2018年全国初中数学竞赛(浙江赛区)初赛试题(含答案)

合集下载

2018年全国初中数学联赛试题参考答案和评分标准(A卷和B卷)

2018年全国初中数学联赛试题参考答案和评分标准(A卷和B卷)
所以, ( x, y, z ) (2,2,0) 或 (2,0,2) 或 (0,2,2) 或 (0,0,0) ,故共有 4 个符合要求的整数组. 2018 年初中数学联赛试题参考答案及评分标准 第 2 页(共 10 页)
6.设 M A.60. 【答】B. 因为 M
1 1 1 1 1 ,则 的整数部分是 2018 2019 2020 2050 M
二、填空题: (本题满分 28 分,每小题 7 分) CE AB 于 E ,F 为 AD 的中点, 1. 如图, 在平行四边形 ABCD 中,BC 2 AB , 若 AEF 48 , 则 B _______. 【答】 84 . F A 设 BC 的中点为 G ,连结 FG 交 CE 于 H ,由题设条件知 FGCD 为菱形. 由 AB // FG // DC 及 F 为 AD 的中点,知 H 为 CE 的中点. 又 CE AB ,所以 CE FG ,所以 FH 垂直平分 CE ,故 E H DFC GFC EFG AEF 48 . B G 所以 B FGC 180 2 48 84 . 2.若实数 x, y 满足 x 3 y 3 【答】3.
2 2
即 (a b) 2[(a b) 4ab] (a b)[(a b) 3ab] 0 , 又 a b 2 ,所以 2 2[4 4ab] 2[4 3ab] 0 ,解得 ab 1.所以 a b (a b) 2ab 6 ,
a2 ) .设 B( x1 ,0) , C ( x2 ,0) ,二次函数的图象的对称轴与 x 轴的交点为 D ,则 2
BC | x1 x2 | ( x1 x2 ) 2 4 x1 x2 4a 2 4

浙江省建德市麻车初中2018年上学期八年级数学竞赛试卷(含答案)浙教版

浙江省建德市麻车初中2018年上学期八年级数学竞赛试卷(含答案)浙教版

2018年上学期麻车初中八年级数学竞赛试卷(考试时间:120分钟)一、选择题(每小题6分,共48分)( )1.关于x 的不等式023)2(>---b a x b a 的解是34<x ,则不等式0>+b ax 的解为 A .101<x B .101>x C .101-<x D .101->x( )2.某市抽样调查了1000户家庭的年收入,其中年收入最高的只有一户,是38000元;由于将这个数据输入错了,所以计算机显示的这1000户的平均年收入比实际平均年收入值高出了342元,则输入计算机的那个错误数据是 A .380000 B .3800 C .760000 D .7600( )3.已知不等式30x a -≤有4个自然数解,则a 的取值范围是A .912a ≤<B .912a <≤C .912a <<D .912a ≤≤( )4.在直角坐标系中,已知(1,1)A ,在坐标轴上确定点P ,使AOP ∆为等腰直角三角形,则符合条件的点P 共有A .5个B .6个C .7个D .8个( )5.如图,直线a ∥b ,那么x ∠的度数是A .72oB .78oC .108oD .90o( )6.一次函数3,y x p y x q =+=+的图象都经过点(2,0)A -,且与y 轴分别交于,B C 两点,那么ABC ∆的面积为A .2B .4C .6D .8( )7.设20052006200620072121,2121P Q ++==++,则P Q 、的大小关系是A .P Q >B .P Q =C .P Q <D .不能确定( )8.如图,啤酒瓶高为h ,瓶内酒面高为a ,若将瓶盖好后倒置,酒面高为a '(h b a =+'),则酒瓶的容积与 瓶内酒的体积之比为 A .a b '+1 B .b a '+1 C .a b +1 D .ba +1 ab120︒X48︒30︒30︒二、填空题(每小题6分,共24分)9.方程199100x y +=的正整数解为x = ,y = 。

2018年全国初中数学联赛(初三组)初赛试卷

2018年全国初中数学联赛(初三组)初赛试卷

2018年九年级数学竞赛试卷含答案(本试卷共三道大题,满分120分)班级:_____________ 姓名: ________________ 分数:一、选择(本题共8个小题,每小题5分,共40分)1、篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中的镂空部分) ( )2、已知两圆的半径R 、r 分别为方程0652=+-x x 的两根,两圆的圆心距为1,两圆的位置关 系是( ) A .外离 B . 外切 C .相交 D .内切3、已知:4x =9y =6,则y 1x 1+等于( )A 、2 B 、1 C 、21D 、23 4、抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为( )A .b=2,c=0 B. b=2, c=2 C . b= -2,c=-1 D. b= -3, c=25、若不等式组⎩⎨⎧>++<+-mx x m x 1104的解集是4>x ,则( )A 、29≤mB 、5≤mC 、29=m D 、5=m6、已知0221≠+=+b a b a ,则ba的值为( )A 、-1 B 、1 C 、2 D 、不能确定7、任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解:q p n ⨯=(q p ≤)可称为正整数n 的最佳分解,并规定qpn F =)(.如:12=1×12=2×6=3×4,则43)12(=F ,则在以下结论: ①21)2(=F ②83)24(=F ③若n 是一个完全平方数,则1)(=n F ④若n 是一个完全立方数,即3a n =(a 是正整数),则an F 1)(=。

-学年度八年级数学竞赛试卷(2)(含解析)

-学年度八年级数学竞赛试卷(2)(含解析)

2018学年浙教版初二数学竞赛选拔试卷一、选择题(每小题3分,共24分)1.已知|a|=5,=3,且ab>0,则a+b的值为()A.8 B.﹣2 C.8或﹣8 D.2或﹣22.如图,数轴上A,B两点表示的数分别是1和,点A关于点B的对称点是点C,则点C所表示的数是()A.B.C.D.3.△ABC中,A(﹣2,﹣3)、B(﹣1,﹣1)、C(0,1),将△ABC绕B点顺时针旋转90度,则点A对应的点A′的坐标为()A.(﹣3,0)B.(3,1)C.(4,1)D.(4,0)4.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD5.设a、b、c是三角形的三边长,且a2+b2+c2=ab+bc+ca,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是斜三角形.其中正确的说法的个数是()A.4个B.3个C.2个D.1个6.如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为()A.(0,0) B.(,﹣) C.(,﹣)D.(﹣,)7.若(3x+1)5=ax5+bx4+cx3+dx2+ex+f,则a﹣b+c﹣d+e﹣f的值是()A.32 B.﹣32 C.1024 D.﹣10248.甲、乙两人骑车从学校出发,先上坡到距学校6千米的A地,再下坡到距学校16千米的B地,甲、乙两人行程y(千米)与时间x(小时)之间的函数关系如图所示.若甲、乙两人同时从B地按原路返回到学校,返回时,甲和乙上、下坡的速度仍保持不变.则下列结论:①乙往返行程中的平均速度相同;②乙从学校出发45分钟后追上甲;③乙从B地返回到学校用时1小时18分钟;④甲、乙返回时在下坡路段相遇.其中正确的结论有()A.②③B.①④C.①②④D.②③④二、填空题(每小题3分,共24分)9.正数A的平方根为2m﹣4与3m﹣1,则A的值为.10.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ)的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中只有一个是正确的答案,则α+β+γ=°.11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有处.12.如图,已知AB∥CD,MF⊥FG,∠AEM=50°,∠NHC=55°.则∠FGH的度数为°.13.如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于度.14.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤S=S四边形AEPF.△ABC当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的序号有.15.某校为了了解八年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试.将测试成绩整理后作出如下的条形统计图.已知跳绳次数不少于100次的同学占96%,从左到右第二组有12人,第一、二、三、四组的人数之比为2:4:17:15,如果这次测试的中位数是120次,那么这次测试中成绩为120次的学生至少有人.(注:每组含最小值,不含最大值)16.下面四个图形是标出了长宽之比的台球桌的俯视图,一个球从一个角落以45°角击出,在桌子边沿回弹若干次后,最终必将落入角落的一个球囊.图1中回弹次数为1次,图2中回弹次数为2次,图3中回弹次数为3次,图4中回弹次数为5次.若某台球桌长宽之比为5:4,按同样的方式击球,球在边沿回弹的次数为次.三、解答题(第1~4题每题10分,第5题12分,共52分)17.(10分)岳飞是我国古代宋朝的民族英雄,曾任通泰镇抚史、兼泰州知州.据说在泰州抗击金兵期间,有一次曾向将领们讲了如下一个布阵图,如图4是一座城池,在城池的四周设了八个哨所,一共由24个卫士把守,按直线算,每边都有11个人,后来由于军情发生变化,连续四次给哨所增添兵力,每次增加4人,但要求在增加人员后,仍然保持每边11个人把守.请问,兵力应如何调整?18.(10分)已知甲、乙两车同时从A地出发到B地,AB相距300km,其中甲到B地后立即返回,下图是它们离A地的距离y(km)与行驶时间x(h)之间的函数图象.(1)求甲车离A地的距离y与行驶时间x之间的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与A地的距离相等时用了4.5小时,求乙车离A地的距离y与行驶时间x之间的函数关系式,并写出x的范围.19.(10分)如图所示,△ABC为直角三角形,∠ACB=90°,BF平分∠ABC,CD⊥AB于D,CD交BF于点G,GE∥CA,求证:CE与FG互相垂直平分.20.(10分)如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示.已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度这样的线段可画几条?(2)试比较立体图中∠BAC与平面展开图中∠B′A′C′的大小关系?21.(12分)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x 为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地220200200运往D县的费用(元/吨)运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?参考答案与试题解析一、选择题(每小题3分,共24分)1.解:已知|a|=5,=3,则a=±5,b=±3,且ab>0,有a b同号,即a=5,b=3;或a=﹣5,b=﹣3.则a+b=±8.故选:C.2.解:∵A,B两点表示的数分别是1和,∴AB=﹣1,∵点A关于点B的对称点是点C,∴AB=BC,设C点表示的数为x,∴点C的坐标为:=,解得x=2﹣1.故选:D.3.解:由图中可以看出点A′的坐标为(﹣3,0),故选A.4.解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选:B.5.解:由已知条件a2+b2+c2=ab+bc+ca化简得,则2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0∴a=b=c,此三角形为等边三角形,同时也是等腰三角形,锐角三角形,斜三角形故选:A.6.解:过A点作垂直于直线y=﹣x的垂线AB,∵点B在直线y=﹣x上运动,∴∠AOB=45°,∴△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,则OC=BC=.作图可知B在x轴下方,y轴的右方.∴横坐标为正,纵坐标为负.所以当线段AB最短时,点B的坐标为(,﹣).故选:B.7.解:∵(3x+1)5=ax5+bx4+cx3+dx2+ex+f当x=﹣1时,有(﹣2)5=﹣a+b﹣c+d﹣e+f=﹣32,∴a﹣b+c﹣d+e﹣f=32,故选:A.8.解:乙往返行程中路程不变,上、下坡的速度仍保持不变,而上坡的路程,与下坡的路程不相等,因而往返时所用时间一定不同,因而乙往返行程中的平均速度不相同,故①错误;乙上坡的速度是:6=10千米/小时,下坡的速度是:10÷()=20千米/小时.甲的速度是:16=12千米/小时,因而甲45分钟所走的路程是:12×=9千米,乙45分钟所走的路程是:20×(﹣)+6=9千米,因而乙从学校出发45分钟后追上甲,故②正确;乙从B地返回到学校用时是:6÷20+10÷10=1小时,即1小时18分钟,故③正确;乙从B到学校的时间是:+=1.6(小时),甲的时间是小时,因而乙可以追上甲,故甲、乙返回时在下坡路段相遇,故④正确.故选:D.二、填空题(每小题3分,共24分)9.解:2m﹣4+3m﹣1=0,解得m=1,∴2m﹣4=2×1﹣4=﹣2,∴A的值为4,故答案为4.10.解:∵α、β、γ中有两个锐角和一个钝角,∴0°<α<90°,0°<β<90°,90°<γ<180°,∴α+β+γ<360°,∵15×23°=345°,15×24°=360°,15×25°=375°,∴α+β+γ=345°.故答案是345°11.解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故填4.12.解:延长NG交AB于L,FG交AB于0,由图形得:∠ELG=∠LHD=∠NHC=55°=∠LBG+∠LGO,∠LBG=90°﹣∠BEF=90°﹣∠AEM=40°,∴∠FGH=∠LGB=∠ELG﹣∠LBG=55°﹣40°=15°.故填15°13.解:连接BC.设正方体的边长为1,则AB=AC=BC=,所以△ABC为等边三角形,∠BAC=60°.故答案是60.14.解:∵AB=AC ,∠BAC=90°,点P 是BC 的中点, ∴∠EAP=∠BAC=45°,AP=BC=CP . ①在△AEP 与△CFP 中,∵∠EAP=∠C=45°,AP=CP ,∠APE=∠CPF=90°﹣∠APF , ∴△AEP ≌△CFP ,∴AE=CF .正确; ②由①知,△AEP ≌△CFP , ∴∠APE=∠CPF .正确; ③由①知,△AEP ≌△CFP , ∴PE=PF .又∵∠EPF=90°,∴△EPF 是等腰直角三角形.正确;④只有当F 在AC 中点时EF=AP ,故不能得出EF=AP ,错误; ⑤∵△AEP ≌△CFP ,同理可证△APF ≌△BPE . ∴S 四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =S △ABC .正确. 故正确的序号有①②③⑤.15.解:(1)第一组的频率为1﹣0.96=0.04, 第二组的频率为0.12﹣0.04=0.08, ∴总人数为=150(人),第一组人数为150×0.04=6(人),第三、四组人数分别为51人、45人,∴前三组的人数为69,而中位数是第75和第76个数的平均数,所以成绩为120次的学生至少有7人. 故答案为:7.16.解:根据图形可得总共反射了7次.故答案为7.三、解答题(第1~4题每题10分,第5题12分,共52分)17.解:兵力调整如图所示:18.解:(1)当0≤x≤3时,是正比例函数,设为y=kx,x=3时,y=300,代入解得k=100,所以y=100x;当3<x≤时,是一次函数,设为y=kx+b,代入两点(3,300)、(,0),解得k=﹣80,b=540,所以y=540﹣80x.综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式为:y=.(2)当时,y=540﹣80×=180;甲乙车过点,=kx,k==40,∵y乙=40x(0≤x≤).∴y乙19.证明:延长EG,交BC于点K,连接EF,∵BF平分∠ABC,∴∠GBK=∠GBD,GK=GD,∵∠GKB=∠GDB∴△GBK≌△GBD(AAS),∴DB=BK,∠GKB=∠BDC=90°,∵∠EBK是公共角,∴∠EBK=∠EBK,∴△CGB≌△EGB(ASA),∴CG=EG,即GF垂直平分CE(三合一).∴CF=EF,∴∠FCE=∠CEF.∵∠FCE=∠CEK=∠ECD,∴∠FCE=∠GCE,∠FEC=∠GEC,∴△CFE≌△CGE(ASA),∴FC=CG=GE,FC∥EG.∴FCGE为平行四边形,∵CG=GE,∴四边形FCGE为菱形,∴CE与GF互相垂直平分.20.解:(1)在平面展开图中可画出最长的线段长为,(1分)如图(1)中的A′C′,在Rt△A′C′D′中,∵C′D′=1,A′D′=3,由勾股定理得,∴.(3分)答:这样的线段可画4条(另三条用虚线标出).(4分)(2)∵立体图中∠BAC为平面等腰直角三角形的一锐角,∴∠BAC=45°.(5分)在平面展开图中,连接线段B′C′,由勾股定理可得:A'B'=,B'C'=.(7分)又∵A′B′2+B′C′2=A′C′2,由勾股定理的逆定理可得△A'B'C'为直角三角形.又∵A′B′=B′C′,∴△A′B′C′为等腰直角三角形.(8分)∴∠B′A′C′=45°.(9分)∴∠BAC与∠B′A′C′相等.(10分)21.解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.方案二:A地的赈灾物资运往D县42吨,运往E县58吨;B地的赈灾物资运往D 县78吨,运往E县22吨.方案三:A地的赈灾物资运往D县43吨,运往E县57吨;B地的赈灾物资运往D 县77吨,运往E县23吨.方案四:A地的赈灾物资运往D县44吨,运往E县56吨;B地的赈灾物资运往D 县76吨,运往E县24吨.方案五:A地的赈灾物资运往D县45吨,运往E县55吨;B地的赈灾物资运往D 县75吨,运往E县25吨.(7分)(3)设运送这批赈灾物资的总费用为w元.由题意,得w=220x+250(100﹣x)+200(120﹣x)+220(x﹣20)+200×60+210×20=﹣10x+60800.(9分)因为w随x的增大而减小,且40<x≤45,x为整数.所以,当x=41时,w有最大值.则该公司承担运送这批赈灾物资的总费用最多为:w=60390(元).(10分)。

浙教版2018-2019学年九年级数学竞赛试卷(二)及答案

浙教版2018-2019学年九年级数学竞赛试卷(二)及答案

绝密★启用前浙教版2018-2019学年初三数学竞赛试卷(二)题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共6小题,6*5=30分)1.a、b、c都是实数,且a≠0,a+b=﹣2c,则方程ax2+bx+c=0()A.有两个正根B.至少有一个正根C.有且只有一个正根D.无正根2.a、b都是自然数,且123456789=(11111+a)(11111﹣b),则()A.a﹣b是奇数B.a﹣b是4的倍数C.a﹣b是2的倍数,但不一定是4的倍数D.a﹣b是2的倍数,但不是4的倍数3.将函数y=ax2+bx+c(a≠0)的图象绕y轴翻转180°,再绕x轴翻转180°,所得的函数图象对应的解析式为()A.y=﹣ax2+bx﹣c B.y=﹣ax2﹣bx﹣cC.y=ax2﹣bx﹣c D.y=﹣ax2+bx+c4.如果直角三角形的三边都是200以内的正整数,且较长的两边长相差1,那么这样的直角三角形有()A.12个B.9个C.6个D.1个5.一条直线过△ABC的内心,且平分三角形的周长,那么该直线分成的两个图形的面积比为()A.2:1 B.1:1 C.2:3 D.3:16.已知关于x的方程x2+mx+m+2=0有不同的实数根,其中m为整数,且仅有一个实根的整数部分是2,则m的值为()A.﹣2 B.﹣3 C.﹣2或﹣3 D.不存在第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,6*5=30分)7.已知a是方程x2+x﹣=0的根,则的值等于.8.设x为正实数,则函数y=x2﹣x+的最小值是.9.已知凸n边形A1A2…A n(n>4)的所有内角都是15°的整数倍,且∠A1+∠A2+∠A3=285°,那么,n等于.10.已知四条直线:y=kx﹣3,y=﹣1,y=3,x=1所围成的四边形面积是12,则k的值是.11.如图,直角扇形MON中,∠MON=90°,过线段MN中点A作AB∥ON交弧MN于点B,则∠BON=.12.如果不等式|x﹣a|+|x|<2没有实数解,则实数a的取值范围是.评卷人得分三.解答题(共4小题,4*10=40分)13.已知如图,圆内接四边形ABCD,AB=AD,PB=BO,CE⊥PE,CD=18,求DE.14.设两个数x和y的平方和为7,它们的立方和为10,求x+y的最大值.15.如图,已知圆O的弦AB被点C、D三等分,又E、F是弧AB的三等分点,连接EC、FD交于S,连接SA、SB,求证:∠ASB=∠AO B.16.对a>b>c>0,作二次方程x2﹣(a+b+c)x+ab+bc+ca=0.(1)若方程有实根,求证:a,b,c不能成为一个三角形的三条边长;(2)若方程有实根x0,求证:a>x0>b+c;(3)当方程有实根6,9时,求正整数a,b,c.参考答案1.解:设方程两根分别为x1,x2,由a≠0,a+b=﹣2c,得b=﹣a﹣2c,∴△=b2﹣4ac=(﹣a﹣2c)2﹣4ac=a2+4c2>0,若c=0,则a+b=0,方程变为ax2﹣ax=0,解得x=0或1.若a与c异号,则x1x2=<0,即两根异号,所以原方程有一正根和一负根.若a与c同号,由b=﹣a﹣2c可得a,b异号;则x1x2=>0,即两根同号;x1+x2=>0,则方程一定有正根,所以原方程此时有两个正根.综上所述原方程至少有一个正根.故选:B.2.解:由已知等式可知a、b均为偶数,∵(11111+a)(11111﹣b)=111112+11111(a﹣b)﹣ab,123456789被4除余1,其中111112被4除余1,ab被4除余0,∴11111(a﹣b)被4除余0,∴a﹣b是4的倍数.故选:B.3.解:y=ax2+bx+c(a≠0)的图象关于y轴对称的图象是y=ax2﹣bx+c(即以﹣x代x)的图象,而y=ax2﹣bx+c的图象关于x轴对称的是y=﹣ax2+bx﹣c(即以﹣y代y)的图象,∴所求解析式为y=﹣ax2+bx﹣c.故选A.4.解:设两直角边为x、y,则斜边为x+1,(x+1)2=x2+y2,即y2=2x+1,∴y为奇数.y分别取3,5,7,9,11,13,15,17,19对应的x顺次为4、12、24、40、60、84、112、144、180,故这样的直角三角形有9个.故选:B.5.解:通过图可看到,过内心O的直线m将△ABC的周长平分.设△ABC的周长为a,内切圆半径为r,则左边部分的面积为=,同理右边部分的面积也为∴该直线分成的两个图形的面积相等故选:B.6.解:当m=﹣2,原方程变为:x2﹣2x=0,x(x﹣2)=0,∴x1=0,x2=2,所以当m=﹣2时,原方程仅有一个实根的整数部分是2;当m=﹣3,原方程变为:x2﹣3x﹣1=0,∴△=b2﹣4ac=(3)2﹣4×1×(﹣1)=13,∴x=,即x1=,x2=,x1的整数部分为3,x2为负数,所以当m=﹣3,没有一个实根的整数部分是2.所以A对,B,C,D错.故选:A.7.解:=,=,由a是方程x2+x﹣=0的根得出:a2+a=,代入上式==20.故答案为:20.8.解:∵x为正实数,∴由函数y=x2﹣x+,得y=(x﹣1)2+(﹣)2+1,∵(x﹣1)2≥0,(﹣)2≥0,∴(x﹣1)2+(﹣)2+1≥1,即y≥1;∴函数y=x2﹣x+的最小值是1.故答案是:1.9.解:由已知有另外n﹣3个内角的和为(n﹣2)•180°﹣285°,它能被(n﹣3)整除,且商也是15°的整数倍,商是180°﹣,满足条件的n=10.故答案为:10.10.解:在y=kx﹣3中,令y=﹣1,解得x=;令y=3,x=;当k<0时,四边形的面积是:[(1﹣)+(1﹣)]×4=12,解得k=﹣2;当k>0时,可得[(﹣1)+(﹣1)]×4=12,解得k=1.即k的值为﹣2或1.11.解:延长BA交OM于点C,连接MB,∵A是MN的中点,AB∥ON,∴点C是OM的中点,又∠MON=90°,∴BC⊥OM,∴BC垂直平分OM,∴MB=OB,又OM=OB,∴△OMB是等边三角形,∴∠MOB=60°,∴∠NOB=90°﹣60°=30°.故答案为:30°.12.解:∵|x﹣a|+|x|<2,∴|x﹣a|<2﹣|x|,设y1=|x﹣a|,y2=2﹣|x|,∴y1=,y2=,根据原不等式没有实数解,即y1<y2没有实数解,从两函数图象可以看出:a≤﹣2或a≥2时,y1的图象与y2的图象没交点.故答案为a≤﹣2或a≥2.13.解:连OA,如图,∵AB=AD,∴∠AOB=∠DCO,∴OA∥DC,而PB=BO,CD=18∴===,则OA=×18=12,P A=2AD,由切割线定理得,PB•PC=P A•PD,即12×36=2AD•3AD,所以AD=6,过O作OF⊥AB于F点,则BF=AF=3,∵∠EDC=∠ABO,且CE⊥PE,∴Rt△CDE~Rt△OBF,∴=,即=,∴DE=.14.解:由题意得:,令x=s+t,y=s﹣t,则x+y=2s,且,由①得2t2=7﹣2s2,将其代入②中得:2s3+3s(7﹣2s2)=10,即4s3﹣21s+10=0,∴(s﹣2)(s﹣)(s+)=0,∴s的最大值为2,∴x+y的最大值为4.15.证明:连接OE、OF、AE、AF,延长SA交FE的延长线于K,∵=,∴AB∥EF,∴==,∵AC=CD,∴KE=EF=AE,∠KAF=90°,F A⊥SA,又=,∴OE⊥F A,OE∥SA,同理可证OF∥SB,∴∠ASB=∠EOF=∠AO B.16.解:(1)由方程有实根得,△=(a+b+c)2﹣4(ab+bc+ca)≥0即0≤a2+b2+c2﹣2ab﹣2bc﹣2ca=a(a﹣b﹣c)﹣b(a+c﹣b)﹣c(a+b﹣c)<a(a﹣b﹣c),由a>0,得a﹣b﹣c>0,即a>b+c.所以,a,b,c不能成为一个三角形的三边.(4分)(2)设f(x)=x2﹣(a+b+c)x+ab+bc+ca,则f(b+c)=bc>0,f(a)=bc>0,且f()=<0由(1)知b+c<<a,所以二次方程的实根x0都在b+c与a之间,即a>x0>b+c.(7分)(3)由根与系数关系有a+b+c=15,ab+bc+ca=54,得a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=225﹣108=117<112.由(2)知a>9,故得92<a2<112,∴a=10.∴b+c=5,bc=4,由b>c,解得b=4,c=1,∴a=10,b=4,c=1.(10分)。

浙教版2018-2019学年度八年级数学竞赛试卷B(含解析)

浙教版2018-2019学年度八年级数学竞赛试卷B(含解析)

浙教版2018-2019学年八年级数学竞赛试卷 B一.选择题(共 8小题,3*8=24)21 . x=1时,多项式ax+bx+1的值为3,则多项式2 (3a-b ) - ( 5a - 3b )值的值等于( ) A. 0 B. 1C. 2D. - 22 .解方程,』山+4 4 ― 1的步骤如下:0. 3 0. 05解:第一步: 纥L/史L-1 (分数的基本性质) 3 1 第二步:2x- 1=3 (2x+8) - 3……(①) 第三步:2x - 1=6x+24 - 3……(②) 第四步:2x- 6x=24 - 3+1……(③) 第五步:-4x=22 (④) 第六步:x=-工工 .... (⑤)2以上解方程第二步到第六步的计算依据有:①去括号法则.②等式性质一.③等式性质二.④合并同 类项法则.请选择排序完全正确的一个选项()3,若2/ +x ?+kR -2能被■整除,那么k 等于()A.悬B.C.-占D.不能确定4.如图,/ AOB=60°, OA=OB,动点C 从点O 出发,沿射线6.如图中不同的长方形(包括正方形)的个数为(A.②①③④②B.②①③④③C.③①②④③D.③①④②③OB 方向移动,以AC 为边在右侧作等边AACD,连接BD,则BD 所在直线与OA 所在直线的位置关系是A .平行 B.相交 C.垂直 D.平行、相交或垂直A.①③B.①④C.②④D.②③5.已知a 、b 、c 、d 都是正实数,且给出下列四个不等式:b d其中不等式正确的是(A.36B.87C.72D. 1027,下列各数能整除(-8) 2011+ ( - 8)2010的是()B. 5C.7D.98.如图,2>5的正方形网格中, 用5张1 X2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()B.5种C.8种D.13 种二.填空题(共8小题,3*8=24)9.若|a — 2|+ (— b) 2=0,贝U b a= .310.设a、b、c 都是实数,且满足(2—a )I 白+£1=0,ax2+bx+c=0;则代数式x2+2x+1的值为.11.点M在y轴的左侧,且到x轴,y轴的距离分别是3和5,则点M的坐标是 .12.时针指示6点15分,它的时针和分针所夹的角是度.13.如图,?ABCD中,ZB=60 °, AB=4, BC=5, P是对角线AC上任一点(点P不与点A, C重合),且PE // BC交AB于E, PF // CD交AD于F ,则阴影部分的面积是 .14.若40个数据的平方和是56,平均数是巧,则这组数据的方差 .15.若直线y=2x+3与直线y=mx+5平行,则m+2的值为16.某中学生暑期社会调查团共17人到几个地方去考察,事先预算住宿费平均每人每天不超过x元.一日到达某地,该地有两处招待所A, B. A有甲级床位8个,乙级床位11个;B有甲级床位10个, 乙级床位4个,丙级床位6个.已知甲,乙,丙床位每天分别为14元,8元,5元.若全团集中住在一个招待所里,按预算只能住B处,那么整数x的值为三.解答题(共4小题,52分)। 4x―bv=—1 f望三万17.(10分)甲、乙两人解关于x, y的方程组J ,甲因看错a,解得.乂一乙,乙将其中一(ax+by=5 1 尸3个方程的b写成了它的相反数,解得[户一1 ,求a、b的值.ly=-l18.( 12分)观察下列各式:1+2 =1+8=9,而(1+2) =9, 1 +2 = (1+2);Q Q Q__ 2 3 3 3 21 +2 +3 =36,而(1+2+3) =36, . . 1 +2 +3 = (1+2+3);Q 3 3 3 9 3 3 3 3 21 +2 +3 +4 =100,而(1+2+3+4) =100, . . 1 +2 +3 +4 = ( 1+2+3+4);..3 3 3 3 3 、 2•• 1 +2 +3 +4 +5 = () =.根据以上规律填空:(D 13+23+33+-+ n3= () 2=[「(2)猜想:113+123+133+143+153=.19.(15分)某中学的1号教学大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对 4 道门进行了测试,当同时开启一道正门和两道侧门时, 2 分钟内可以通过560 名学生,当同时开启一道正门和一道侧门时, 4 分钟内可通过800 名学生.(1 )求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)该中学的2 号教学大楼,有和 1 号教学大楼相同的正门和侧门共 5 道,若这栋大楼的教室里最多有1920 名学生,安全检查规定,在紧急情况下,全大楼学生应在 4 分钟内通过这 5 道门安全撤离,该栋大楼正门和侧门各有几道?20.(15分)阅读探究:任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,*尸2 ,消去y化简彳导:2x2 - 7x+6=0 ,疗3••• b2- 4ac=49 -48>0, . . x i =, x2=,,满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形 B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?参考答案与试题解析1.解:把x=1代入多项式ax2+bx+1得: a+b+1=3,- x=1时,多项式ax2+bx+1的值为3,1- a+b+1=3, a+b=2,•••2 (3a- b) - ( 5a- 3b)=6a-2b-5a+3b = a+b=2,故选:C.2S-1 2Y+8 ,2.解:第一步:*匚号马—1 (分数的基本性质)0 JL第二步:2x- 1=3 (2x+8) - 3……(等式性质二)第三步:2x- 1=6x+24- 3……(去括号法则)第四步:2x- 6x=24 - 3+1……(等式性质一)第五步:-4x=22 (合并同类项法则)第六步:x=-卫-……(等式性质二),2故选:C.3.解:方法一:利用大除法,若2工点12『+工沁工-2,即、(义4)二-2, Z Z 1 Q Z、一人1 1 …一、- 7方法一:令2x+—=0, x=--,代入原式=0,解得k=-7—.2 4 8方法三、: 2尸+箕、kx-2能被2工。

2018年全国初中数学竞赛(初一组)初赛试题(带答案)

2018年全国初中数学竞赛(初一组)初赛试题(带答案)

2018年全国初中数学竞赛(初一组)初
赛试题(带答案)
本资料为woRD文档,请点击下载地址下载全文下载地址2018年全国初中数学竞赛初赛试题
得分
一、选择題
.已知,6两个数在一条隐去原点的数轴上的位置如图所示,现有下列四种说法:D|a1-|61&gt;0
2a+6&lt;0;3ab&lt;0;@a+b+ab+1&lt;a其中,一定成立的是
02。

023
on3o
第1题1
03D
2著2+1的值与y一3的值互为相反数,则4+2的值为-
-2
2
3.某种商品若按原标价出售,则可获利50%,若按原标价的八折出售,则可获利
15%20%
40%
30%
4.定义““运算为.b=2a+ab,若+-22则x的值为
-11-2
2
如图,有一个无益的正方体纸盒,下底面标有字母“m",若沿图中粗线将其剪开,则纸盒展开的平
面图形为
B)
D)
如图,AB//cD,若用會Z1,2,,1+2263
21+23-22
c)180*+3-21-2
2+23-21-180。

2018年全国初中数学联合竞赛试题参考答案及评分标准【直接打印】精品

2018年全国初中数学联合竞赛试题参考答案及评分标准【直接打印】精品

2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分)1.已知21a ,32b,62c ,那么,,a b c 的大小关系是()A.ab cB.ac b C.bacD.b ca【答】C. 因为121a,132b,所以110ab,故ba .又(62)(21)6ca(21),而22(6)(21)3220,所以621,故ca .因此ba c .2.方程222334x xy y的整数解(,)x y 的组数为()A .3.B .4.C .5.D .6.【答】B. 方程即22()234xy y,显然x y 必须是偶数,所以可设2x y t ,则原方程变为22217ty,它的整数解为2,3,t y从而可求得原方程的整数解为(,)x y =(7,3),(1,3),(7,3),(1,3),共4组.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为()A .63B .53C .263D .253【答】D.过点C 作CP//BG ,交DE 于点P.因为BC =CE =1,所以CP 是△BEG 的中位线,所以P 为EG 的中点.又因为AD =CE =1,AD//CE ,所以△ADF ≌△ECF ,所以CF =DF ,又CP//FG ,所以FG 是△DCP 的中位线,所以G 为DP 的中点.因此DG =GP =PE =13DE =23.连接BD ,易知∠BDC =∠EDC =45°,所以∠BDE =90°. 又BD =2,所以BG =22225BDDG293.4.已知实数,a b 满足221a b ,则44a ab b 的最小值为()PGFEBCADA .18. B .0. C .1. D .98.【答】B.442222222219()2122()48aabbab a bab a b ab ab .因为222||1ab a b ,所以1122ab ,从而311444ab,故2190()416ab,因此219902()488ab,即44908aabb.因此44a abb 的最小值为0,当22,22a b或22,22ab时取得.5.若方程22320x pxp 的两个不相等的实数根12,x x 满足232311224()xxxx ,则实数p的所有可能的值之和为()A .0.B .34. C .1.D .54.【答】 B.由一元二次方程的根与系数的关系可得122x x p ,1232x x p ,所以2222121212()2464x x x x x x p p,332212121212()[()3]2(496)xxx x x x x x p pp.又由232311224()x x x x 得223312124()x x x x ,所以2246442(496)p p p pp ,所以(43)(1)0p pp ,所以12330,,14p p p .代入检验可知:1230,4p p 均满足题意,31p 不满足题意. 因此,实数p 的所有可能的值之和为12330()44p p .6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a cb d .这样的四位数共有()A .36个.B .40个.C .44个.D .48个.【答】C.根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个.二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111abct b c a,则t_________.【答】1.由1a t b 得1bt a,代入1bt c得11t tac ,整理得2(1)()0ct ac ta c ①又由1c t a 可得1ac at ,代入①式得22()0ctatac ,即2()(1)0c a t,又c a ,所以210t,所以1t.验证可知:11,1a b caa时1t;11,1a bcaa时1t .因此,1t .2.使得521m是完全平方数的整数m 的个数为.【答】1.设2521mn (其中n 为正整数),则2521(1)(1)mnn n ,显然n 为奇数,设21n k (其中k 是正整数),则524(1)mk k ,即252(1)m k k .显然1k,此时k 和1k 互质,所以252,11,m k k 或25,12,m k k 或22,15,m k k 解得5,4k m .因此,满足要求的整数m 只有1个.3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BC AP=.【答】3.设D 为BC 的中点,在△ABC 外作∠CAE =20°,则∠BAE =60°. 作CE ⊥AE ,PF ⊥AE ,则易证△ACE ≌△ACD ,所以CE =CD =12BC.又PF =PA sin ∠BAE =PA sin 60°=32AP ,PF =CE ,所以32AP =12BC ,因此BC AP=3.4.已知实数,,a b c 满足1abc,4a b c ,22243131319a b c aa bb cc ,则222abc =.【答】332.因为22313(3)(1)(1)(1)aa aa abc a bc a a bcbc a b c ,所以FEDBCAP2131(1)(1)a aa b c .同理可得2131(1)(1)b b b a c ,2131(1)(1)c cc a b .结合22243131319ab c aa bb cc 可得1114(1)(1)(1)(1)(1)(1)9b c a c a b ,所以4(1)(1)(1)(1)(1)(1)9a b c a b c .结合1abc,4a b c,可得14ab bc ac. 因此,222233()2()2a bca bc ab bc ac .实际上,满足条件的,,a b c 可以分别为11,,422.第二试(A)一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.解设直角三角形的三边长分别为,,a b c (a b c ),则30a b c .显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c 及30a b c 得303a b c c ,所以10c . 由a b c 及30a b c 得302a b c c ,所以15c . 又因为c 为整数,所以1114c .……………………5分根据勾股定理可得222abc ,把30ca b 代入,化简得30()4500ab a b ,所以22(30)(30)450235a b ,……………………10分因为,a b 均为整数且a b ,所以只可能是22305,3023,ab解得5,12.a b ……………………15分所以,直角三角形的斜边长13c ,三角形的外接圆的面积为1694.……………………20分二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D .证明:2ADBD CD .DPOABC2018年全国初中数学联合竞赛试题参考答案及评分标准第1页(共4页)证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PAPD PO ,2ADPD OD . ……………………5分又由切割线定理可得2PAPB PC ,∴PB PC PD PO ,∴D 、B 、C 、O 四点共圆,……………………10分∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD ,……………………20分∴PD BD CD OD,∴2AD PD OD BD CD .……………………25分三.(本题满分25分)已知抛物线216yxbx c 的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x )两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2,若AM//BC ,求抛物线的解析式.解易求得点P 23(3,)2b bc ,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x bx c的两根,所以21396x b bc ,22396x bbc ,又AB 的中点E 的坐标为(3,0)b ,所以AE =296b c .……………………5分因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AEPE DE ,即2223(96)()||2bc b c m ,又易知0m,所以可得6m. ……………………10分又由DA =DC 得22DA DC ,即22222(96)(30)()bc mb mc ,把6m代入后可解得6c (另一解0c 舍去).……………………15分又因为AM//BC ,所以OA OM OBOC,即223||3962|6|396b b c bbc.……………………20分把6c 代入解得52b (另一解52b舍去). 因此,抛物线的解析式为215662y xx . ……………………25分2018年全国初中数学联合竞赛试题参考答案及评分标准第1页(共5页)精品文档强烈推荐2018年全国初中数学联合竞赛试题参考答案及评分标准第4页(共7页)精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有。

全国初中数学竞赛(浙江赛区)初赛试题(Word版,含答案)

全国初中数学竞赛(浙江赛区)初赛试题(Word版,含答案)

全国初中数学竞赛(浙江赛区)初赛试题答题时注意;1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线.3.草稿纸不上交.一、选择题(共8小题,每小题5分,满分40分.以下每小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)1.函数||1xy-=图象的大致形状是()2.老王家到单位的路程是3 500米,老王每天早上7∶30离家步行去上班,在8∶10(含8∶10)至8∶20(含8∶20)之间到达单位,如果设老王步行的速度为x米/分,则老王步行的速度范围是()(A) 70≤x≤87.5 (B) x≤70或x≥87.5(C) x≤70 (D) x≥87.5 3.如图,AB是半圆的直径,弦AD,BC相交于P,已知∠DPB=60º,D是BC的中点,则tan∠ADC等于()(A)12(B) 2(C)4.抛物线2y x x p=++(p≠0)的图象与x轴一个交点的横坐标是P,那么该抛物线的顶点坐标是()(A)(0,2-)(B)(19,24-)(C)(19,24-)(D) (19,24--)(A) (B) (C) (D)5. 如图,△ABC 中,AB =AC ,∠A =36º,CD 是角平分线,则△DBC 的面积与△ABC 面积的比值是( )(A)(B)(C)(D)6. 直线:l y px =(P 是不等于0的整数)与直线10y x =+的交点恰好是格点(横坐标和纵坐标都是整数),那么满足条件的直线l 有( ) (A) 6条 (B) 7条 (C) 8条 (D) 无数条 7. 把三个连续的正整数a ,b ,c 按任意次序(次序不同视为不同组)填入□x 2+□x +□=0的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项,使所得方程至少有一个整数根的a ,b ,c ( ) (A) 不存在(B) 有一组(C) 有两组(D) 多于两组8. 六个面上分别标有1,1,2,3,3,5六个数字的均匀立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.按照这样的规定,每掷一次该小立方体,就得到平面内一个点的坐标.已知小明前两次掷得的两个点能确定一条直线l ,且这条直线l 经过点P (4,7),那么他第三次掷得的点也在直线l 上的概率是( )A .23B .12C .13D .161 13 3 2 5 (第8题)ABC(第5题)。

浙教版2018-2019学年度八年级数学竞赛试卷B(含解析)

浙教版2018-2019学年度八年级数学竞赛试卷B(含解析)

浙教版2018-2019学年八年级数学竞赛试卷B一.选择题(共8小题,3*8=24)1.x=1时,多项式ax2+bx+1的值为3,则多项式2(3a﹣b)﹣(5a﹣3b)值的值等于()A.0 B.1 C.2 D.﹣22.解方程﹣1的步骤如下:解:第一步:﹣1(分数的基本性质)第二步:2x﹣1=3(2x+8)﹣3……(①)第三步:2x﹣1=6x+24﹣3……(②)第四步:2x﹣6x=24﹣3+1……(③)第五步:﹣4x=22(④)第六步:x=﹣……(⑤)以上解方程第二步到第六步的计算依据有:①去括号法则.②等式性质一.③等式性质二.④合并同类项法则.请选择排序完全正确的一个选项()A.②①③④②B.②①③④③C.③①②④③D.③①④②③3.若,那么k等于()A.B.C.﹣D.不能确定4.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直5.已知a、b、c、d都是正实数,且<,给出下列四个不等式:①<;②<;③;④<其中不等式正确的是()A.①③B.①④C.②④D.②③6.如图中不同的长方形(包括正方形)的个数为()A.36 B.87 C.72 D.1027.下列各数能整除(﹣8)2011+(﹣8)2010的是()A.3 B.5 C.7 D.98.如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种二.填空题(共8小题,3*8=24)9.若|a﹣2|+(﹣b)2=0,则b a=.10.设a、b、c都是实数,且满足,ax2+bx+c=0;则代数式x2+2x+1的值为.11.点M在y轴的左侧,且到x轴,y轴的距离分别是3和5,则点M的坐标是.12.时针指示6点15分,它的时针和分针所夹的角是度.13.如图,▱ABCD中,∠B=60°,AB=4,BC=5,P是对角线AC上任一点(点P不与点A,C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是.14.若40个数据的平方和是56,平均数是,则这组数据的方差.15.若直线y=2x+3与直线y=mx+5平行,则m+2的值为.16.某中学生暑期社会调查团共17人到几个地方去考察,事先预算住宿费平均每人每天不超过x元.一日到达某地,该地有两处招待所A,B.A有甲级床位8个,乙级床位11个;B有甲级床位10个,乙级床位4个,丙级床位6个.已知甲,乙,丙床位每天分别为14元,8元,5元.若全团集中住在一个招待所里,按预算只能住B处,那么整数x的值为三.解答题(共4小题,52分)17.(10分)甲、乙两人解关于x,y的方程组,甲因看错a,解得,乙将其中一个方程的b写成了它的相反数,解得,求a、b的值.18.(12分)观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=()2=.根据以上规律填空:(1)13+23+33+…+n3=()2=[]2.(2)猜想:113+123+133+143+153=.19.(15分)某中学的1号教学大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行了测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)该中学的2号教学大楼,有和1号教学大楼相同的正门和侧门共5道,若这栋大楼的教室里最多有1920名学生,安全检查规定,在紧急情况下,全大楼学生应在4分钟内通过这5道门安全撤离,该栋大楼正门和侧门各有几道?20.(15分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?参考答案与试题解析1.解:把x=1代入多项式ax2+bx+1得:a+b+1=3,∵x=1时,多项式ax2+bx+1的值为3,∴a+b+1=3,a+b=2,∴2(3a﹣b)﹣(5a﹣3b)=6a﹣2b﹣5a+3b=a+b=2,故选:C.2.解:第一步:﹣1(分数的基本性质)第二步:2x﹣1=3(2x+8)﹣3……(等式性质二)第三步:2x﹣1=6x+24﹣3……(去括号法则)第四步:2x﹣6x=24﹣3+1……(等式性质一)第五步:﹣4x=22(合并同类项法则)第六步:x=﹣……(等式性质二),故选:C.3.解:方法一:利用大除法,若,∴.方法二:令2x+=0,x=﹣,代入原式=0,解得k=﹣7.方法三、∵,∴设2x3+x2+kx﹣2=(2x+)(x+m)(x+n),∴2x3+x2+kx﹣2=(2x+)(x+m)(x+n)=2x3+[2(m+n)+]x2+[2mn+(m+n)]x+mn,∴mn=﹣2,2(m+n)+=1,2mn+(m+n)=k,∴mn=﹣4,m+n=,∴k=﹣8+×=﹣7,故选:C.4.解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.5.解:∵<,a、b、c、d都是正实数,∴ad<bc,∴ac+ad<ac+bc,即a(c+d)<c(a+b),∴<,所以①正确,②不正确;∵<,a、b、c、d都是正实数,∴ad<bc,∴bd+ad<bd+bc,即d(a+b)<b(d+c),∴<,所以③正确,④不正确.故选:A.6.解:(1)按照水平方向计算,①先看一行,符合题意的有18个;②两行一起看,符合题意的有12个,③三行一起看,符合题意的有6个;综合①②③可得共有36个符合题意;(2)按照对角线的方向进行计算,①含有一个小正方形的有12个,②含有两个小正方形的有16个,③含有三个小正方形的有8个,④含有四个小正方形的有9个,⑤含有六个小正方形的有4个,含有八个小正方形的有2个,综合①②③④⑤此时符合题意的故共有51个.综合(1)(2)可得共有36+51=87个.故选:B.7.解:(﹣8)2011+(﹣8)2010=(﹣8)2010(﹣8+1)=7×(﹣8)2010,∴能整除(﹣8)2011+(﹣8)2010的是7.故选:C.8.解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.9.解:根据题意得:,解得:,则原式=.故答案是:.10.解:根据题意得,2﹣a=0,a2+b+c=0,c+8=0,解得a=2,b=4,c=﹣8,∴ax2+bx+c=2x2+4x﹣8=0,即x2+2x﹣4=0,解得x2+2x=4,∴x2+2x+1=4+1=5.故答案为:5.11.解:∵点M在y轴的左侧,∴点M在第二或第三象限,∵点M到x轴,y轴的距离分别是3和5,∴点M的横坐标为﹣5,纵坐标为3或﹣3,∴点M的坐标是(﹣5,3)和(﹣5,﹣3).故答案为:(﹣5,3)和(﹣5,﹣3).12.解:把6点作为起始时间.15分钟,时针旋转了一个大格的,即30°×=7.5°,此时分针指向3,3与6之间有三个大格,共30°×3=90°,故针和分针所夹角的度数是90°+7.5°=97.5°.13.解:∵▱ABCD,∴AB∥CD,AD∥BC∵PE∥BC,∴PE∥AD∵PF∥CD,∴PF∥AB,∴四边形AEPF为▱.设▱AEPF的对角线AP、EF相交于O,则AO=PO,EO=FO,∠AOE=∠POF∴△POF≌△AOE,∴图中阴影部分的面积等于△ABC的面积,过A作AM⊥BC交BC于M,∵∠B=60°,AB=4,∴AM=2,S△ABC=×5×2=5,即阴影部分的面积等于5.故填5.14.解:由方差的计算公式可得:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=[x12+x22+…+x n2+n2﹣2(x1+x2+…+x n)]=[x12+x22+…+x n2+n2﹣2n2]=[x12+x22+…+x n2]﹣2=﹣=1.4﹣0.5=0.9.故填0.9.15.解:∵两直线平行∴两直线的k值相同∴m=2∴m+2=4.16.解:若住在A处,即使是最经济地选择床位,总的住宿费为8×11+14×6=172元,平均每人的住宿费为172÷17≈10.12(元)若住在B处,合理选择床位,就能满足预算,总的住宿费为5×6+8×4+14×7=160(元),平均每人的住宿费为160÷17≈9.41(元)∵9.41≤x≤10.12,且x为整数∴x=10,即住宿费平均每人每天不超过10元.故答案为10.17.解:将x=2,y=3分别代入4x﹣by=﹣1得:8﹣3b=﹣1,解得:b=3,将x=﹣1,y=﹣1代入4x+3y=﹣1后,左右两边不相等,故:ax﹣3y=5,将x=﹣1,y=﹣1代入后可得:﹣a+3=5,解得:a=﹣2,故答案为:a=﹣2,b=3.18.解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.19.解:(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生.则,解得.答:平均每分钟一道正门可通过120名学生,一道侧门可以通过80名学生;(2)设该栋大楼正门有m道,侧门有n道,则,解得.故该栋大楼正门有2道,侧门有3道.20.解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.。

2018年全国初中数学竞赛(初三组)初赛试题(有答案)

2018年全国初中数学竞赛(初三组)初赛试题(有答案)

实用精品文献资料分享
2018年全国初中数学竞赛(初三组)初赛试题(有答案)
2018年全国初中数学竞赛(初三组)初赛试题
一、选择题(本题满分42分,每小题7分) 1无理数、3+、了的小数部分是(C) ↓3+↓3-4 (A)J3+3-4 (B)3-13-、5 (D) ↓5+J3-3 2若式是方段2-6r+3=0的两个根,则的值为三 (C) 3 (A)2 (D) 3 设有甲乙满把不相同的锁甲锁配有两把钥匙,乙锁配有两把钥匙,这4把钥匙与不能开这两把锁的两把钥匙混在一起,从中任取青托钥匙能
打开甲己这两把债的概事是 (A)15 (D) 如果点4.R.C.D的坐际分别
是(1.7).1.1.(4,1).(6.1),以C.D.为顶点的三角形与OABC相似,
则点民的坐标不可能是日 ' 品” ” ” in 是 (C) (6.5) (D) (4.2) (B) (6.3) (A) (6.0 $S2F 5.如在矩形ABCD中.DELAC 于点E.LEDC CEDA= 3.RAC-10.则ADEC的面积是[ (C) 23.2-2 A)52 (D) S. M校
在公园内举行定向越野挑战弃路线图如图1所示,点正为炬形ABCD
边1D的中点,在矩 ABCD的四个顶点处都有定位仅,可监测运动员
的越野进程,其中一位运动员户从点8出发给看B-E -D的路线匀
�B行进,到达点D.设运动员户的运动时间为,到监洲点的距离为现有。

2018年全国初中数学竞赛试题及答案

2018年全国初中数学竞赛试题及答案

若关于 m 的方程有正整数解,则
9 4n(n 1) 8 (2 n 1)2 l 2 ( l 为正整数),
即 l 2 (2n 1)2 8,[ l (2n 1)][( l (2 n 1)] 8

l (2n 1) 8 l (2n 1) 4
所以
,或

l (2n 1) 1 l (2n 1) 2
解得: n
5 4
所以 PQ= yp
yQ
( a2
3a
4)
(a2
3a
4) =
2
2a
8
即当 a= 0(属于 -2≤ a≤2)时, PQ 的最大值为 8。
12.已知 a , b 都是正整数,试问关于 x 的方程 x 2 abx 1 ( a b) 2
把它们求出来;如果没有,请给出证明.
-4
Q
-6
B
-8
-10
0 是否有两个整数解?如果有,请
但不多于 8 个,红球不少于 2 个,黑球不多于 3 个,那么上述取法的种数是(

( A )14
( B) 16
(C) 18
(D )20
解:选( B )。只用考虑红球与黑球各有 4 种选择:红球( 2,3,4,5 ),黑球( 0,1,2,3 )共 4× 4= 16 种
3.已知 a 、 b 、 c 是三个互不相等的实数,且三个关于 x 的一元二次方程 ax 2 bx c 0 ,
综上,存在正整数 a= 1, b=3 或 a=3, b=1,使得
方程 x 2 abx 1 (a b) 0 有两个整数解为 x1 1, x2 2 。 2
DE
13.如图,点 E, F 分别在四边形 ABCD 的边 AD , BC 的延长线上,且满足

2018年全国初中数学联赛(初三组)初赛试卷含答案

2018年全国初中数学联赛(初三组)初赛试卷含答案

2018年全国初中数学联赛(初三组)初赛试卷含答案2018年全国初中数学联赛(初三组)初赛试卷(考试时间:2018年3月14日下午3:00—5:00)一、选择题(本题满分42分,每小题7分)1、已知实数$a$、$b$满足$|a-3|+|b-2|+1-a+a=3$,则$a+b$等于()A、$-1$B、$2$C、$3$D、$5$2、如图,点$D$、$E$分别在$\triangle ABC$的边$AB$、$AC$上,$BE$、$CD$相交于点$F$,设四边形$EADF$、$\triangle BDF$、$\triangle BCF$、$\triangle CEF$的面积分别为$S_1$、$S_2$、$S_3$、$S_4$,则$\frac{S_1S_3}{S_2S_4}$的大小关系为()A、$S_1S_3>S_2S_4$B、$S_1S_3=S_2S_4$C、$S_1S_3<S_2S_4$ D、不能确定3、对于任意实数$a$,$b$,$c$,$d$,有序实数对$(a,b)$与$(c,d)$之间的运算“$\ast$”定义为:$(a,b)\ast(c,d)=(ac-bd,ad+bc)$。

如果对于任意实数$m$,$n$都有$(m,n)\ast(x,y)=(n,-m)$,那么$(x,y)$为()A、$(1,-1)$B、$(-1,1)$C、$(1,1)$D、$(-1,-1)$4、如图,已知三个等圆$\odot O_1$、$\odot O_2$、$\odot O_3$有公共点$O$,点$A$、$B$、$C$是这些圆的交点,则点$O$一定是$\triangle ABC$的()A、外心B、重心C、内心D、垂心5、已知关于$x$的方程$(x-2)^2-4|x-2|-k=0$有四个根,则$k$的范围为()A、$-1<k<\pi$B、$-\pi<k<\pi$C、$-\frac{\pi}{4}<k<\frac{\pi}{4}$ D、不能确定6、设在一个宽度为$w$的小巷内搭梯子,梯子的脚位于$P$点,小巷两边的墙体垂直于水平的地面。

2018年全国初中数学联赛试题参考答案和评分标准(A卷和B卷)

2018年全国初中数学联赛试题参考答案和评分标准(A卷和B卷)

2018 年全国初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42 分,每小题7 分)1.设二次函数 2a2y x ax 的图象的顶点为A ,与x 轴的交点为B,C .当△ABC 为等边三角22形时,其边长为()A. 6 .B.2 2 .C.2 3 .D.3 2 .【答】C.2a由题设知A (a ,) .设B(x1,0) ,C(x2 ,0) ,二次函数的图象的对称轴与x 轴的交点为D ,则22aBC | x 1 x |(x x ) 4x x 4a 42a .2 2 22 1 2 1 2223 3a又AD BC | | 2a,则 2 ,解得a 2 6 或a 2 0 (舍去).2 2 2所以,△ABC 的边长BC 2a 2 2 3 .2.如图,在矩形ABCD 中,BAD的平分线交BD 于点E ,AB 1,CAE 15,则BE ()A.33. B.22. C. 2 1. D. 3 1. A D 【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得BAF FAD AFB HEF 45,B F AB1,EBH ACB 30.EB CH F设BE x,则xHF HE,23xBH .2因为BF BH HF ,所以13 xx,解得x 3 1.所以BE 31.2 23.设p,q 均为大于 3 的素数,则使p 2 5pq 4q 为完全平方数的素数对(p,q) 的个数为()2A.1.B.2.C.3.D.4.【答】B.2018 年初中数学联赛试题参考答案及评分标准第 1 页(共 10 页)设p2 5pq 4q2 m2 (m 为自然数),则(p 2q)2 pq m2 ,即(m p 2q)(m p 2q) pq .由于p,q 为素数,且m p 2q p,m p 2q q ,所以m p 2q 1,m p 2qpq ,从而pq 2p 4q 1 0,即(p 4)(q 2) 9,所以(p,q) (5,11)或(7, 5) .所以,满足条件的素数对(p,q) 的个数为 2.2 24.若实数a,b 满足a b 2,(1 ) (1 ) 4a b,则a5 b5 ()b aA.46.B.64.C.82.D.128.【答】C.( 2 21 a) (1 b)由条件 4得a b 2a2 2b2 4ab a3 b3 0,b a即(a b) 2[(a b)2 4ab] (a b)[(a b)2 3ab] 0,又a b 2,所以2 2[4 4ab] 2[4 3ab] 0,解得ab 1.所以a2 b2 (a b)2 2ab6 ,a b a b a b ab ,a5 b5 (a2 b2 )(a3 b3) a2b2 (a b) 82 .3 3 ( )[( )2 3 ] 145.对任意的整数x, y ,定义x@ y x y xy ,则使得(x@ y)@z (y @z)@x (z@x)@ y的整数组(x, y, z) 的个数为()A.1.B.2.C.3.D.4.【答】D.(x@ y)@z (x y xy)@z (x y xy) z (x y xy)z x y z xy yz zx xyz ,由对称性,同样可得(y@z)@x x y z xy yz zx xyz ,(z@x)@ y x y z xy yz zx xyz .所以,由已知可得x y z xy yz zx xyz 0 ,即(x 1)(y 1)(z 1) 1.所以,x, y, z 为整数时,只能有以下几种情况:x 11, y 1 1,z 1 1,x 11,或y 11,z 11,x1 1,或y 11,z 11,x或yz1111,1,1,所以,(x, y, z ) (2,2,0)或(2,0,2) 或(0,2,2) 或(0,0,0),故共有 4 个符合要求的整数组.2018 年初中数学联赛试题参考答案及评分标准第 2 页(共 10 页)1 1 116.设M ,则2018 2019 2020 2050 1M的整数部分是()A.60.B.61.C.62.D.63.【答】B.1 201815 因为M 33 ,所以61.2018 M 33 331 1 1 1 1 1又M ( ) ( )2018 2019 2030 2031 2032 20501 1 134513 20 ,2030 2050 832301 183230 1185所以61 ,故的整数部分为 61.M 1345 1345 M二、填空题:(本题满分28 分,每小题7 分)1.如图,在平行四边形ABCD 中,BC 2AB ,CE AB于E ,F 为AD 的中点,若AEF48,则 B _______.【答】84.AF 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形.D由AB // FG // DC及F 为AD 的中点,知H 为CE 的中点.又CE AB,所以CE FG ,所以FH 垂直平分CE ,故DFC GFC EFG AEF 48.所以B FGC 180 248 84 .E HB CG2.若实数x, y 满足1 15x 3 y 3 (x y ) ,则x y的最大值为.4 2【答】3.1 1 1515由x 3 y 3 (x y ) 可得x y x 2 xy y 2 x y ,即( )( ) ( )4 4 222 2 1 15(x y)(x xy y ) . ①4 2令x y k ,注意到 2 2 1 ( )2 3 2 1 0x xy y x y ,故x y k 0 .y4 2 4 4又因为x2 xy y2 1 (x y)2 3xy 1 ,故由①式可得 3 3 1 15k xyk k ,所以4 4 4 2 115k k34 2xy .3k1 15k k34 2于是,x, y 可看作关于t 的一元二次方程t2 kt 0 的两根,所以3k1 15k k34 22 ,( k) 4 03k化简得k3 k 30 0 ,即(k 3)(k2 3k 10) 0,所以0 k 3.故x y 的最大值为3.2018 年初中数学联赛试题参考答案及评分标准第 3 页(共 10 页)3.没有重复数字且不为 5 的倍数的五位数的个数为.【答】21504.显然首位数字不能为 0,末位不能为 0 和 5.当首位数字不为 5 时,则首位只能选 0,5 之外的 8 个数.相应地个位数只能选除 0,5 及万位数之外的 7个数,千位上只能选万位和个位之外的 8 个数,百位上只能选剩下的 7 个数,十位上只能选剩下的 6 个数.所以,此时满足条件的五位数的个数为8787 6 18816个.当首位数字为 5 时,则个位有 8 个数可选,依次千位有 8 个数可选,百位有 7 个数可选, 十位有 6 个数可选.所以,此时满足条件的五位数的个数为887 6 2688个.所以,满足条件的五位数的个数为18816 2688 21504(个).4.已知实数a,b,c满足a b c 0 ,a 2 b 2 c 2 1,则a5 5 5b cabc.5【答】.21 2 2 2 21由已知条件可得ab bc ca a b c a b c ,a 3 b 3 c 3 3abc ,所以[( ) ( )]2 2a 5bc (a 2 b 2 c2 )(a 3 b 3 c3) [a2 (b 3 c3 ) b2 (a 3 c3) c2 (a 3 b3)]5 53abc (a2b2c a2c2b b2c2a) 3abc [a b (a b) a c (a c) b c (b c)]2 2 2 2 2 21 53abc abc(ab bc ca ) 3abc abc abc .2 2所以5ab5abc5c52.第一试(B)一、选择题:(本题满分42 分,每小题7 分)1.满足(x 2 x 1)x 2 1的整数x 的个数为()A.1. B.2. C.3. D.4.【答】C.当x 2 0且x 2 x 1 0时,x 2.当x2 x 1 1时,x 2或x 1.当x2 x 11且x 2为偶数时,x 0.所以,满足条件的整数x 有 3 个.2.已知x1, x2 ,x3 (x1 x2 x3 )为关于x 的方程x3 3x2 (a 2)x a 0 的三个实数根,则4x x x x ()2 2 21 12 3A.5.B.6.C.7.D.8.2018 年初中数学联赛试题参考答案及评分标准第 4 页(共 10 页)【答】A. 方程即 (x1)(x 22x a ) 0 ,它的一个实数根为 1,另外两个实数根之和为 2,其中必有一根小于 1,另一根大于 1,于是 x 2 1, x 1 x 3 2 ,故4x x x x (xx )(xx )4x12(xx ) 4x12 2 2 1123313113112(x x )15 .313.已知点 E , F 分别在正方形 ABCD 的边CD , AD 上,CD 4CE ,EFB FBC ,则tan ABF()A. 12 .B. 35.C. 2 2.D. 3 2.【答】B. 不妨设CD 4,则CE 1,DE 3.设 DF x ,则 AF 4 x , EFx 29 .作 BHEF 于点 H .因为 EFBFBC AFB , BAF 90 BHF , BF 公共,所以△ BAF ≌△ BHF ,所以 BH BA 4.由 S 四边形ABCDSABFSBEF SDEFSBCE 得ADF1 11 14 2 xx 2x, 222 2 4 (4 ) 4 934 18解得 所以x . 512 AF 3 AF4 x, tanABF.5 AB 5BH EC4.方程 3 9 x3 x 的实数根的个数为( )A.0.B.1.C.2.D.3.【答】B. 令 y 9 x ,则 y 0,且 x y 2 9 ,原方程变为 3 y 3 y 2 9 ,解得 y 1或 y 6,从而可得 x 8或 x 27 .检验可知: x 8是增根,舍去; x27 是原方程的实数根.所以,原方程只有 1 个实数根.5.设 a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的 2017 倍都等于 2018,则这样的三元 数组 (a ,b ,c )的个数为()A.4.B.5.C.6.D.7.【答】B.由已知得, a 2017bc 2018,b 2017ac 2018 ,c 2017ab 2018,两两作差,可得(a b)(1 2017c) 0,(b c)(1 2017a) 0,(c a)(1 2017b) 0.2018 年初中数学联赛试题参考答案及评分标准第 5 页(共 10 页)1由(a b )(1 2017c ) 0,可得 a b 或c .20172018(1)当a b c 时,有2017a 2 a 2018 0,解得a 1或a .20171 1a , c 2018 .2017 2017(2)当a b c 时,解得b1 1 1 11 (3)当a b时,c ,此时有:a ,b 2018 ,或a 2018 ,b .2017 2017 2017 2017 2017故这样的三元数组(a,b,c)共有 5 个.6.已知实数a,b 满足a 3 3a 2 5a 1,b 3 3b 2 5b 5,则a b ()A.2.B.3.C.4.D.5.【答】A.有已知条件可得(a 1)3 2(a 1) 2,(b 1)3 2(b 1) 2 ,两式相加得(a 1) 2(a 1) (b 1) 2(b 1) 0 ,3 3因式分解得(a b2)[(a 1)2 (a 1)(b 1) (b1)2 2] 0 .因为1 3(a 2 a b b 2 a b 2 b 2 ,2 41) ( 1)( 1) ( 1) 2 [( 1) ( 1)] ( 1) 2 0所以 a b 2 0,因此 a b 2.二、填空题:(本题满分28 分,每小题7 分)1.已知p,q,r 为素数,且pqr 整除pq qr rp 1,则p q r _______.【答】10.设kpq qr rp 1 1 1 1 1,由题意知k 是正整数,又p,q,r2 ,所以pqr p q r pqr3k ,从2而k 1,即有pq qr rp 1pqr ,于是可知p,q,r 互不相等.当2 p q r 时,pqr pq qr rp 1 3qr ,所以q 3,故q 2 .于是2qr qr 2q 2r,故(q 2)(r 2) 3,所以q 2 1,r 2 3,即q 3,r 5 ,所以,(p,q,r) (2,3,5) . 1再由p,q,r 的对称性知,所有可能的数组( p,q,r)共有6组,即(2,3,5),(2,5,3) ,(3,2,5) ,(3,5,2) ,(5,2,3) ,(5,3,2) .于是p q r 10 .2018 年初中数学联赛试题参考答案及评分标准第 6 页(共 10 页)2.已知两个正整数的和比它们的积小 1000,若其中较大的数是完全平方数,则较小的数为.【答】8.设这两个数为m2 ,n (m 2 n) ,则m 2 n m2n 1000,即(m 2 1)(n 1) 1001.又1001100111437 9111 7713 ,所以(m 2 1,n 1) =(1001, 1) 或(143, 7) 或(91,11) 或(77,13) ,验证可知只有(m 2 1,n 1) (143,7) 满足条件,此时m 2 144,n 8.3 .已知D 是△ABC 内一点,E 是AC 的中点,AB 6 ,BC 10 ,BAD BCD ,EDC ABD ,则DE .F【答】4.1延长CD 至F ,使DF DC ,则DE// AF 且DE AF ,A2AFD EDC ABD ,故A, F, B, D 四点共圆,于是所以DEB CBFD BAD BCD,所以BF BC 10 ,且BD FC ,FAB FDB 90.故1又AB 6,故AF 102 62 8,所以AF 4DE .24.已知二次函数y x 2 2(m 2n 1)x (m 2 4n 2 50) 的图象在x 轴的上方,则满足条件的正整数对(m,n)的个数为.【答】16.因为二次函数的图象在x 轴的上方,所以 [2(m 2n 1)]2 4(m 2 4n 2 50) 0 ,整理得514mn 2m 4n 49 ,即(m n .因为m,n 为正整数,所以(m 1)(2n 1) 25.1)(2 1)225又m 1 2,所以2n ,故n 5.1225 22当n 1时, 1 m ,符合条件的正整数对(m,n)有 8 个;m ,故3 3当n 2 时,m 1 5,故m 4,符合条件的正整数对(m,n)有 4 个;25 18当n 3时, 1m ,故m ,符合条件的正整数对(m,n)有 2 个;7 725 17当n 4 时, 1 m ,符合条件的正整数对(m,n)有 1 个;m ,故9 925 14当n 5时,m 1 ,故m ,符合条件的正整数对(m,n)有 1 个.11 11综合可知:符合条件的正整数对(m,n)有 8+4+2+1+1=16 个.2018 年初中数学联赛试题参考答案及评分标准第 7 页(共 10 页)第二试(A)一、(本题满分20分)设a,b,c,d 为四个不同的实数,若a,b 为方程x 2 10cx 11d 0的根,c,d为方程x 2 10ax 11b 0的根,求a b c d 的值.解由韦达定理得a b 10c ,c d 10a,两式相加得a b c d 10(a c) .……………………5 分因为a 是方程x 2 10cx 11d 0 的根,所以a 2 10ac 11d 0 ,又d 10a c ,所以a 110 11 10 0 . ①……………………10 分2 a c ac类似可得c 2 110c 11a 10ac 0 . ②……………………15 分①-②得(a c)(a c 121) 0.因为a c,所以a c 121,所以a b c d 10(a c ) 1210. ……………………20 分二、(本题满分25 分)如图,在扇形OAB 中,AOB 90,OA 12 ,点C 在OA上,AC 4,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;A(2)求CE 2DE 的最小值.解(1)分别过O, E 作CD 的垂线,垂足为M , N .CE由OD 6,OC 8,得CD 10.所以FMN1S S OCD S ECD CD (OM EN)OD B21 1CD OE 10 12 60,……………………5 分2 2当OE DC 时,S 取得最大值 60.此时,12 68 36EF OE OF . ……………………10 分10 5G (2)延长OB 至点G ,使BG OB 12 ,连结GC,GE .因为O DOEO EOG12 ,DOEEOG,D EEG12,故EG2DE .所以△ODE∽△OEG,所以……………………20 分所以CE 2DE CE EG CG 242 82 8 10 ,当C, E,G 三点共线时等号成立. 故CE 2DE 的最小值为8 10 . ……………………25 分2018 年初中数学联赛试题参考答案及评分标准第 8 页(共 10 页)三、(本题满分25 分)求所有的正整数m,n ,使得m3n 3m2n2(m n)2是非负整数.解记Sm n m n3 3 2 2,则(m n)2S(m n)[(m n ) 3mn ] m n 3mn mn(m n )( ) .2 (m n) 22m n m n因为m,n 为正整数,故可令mnm n qp,p,q 为正整数,且( p,q ) 1.于是S3q q2 3pq q2 (m n ) (m n ).p 2 2p p因为S 为非负整数,所以p | q2 ,又( p,q ) 1,故p 1,即(m n) | mn . ①……………………10 分所以2nmnnmnmn是整数,所以(m n) | n2 ,故n 2 m n ,即n 2 mn .又由S 0,知m 3 n 3 m2n 2 0 . ②所以n 3 m2n 2 m 3 m2 (n 2 m ) m2n,所以n m.由对称性,同理可得m n,故m n. ……………………20 分把m n代入①,得2 | m ,则m 2.把m n代入②,得2m 3 m 4 0,即m 2 .故m 2.所以,满足条件的正整数m,n 为m 2,n 2 . ……………………25 分第二试(B)1 1 1 9一、(本题满分20 分)若实数a,b,c 满足(a b c )( ) ,求a b 5c b c 5a c a 5b 51 1 1(a b c )( )的值.a b c解 记 a b c x , ab bc ca y , abc z ,则( a bc )( a 1 b 5cb1 c 5ac1 ) a 5b x( x 1 6ax 1 6bx 1) 6c3 x 2 x [3x 6( a12( a b c )x b c )x36(ab2 36(ab bc bc ca )xca )] 216abcx (9x 36y ) 2 5x 3 36xy 216z, ……………………10 分2018 年初中数学联赛试题参考答案及评分标准第 9 页(共 10 页)结合已知条件可得x( 9x 36y) 925 3 36 2165x xy z27,整理得xy z .所以21 1 1 xy 27(a b c )( ) . ……………………20 分a b c z 2二、(本题满分25 分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AB AC ,DE DC.(1)证明:AD // BC ;(2)设AC 与DE 交于点P ,如果ACE 30,求DP PE.解(1)由题意知ACB DCE 45,BC 2AC ,EC 2DC ,AD 所以DCA ECB ,AC DC,所以△ADC ∽△BEC ,故DACBC ECEBC 45,所以DAC ACB ,所以AD // BC . EP……………………10 分B C(2)设AE x ,因为ACE 30,可得AC 3x ,CE 2x ,DE DC 2x .1因为EAP CDP 90,EPA CPD ,所以△APE ∽△DPC ,故可得S APE S DPC.2 ……………………15 分3又S EPC APE ACE 2 ,S EPC S DPC S CDE x2 ,于是可得S S x2S DPC ,S EPC ( 3 1)x2 . ……………………20 分(2 3)x2所以DPPESSDPCEPC2 33 1. ……………………25 分3 1 2三、(本题满分25 分)设x 是一个四位数,x 的各位数字之和为m ,x 1的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解设x abcd ,由题设知m 与n 的最大公约数(m,n)为大于 2 的素数.若d 9 ,则n m 1,所以(m,n) 1,矛盾,故d 9. ……………………5 分若c 9 ,则n m 19 m 8 ,故(m,n) (m, 8) ,它不可能是大于 2 的素数,矛盾,故c 9 .……………………10 分若b 9 ,显然a 9 ,所以n m 19 9 9 m 26,故(m,n) (m, 26) 13,但此时可得n ,m n 26 39 36,矛盾. ……………………15 分13若b 9,则n m 19 9 m 17,故(m,n) (m,17) 17,只可能n 17,m 34.……………………20 分于是可得x 8899或9799. ……………………25 分2018 年初中数学联赛试题参考答案及评分标准第 10 页(共 10 页)。

浙教版2018-2019学年七年级数学竞赛试卷A(含答案)

浙教版2018-2019学年七年级数学竞赛试卷A(含答案)

绝密★启用前2018-2019学年浙教版七年级数学竞赛试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共6小题,4*6=24)1.如果=﹣1,则a的取值()A.a<0 B.a≤0C.a≥0D.a>02.当a=,b=时,代数式2a(a+b)﹣(a+b)2的值为()A.﹣1 B.C.2008•2009D.13.下列各图中都有一个正方体及正方体的侧面展开图.若正方体的“着地面”不动,沿着正方体的某些棱剪开并展开后,能与阴影部分重合的图是()A.B.C.D.4.两个有序正整数,和为915,最大公约数为61,这两个数有()种可能.A.4 B.6 C.8 D.145.已知方程|x|=ax+1有一个负根而且没有正根,那么a的取值范围是()A.a>﹣1 B.a=1 C.a≥1D.非上述答案6.有一座3层的楼房失火了,一个消防队员搭了23级的梯子爬到3楼楼顶上去救人,当他爬到梯子正中一级时,二楼的窗口喷出火来,他往下退了2级,等火过去了,他又爬上了6级,这时发现楼顶有一块木头的将要掉下来,他又后退了3级,躲开了这块木头,然后又往上爬了6级,这时他距离楼顶还有()A.3级B.4级C.5级D.6级第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,4*6=24)7.已知x、y、z都是质数,且x≤y≤z,x+y+z=12,xy+yz+xz=41,则x+2y+3z的值为.8.整数11994+91994+81994+61994的奇偶性为(填奇数或偶数).9.一条大河有A、B两个港口,水由A流向B,水流速度是4千米/时,甲、乙两船同时由A向B行驶,各自不停地在A、B之间往返航行.甲在静水中的速度是28千米/时,乙在静水中的速度是20千米/时,已知两船第二次迎面相遇与甲船第二次追上乙船(不算开始时甲、乙在A处的那一次)的地点相距40千米,则A、B两港口的距离为千米.10.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=.11.若正整数n恰好有4个正约数,则称n为奇异数,例如6、8、10都是奇异数,那么在27、42、69、111、125、137、343、899、3599、7999这10个正整数中奇异数有个.12.假设一家旅馆共有30个房间,分别编以号码l~30,现在要在每个房间的钥匙标上数字,为保密起见,要求数字用密码法,使服务员容易识别,而使局外人不易猜到、现在要求密码用两位数,左边的一个数字是原房号除以5所得的余数,右边的一个数字是原房号除以7所得的余数.那么标有36的钥匙所对应的原房号是号.评卷人得分三.解答题(共5小题,52分)13.(10分)已知非负实数x,y,z满足,记W=3x+4y+5z.求W的最大值与最小值.14.(10分)有三堆石子的个数分别为20、10、12,现进行如下操作:每次从三堆的任意两堆中分别取出1粒石子,然后把这2粒石子都加到另一堆上去.问:能否经过若干次这样的操作,使得(1)三堆石子的石子数分别为4、14、24;(2)三堆石子的石子数均为14.如能满足要求,请用最少的操作次数完成;如不能满足,请说明理由.15.(10分)妈妈给小敏101元钱买花装饰圣诞树.花店的花成束出售,规格与价格如表所示.为了使买到的花朵最多,请你给小敏提建议:每种规格的花买几束?为什么?(要写推理过程)规格A B C每束花的朵数20 35 50价格(元/束) 4 6 716.(10分)某市内轻轨从A地到B地途经8个站,火车有普快和直快两种.直快的车速是普快车速的1.2倍.普快在中间某一站停6分钟,其余站各停3分钟,当直快赶上普快时,普快需给直快让道5分钟,直快中间不停车.假设普快从A地发出40分钟后,直快也从A地发出.在以下两种情况下,分别求出直快从起点到终点所需要的时间:(Ⅰ)若两车同时到达终点;(Ⅱ)若直快较普快提前14分钟到达终点.17.(12分)有一个八位数,它的前五位数字组成的五位数与后三位数组成的三位数的和等于20436,而它的前三位数组成的三位数与后的和五位数字组成的五位数等于30606,求这个八位数.参考答案1.解:∵a为分母,∴a≠0,∴当a>0时,=1;当a<0时,==﹣1.故选:A.2.解:原式=2a2+2ab﹣a2﹣2ab﹣b2=a2﹣b2,当a=,b=时,原式=2009﹣2008=1.故选:D.3.解:由原正方体知,带图案的面展开后A、C、D都不符合,所以能得到的图形是B.故选:B.4.解:设两数为a,b,则a+b=915,(a,b)=61,设a=61x,b=61y,由1≤x≤14,1≤y≤14,(x,y)=1,x+y=15,得(x,y)=(1,14)(14,1)(2,13)(13,2)(4,11)(11,4)(7,8)(8,7)共8组.故选:C.5.解:如图,令y=|x|和y=ax+1,而函数y=ax+1必过点(0,1),∵方程|x|=ax+1有一个负根而且没有正根,∴直线y=ax+1与函数y=|x|在第二象限只有交点,∴a≥1,故选:C.6.解:根据题意得:(23+1)÷2﹣2+6﹣3+6=12﹣2+6﹣3+6=19,23﹣19=4(级),则这时他距离楼顶还有4级.故选:B.7.解:必有一个质数为2(所以先令其中任意一个未知数为2),令z=2,x+y+2=12,x+y=10,xy+2y+2x=41,xy+2(x+y)=41,xy+20=41,xy=21,x、y分别为3和7.因为无论x、y、z哪一值是2、3、7,前面的式子都成立,所以有六组解.x+2y+3z=3+14+6=23,或=3+4+21=28,或=2+6+21=29,或=2+14+9=25,或=7+4+9=20,或=7+6+6=19.∵x≤y≤z,∴x+2y+3z=2+6+21=29.故答案为29.8.解:∵9n的个位数字为9,1,9,1…,即2次一循环,∵1994÷2=997,∴91994的个位数字为1,∵8n的个位数字为8,4,2,6,8,4,2,6…,即4次一循环,∵1994÷4=498…2,∴81994的个位数字为4,∵6n的个位数字为6,1n的个位数字为1,∴11994+91994+81994+61994的个位数字为2.∴整数11994+91994+81994+61994是偶数.故答案为:偶数.9.解:设A、B两个港口的距离为d,甲顺水速度:28+4=32千米/时,甲逆水速度:28﹣4=24千米/时,乙顺水速度:20+4=24千米/时,乙逆水速度:20﹣4=16千米/时,第二次相遇地点:从A到B:甲速:乙速=32:24=4:3,甲到B,乙到E;甲从B到A,速度24,甲速:乙速=24:24=1:1,甲、乙在EB的中点F点第一次相遇;乙到B时,甲到E,这时甲速:乙速=24:16=3:2,甲到A点时,乙到C点;甲又从A顺水,这时甲速:乙速=32:16=2:1,所以甲、乙第二次相遇地点是AC处的点H,AH=×AB=AB=d,第二次追上地点:甲比乙多行1来回时第一次追上,多行2来回时第二次追上.甲行一个来回2AB时间+=d乙行一个来回2AB时间+=,一个来回甲比乙少用时间:﹣=,甲多行2来回的时间是:×2=,说明乙第二次被追上时行的来回数是:=4,甲第二次追上乙时,乙在第5个来回中,甲在第7个来回中.甲行6个来回时间是×6=,乙行4个来回时间是×4=,﹣=,从A到B甲少用时间:﹣=,说明第二次追上是在乙行到第五个来回的返回途中.﹣=,从B到A,甲比乙少用时间:﹣=,=,追上地点是从B到A的中点C处.根据题中条件,HC=40(千米),即=40,解得d=240千米.故答案为:240.10.解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.11.解:易得奇异数有两类:第一类是质数的立方p3(p是质数),第二类是两个不同质数的乘积p1p2(p1,p2为不同的质数).∴27=3×3×3=33,是奇异数(第一类);42=2×3×7不是奇异数;69=3×23是奇异数(第二类),111=3×37是奇异数(第二类),125=53是奇异数(第一类),137是质数,不是奇异数,343=73是奇异数(第一类),899=900﹣1=(30﹣1)(30+1)=29×31是奇异数(第二类),3599=3600﹣1=(60﹣1)(60+1)=59×61是奇异数(第二类),7999=8000﹣1=203﹣1=(20﹣1)(202+20+1)=19×421是奇异数(第二类).因此符合条件的奇异数有:27,69,111,125,343,899,3599,7999共8个.故答案为:8.12.解:设所求原房间号为x,则x除以5余数为3,x除以7余数为6,由第二个条件知x只能为6,13,20,27,其中只有13符合第一个条件,故x=13.故答案为:13.13.解:设=k,则x=2k+1,y=﹣3k+2,z=4k+3,∵x,y,z均为非负实数,∴,解得﹣≤k≤,于是W=3x+4y+5z=3(2k+1)﹣4(3k﹣2)+5(4k+3)=14k+26,∴﹣×14+26≤14k+26≤×14+26,即≤W≤.∴W的最大值是35,最小值是.14.解:设20个为A堆,10个为B堆,12个为C堆,(1)为达到用最少的操作次数完成,并且满足从两堆中取出,考虑思路是有两组石子的数目要降低,∴因此需以如下方式调配石子:X=10﹣﹣>A=4 降6,Y=20﹣﹣>B=14 降6,Z=12﹣﹣>C=24 升12,∴需要6次,(2)不能满足,∵为达到三堆石子的石子数均为14,三堆石子需分别满足降6,升4,升2,意味着有两堆石子的数目要升高,这与题目不符,∴不满足.15.解:设A,B,C三种规格的花依次买a,b,c束,则4a+6b+7c=101因为4a,6b为偶数,101为奇数,从而7c为奇数,所以c为奇数.又∵A,B,C三种规格的花平均每元钱可依次买=5朵,≈6朵,≈7朵花,∴为了使买到的花朵最多,应尽可能地多买规格C的花.…10′由于=14.4…,所以c≤14又∵c为奇数,从而c=13,11,9,…15′当c=13时,4a+6b=101﹣7×13=10,从而2a+3b=5.所以a=1,b=1.答:买A,B,C三种规格的花依次为1,1,13束时,这时花朵最多,共有20×1+35×1+50×13=705(朵).…20′16.解:(Ⅰ)设A地与B地相距x千米,普快速度为y(千米/分),则特快的速度为1.2y千米,由题意,得则+27=40+,解得=78(分),因此直快从起点到终点所需时间为=65分钟(Ⅱ)设A地与B地相距x千米,普快速度为y(千米/分),则特快的速度为1.2y千米,由题意,得+27+5=40++14解得=132(分)因此直快从起点到终点所需时间为=110分钟17.解:设这个八位数为x×100000+y×1000+z其中,x,z为三位数,y为两位数.依题意,x×100+y+z=20436;x+1000y+z=30606;易见x<204,y≤30 (1)又x(1﹣100)+y(1000﹣1)=10170﹣11x+111y=1130取x=89+111t(t>=1,因为x为三位数)此时y===19+11t,前面已得x<204,y≤30 (1)故取x=200,y=30 代入,得:z=406故这个八位数是:20030406.。

2018年全国初中数学联赛试题参考答案和评分标准 精品

2018年全国初中数学联赛试题参考答案和评分标准 精品

2018年全国初中数学联赛试题参考答案和评分标准精品2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。

第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分。

如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。

第一试一、选择题:(本题满分42分,每小题7分)1.已知$a=1+\frac{1}{2+1}$,$b=3-2$,$c=6-2$,那么$a,b,c$的大小关系是()A。

$a<b<c$B。

$a<c<b$XXX<a<c$D。

$b<c<a$答】C.因为 $\frac{1}{2+1}=\frac{1}{3}$,所以$a=1+\frac{1}{3}=\frac{4}{3}$,$b=1$,$c=4$。

因为 $\frac{1}{3}<1$,所以$a<\frac{4}{3}+1=\frac{7}{3}<c$,所以 $b<a<c$。

2.方程$x^2+2xy+3y^2=34$的整数解$(x,y)$的组数为()A。

3B。

4C。

5D。

6答】B.方程即$(x+y)^2+2y^2=34$,显然$x+y$必须是偶数,所以可设$x+y=2t$,则原方程变为$2t^2+y^2=17$。

因为$2t^2\leq 16$,所以$t=\pm 2$,从而可求得原方程的整数解为$(x,y)=(-7,3),(1,3),(7,-3),(-1,-3)$,共4组。

3.已知正方形ABCD的边长为1,E为BC边的延长线上一点,$CE=1$,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为()A。

$\frac{65}{26}$B。

$\frac{3}{3}$C。

$\frac{2}{5}$D。

$\frac{9}{4}$答】D.过点C作$CP\parallel BG$,交DE于点P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C A 2018年全国初中数学竞赛(浙江赛区)初赛试题
答题时注意:1、用圆珠笔或钢笔作答。

2、解答书写时不要超过装订线。

3、草稿纸不上交
一、选择题(共8小题,每小题5分,满分40分。

以下每小题均给出了代号为A ,B ,C ,
D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里。

不填、多填或错填均得零分)
1、 要使方程组⎩⎨⎧=+=+2
3223y x a
y x 的解是一对异号的数,则a 的取值范围是( )
(A )
334<<a (B )34<a (C )3>a (D)33
4
><a a 或 2、 一块含0
30角的直角三角板(如图),它的斜边AB=8cm ,的各边与ABC ∆的对应边平行,且各对应边的距离都是1cm DEF ∆的周长是( )
(A )5cm (B)6cm (C)()36-cm (D)()
33+cm
3、 将长为15dm 的木棒截成长度为整数的三段,使它们构成一个三
角形的三边,则不同的截法有( )
(A)5种 (B )6种 (C )7种 (D )8种
4、 作抛物线A 关于x 轴对称的抛物线B ,再将抛物线B 向左平移2个单位,向上平
移1个单位,得到的抛物线C 的函数解析式是()1122
-+=x y ,则抛物线A 所
对应的函数表达式是( )
(A )()2322
-+-=x y (B )()2322
++-=x y
(C )()2122
---=x y (D )()2122
+--=x y
M G
F
E
D C
B A 5、 书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,
恰好组成一套教材的概率是( ) (A )
32 (B )31 (C )21 (D )6
1
6、 如图,一枚棋子放在七边形ABCDEFG 的顶点A 处,现顺
时针方向移动这枚棋子10次,移动规则是:第k 次依次移动k 个顶点。

如第一次移动1个顶点,棋子停在顶点B 处,第二次移动2个顶点,棋子停在顶点D 处。

依这样的规则,在这10次移动的过程中,棋子不可能停到的顶点是( (A )C ,E ,F (B )C ,E ,G (C )C ,E (D )E ,F
7、 一元二次方程)0(02≠=++a c bx ax 中,若a,b 都是偶数,c 是奇数,则这个方程( )
(A)有整数根 (B )没有整数根 (C )没有有理数根 (D )没有实数根 8、 如图所示的阴影部分由方格纸上3个小方格组成,我们称这
样的图案为L 形,那么54⨯在由个小方格组成的方格纸上可以画出不同位置的L 形图案个数是( ) (A)16 (B)32 (C)48 (D)64
二、填空题(共6小题,每小题5分,满分30分)
9、已知直角三角形的两直角边长分别为3cm 和4cm ,那么以两直角
边为直径的两圆公共弦的长为 cm
10、将一组数据按由小到大(或由大到小)的顺序排列,处于最中间位置的数(当数据的个数是奇数时),或最中间两个数据的平均数(当数据的个数是偶数时)叫做这组数据的中位数。

现有一组数据共有100个数,其中有15个数中位数和平均数之间,如果这组数据的中位数和平均数都不在这100个数中,那么这组数据中小于平均数的数据占这100个数据的百分比是 11、ABC ∆中,a,b,c 分别是C B A ∠∠∠、、的对边。

已知23,10+==b a ,
23-=c ,则bsinB+csinC 的值等于
12、设直线y=kx+k-1和直线y=(k+1)x+k (k 是正整数)及x 轴围成的三角形面积为k S 则
2006321S S S S ++++ 的值是
13、如图,正方形ABCD 和正方形CGEF 的边长分别是2和3,且点B ,C ,
G 在同一直线上,M 是线段AE 的中点,连结MF ,则MF 的长为
14、边长为整数的等腰三角形一腰上的中线将其周长分为1:2的两部分,那么所有这些等腰三角形中,面积最小的三角形的面积是
三、解答题(共4题,分值依次为12分、12分、12分、14分,满分50分) 15、已知a,b,c 都是整数,且a-2b=4,012
=-+c ab ,求a+b+c 的值。

16、做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A ,B 两种款式的服装合计30件,并且每售出一件A 款式和B 款式服装,甲店铺获毛利润分别为30元和40元,乙店铺获毛利润分别为27元和36元。

某日王老板进货A 款式服装35件,B 款式服装25件。

怎样分配给每个店铺各30件服装,使得在保证乙店铺获毛利润不小于950元的前提下,王老板获取的总毛利润最大?最大的总毛利润是多少?
A n-1A 317、如图所示,⊙O 沿着凸n 边形n n A A A A A 1321 的外侧(圆和边相切)作无滑动的滚动一周回到原来的位置。

(1)⊙O 当和凸n 边形的周长相等时,证明⊙O 自身转动了两圈。

(2)当⊙O 的周长是a ,凸n 边形的周长是b 时,请写出此时⊙O 自身转动的圈数。

18、已知二次函数()1122+-++=m x m x y (1)随着m 的变化,该二次函数图象的顶点P 是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由。

(2)如果直线y=x+1经过二次函数()1122+-++=m x m x y 图象的顶点P ,求此时m 的值。

相关文档
最新文档