2.2.1综合法与分析法_图文.ppt

合集下载

2.2.1综合法与分析法

2.2.1综合法与分析法

∴ b(c2+a2) ≥ 2abc. ∴ a(b2+c2)+b(c2+a2) ≥ 4abc.
探究
思考…
这些证明过程有什么相似点?
这些证明过程都是从已知 条件和某些数学定义、公理、 定理等出发,通过推理推导出 所要的结论.
知识要 点
一般地,利用已知条件和某 些数学定义、公理、定理等,经过 一系列的推理论证,最后推导出所 要证明的结论成立,这种证明方法 叫做综合法.其特点是“由因导 果”.
2
2
2
2
2
a + c - ac = ac,
即 因此 从而
2
2
(a - c) = 0.
a=c.
A=C. ⑤
2
由 ② ③ ⑤ ,得
π A=B=C= . 3 所以△ABC为等边三角形.
注意
解决数学问题时,往往要先做语言的转 换,如把文字语言转换成符号语言,或把符 号语言转换成图形语言等.还要通过细致的分 析,把其中的隐含条件明确表示出来.
1 1 1 = + + . a b c
1 1 1 a + b + c < + + 成立. a b c
2.如图,SA⊥平面ABC,AB⊥BC,过A作SB的 垂线,垂足为E,过E作SC的垂线,垂足为F,求 证 AF⊥SC.
S
提示
此题采用分析法.
A
E
F
C B
证明:要证AF⊥SC 只需证:SC⊥平面AEF S 只需证:AE⊥SC 只需证:AE⊥平面SBC 只需证:AE⊥BC 只需证:BC⊥平面SAB A 只需证:BC⊥SA 只需证:SA⊥平面ABC 因为:SA⊥平面ABC成立 所以. AF⊥SC成立

2.2.1《综合法和分析法》区教研课课件

2.2.1《综合法和分析法》区教研课课件
2
充分条件
思考6:上述证明方法叫做分析法. 一般 地,分析法的基本含义是什么? 从所证结论出发,逐步寻求使它成立的 充分条件,直到归结为判定一个显然成 立的条件(已知条件、定义、公理、定 理、性质、法则等)为止.
分析法又叫“逆推证法”或“执果索因法”, 其基本思想是:由未知探需知,逐步推向 已知.
2
2
2
2
4abc
其左右两边的结构有什么特点? 右边是3个数a,b,c的乘积的4倍,左边 为两项之和,其中每一项都是一个数与 另两个数的平方和之积.
思考2:利用哪个知识点可以沟通两个数 的平方和与这两个数的积的不等关系?
基本不等式 x + y
2 2
2xy
思考3:若已知a>0,b>0,如何利用不 等式性质证明
证明过程中我们要善于观察变形,合理利用已 知条件、定理、公式,把文字语言转化为符号 语言或者图形语言,由因导果!
探究(二):分析法
回顾基本不等式: a + b 2 (a>0,b>0)的证明.
ab 证明 : 要证 2 ab ,
ab
只需证
a b 2 ab
只需证
只需证
a+b-2 ab 0
例1.已知 a, b, c 是不全相等的正数 bc a c a b a b c 求证: 3 a b c
(综合法)
R ∵a,b,c ,
符号语言
b a c a c b 与 , 与 , 与 均为正实数且不能同时相等, a b a c b c b a c a c b 2, + 2 , + 2 , 由重要不等式得: + a b a c b c
2.2直接证明与间接证明
2.2.1 综合法和分析法(1)

2.2.1综合法和分析法

2.2.1综合法和分析法
复习:
推理
合情推理 演绎推理
三段论 (一般到特殊)
(特殊到一般)
归纳
类比 (特殊到特殊)
演绎推理是证明数学结论、建立数学体系的重 要思维过程. 数学结论、证明思路的发现,主要靠合情推理.
2.2直证明与间接证明
2.2.1综合法和分析法
直接证明(问题情境)
如图,四边形ABCD是平行四边形
求证:AB=CD,BC=DA
P P1 P1 P2 …
Pn-1 Pn Qm
… Q Q1
2
Q1
Q
练一练:
1 tan a 已知 1, 求证:3sin 2a 4cos 2a 2 tan a
说明:本题可以单独使用综合法或者分析法进行证明, 但把综合法和分析法结合使用进行证明的思路更清晰.
小结:
分析法和综合法是思维方向相反的两种思考方 法。在数学解题中,分析法是从数学题的待证 结论或需求问题出发,一步一步地探索下去, 最后达到题设的已知条件。综合法则是从数学 题的已知条件出发,经过逐步的逻辑推理,最 后达到待证结论或需求问题。对于解答证明来 说,分析法表现为执果索因,综合法表现为由 因导果,它们是寻求解题思路的两种基本思考 方法,应用十分广泛。
A B . 2

一般地,从要证明的结论出发,逐步寻求推 证过程中,使每一步结论成立的充分条件,直 至最后,把要证明的结论归结为判定一个明显 成立的条件(已知条件、定理、定义、公理等) 为止,这种证明的方法叫做分析法.
特点: 执果索因 用框图表示分析法的思考过程、特点.
Q P1
得到一个明显 成立的结论
由于上式与③相同,于是问题得证.
点评:在解决问题时,我们经常把综合法和分析
法结合起来使用:根据条件结构特点去转化结论,得 到中间结论Q;根据结论的结构特点去转化条件,得 到中间结论P,若P可以推出Q,就可以证明结论成立 用P表示已知条件,定义,定理,公理等,用Q表 示要证的结论,则上述过程可用框图表示为:

第二章2.2.1(一)综合法和分析法(一

第二章2.2.1(一)综合法和分析法(一

§2.2 直接证明与间接证明 2.2.1 综合法和分析法(一)课时目标 1.了解直接证明的两种基本方法——分析法和综合法.2.理解分析法和综合法的思考过程、特点,会用分析法和综合法证明数学问题.综合法分析法定义利用__________和某些数学______、______、______等,经过一系列的____________,最后推导出所要证明的结论成立,这种证明方法叫做综合法从要证明的______,逐步寻求使它成立的____________,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、______、______、______等),这种证明方法叫做分析法框图表示 P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q (P 表示________、已 有的______、______、 ______等,Q 表示 ________________) Q ⇐P 1→P 1⇐P 2→ P 2⇐P 3→…→ 得到一个明显成立的条件特点顺推证法或由因导果法逆推证法或执果索因法一、选择题1.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值54B .最小值54C .最大值1D .最小值12.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证法3.如果x >0,y >0,x +y +xy =2,则x +y 的最小值是( )A .32B .23-2C .1+ 3D .2- 34.要证明a +a +7<a +3+a +4 (a ≥0)可选择的方法有多种,其中最合理的是( )A .综合法B .类比法C .分析法D .归纳法5.已知实数a ,b ,c 满足a +b +c =0,abc >0,则1a +1b +1c的值( )A .一定是正数B .一定是负数C .可能是零D .正、负不能确定二、填空题6.设a =3+22,b =2+7,则a 、b 的大小关系为________.7.已知a 、b 、u ∈R *,且1a +9b=1,则使得a +b ≥u 恒成立的u 的取值范围是__________.8.设a =2,b =7-3,c =6-2,则a ,b ,c 的大小关系为__________.三、解答题9.已知a >0,b >0,求证:b 2a +a 2b≥a +b .10.已知a ,b ,c ,d ∈R ,求证:ac +bd ≤(a 2+b 2)(c 2+d 2).能力提升11.a >b >c ,n ∈N *,且1a -b +1b -c ≥na -c恒成立,则n 的最大值为________.12.已知a >0,b >0,用两种方法证明:a b +ba≥a +b .1.运用综合法解题时,要保证前提条件正确,推理要合乎逻辑规律,只有这样才能保证结论的正确性.2.在分析法证明中,从结论出发的每一个步骤所得到的判断都是使结论成立的充分条件.最后一步归结到已被证明了的事实.因此,从最后一步可以倒推回去,直到结论,但这个倒推过程可以省略.§2.2 直接证明与间接证明 2.2.1 综合法和分析法(一)答案综合法 分析法定利用已知条件和某些数学定义、定理、从要证明的结论,逐步寻求使它成立的充分条1.D [f (x )=x -22+12(x -2)∵x -2≥12,∴f (x )≥2·x -22×12(x -2)=1.当x =3时,f (x )min =1.]2.B [从证明的过程来看是从已知条件入手经过推导得到结论,符合综合法.] 3.B [由x >0,y >0,x +y +xy =2,则2-(x +y )=xy ≤⎝⎛⎭⎫x +y 22, ∴(x +y )2+4(x +y )-8≥0,∴x +y ≥23-2或x +y ≤-2-2 3.∵x >0,y >0,∴x +y 的最小值为23-2.] 4.C [要证a +a +7<a +3+a +4, 只要证a +a +7+2a (a +7) <a +3+a +4+2(a +3)(a +4), 只要证a 2+7a <a 2+7a +12, 只要证a 2+7a <a 2+7a +12, 只要证0<12.由此可知,最合理的是分析法.]5.B [∵a +b +c =0,∴(a +b +c )2=0, ∴a 2+b 2+c 2+2(ab +bc +ac )=0,∴ab +bc +ac =-12(a 2+b 2+c 2)<0.又abc >0,∴1a +1b +1c =ab +bc +acabc<0.]6.a <b解析 a =3+22,b =2+7两式的两边分别平方,可得a 2=11+46,b 2=11+47,明显6<7,故a <b .7.(-∞,16]解析 ∵a +b =(a +b )⎝⎛⎭⎫1a +9b=10+b a +9a b ≥10+2b a ×9a b =16,当且仅当b a =9ab即3a =b 时取等号,若a +b ≥u 恒成立,则u ≤16. 8.a >c >b解析 b =47+3,c =46+2,显然b <c . 而a 2=2,c 2=8-212=8-48 <8-36=2=a 2, ∴a >c .9.证明 ∵b 2a +a 2b =a 3+b3ab=(a +b )(a 2-ab +b 2)ab,又∵a >0,b >0,∴a 2-ab +b 2-ab =(a -b )2≥0,∴a 2-ab +b 2≥ab ,∴a 2-ab +b 2ab≥1,∴(a +b )·a 2-ab +b 2ab≥a +b .∴b 2a +a 2b≥a +b . 10.证明 ①当ac +bd ≤0时,显然成立. ②当ac +bd >0时,欲证原不等式成立, 只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2).即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2. 即证2abcd ≤b 2c 2+a 2d 2. 即证0≤(bc -ad )2.因为a ,b ,c ,d ∈R ,所以上式恒成立. 故原不等式成立,综合①、②知,命题得证. 11.4解析 ∵a >b >c ,∴a -b >0,b -c >0,a -c >0.若1a -b +1b -c ≥n a -c 恒成立, 即a -c a -b +a -c b -c≥n 恒成立. a -c a -b +a -c b -c =a -b +b -c a -b +a -b +b -cb -c =2+b -c a -b +a -b b -c ≥2+2b -c a -b ·a -b b -c =4.∴当且仅当a -b =b -c 时取等号. ∴n 的最大值为4.12.证明 方法一 (综合法): 因为a >0,b >0,所以a b +ba -a -b=⎝⎛⎭⎫a b -b +⎝⎛⎭⎫ba -a =a -b b +b -aa=(a -b )⎝⎛⎭⎫1b -1a=(a -b )2(a +b )ab ≥0,所以a b +ba≥a +b .方法二(分析法):要证ab+ba≥a+b,只需证a a+b b≥a b+b a,即证(a-b)(a-b)≥0,因为a>0,b>0,a-b与a-b同号,所以(a-b)(a-b)≥0成立,所以ab+ba≥a+b成立.。

高二数学人教A版选修1-2课件:2.2.1《 综合法与分析法》

高二数学人教A版选修1-2课件:2.2.1《 综合法与分析法》

只需证11- +ccssooiinnss2222xxxx=211-+cscsoioinsns2222yyyy,
即证ccooss22xx- +ssiinn22xx=2(ccooss22yy-+ssiinn22yy),
栏 目
即证 cos2x-sin2x=12(cos2y-sin2y),
链 接
∵BB1∩AB=B,∴CB⊥平面AA1B1B.
又∵AB1⊂平面AA1B1B,∴CB⊥AB1.
∵四边形A1ABB1为菱形,
∴AB1⊥A1B.

∵CB∩A1B=B,
目 链
∴AB1⊥平面A1BC.

(2) 若
x,y≠kπ

π 2
(k∈Z)









1-tan2x 1+tan2x

1-tan2y 2(1+tan2y).
证明:(1)∵ sin θ与 cos θ的等差中项是 sin x,等比中项是 sin
y,
∴ sin θ+cos θ=2sin x,①
sin θcos θ=sin2y,②
①2-②×2,可得
栏 目
(sin θ+cos θ)2-2sin θcos θ=4sin2x-2sin2y,

即 4sin2x-2sin2y=1.

∴ 4×1-c2os 2x-2×1-c2os 2y=1,
即 2-2cos 2x-(1-cos 2y)=1.
故证得 2cos 2x=cos 2y.
(2)要证11+ -ttaann22xx=2(11-+ttaann22yy),
只需证 cos 2x=21cos 2y.
由(1)的结论可知,cos 2x=12cos 2y 显然成立.

综合法和分析法 课件

综合法和分析法    课件
综合法与分析法
1.综合法和分析法是数学中常用的两种直接证明方 法,也是不等式证明中的基本方法.由于两者在证明思路 上存在着明显的互逆性,这里将其放在一起加以认识、学 习,以便于对比研究两种思路方法的特点.
2.所谓综合法,即从已知条件出发,根据不等式的 性质或已知的不等式,逐步推导出要证的不等式.综合法 是“由因及果”.
分析:注意不等式左、右两端的差异,思考 如何脱去左端根号或如何去掉右端的分母
a= b1c<121b+1c,而1a=bc.
证明:法一:因为 a,b,c 是不等正数,且 abc=1,
所以 a+ b+ c=
b1c+
a1c+
1 ab
<121b+1c+121a+1c+121a+1b=1a+1b+1c.
法二:a,b,c 是不等正数,且 abc=1,
设 x,y∈(0,+∞).求证: 12(x+y)2+14(x+y)≥x y+y x.
证明:原不等式⇔2(x+y)2+(x+y)≥4x y+4y x ⇔(x+y)[2(x+y)+1]≥2 xy(2 x+2 y). ∵x+y≥2 xy>0, ∴只需证 2(x+y)+1≥2 x+2 y. 即证(x+14)+(y+14)≥ x+ y.
2
只需证 2ab+ma+b < c , 即证 1+2abm+2m-aab+b<1+mc , 只需证 m2c-abc<2mab+m2(a+b)成立, 只需证 m2[c-(a+b)]<ab(2m+c)成立, ∵a,b,c 分别是△ABC 的三边长,∴a+b>c. 即 c-(a+b)<0,而 m2>0, ∴m2[c-(a+b)]<0. 而 ab(2m+c)>0, ∴m2[c-(a+b)]<ab(2m+c)成立. ∴原不等式成立.
(当且仅当 a=b=c=13时,等式成立)

人教版数学高二-新课标 《综合法和分析法》 精品课件

人教版数学高二-新课标 《综合法和分析法》 精品课件

• 要证上式成立,可证三括号中式子都不 为负(这一条件对保证上述结论成立是充 分的,但它并不必要),注意到a2+b2- 2ab=(a-b)2≥0,b2+c2-2bc=(b-c)2≥0,
c2+a2-2ca=(c-a)2≥0,故结论为真.
• 欲证①式右部分,只需证a2+b2+c2- 2ab-2bc-2ca<0,即要证(a2-ab-ac) +(b2-bc-ba)+(c2-ca-cb)<0.
• 自我校对:①直接从原命题的条件逐步 推得命题成立的证明方法 ②综合法 ③分析法 ④从已知条件出发,以已知 的定义、公理、定理为依据,逐步下推, 直到推出要证明的结论为止的证明方法 ⑤从问题的结论出发,追溯导致结论成 立的条件,逐步上溯,直到使结论成立 的条件和已知条件或已知事物吻合为止 的证明方法 ⑥由因索果 ⑦已知条件 ⑧结论 ⑨执果索因 ⑩结论 ⑪已知 条件 ⑫三段论式-1-
-1-
[解] 要证:logn(n+1)>logn+1(n+2), 即证 logn(n+1)-logn+1(n+2)>0(*) ∵logn(n+1)-logn+1(n+2)=log1n+1n-logn+1(n+2) =1-logn+1n·logn+1(n+2),
logn+1n ∵n>1,logn+1n>0 且 logn+1(n+2)>0. ∴logn+1n·logn+1(n+2)<14[logn+1n+logn+1(n+2)]2 =14log2n+1[n(n+2)]=14logn2+1(n2+2n)<14[logn+1(n+1)2]2 =1
-1-
[证明] 要证(a+b)-1+(b+c)-1 =3(a+b+c)-1 成立, 即证a+1 b+b+1 c=a+3b+c成立, 只需证a+a+b+b c+ab+++cc=3, 即a+c b+b+a c=1 成立, 即需证 c(b+c)+(a+b)a=(a+b)(b+c), 即 c2+a2=b2+ac 成立.

2.2.1综合法与分析法

2.2.1综合法与分析法

证法1:对于正数a,b, 有
( a
2 b ) ≥0
证法2:要证 ab ≤ a b 2 只要证 2 ab ≤ a b 只要证 0 ≤ a 2 ab b
2 0 ≤ ( a b ) 只要证
a b 2 ab ≥ 0 a b ≥ 2 ab ab ≥ 2 ab
只需证a

a b b b a a b 0
a ( a b ) b( a b ) ( a b )( a b ) 2 0
a b b 2 a , a 2 b 所以 b a
当且仅当a=b时取等号
当且仅当 a=b 成立 所以
a b a b成立 b a
(a+b)(a2 ab b2 ) ab(a b)
即 a3 b3 a2b ab2 , 所以命题得证.
(变式练习)
1 1. 若a 0, b 0, 求证:a b 2 2. ab
ab 2. 若 a 1, b 1, 求证: 1. 1 ab
直接证明
1 概念 直接从原命题的条件逐步推得命题成立 2 直接证明的一般形式:
本题条件 已知定义 本题结论 已知公理 已知定理
引例一:证明不等式: x2 2 2 x( x R) 证法1:由 x2 2 2 x ( x 1)2 1 1 0 x2 2 2 x 2 ( x 1) 0 ( x 1)2 1 1 0 证法2:由
分析:由A,B,C成等差数列可得什么?
由a,b,C成等比数列可得什么?
怎样把边,角联系起来? 点评:解决数学问题
文字语言
时,学会语言转换; 还要细致,找出隐含 条件。
图形语言

2.2.1综合法和分析法

2.2.1综合法和分析法





分析法 又叫逆推证法或执果索 . , 因法
用Q表示要证明的结论 则分析法可用框图表示 : , 为
Q P1
P1 P2
P2 P3

得到一个明显 成立的条件
例 2 如图 2.2 1 所示 , SA 平面ABC, AB BC, 过A作SB 的垂线, 垂足为E , 过E作SC的 垂线, 垂足为F.求证 AF SC.
a,b, c成等比数列转化为符号语言就是 ac. , b 此时,如果能把角和边统一起 ,那么就可以进一 来 步寻找角和边之间的关 , 进而判断三角形的形 系 状, 余弦定理正好满足要求 .于是,可以用余弦定理 为工具进行证明 .
2
证明 由A,B, C成等差数列有2B A C. , 因为A,B, C为ΔABC的内角 所以A B C π. , π 由 ① ②, 得B . 3 2 由a,b, c成等比数列有b ac. ,


1 即证 cos α sin α cos2 β sin2 β , 2 1 2 即证1 2 sin α 1 2 sin2 β , 2 即证4 sin2 α 2 sin2 β 1.
2 2




由于上式与③ 相同,于是问题得证.
用P表示已知条件定义、定 理、公理 等 , 用Q 表示要证明的结论 则上述过 , 程可用框图表示为:
π 例3 已知α, β kπ k Z , 且 2 sin θ cos θ 2 sin α , ① sin θ cos θ sin β ,
2 2 2

1 tan α 1 tan β 求证 : . 2 2 1 tan α 2 1 tan β

高中数学2.2.1 综合法和分析法

高中数学2.2.1 综合法和分析法

-16-
2.2.1 综合法与分析法
探究一
探究二
探究三
课前篇自主预习 课课堂堂篇篇探探究究学学习习 规范解答 当堂检测
综合法与分析法的综合应用 例3已知a、b、c是不全相等的正数,且0<x<1.
求证:logx������+2������+logx������+2 ������+logx������+2 ������<logxa+logxb+logxc. 分析:解答本题的关键是利用对数运算法则和对数函数性质将题 目转化成整式不等式证明.
①综合法的特点是从“已知”看“未知”,其逐步推理实际上是寻找
已知条件的必要条件.
②综合法从命题的条件出发,利用定义、公理、定理和运算法则,
通过演绎推理,一步一步完成命题的证明.
-3-
2.2.1 综合法与分析法
课前篇自主预习 课堂篇探究学习
【做一做 1】 命题“求证:tan θ+ta1n������ = sin22������”的证明过程“tan
-17-
2.2.1 综合法与分析法
课前篇自主预习 课课堂堂篇篇探探究究学学习习
探究一
探究二
探究三
规范解答 当堂检测
解:要证明 logx������+2������+logx������+2 ������+logx������+2 ������<logxa+logxb+logxc,
只需要证明 logx
①分析法的特点是从“未知”看“需知”,逐步靠拢“已知”,其逐步推
理实际上是寻找使结论成立的充分条件.
②分析法从命题的结论入手,寻求结论成立的条件,直至归结为

2.2.1综合法和分析法

2.2.1综合法和分析法

1、 求 证 : cos sin cos 2 2、 已 知 tan sin a , tan sin b 求 证: (a b ) 16ab
2 2 2
4
4
3、 已 知a , b, c R , a b c 1 1 1 1 求 证( : 1)( 1)( 1) 8 a b c
3 7 2 5成立
反思
在本例中,如果我们从“21<25”出发, 逐步倒推回去,就可以用综合法证出结论.但 由于我们很难想到从“21<25”入手,所以 用综合法比较困难.
• [点评] • (1)分析法证明不等式的依据是不等式的基本性质、 已知的重要不等式和逻辑推理的基本理论; • 2)分析法证明思路为:从求证的结论出发,逐步 寻求使结论成立的充分条件,直至把证明的结论 归结为一个明显成立的条件即可。 • (3) 用分析法证明数学命题时,一定要恰当地用好 “要证”、“只需证”、“即证”等关联词语.
a+b 练习:证明不等式: 2
ab
(a>0,b>0).
综合法
证法1:
因为;( a b ) 0
2
a+b 证法2:要证; ab 2 只需证;a + b 2 ab
分析法
所以 a + b 2 ab 0 所以 a + b 2 ab
a+b ab 成立 所以 2
只需证;a + b 2 ab 0

课堂小结
1.在数学证明中,综合法最常用的数学方法,若从已 知入手能找到证明的途径,则用综合法.
2.综合法的每步推理都是寻找必要条件,在解题表述 中要注意语言的规范性和逻辑性.

2.2.1综合法与分析法

2.2.1综合法与分析法


sin( 2 ) cos( 2 ) cos( 2 ) sin( 2 )

3.
即 tan( 2 ) cot( 2 ) 3.
说明
综合法证题步骤: P0 (已知) P P2 Pn 1 (结论) .
综合法 直接证明
A D C B
求证:当一个圆与一个正方形的周长 相等时,这个圆的面积比正方形的面积大
3.小结: 分析法和综合法是思维方向相反的两种 思考方法。在数学解题中,分析法是从数 学题的待证结论或需求问题出发,一步一 步地探索下去,最后达到题设的已知条件。 综合法则是从数学题的已知条件出发,经 过逐步的逻辑推理,最后达到待证结论或 需求问题。对于解答证明来说,分析法表 现为执果索因,综合法表现为由因导果, 它们是寻求解题思路的两种基本思考方法, 应用十分广泛。
证明: 要证 只需证
a -5 - a -3 < a -2 - a a -5 a < a -2 + a -3
a(a - 5) < (a - 2)(a - 3)
只需证 只需证
因为 所以
a(a - 5)<(a - 2)(a - 3)
0<6
成立. 成立.
a -5 - a -3 < a -2 - a
小结
c.
abc 2 +
ab 2c = a + b + 1 1 1 ∴ a + b + c < + + 成立. a b c a 2 bc +
课堂 练习
1. 已知 8 cos( 2 ) 5 cos 0 , 求证 tan( ) tan 13 3 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档