤⎪=-⎨⎪-<≤⎩,由()4f x ≥求解;(2)得到从第一次喷洒起,经()610x x ≤≤小时后,浓度为()()116251286g x x a x ⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪--⎝⎭⎝⎭,化简利用基本不等式求解.【详解】(1)解:因为一次喷洒4个单位的净化剂,所以其浓度为()644,0448202,410x f x y x x x ⎧-≤≤⎪==-⎨⎪-<≤⎩,当04x ≤≤时,64448x-≥-,解得0x ≥,此时04x ≤≤,当410x <≤时,2024x -≥,解得8x ≤,此时48x <≤,综上08x ≤≤,所以若一次喷洒4个单位的消毒剂,则有效杀灭时间可达8小时;(2)设从第一次喷洒起,经()610x x ≤≤小时后,其浓度为()()116251286g x x a x ⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪--⎝⎭⎝⎭,1616101441414a ax a x a x x=-+-=-+----,因为[][]144,8,1,4x a -∈∈,所以161444414a x a a a x -+--≥--=---,当且仅当161414ax x-=-,即14x =-时,等号成立;所以其最小值为4a --,由44a -≥,解得244a -≤,所以a 的最小值为24 1.6-≈.22.我们知道,指数函数()xf x a =(0a >,且1a ≠)与对数函数()log a g x x =(0a >,且1a ≠)互为反函数.已知函数()2xf x =,其反函数为()g x .(1)求函数()()()223F x g x tg x =-+⎡⎤⎣⎦,[]2,8x ∈的最小值;(2)对于函数()x ϕ,若定义域内存在实数0x ,满足()()00x x ϕϕ-=-,则称()x ϕ为“L 函数”.已知函数()()()223,1,3,1f x mf x x h x x ⎧⎡⎤--≥-⎪⎣⎦=⎨-<-⎪⎩为其定义域上的“L 函数”,求实数m 的取值范围.【正确答案】(1)答案见解析(2)[)1,∞-+【分析】(1)利用换元法令2log ,[1,3]p x p =∈,可得所求为关于p 的二次函数,根据二次函数的性质,分析讨论,即可得答案.(2)根据题意,分别讨论在[1,1]-、(,1)-∞-和(1,)+∞上存在实数0x ,满足题意,根据所给方程,代入计算,结合函数单调性,分析即可得答案.【详解】(1)由题意得2()log g x x=所以()()()()222223log 2log 3F x g x tg x xt x =-+=-+⎡⎤⎣⎦,[]2,8x ∈,令2log ,[1,3]p x p =∈,设2()23,[1,3]M p p tp p =-+∈则()M p 为开口向上,对称轴为p t =的抛物线,当1t ≤时,()M p 在[1,3]上为单调递增函数,所以()M p 的最小值为(1)42M t =-;当13t <<时,()M p 在(1,)t 上单调递减,在(,3)t 上单调递增,所以()M p 的最小值为2()3M t t =-;当3t ≥时,()M p 在[1,3]上为单调递减函数,所以()M p 的最小值为(3)126M t =-;综上,当1t ≤时,()F x 的最小值为42t -,当13t <<时,()F x 的最小值为23t -,当3t ≥时,()F x 的最小值为126t-(2)①设在[1,1]-上存在0x ,满足()()00x x ϕϕ-=-,则0000114234230x x x x m m +--+-⋅-+-⋅-=,令0022x x t -=+,则2t ≥=,当且仅当00x =时取等号,又0[1,1]x ∈-,所以115222t -≤+=,即52,2t ⎡⎤∈⎢⎥⎣⎦,所以00001124234232260x x x x m m t mt +--+-⋅-+-⋅-=---=,所以28471,2220t t m t t -⎡⎤==---⎢⎥⎣⎦所以71,20m ⎡⎤∈--⎢⎥⎣⎦②设在(,1)-∞-存在0x ,满足()()00x x ϕϕ-=-,则00134230x x m --+-+-⋅-=,即001232x x m --=-⋅有解,因为1232x x y --=-⋅在(,1)-∞-上单调递减,所以12m >-,同理当在(1,)+∞存在0x ,满足()()00x x ϕϕ-=-时,解得12m >-,所以实数m 的取值范围[)1,∞-+解题的关键是理解新定义,并根据所给定义,代入计算,结合函数单调性及函数存在性思想,进行求解,属难题。

2023-2024学年河南省洛阳市宜阳第一高级中学清北园研学班高一(上)期末数学试卷+答案解析

2023-2024学年河南省洛阳市宜阳第一高级中学清北园研学班高一(上)期末数学试卷+答案解析

2023-2024学年河南省洛阳市宜阳第一高级中学清北园研学班高一(上)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.可化为()A. B.C. D.2.已知,,,则的值是()A.B.C.24D.3.已知函数的图象恒过定点P ,则点P 的坐标是()A.B.C.D.4.已知函数,则()A.B. C.0D.5.下列选项中,在定义域内既是奇函数又是增函数的是()A. B.C.D.6.已知,则a ,b ,c 的大小关系是()A.B.C.D.7.若正数x ,y 满足,则的最小值为()A. B. C.12D.168.已知和分别是定义在R 上的奇函数和偶函数,且,则()A.B.C.1D.2二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.下列命题是真命题的是()A.若,则B.若,且,则C.若,则D.若,,则10.函数,对于任意,,当时,都有成立的必要不充分条件是()A. B. C. D.11.下列命题中正确的是()A.“”是“”的充分不必要条件B.方程有一正一负根充要条件是“”C.“幂函数为反比例函数”的充要条件是“”D.“函数在区间上不单调”的一个必要不充分条件是“”12.下列命题正确的是()A.的定义域为,则的定义域为B.函数的值域为C.函数的值域为D.函数的单调增区间为三、填空题:本题共4小题,每小题5分,共20分。

13.已知集合,,则______.14.若函数的单调递增区间为且函数的单调递减区间为则实数______.15.若a,,且,则ab的最小值是______.16.已知定义在R上的奇函数与偶函数满足,若恒成立,则实数m的取值范围是______.四、解答题:本题共6小题,共70分。

解答应写出文字说明,证明过程或演算步骤。

17.本小题10分计算:;若,求下列式子的值:①;②18.本小题12分已知函数是奇函数.求的定义域及实数a的值;用单调性定义判定的单调性.19.本小题12分已知指数函数在其定义域内单调递增.求函数的解析式;设函数,当时,求函数的值域.20.本小题12分已知函数判断函数的奇偶性,并说明理由;解不等式21.本小题12分已知函数是定义在R的偶函数,当时,请画出函数图像,并求的解析式;,对,用表示,中的最大者,记为,写出函数的解析式不需要写解答过程,并求的最小值.22.本小题12分2023年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本5000万元,每生产百辆,需另投入成本万元,且,已知每辆车售价15万元,全年内生产的所有车辆都能售完.求2023年的利润万元关于年产量百辆的函数关系式;年产量为多少百辆时,企业所获利润最大?并求出最大利润.答案和解析1.【答案】A【解析】解:故选:将根式化为有理数指数幂的形式,即可得答案.本题主要考查了有理数指数幂的运算,属于基础题.2.【答案】B【解析】解:因为,,,,所以,,所以故选:根据指数幂的运算求出a、b的值,再代入计算可得.本题考查指数幂的运算,属于基础题.3.【答案】A【解析】【分析】本题主要考查指数函数的单调性和特殊点,属于基础题.根据函数的图象过定点,可得函数的图象经过的定点P的坐标.【解答】解:由于函数的图象过定点,当时,,故函数的图象恒过定点,故选:4.【答案】A【解析】解:函数,所以故选:利用给定的函数关系,依次代入计算即得.本题主要考查函数值的求解,属于基础题.5.【答案】D【解析】解:由基本初等函数的性质可知,在R上单调递减,A错误;在,上单调递增,但在定义域内不是增函数,B错误;,所以不是奇函数,C错误;由,可知在定义域内是奇函数,又,在上是增函数,在上单调递增,且在R上连续不断,故在定义域内既是奇函数又是增函数,D正确.故选:由奇函数和增函数的性质一一分析即可.本题考查函数奇偶性的性质与判断,属于基础题.6.【答案】B【解析】解:根据题意,设,则在单调递增,所以,设,则在单调递增,所以,因为,,所以,综合可得:故选:设,由指数函数的性质可得,再设,利用中间值“1”比较可得,综合可得答案.本题考查函数单调性的性质和应用,涉及幂函数、指数函数的性质,属于基础题.7.【答案】D【解析】解:由已知可得,,,两边同除xy得,所以当且仅当时等号成立.故选:利用乘“1”法即可得到答案.本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.【答案】D【解析】解:因为,令,可得,又因为和分别是定义在R上的奇函数和偶函数,可得,所以故选:令,可得,结合奇偶性的定义分析求解.本题主要考查了函数的奇偶性在函数求值中的应用,属于基础题.9.【答案】CD【解析】解:当,时,A,B显然错误;若,则,则,C正确;若,,则,D正确.故选:举出反例检验选项A,B,结合比较法检验选项C,结合不等式性质检验选项本题主要考查了不等式的性质的应用,属于基础题.10.【答案】AD【解析】解:由题意可得函数在R上单调递减,可得解得,所以不等式成立的充要条件为,则它的必要不充分为AD,故选:由题意可得不等式成立的充要条件,进而选出必要不充分条件.本题考查充要条件,必要不充分条件的求法,属于基础题.11.【答案】BCD【解析】解:对于A,由可得,故充分性成立,由可得,故必要性成立,所以“”是“”的充要条件,故A错误.对于B,方程的有一正一负根,设为,,则,解得,满足充分性,当时,,,则方程有一正一负根,满足必要性,所以方程有一正一负根充要条件是“”,故B正确.对于C,若幂函数为反比例函数,则,解得,满足充分性,当时,函数为幂函数,也为反比例函数,满足必要性,所以“幂函数为反比例函数”的充要条件是“”,故C正确.对于D:若函数在区间上不单调,则,所以“函数在区间上不单调”的一个必要不充分条件是“”,故D正确.故选:由题意,根据集合间的关系可判断A;由一元二次方程根的分布结合韦达定理判断B;根据幂函数的性质及反比例函数的定义即可判断C;根据二次函数的单调性即可判断本题主要考查充分条件、必要条件、充要条件的定义,命题真假的判断,属于基础题.12.【答案】AB【解析】【分析】本题以命题的真假判断为载体,考查了函数性质的综合应用,主要考查了函数定义域、值域的求解,函数单调性的判断,考查了逻辑推理能力与化简运算能力,属于中档题.利用复合函数的定义域判断选项A,利用换元法以及二次函数的性质判断选项B,由基本不等式成立的条件,即可判断选项C,利用函数单调区间的表示形式,即可判断选项【解答】解:对于A,函数的定义域为,所以,解得,所以的定义域为,故选项A正确;对于B,函数,令,则,所以,则函数的值域为故选项B正确;对于C,函数,但是等号取不到,故选项C错误;对于D,函数的定义域为,所以函数的单调递增区间为,,故选项D错误.故选:13.【答案】【解析】解:由,即,解得,所以,又,所以,所以故答案为:首先解一元二次不等式求出集合A,根据二次函数的性质求出集合B,最后根据交集的定义计算可得.本题主要考查了二次不等式的求解,还考查了集合交集运算,属于基础题.14.【答案】1【解析】解:由函数的单调递增区间为得令,函数是定义域内的减函数,要使函数的单调递减区间为则的对称轴方程,即故答案为:由函数的单调递增区间为求解a值,再由函数的单调递减区间为列式求得m值.本题考查复合函数的单调性及其求法,考查运算求解能力,是中档题.15.【答案】9【解析】解:由于a,,则,即,于是,,当且仅当取等号,故ab的最小值是故答案为:由基本不等式,根据条件可得关于ab的不等式,解之即可.本题考查基本不等式求最值的基本应用,属于基础题.16.【答案】【解析】解:因为是奇函数,所以,是偶函数,所以因为,所以,所以,所以,所以,对恒成立,又因为恒成立,所以恒成立,令,则在上单调递增,所以所以,根据基本不等式解,得,当且仅当时等号成立,所以,所以,所以实数m的取值范围是故答案为:先由函数和的奇偶性得出函数和的解析式,代入将问题转化为对恒成立,令,由单调性得出t的范围,再由的单调性求得的最大值,根据恒等式的思想可求得实数m的取值范围.本题考查了函数的奇偶性,利用不等式恒成立求参数的取值范围,考查了转化思想,属中档题.17.【答案】解:;若,①,故;②,又,故【解析】由已知结合指数幂的运算性质即可求解;①先对所求式子进行平方,即可求解;②先对所求式子进行平方,结合即可求解.本题主要考查了指数运算性质的应用,属于基础题.18.【答案】解:由,得,所以的定义域为,因为是奇函数,则,即,即,所以,则,所以;,,,,由,得,,,则,即,所以在上单调递减,同理在上单调递减.【解析】根据分母不等于零即可求出函数的定义域,根据函数为奇函数可得,进而可求出a;利用作差法判断即可.本题考查函数的奇偶性相关知识,属于中档题.19.【答案】解:是指数函数,,解得或,又在其定义域内单调递增,所以,;,,,令,,,,,,的值域为【解析】根据指数函数定义和单调性可解;令,利用二次函数的单调性求解可得.本题主要考查函数的性质,属于基础题.20.【答案】解:的定义域为R,且,所以为奇函数;由于为单调递增函数,故均为单调递减函数,因此为定义域内的单调递减函数,因此在R上是奇函数且是减函数,由不等式得;所以,即得或【解析】根据函数奇偶性的定义即可求解,根据函数的单调性以及奇偶性即可求解.本题主要考查了函数奇偶性及单调性的判断,还考查了单调性及奇偶性在不等式求解中的应用,属于中档题.21.【答案】解:根据函数的奇偶性,结合题意,画出函数的图像,如图所示:设,则,则,又函数是定义在R的偶函数,所以,则;函数的图像,如图所示.因为,当时,令,解得,则当时,,当时,令,解得,则当时,,所以,画出函数的图像,如图所示,结合图像可知,当时,【解析】本题考查了函数的图像与性质应用问题,是基础题.根据题意,由函数的奇偶性可得时,解析式,然后画出函数图像即可;根据题意,由的定义可得其函数解析式,画出其函数图像,结合图像即可得到其最小值.22.【答案】解:由题意知,利润收入-总成本,所以利润;所以2023年的利润万元关于年产量百辆的函数关系为:;当时,,所以当时,年利润的最大值为;当号,,当且仅当,即时取得等号;综上,当产量为百辆时,年利润取得最大,最大利润为4400万元.【解析】根据年利润=销售额-投入成本-固定成本,分和写出与x的分段函数关系式;分别求出时和时的最大值,比较即可得出答案.本题考查了函数与基本不等式的应用问题,也考查了转化思想与运算求解能力,是中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【典型题】高一数学上期末试卷(含答案)一、选择题1.已知a =21.3,b =40.7,c =log 38,则a ,b ,c 的大小关系为( ) A .a c b <<B .b c a <<C .c a b <<D .c b a <<2.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( ) A .1,110⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞3.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 4.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-155.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1) A .1B .3C .5D .76.函数()2sin f x x x =的图象大致为( )A .B .C .D .7.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦8.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .49.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln||y x = B .3y x = C .||2x y =D .cos y x =10.已知3log 2a =,0.12b =,sin 789c =,则a ,b ,c 的大小关系是 A .a b c << B .a c b <<C .c a b <<D .b c a << 11.下列函数中,既是偶函数又存在零点的是( )A .B .C .D .12.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞二、填空题13.已知1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x +++≤的解集为______. 14.已知()y f x =是定义在R 上的奇函数,且当0x 时,11()42x x f x =-+,则此函数的值域为__________.15.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 16.已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________. 17.已知函数()f x 满足:()()1f x f x +=-,当11x -<≤时,()x f x e =,则92f ⎛⎫= ⎪⎝⎭________. 18.若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.19.已知二次函数()f x ,对任意的x ∈R ,恒有()()244f x f x x +-=-+成立,且()00f =.设函数()()()g x f x m m =+∈R .若函数()g x 的零点都是函数()()()h x f f x m =+的零点,则()h x 的最大零点为________.20.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.三、解答题21.科研人员在对某物质的繁殖情况进行调查时发现,1月、2月、3月该物质的数量分别为3、5、9个单位.为了预测以后各月该物质的数量,甲选择了模型2y ax bx c =++,乙选择了模型xy pq r =+,其中y 为该物质的数量,x 为月份数,a ,b ,c ,p ,q ,r 为常数. (1)若5月份检测到该物质有32个单位,你认为哪个模型较好,请说明理由. (2)对于乙选择的模型,试分别计算4月、7月和10月该物质的当月增长量,从计算结果中你对增长速度的体会是什么?22.某上市公司股票在30天内每股的交易价格P (元)关于时间t (天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q (万股)关于时间t(天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?23.攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y (y 值越大产品的性能越好)与这种新合金材料的含量x (单位:克)的关系为:当0≤x <7时,y 是x 的二次函数;当x ≥7时,1()3x m y -=.测得部分数据如表:(1)求y 关于x 的函数关系式y =f (x );(2)求该新合金材料的含量x 为何值时产品的性能达到最佳. 24.已知函数()()()()log 1log 301a a f x x x a =-++<<. (1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为4-,求a 的值.25.记关于的不等式的解集为,不等式的解集为.(1)若,求集合; (2)若且,求的取值范围.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁RB ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用指数函数2xy =与对数函数3log y x =的性质即可比较a ,b ,c 的大小. 【详解】1.30.7 1.4382242c log a b =<<===<,c a b ∴<<. 故选:C . 【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.2.C解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.3.C解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.4.A解析:A 【解析】 【分析】设()2f x ax bx c =++,可知1、3为方程()20f x x +=的两根,且0a <,利用韦达定理可将b 、c 用a 表示,再由方程()60f x a +=有两个相等的根,由0∆=求出实数a 的值. 【详解】由于不等式()2f x x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则0a <.由题意可知,1、3为关于x 的二次方程()220ax b x c +++=的两根,由韦达定理得2134b a +-=+=,133ca=⨯=,42b a ∴=--,3c a =, ()()2423f x ax a x a ∴=-++,由题意知,关于x 的二次方程()60f x a +=有两相等的根, 即关于x 的二次方程()24290ax a x a -++=有两相等的根,则()()()224236102220a a a a ∆=+-=+-=,0a <,解得15a =-,故选:A.【点睛】本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于中等题.5.C解析:C 【解析】 【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型0.70.2x ≤ 求解. 【详解】因为1小时后血液中酒精含量为(1-30%)mg /mL , x 小时后血液中酒精含量为(1-30%)x mg /mL 的,由题意知100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车, 所以()3002%1.x-<,0.70.2x <,两边取对数得,lg 0.7lg 0.2x < ,lg 0.214lg 0.73x >= ,所以至少经过5个小时才能驾驶汽车. 故选:C 【点睛】本题主要考查了指数不等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.6.C解析:C 【解析】根据函数()2sin f x x x =是奇函数,且函数过点[],0π,从而得出结论.【详解】由于函数()2sin f x x x =是奇函数,故它的图象关于原点轴对称,可以排除B 和D ;又函数过点(),0π,可以排除A ,所以只有C 符合. 故选:C . 【点睛】本题主要考查奇函数的图象和性质,正弦函数与x 轴的交点,属于基础题.7.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.8.B解析:B【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->, 即()()230f f <所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.9.A解析:A 【解析】本题考察函数的单调性与奇偶性 由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增 0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A10.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知34333log 2log 34a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以3(,1)2c ∈, 所以a c b <<,故选B.11.A解析:A 【解析】 由选项可知,项均不是偶函数,故排除,项是偶函数,但项与轴没有交点,即项的函数不存在零点,故选A. 考点:1.函数的奇偶性;2.函数零点的概念.12.C解析:C 【解析】 【分析】由()()2g x f x =-是奇函数,可得()f x 的图像关于()2,0-中心对称,再由已知可得函数()f x 的三个零点为-4,-2,0,画出()f x 的大致形状,数形结合得出答案. 【详解】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 【点睛】本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档题.二、填空题13.【解析】当时解得;当时恒成立解得:合并解集为故填:解析:3{|}2x x ≤【解析】当20x +≥时,()()()22525x x f x x x +++≤⇔++≤,解得 322x -≤≤;当20x +<时,()()()22525x x f x x x +++≤⇔-+≤,恒成立,解得:2x <-,合并解集为32x x ⎧⎫≤⎨⎬⎩⎭ ,故填:32x x ⎧⎫≤⎨⎬⎩⎭. 14.【解析】【分析】可求出时函数值的取值范围再由奇函数性质得出时的范围合并后可得值域【详解】设当时所以所以故当时因为是定义在上的奇函数所以当时故函数的值域是故答案为:【点睛】本题考查指数函数的性质考查函解析:11,44⎡⎤-⎢⎥⎣⎦【解析】 【分析】可求出0x ≥时函数值的取值范围,再由奇函数性质得出0x ≤时的范围,合并后可得值域. 【详解】设12x t =,当0x ≥时,21x ≥,所以01t <≤,221124y t t t ⎛⎫=-+=--+ ⎪⎝⎭, 所以104y ≤≤,故当0x ≥时,()10,4f x ⎡⎤∈⎢⎥⎣⎦. 因为()y f x =是定义在R 上的奇函数,所以当0x <时,()1,04f x ⎡⎫∈-⎪⎢⎣⎭,故函数()f x 的值域是11,44⎡⎤-⎢⎥⎣⎦.故答案为:11,44⎡⎤-⎢⎥⎣⎦. 【点睛】本题考查指数函数的性质,考查函数的奇偶性,求奇函数的值域,可只求出0x ≥时的函数值范围,再由对称性得出0x ≤时的范围,然后求并集即可.15.【解析】【分析】由函数是偶函数求出这样可求得集合得的取值范围从而可得结论【详解】∵函数是偶函数∴即平方后整理得∴∴由得∴故答案为:【点睛】本题考查函数的奇偶性考查解一元二次不等式解题关键是由函数的奇 解析:[2015,2019]【解析】 【分析】由函数()f x 是偶函数,求出a ,这样可求得集合D ,得b 的取值范围,从而可得结论. 【详解】∵函数()12bf x x a a -=-+-是偶函数,∴()()f x f x -=,即1122b bx a a x a a ---+-=--+-, x a x a -=+,平方后整理得0ax =,∴0a =,∴2{|20}{|20}D x x x x x =+≤=-≤≤, 由b D ∈,得20b -≤≤. ∴22015201532019a b ≤-+≤. 故答案为:[2015,2019]. 【点睛】本题考查函数的奇偶性,考查解一元二次不等式.解题关键是由函数的奇偶性求出参数a .16.【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的 解析:(,1]-∞【解析】 【分析】通过去掉绝对值符号,得到分段函数的解析式,求出值域,然后求解()ag x x x=+的值域,结合已知条件推出a 的范围即可. 【详解】由题意,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则()f x 与()g x 的值域的并集为R ,又()2,1112,112,1x f x x x x x x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩,结合分段函数的性质可得,()f x 的值域为[]22-,, 当0a ≥时,可知()ag x x x=+的值域为(),2,a ⎡-∞-+∞⎣,所以,此时有2≤,解得01a ≤≤, 当0a <时,()ag x x x=+的值域为R ,满足题意, 综上所述,实数a 的范围为(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数恒成立条件的转化,考查转化思想的应用,注意题意的理解是解题的关键,属于基础题.17.【解析】【分析】由已知条件得出是以2为周期的函数根据函数周期性化简再代入求值即可【详解】因为所以所以是以2为周期的函数因为当时所以故答案为:【点睛】本题主要考查函数的周期性和递推关系这类题目往往是奇【解析】 【分析】由已知条件,得出()f x 是以2为周期的函数,根据函数周期性,化简92f ⎛⎫⎪⎝⎭,再代入求值即可. 【详解】 因为()()1f x f x +=-,所以()()()21f x f x f x +=-+=,所以()f x 是以2为周期的函数, 因为当11x -<≤时,()xf x e = ,所以129114222f f f e ⎛⎫⎛⎫⎛⎫=+=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为. 【点睛】本题主要考查函数的周期性和递推关系,这类题目往往是奇偶性和周期性相结合一起运用.18.【解析】【分析】根据函数奇偶性的定义和性质建立方程求出a 的值再将1代入即可求解【详解】∵函数为奇函数∴f (﹣x )=﹣f (x )即f (﹣x )∴(2x ﹣1)(x+a )=(2x+1)(x ﹣a )即2x2+(2 解析:23【解析】 【分析】根据函数奇偶性的定义和性质建立方程求出a 的值,再将1代入即可求解 【详解】 ∵函数()()()21xf x x x a =+-为奇函数,∴f (﹣x )=﹣f (x ), 即f (﹣x )()()()()2121x xx x a x x a -==--+--+-,∴(2x ﹣1)(x +a )=(2x +1)(x ﹣a ), 即2x 2+(2a ﹣1)x ﹣a =2x 2﹣(2a ﹣1)x ﹣a ,∴2a ﹣1=0,解得a 12=.故2(1)3f = 故答案为23【点睛】本题主要考查函数奇偶性的定义和性质的应用,利用函数奇偶性的定义建立方程是解决本题的关键.19.4【解析】【分析】采用待定系数法可根据已知等式构造方程求得代入求得从而得到解析式进而得到;设为的零点得到由此构造关于的方程求得;分别在和两种情况下求得所有零点从而得到结果【详解】设解得:又设为的零点解析:4 【解析】 【分析】采用待定系数法可根据已知等式构造方程求得,a b ,代入()00f =求得c ,从而得到()f x 解析式,进而得到()(),g x h x ;设0x 为()g x 的零点,得到()()0000g x h x ⎧=⎪⎨=⎪⎩,由此构造关于m 的方程,求得m ;分别在0m =和3m =-两种情况下求得()h x 所有零点,从而得到结果. 【详解】设()2f x ax bx c =++()()()()2222244244f x f x a x b x c ax bx c ax a b x ∴+-=++++---=++=-+ 44424a a b =-⎧∴⎨+=⎩,解得:14a b =-⎧⎨=⎩又()00f = 0c ∴= ()24f x x x ∴=-+()24g x x x m ∴=-++,()()()222444h x x x x x m =--++-++设0x 为()g x 的零点,则()()0000g x h x ⎧=⎪⎨=⎪⎩,即()()2002220000404440x x m x x x x m ⎧-++=⎪⎨--++-++=⎪⎩即240m m m --+=,解得:0m =或3m =- ①当0m =时()()()()()()()22222244444442h x x x x x x x x x x x x =--++-+=-+-+=---()h x ∴的所有零点为0,2,4②当3m =-时()()()()()2222244434341h x x x x x x x x x =--++-+-=--+--+-()h x ∴的所有零点为1,3,2综上所述:()h x 的最大零点为4 故答案为:4 【点睛】本题考查函数零点的求解问题,涉及到待定系数法求解二次函数解析式、函数零点定义的应用等知识;解题关键是能够准确求解二次函数解析式;对于函数类型已知的函数解析式的求解,采用待定系数法,利用已知等量关系构造方程求得未知量.20.【解析】【分析】运用一次函数和指数函数的图象和性质可得值域讨论两种情况即可得到所求a 的范围【详解】函数函数当时时时递减可得的值域为可得解得;当时时时递增可得则的值域为成立恒成立综上可得故答案为:【点解析:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭【解析】 【分析】运用一次函数和指数函数的图象和性质,可得值域,讨论1a >,01a <<两种情况,即可得到所求a 的范围. 【详解】函数函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,当01a <<时,2x ≤时,()53f x x =-≥,2x >时,()22xf x a a =++递减,可得()22222a f x a a +<<++,()f x 的值域为[)3,+∞,可得223a +≥,解得112a ≤<; 当1a >时,2x ≤时,()53f x x =-≥,2x >时,()22xf x a a =++递增,可得()2225f x a a >++>,则()f x 的值域为[)3,+∞成立,1a >恒成立. 综上可得()1,11,2a ⎡⎫∈⋃+∞⎪⎢⎣⎭.故答案为:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭.【点睛】本题考查函数方程的转化思想和函数的值域的问题解法,注意运用数形结合和分类讨论的思想方法,考查推理和运算能力,属于中档题.三、解答题21.(1)乙模型更好,详见解析(2)4月增长量为8,7月增长量为64,10月增长量为512;越到后面当月增长量快速上升. 【解析】 【分析】(1)根据题意分别求两个模型的解析式,然后验证当5x =时的函数值,最接近32的模型好;(2)第n 月的增长量是()()1f n f n --,由增长量总结结论. 【详解】(1)对于甲模型有3425939a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得:113a b c =⎧⎪=-⎨⎪=⎩23y x x ∴=-+当5x =时,23y =.对于乙模型有23359pq r pq r pq r +=⎧⎪+=⎨⎪+=⎩,解得:121p q r =⎧⎪=⎨⎪=⎩,21x y ∴=+当5x =时,33y =.因此,乙模型更好;(2)4x =时,当月增长量为()()4321218+-+=,7x =时,当月增长量为()()76212164+-+=,10x =时,当月增长量为()()1092121512+-+=,从结果可以看出,越到后面当月增长量快速上升.(类似结论也给分) 【点睛】本题考查函数模型,意在考查对实际问题题型的分析能力和计算能力,属于基础题型,本题的关键是读懂题意.22.(1)40Q t =-+,030t <≤,t ∈N (2)在30天中的第15天,日交易额最大为125万元. 【解析】 【分析】(1)设出一次函数解析式,利用待定系数法求得一次函数解析式. (2)求得日交易额的分段函数解析式,结合二次函数的性质,求得最大值. 【详解】(1)设Q ct d =+,把所给两组数据()()4,36,10,30代入可求得1c =-,40d =. ∴40Q t =-+,030t <≤,t N ∈(3)首先日交易额y (万元)=日交易量Q (万股)⨯每股交易价格P (元)()()1240,020,51840,2030,10t t t t N y t t t t N ⎧⎛⎫+-+≤≤∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-+<≤∈ ⎪⎪⎝⎭⎩,∴()()22115125,020,516040,2030,10t t t N y t t t N ⎧--+≤≤∈⎪⎪=⎨⎪--<≤∈⎪⎩ 当020t ≤≤时,当15t =时,max 125y =万元 当20t 30<≤时,y 随x 的增大而减小故在30天中的第15天,日交易额最大为125万元. 【点睛】本小题主要考查待定系数法求函数解析式,考查分段函数的最值,考查二次函数的性质,属于中档题.23.(1)2884071()73x x x x y x -⎧-+-≤⎪=⎨≥⎪⎩,<,;(2)当4x =时产品的性能达到最佳【解析】 【分析】(1)二次函数可设解析式为2y ax bx c =++,代入已知数据可求得函数解析式;(2)分段函数分段求出最大值后比较可得. 【详解】(1)当0≤x <7时,y 是x 的二次函数,可设y =ax 2+bx +c (a ≠0), 由x =0,y =﹣4可得c =﹣4,由x =2,y =8,得4a +2b =12①, 由x =6,y =8,可得36a +6b =12②,联立①②解得a =﹣1,b =8, 即有y =﹣x 2+8x ﹣4; 当x ≥7时,1()3x my -=,由x =10,19y =,可得m =8,即有81()3x y -=;综上可得2884071()73x x x x y x -⎧-+-≤⎪=⎨≥⎪⎩,<,.(2)当0≤x <7时,y =﹣x 2+8x ﹣4=﹣(x ﹣4)2+12, 即有x =4时,取得最大值12; 当x ≥7时,81()3x y -=递减,可得y ≤3,当x =7时,取得最大值3.综上可得当x =4时产品的性能达到最佳. 【点睛】本题考查函数模型的应用,考查分段函数模型的实际应用.解题时要注意根据分段函数定义分段求解.24.(1)()3,1.-(2)13-±(3)22【解析】 【分析】(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来;(2)利用对数的运算性质对解析式进行化简,再由()=0f x ,即223=1x x --+,求此方程的根并验证是否在函数的定义域内;(3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值log 4a ,得log 44a =-利用对数的定义求出a 的值. 【详解】 (1)由已知得10,30,x x ->⎧⎨+>⎩, 解得31x -<<所以函数()f x 的定义域为()3,1.-(2)()()()()()()2log 1log 3log 13log 23a a a a f x x x x x x x =-++=-+=--+,令()=0f x ,得223=1x x --+,即222=0x x +-,解得13x =-±,∵13(-3,1)-±∈,∴函数()f x 的零点是13-±(3)由2知,()()()22log 23log 14a a f x x x x ⎡⎤=--+=-++⎣⎦,∵31x -<<,∴()20144x <-++≤.∵01a <<,∴()2log 14log 4a a x ⎡⎤-++≥⎣⎦,∴()min log 44a f x ==-, ∴14242a -==. 【点睛】本题是关于对数函数的综合题,考查了对数的真数大于零、函数零点的定义和对数型的复合函数求最值,注意应在函数的定义域内求解,灵活转化函数的形式是关键. 25.(1)(2)【解析】 试题分析:(1)当时,利用分式不等式的解法,求得;(2)根据一元二次不等式的求解方法,解得,由于,故.,则.试题解析:(1)当时,原不等式为:集合(2)易知:,;由,则,∴的取值范围为26.见解析【解析】【分析】根据题意,在数轴上表示出集合,A B,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。

相关文档
最新文档