九年级下抛物线数学试题

合集下载

2023年九年级数学下册中考数学专题训练:角度问题(二次函数综合)【含答案】

2023年九年级数学下册中考数学专题训练:角度问题(二次函数综合)【含答案】

2023年九年级数学下册中考数学专题训练:角度问题(二次函数综合)一、解答题1.如图,直线y =x ﹣3与x 轴、y 轴分别交于B 、C 两点,抛物线y =x 2+bx +c 经过B 、C ,且与x 轴另一交点为49A ,连接AC .(1)求抛物线的解析式;(2)点E 在抛物线上,连接EC ,当∠ECB +∠ACO =45°时,求点E 的横坐标;(3)点M 从点A 出发,沿线段AB 由A 向B 运动,同时点N 从点C 出发沿线段CA 由C 向A 运动,M ,N 的运动速度都是每秒1个单位长度,当N 点到达A 点时,M ,N 同时停止运动,问在坐标平面内是否存在点D ,使M ,N 运动过程中的某些时刻t ,以A ,D ,M ,N 为顶点的四边形为菱形?若存在,直接写出t 的值;若不存在,说明理由.2.已知抛物线y=ax ²+bx +c 经过点A (-6,0)、B (2,0)和C (0,3),点D 是该抛物线在第四象限上的一个点,连接 AD 、AC 、CD ,CD 交x 轴于E .(1)求这个抛物线的解析式;(2)当S △DAE =S △ACD 时,求点 D 的坐标;14(3)在(2)的条件下,抛物线上是否存在点P ,使得△PAD 中的一个角等于2∠BAD ?若存在,直接写出点P 的坐标;若不存在,请说明理由.3.如图1,直线y =ax ²+4ax +c 与x 轴交于点A (-6,0)和点B ,与y 轴交于点C ,且OC =3OB(1)直接写出抛物线的解析式及直线AC 的解析式;(2)抛物线的顶点为D ,F 为抛物线在第四象限的一点,直线AF 解析式为,求∠CAF -∠CAD 的度数.123y x =--(3)如图2,若点P 是抛物线上的一个动点,作PQ ⊥y 轴垂足为点Q ,直线PQ 交直线AC 于E ,再过点E 作x 轴的垂线垂足为R ,线段QR 最短时,点P 的坐标及QR 的最短长度.4.已知顶点为A (2,一1)的抛物线与y 轴交于点B ,与x 轴交于C 、D 两点,点C 坐标(1,O );(1)求这条抛物线的表达式;(2)连接AB 、BD 、DA ,求cos ∠ABD 的大小;(3)点P 在x 轴正半轴上位于点D 的右侧,如果∠APB =45°,求点P 的坐标.5.如图1,抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点C()2102y x bx c c =++<作轴,与抛物线交于另一点D ,直线与相交于点M .CD x ∥BC AD(1)已知点C 的坐标是,点B 的坐标是,求此抛物线的解析式;()04-,()40,(2)若,求证:;112b c =+AD BC ⊥(3)如图2,设第(1)题中抛物线的对称轴与x 轴交于点G ,点P 是抛物线上在对称轴右侧部分的一点,点P 的横坐标为t ,点Q 是直线上一点,是否存在这样的点P ,使得是以点G 为直角顶点的直角三角形,且满足BC PGQ △,若存在,请直接写出t 的值;若不存在,请说明理由.GQP OCA ∠=∠6.抛物线与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴的正半轴相交于点C ,点D 为223y ax ax a =--抛物线的顶点,点O 为坐标原点.(1)若是直角三角形,求抛物线的函数表达式;ABC (2)王亮同学经过探究认为:“若,则”,王亮的说法是否正确?若你认为正确,请加以证明:a<02∠=∠DCB ABC 若是错误的,说明理由;(3)若第一象限的点E 在抛物线上,四边形面积的最大值为,求a 的值.ABEC 2547.如图,抛物线经过,两点,与x 轴交于另一点A ,点D 是抛物线的顶点.22y ax ax c =++(1,0)B (0,3)C(1)求抛物线的解析式及点D 的坐标;(2)如图1,点E 在抛物线上,连接并延长交x 轴于点F ,连接,若是以为底的等腰三角形,求DE BD BDF BD 点E 坐标.(3)如图2,连接、,在抛物线上是否存在点M ,使,若存在,求出M 点的坐标;若不存AC BC ACM BCO ∠=∠在,请说明理由.8.抛物线的顶点坐标为,与x 轴交于点两点,与y 轴交于点C ,点M 是抛物线上的动2y ax bx c =++(1,4),(3,0)A B 点.(1)求这条抛物线的函数表达式;(2)如图1,若点M 在直线BC 上方抛物线上,连接AM 交BC 于点E ,求的最大值及此时点M 的坐标;MEAE (3)如图2,已知点,是否存在点M ,使得?若存在,求出点M 的坐标;若不存在,请说明理(0,1)Q 1tan 2MBQ ∠=由.9.如图,一次函数y =x﹣2的图象与x 轴交于点A ,与y 轴交于点B ,点D 的坐标为(﹣1,0),二次函数12y =ax 2+bx+c (a≠0)的图象经过A ,B ,D 三点.(1)求二次函数的解析式;(2)如图1,已知点G (1,m )在抛物线上,作射线AG ,点H 为线段AB 上一点,过点H 作HE ⊥y 轴于点E ,过点H 作HF ⊥AG 于点F ,过点H 作HM ∥y 轴交AG 于点P ,交抛物线于点M ,当HE•HF 的值最大时,求HM 的长;(3)在(2)的条件下,连接BM ,若点N 为抛物线上一点,且满足∠BMN =∠BAO ,求点N 的坐标.10.已知二次函数.()20y ax bx c a =++>(1)若,,求方程的根的判别式的值;12a =2b c ==-20ax bx c ++=(2)如图所示,该二次函数的图像与x 轴交于点、,且,与y 轴的负半轴交于点C ,()1,0A x ()2,0B x 120x x <<点D 在线段OC 上,连接AC 、BD ,满足 ,.ACO ABD ∠=∠1b c x a -+=①求证:;AOC DOB ≅ ②连接BC ,过点D 作于点E ,点在y 轴的负半轴上,连接AF ,且,DE BC ⊥()120,F x x -ACO CAF CBD ∠=∠+∠求的值.1cx 11.如图,在平面直角坐标系中,已知抛物线的图象与x 轴交于点A ,B 两点,点A 坐标为,243y ax x c =-+()3,0点B 坐标为,与y 轴交于点C .()1,0-(1)求抛物线的函数解析式;(2)若将直线绕点A 顺时针旋转,交抛物线于一点P ,交y 轴于点D ,使,求直线函数解析AC BAP BAC ∠=∠AP 式;(3)在(2)条件下若将线段平移(点A ,C 的对应点M ,N ),若点M 落在抛物线上且点N 落在直线上,求AC AP 点M 的坐标.12.在平面直角坐标系中,抛物线与轴交于点和点(点在点的左侧),与轴交212y x bx c =-++x (2,0)A -B A B y 于点.(0,3)C (1)求抛物线的表达式;的坐标,并直接写出此时直线的表达式.D DC (3)在(2)的条件下,点为轴右侧抛物线上一点,过点作直线的垂线,垂足为,若,E y E DC P ECP DAB ∠=∠请直接写出点的坐标.E 13.已知函数y =(n 为常数).22()1()222x nx n x n n n x x x n ⎧-++≥⎪⎨++<⎪⎩(1)当n =5时,①点P (4,b )在此函数图象上,求b 的值.②求此函数的最大值.(2)当n <0时,作直线x =n 与x 轴交于点P ,与该函数图象交于点Q ,若∠POQ =45°,求n 的值.23(3)若此函数图象上有3个点到直线y =2n 的距离等于2,求n 的取值范围.14.如图,已知抛物线y =ax 2+4(a ≠0)与x 轴交于点A 和点B (2,0),与y 轴交于点C ,点D 是抛物线在第一象限的点.(1)当△ABD 的面积为4时,①求点D 的坐标;②联结OD ,点M 是抛物线上的点,且∠MDO =∠BOD ,求点M 的坐标;(2)直线BD 、AD 分别与y 轴交于点E 、F ,那么OE +OF 的值是否变化,请说明理由.15.如图,已知,抛物线经过A 、B 两点,交y 轴于点C .点P 是第一象限内抛物线(2,0),(3,0)A B -24y ax bx =++上的一点,点P 的横坐标为m .过点P 作轴,垂足为点M ,PM 交BC 于点Q .过点P 作,垂足PM x ⊥PN BC ⊥为点N .(1)求抛物线的函数表达式;(2)请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)连接PC ,在第一象限的抛物线上是否存在点P ,使得?若存在,请直接写出m 的值;若290BCO PCN ∠+∠=︒不存在,请说明理由.16.如图1,在平面直角坐标系中.抛物线与x 轴交于和,与y 轴交于点C ,连接22y ax bx =++(4,0)A -(1,0)B .,AC BC(1)求该抛物线的解析式;(2)如图2,点M 为直线上方的抛物线上任意一点,过点M 作y 轴的平行线,交于点N ,过点M 作x 轴的AC AC 平行线,交直线于点Q ,求周长的最大值;AC MNQ △(3)点P 为抛物线上的一动点,且,请直接写出满足条件的点P 的坐标.45ACP BAC ∠=︒-∠17.抛物线经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B .23y ax bx a =+-(1)求此抛物线的解析式;(2)已知点D 在第四象限的抛物线上,求点D 关于直线BC 对称的点D’的坐标;(m,-m-1)(3)在(2)的条件下,连结BD ,问在x 轴上是否存在点P ,使,若存在,请求出P 点的坐标;PCB CBD ∠=∠若不存在,请说明理由.参考答案:1.(1)y =x 2﹣x ﹣34913(2)或1543916(3)存在,t =或或754415845222.(1);(2);(3)P 点坐标为综上所述:2134y x x =--+(21)D -+-1P,、、、(617-)2P (-5.00.,175)()3 3.47, 3.48P -4(220P -)5P ,.(14.22,33.30)--6(9.74,30.47)P -3.(1)抛物线的解析式为y =-x ²-2x +6,直线BC 的解析式为y =x +612(2)45°(3)点P 的坐标为(,3)或(,3),QR 的最短长度为4.(1)y =x 2﹣4x +3;(23)P (3+,0)5.(1)2142y x x =--(2)11(3)t =t =6.(1)2=y x (2)王亮的说法正确(3)23a =-7.(1)抛物线的解析式为:,223y x x =--+(1,4)D -(2)720(,39E -(3)存在,或()4,5M --57(,)24M -8.(1);223y x x =-++(2);;916315,24⎛⎫ ⎪⎝⎭(3)存在;或(0,3)829,749⎛⎫-- ⎪⎝⎭9.(1)y =x 2﹣x﹣2;(2)2;(3)(1,﹣3)或(﹣,)12325317910.(1) (2)①1;②=2=8∆1c x 11.(1)224233y x x =--(2)223y x =-+(3)或或()3,8-104,3⎛⎫ ⎪⎝⎭102,3⎛⎫- ⎪⎝⎭12.(1);(2)D (2,2),;(3点E 的坐标为(1,3)或211322y x x =-++132y x =-+(,)113179-13.(1)①b =;②此函数的最大值为;92458(2)n 的值是-或-;15232(3)或423n -<<-463n <<-6n =+14.(1)①;②;(2)不变化,值为8)2D ()2M 15.(1)222433y x x =-++(2),当时,有最大值22655PN m m =-+32m =910答案第3页,共3页(3)存在,74m =16.(1)213222y x x =--+(2)6+(3)或()5,3--2375,749⎛⎫- ⎪⎝⎭17.(1)2y x 2x 3=--(2)(0,-1)(3)(1,0)(9,0)答案第4页,共1页。

2022-2023学年九年级数学中考复习《抛物线与x轴交点问题》填空题专题训练(附答案)

2022-2023学年九年级数学中考复习《抛物线与x轴交点问题》填空题专题训练(附答案)

2022-2023学年九年级数学中考复习《抛物线与x轴交点问题》填空题专题训练(附答案)1.抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,经过点(1,n),顶点为P,下列四个结论:①若a<0,则c>n;②若c与n异号,则抛物线与x轴有两个不同的交点;③方程ax2+(b﹣n)x+c=0一定有两个不相等的实数解;④设抛物线交y轴于点C,不论a为何值,直线PC始终过定点(3,n).其中正确的是(填写序号).2.下列关于二次函数y=x2﹣2mx﹣2m﹣3的四个结论:①当m=1时,抛物线的顶点为(1,﹣6);②该函数的图象与x轴总有两个不同的公共点;③该函数的最小值的最大值为﹣4;④点A(x1,y1)、B(x2,y2)在该函数图象上,若x1<x2,y1<y2,则x1+x2>2m;其中正确的是.3.定义新运算:对于任意实数m,n都有m☆n=m2﹣mn+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2﹣(﹣3)×2+2=17.根据以上知识解决问题:(1)若x☆3=1,则x的值为;(2)抛物线y=(2﹣x)☆(﹣1)的顶点坐标是;(3)若2☆a的值小于0,则方程﹣2x2﹣bx+a=0有个根.4.若二次函数y=2x2﹣x+k的图象与x轴有两个公共点,则k的取值范围是.5.如图,抛物线y=﹣x2+2x+3的对称轴交抛物线于点P,交x轴于点Q,点A是PQ右侧的抛物线上的一点,过点P做PB⊥P A交x轴于点B,若设点A的横坐标为t(t>1),线段BQ的长度为d,则d与t的函数关系式是.6.二次函数y=ax2+bx+c的部分对应值列表如下:x…﹣30135…y…7﹣8﹣9﹣57…则一元二次方程a(2x+1)2+b(2x+1)+c=﹣5的解为.7.已知抛物线y=ax2﹣2ax+a﹣2与x轴相交于A,B两点.若线段AB的长不小于2,则代数式a2﹣6a+7的最小值为.8.把抛物线y=x2﹣2x﹣c(c>0)在直线y=c上方部分沿直线y=c对折,若对折后的部分在x轴上截得的线段长是6个单位,则c=.9.若关于x的分式方程﹣=1有正整数解,且关于x的函数y=﹣x2+2mx﹣m2+﹣1的图象在x轴的下方,则满足条件的所有整数m的值之和为.10.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足=m,则m的值为.11.如图是二次函数y=﹣x2+bx+c的部分图象,若y≥0,则x的取值范围是.12.抛物线y=ax2+bx+c(a,b,c是常数),且a+b+c=0,有下列结论:①该抛物线经过点(1,0);②若a=b,则抛物线经过点(﹣2,0);③若a,c异号,则抛物线与x轴一定有两个不同的交点;④点A(x1,y1),B(x2,y2)在抛物线上,且x1<x2<1,若a<c<0,则y1<y2.其中所有正确结论的序号是.13.如图,抛物线y=x2+x﹣3与x轴交于点A和点B两点,与y轴交于点C,D点为抛物线上第三象限内一动点,当∠ACD+2∠ABC=180°时,点D的坐标为.14.二次函数y=ax2+bx+c的部分图象如图所示,当y>0时,x的取值范围是.15.如图,在平面直角坐标系中,抛物线y=x2+4x+m与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴交抛物线于点D.若AB+CD=6,则抛物线的解析式为.16.将二次函数y=x2﹣2x﹣3的图象在x轴下方的部分沿x轴翻折到x轴上方,所得新函数的图象与直线y=x+b的图象恰有2个公共点时,则b的取值范围为.17.已知抛物线y=ax2+bx+c的图象与x轴分别交于点A(﹣2,0),B(﹣4,0),则关于x 的方程ax2+bx+c=0的根为.18.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣,),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.19.已知二次函数y=x2+6x+c(c为常数)的图象与x轴的一个交点为(﹣1,0),则它与x 轴的另一个交点的坐标是.20.已知二次函数y=ax2+2ax﹣3a(其中x是自变量)图象与x轴交于A,B两点,当x⩾0时,y随x的增大而减小,P为抛物线上一点,且横坐标为m,当﹣2⩾m⩾2时,△ABP 面积的最大值为8,则a的值为.参考答案1.解:∵y=ax2+bx+c(a≠0)的对称轴为x=﹣1,∴﹣=﹣1,∴b=2a,∵抛物线经过(1,n),∴a+b+c=n,即3a+c=n,3a=n﹣c,若a<0,则n﹣c<0,∴c>n,①正确.∵3a=n﹣c,∴a=,∵b2﹣4ac=4a2﹣4ac=﹣=,∵c与n异号,∴>0,∴抛物线与x轴有2个不同交点,②正确.∵a+b+c=n,∴b﹣n=﹣a﹣c,方程ax2+(b﹣n)x+c=0中Δ=(b﹣n)2﹣4ac=(﹣a﹣c)2﹣4ac=(a﹣c)2,∴a=c时,方程有两个相同实数解,③错误.∵抛物线对称轴为直线x=﹣1,把x=﹣1代入y=ax2+bx+c得y=a﹣b+c=﹣a+c,∴抛物线顶点坐标为(﹣1,﹣a+c),把x=0代入y=ax2+bx+c得y=c,∴点C坐标为(0,c),设PC解析式为y=mx+n,把(﹣1,﹣a+c),(0,c)代入y=mx+n得,解得,∴y=ax+c=x+c,把x=3代入y=x+c得y=n﹣c+c=n,∴直线PC经过(3,n),④正确.故答案为:①②④.2.解:①将m=1代入二次函数解析式得,y=x2﹣2x﹣5=(x﹣1)2﹣6,∴抛物线的顶点为(1,﹣6),故①正确;②Δ=(2m)2﹣4(﹣2m﹣3)=4m2+8m+12=4(m+2)2+4>0,∴该函数的图象与x轴总有两个不同的公共点,故②正确;③y=x2﹣2mx﹣2m﹣3=(x﹣m)2﹣m2﹣2m﹣3,∴二次函数的最小值为:﹣m2﹣2m﹣3=﹣(m+1)2﹣2,∴该函数的最小值的最大值为﹣2,故③错误;④点A(x1,y1)、B(x2,y2)在该函数图象上,若x1<x2,y1<y2,当m<x1<x2时,y随x的增大而增大,此时x1+x2>2m;当x1<m<x2时,|x1﹣m|<|x2﹣m|,整理得x1+x2>2m,故④正确;故答案为:①②④.3.解:(1)根据题意,得x2﹣3x+3=1,移项、合并同类项,得x2﹣3x+2=0,整理,得(x,﹣1)(x﹣2)=0,解得x1=1,x2=2;(2)根据题意知,y=(2﹣x)2﹣(2﹣x)(﹣1)+(﹣1)=x2﹣5x+5=(x﹣)2﹣.所以,顶点坐标(,);(3)∵2★a的值小于0,∴22﹣2a+a<0,解得a>4.在方程﹣2x2﹣bx+a=0中,∵Δ=(﹣b)2+8a≥8a>0,∴方程﹣2x2﹣bx+a=0有两个不相等的实数根.4.解:∵二次函数y=2x2﹣x+k的图象与x轴有两个公共点,∴(﹣1)2﹣4×2k>0,解得k<,故答案为:k<.5.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点P的坐标为(1,4),∴PQ=4,过点A作AH⊥PQ于点H,则∠AHP=∠PQB=90°,∴∠APH+∠P AH=90°,∵BP⊥AP,∴∠BP A=∠BPQ+∠APH=90°,∴∠P AH=∠BPQ,∴△APH∽△PBQ,∴,∵点A的横坐标为t,∴A(t,﹣t2+2t+3),∴AH=t﹣1,PH=4﹣(﹣t2+2t+3)=t2﹣2t+1,∴,∴BQ=4t﹣4,∴d=4t﹣4,故答案为:d=4t﹣4.6.解:由抛物线的对称性质知,对称轴是直线x==1.根据题意知,一元二次方程ax2+bx+c=﹣5的解为x=3或x=﹣1.所以2x+1=3或2x+1=﹣1.解得x=1或x=﹣1.所以一元二次方程a(2x+1)2+b(2x+1)+c=﹣5的解为:x=±1.故答案是:x=±1.7.解:∵y=ax2﹣2ax+a﹣2=a(x﹣1)2﹣2,∴抛物线顶点坐标为(1,﹣2),∵抛物线与x轴有2个交点,∴抛物线开口向上,即a>0,∵AB≥2,∴当x=2时,y≤0,即a﹣2≤0,解得a≤2,∵a2﹣6a+7=(a﹣3)2﹣2,∴当a=2时,a2﹣6a+7取最小值为﹣1.故答案为:﹣1.8.解:将抛物线y=x2﹣2x﹣c(c>0)在直线y=c上方部分沿直线y=c对折,而对折后的部分在x轴上截得的线段长是6个单位,相当于抛物线y=x2﹣2x﹣c在直线y=2c上截得的线段长度是6个单位,∴当y=2c时,x2﹣2x﹣c=2c,则x2﹣2x﹣3c=0,解得:x1=1﹣,x2=1+,∴1+﹣(1﹣)=6,2=6,∴1+3c=9,解得:c=,故答案为:.9.解:∵﹣=1,∴3+m=x﹣1,∴x=m+4,当m+4为正整数时,m为大于﹣4的整数,且m+4≠1,即m≠﹣3,∵y=﹣x2+2mx﹣m2+﹣1=﹣(x﹣m)2+﹣1,∴抛物线顶点坐标为(m,﹣1),∵抛物线图象在x轴下方,∴﹣1<0,∴m<2,∴m的值可以为﹣2,﹣1,0,1,∴﹣2﹣1+0+1=﹣2,故答案为:﹣2.10.解:令2x2﹣8x+6=0,解得x1=1,x2=3,∴AB=3﹣1=2,∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴抛物线顶点坐标为(2,﹣2),当点P1,P2,P3中有1点为抛物线顶点时满足题意,∴m=AB•|y P|=×2=2,故答案为:2.11.解:由图象可知,抛物线与x轴的交点坐标分别为(﹣1,0)和(5,0),∴y≥0时,x的取值范围为﹣1≤x≤5.故答案为:﹣1≤x≤5.12.解:∵a+b+c=0,∴x=1时,y=a+b+c=0,∴抛物线经过点(1,0),①正确.∵a=b,∴抛物线对称轴为直线x=﹣=﹣,∴抛物线经过点(﹣2,0),②正确.若a,c异号,则Δ=b2﹣4ac>0,∴抛物线与x轴有两个不同交点,③正确.∵a<0,∴抛物线开口向下,∵c<0,∴抛物线与y轴交点在x轴下方,∵a<c<0,=x1x2,∴0<<1,∴抛物线与x轴的一个交点为(1,0),另一交点在(0,0)和(1,0)之间,∴抛物线对称轴在直线x=1与y轴之间,∴④错误.故答案为:①②③.13.解:∵抛物线y=x2+x﹣3与x轴交于点A和点B两点,∴当y=0时,x2+x﹣3=0,解得x=﹣9或1,∴A(﹣9,0),B(1,0),∴AB=10,当x=0时,y=﹣3,∴C(0,﹣3),∵AC2=92+32=90,BC2=12+32=10,AB2=100,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∴2∠BAC+2∠ABC=180°,∵∠ACD+2∠ABC=180°∴2∠BAC=∠ACD,作AE⊥x轴,交CD的延长线与E,作∠ACD的平分线,交AE于F,则∠ACF=∠BAC,∴CF∥AB,∴CF⊥AE,∴AF=EF=BC=3,∴E(﹣9,﹣6),设直线CD的解析式为y=kx﹣3,把E的坐标代入得,﹣6=﹣9k﹣3,∴k=,∴直线CD的解析式为y=x﹣3,解得或,∴点D的坐标为(﹣7,﹣),故答案为:(﹣7,﹣).14.解:由题意得:二次函数y=ax2+bx+c的对称轴为直线x=﹣1,经过(3,0),∴抛物线与x轴的另一个交点为(﹣5,0).∵抛物线在x轴的上方部分y>0,∴当y>0时,x的取值范围是﹣5<x<3.故答案为:﹣5<x<3.15.解:设A(x1,0),B(x2,0),令y=0,则x2+4x+m=0,由根与系数的关系得:x1+x2=﹣4,x1•x2=m,则AB=|x1﹣x2|==,令x=0,则y=m,∴C(0,m),∵CD∥x轴,∴点D纵坐标为m,当y=m时,则x2+4x+m=m,解得:x=﹣4,或x=0,∴D(﹣4,m),∴CD=0﹣(﹣4)=4,∵AB+CD=6,∴AB==2,解得:m=3,∴抛物线的解析式为y=x2+4x+3,故答案为:y=x2+4x+3.16.解:二次函数解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线y=﹣x2+2x+3的顶点坐标为(1,4),当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则抛物线y=﹣x2+2x+3与x轴的交点为A(﹣1,0),B(3,0),把抛物线y=﹣x2+2x+3的图象在x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=﹣(x﹣1)2+4(﹣1≤x≤3),顶点坐标M(1,4),如图,当直线y=x+b过点B时,直线y=x+b与该新图象恰好有一个公共点,∴3+b=0,解得b=﹣3;当直线y=x+b过点A时,直线y=x+b与该新图象恰好有三个公共点,∴﹣1+b=0,解得b=1;∴当﹣3<b<1时,抛所得新函数的图象与直线y=x+b的图象恰有2个公共点时,当直线y=x+b与物线y=﹣(x﹣1)2+4(﹣1≤x≤3)相切时,直线y=x+b与该新图象恰好有三个公共点,即﹣(x﹣1)2+4=x+b有两个相等的实数解,整理得x2﹣x+b﹣3=0,∴Δ=12﹣4(b﹣3)=0,解得b=,当b>时,抛所得新函数的图象与直线y=x+b的图象恰有2个公共点时,故答案为:﹣3<b<1或b>.17.解:根据题意知,该抛物线解析式是y=ax2+bx+c=a(x+2)(x+4),∴关于x的方程ax2+bx+c=0=a(x+2)(x+4)=0.∴x+2=0或x+4=0,∴x1=﹣2,x2=﹣4.故答案是:x1=﹣2,x2=﹣4.18.解:由图象可知,关于x的方程ax2﹣bx﹣c=0的解,就是抛物线y=ax2(a≠0)与直线y=bx+c(b≠0)的两个交点坐标分别为A(﹣,),B(1,1)的横坐标,即x1=﹣,x2=1.故答案为:x1=﹣,x2=1.19.解:∵二次函数y=x2+6x+c(c为常数)的图象与x轴的一个交点为(﹣1,0),∴1﹣6+c=0.∴c=5,∴二次函数y=x2+6x+5.令y=0,则x2+6x+5=0,解得:x1=﹣1,x2=﹣5.∴抛物线与x轴的另一个交点的坐标是(﹣5,0).故答案为:(﹣5,0).20.解:∵y=ax2+2ax﹣3a=a(x+3)(x﹣1),∴当y=0时,x=﹣3或1,不妨设点A的坐标为(﹣3,0),点B(1,0),∴AB=1﹣(﹣3)=1+3=4,∴该抛物线顶点的横坐标为=﹣1,纵坐标为y=a﹣2a﹣3a=﹣4a,∵当x⩾0时,y随x的增大而减小,∴a<0,∵P为抛物线上一点,且横坐标为m,当﹣2⩾m⩾2时,△ABP面积的最大值为8,∴当x=2时,y=4a+4a﹣3a=5a,当x=﹣1时,y=﹣4a,∵|5a|>|﹣4a|,∴=8,即=8,解得a=﹣,故答案为:﹣.。

2024年辽宁省大连市部分学校九年级下学期中考联考数学试题(含答案)

2024年辽宁省大连市部分学校九年级下学期中考联考数学试题(含答案)

2024年辽宁省中考适应性测试(一)数学试卷(本试卷共23小题满分120分考试时长120分钟)考生注意:所有试题必须在答题卡指定区域内作答,在本试卷上作答无效参考公式:抛物线顶点坐标为第一部分选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A. B. C. D.2.下列几何体中,俯视图是三角形的是( )A.B . C. D.3.在标准大气压下,液态氧、液态氮、酒精、水四中液体的沸点如下表:液体液态氧液态氮酒精水沸点78100其中沸点最低的液体为( )A.液态氧 B.液态氮C.酒精D.水4.我国古代典籍《周易》用“卦”描述万物的变化.如图为部分“卦”的符号,其中是中心对称图形的是( )A. B. C.D.5.下列运算正确的是()A. B.C.D.6.下列命题是真命题的是( )A.相等的角是对顶角 B.若,则D.同旁内角互补,两直线平行()20y ax bx c a =++≠24,24b ac b aa ⎛⎫-- ⎪⎝⎭50.35810⨯335.810⨯53.5810⨯43.5810⨯/℃183-196-()235y y =222(2)4xy x y -=2222x x x ⋅=623x x x ÷=||||a b =a b =2=-7.在平面直角坐标系中,线段是由线段经过平移得到的,点的对应点为,点B 的坐标为,则点的坐标为( )A. B. C. D.8.为了丰富校园生活,培养学生特长,学校开展了特色课程.小明与小华从感兴趣的“花样跳绳”,“天文地理”,“艺术插花”,“象棋博弈”4门课程中随机选择一门学习.小明与小华恰好选中同一门课程的概率为( )A.B.C.D.9.如图,直线,直线依次交,,于点A ,B ,C ,直线依次交,,于点D ,E ,F ,若,,则的长为( )A.8B.6C.4D.310.已知等腰三角形的周长是8,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )A. B. C. D.第二部分非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.因式分解:_____________.12.如图,菱形中,交于O ,于E ,连接,若,则的度数为_____________.A B ''AB (2,1)A -(3,4)A '(1,3)B --B '(4,3)-(4,3)-(4,0)(6,6)--116141312123////l l l AC 1l 2l 3l DF 1l 2l 3l 35AB AC =6DE =EF 29y -=ABCD AC BD CE AB ⊥OE 110DAB ∠=︒OEC ∠︒13.如果关于x 的方程有两个相等的实数根,则___________.14.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为a ,b .中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能,如“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得,.若“矩”的边,边,则树高为______.图1图215.如图,拋物线交x 轴正半轴于点A ,交y 轴于点B ,线段轴交拋物线于点C ,,则的面积是__________.三、解答题(本题共8小题,共75分,解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)(5分)计算:(2)(5分)解方程:.17.(8分)某学校为打造书香校园,计划购进甲、乙两种课外书.购买1本甲种书和2本乙种书共需125元;购买2本甲种书和5本乙种书共需300元.(1)求甲、乙两种书的单价;(2)学校决定购买甲、乙两种书共50本,且两种书的总费用不超过2000元,那么该校最多可以购买多少本乙种书?18.(8分)为了解甲、乙两校九年级学生英语人机对话的学习情况,每个学校随机抽取20个学生进行测试,测试后对学生的成绩进行了整理和分析.信息一:220x x m ++=m =AFE 1.5m AB = 6.2m BD =30cm EF a ==60cm AF b ==CD m 233(0)y ax ax a =-+<BD y ⊥25DC BD =ACD △()()23433-⨯+-+2820x x -+=绘制成了如下两幅统计图.(数据分组为:A 组:,B 组:,C 组:,D 组:)甲校成绩的频数分布直方图乙校成绩的扇形统计图信息二:甲校学生的测试成绩在C 组的是:80,82.5,82.5,85,85.5,89,89.5,82.5,85.信息三:甲、乙两校成绩的平均数,中位数,众数如表:平均数中位数众数甲校83.2a 82.5乙校80.68180根据以上信息,回答下列问题:(1)扇形统计图中C 组所在的圆心角度数为_______,乙校学生的测试成绩位于D 组的人数为_______人,表格中_________,在此次测试中,甲校小明和乙校小华的成绩均为82分,则两位同学谁在各自学校测试成绩中的排名更靠前?并说明理由;(2)假设甲校学生共有400人参加此次测试,估计甲校成绩超过86分的人数.19.(8分)星海广场是亚洲最大的城市广场,某店专门销售某种品牌的星海广场纪念品,成本为30元/件,每天销售y 件与销售单价x 元(x 为整数)之间的一次函数关系如图所示,其中.(1)求y 与x 之间的函数表达式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?20.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图1是政府给贫困户新建的房屋,如图2是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高所在的直线,为了测量房屋的高度,在地面上C 点测得6070x ≤<7080x ≤<8090x ≤<90100x ≤≤︒a =3060x <≤AB屋顶A 的仰角为,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走到达点D 时,又测得屋檐E 点的仰角为,房屋的顶层横梁,,交于点G (点C ,D ,B 在同一水平线上).图1图2(1)求屋顶到横梁的距离(结果精确到);(2)求房屋的高(结果精确到).(参考数据,,)21.(8分)如图1,为的直径,C 为外一点.图1图2(1)尺规作图:作直线与相切,切点D 在弧上(保留作图痕迹,不写作法);(2)如图2,为的直径,直线与相切于点D,连接、、,若,,的长.22.(12分)如图,在中,,点D 在边上(不与点C 重合),将绕点D 旋转,得到,其中点C 的对应点为点E ,点A 的对应点为点F .图1图2图3(1)如图1,点D 与点B 重合,将绕点D 逆时针方向旋转,当点E 落在边上时,与的交点为G ,求证:;30︒8m 63.5︒12m EF =//EF CB AB EF AG 0.1m AB 1m sin 63.50.89︒≈cos 63.50.45︒≈tan 63.5 2.00︒≈ 1.73≈AB O e O e CD O e AmB AB O e CD O e AD BD AC 45C ∠=︒4sin 5ADC ∠=AC =BD ABC △AB AC =BC ADC △FDE △ADC △AC EF AB AG EG =(2)如图2,点D 是边上任一点(不与点A 、B 重合),将绕点D 逆时针方向旋转,当点E 落在边上时,连接,求证:;(3)若,D 为中点.①将绕点D 逆时针方向旋转,点E 落在边上,连接并延长与的延长线交于点P ,求的长;②将绕点D 顺时针方向旋转,当经过点C 时,连接并延长与的延长线交于点Q ,请直接写出的长.23.(13分)定义,在平面直角坐标系中,对于任意两点,,若点满足,,那么称点T 是点A ,B 的“伴A 融合点”,例如:,,当点满足,时,则点是点A ,B 的“伴A 融合点”.(1)已知点,,点T 是点A ,B 的“伴A 融合点”,则点T 的坐标为___________;(2)已知点,,,请说明其中一个点是另两个点的伴哪个点的“融合点”?(3)已知点是直线上在第一象限内的一动点,是抛物线上一动点,点是点Q ,P 的“伴Q 融合点”,试求出T 中y 关于x 的函数表达式(表达式中含a ),并判断所有点中是否存在最高点?若存在,求出最高点的坐标;若不存在,说明理由;(4),为(3)中y 关于x 的函数表达式所对应的图像上两点,若点M ,N 之间的图象(包括点M ,N )的最高点与最低点纵坐标的差为,求a 的值.AB ADC △AC BF //BF AC AB =2BC =BC ADC △AC AF CB PF ADC △EF AF BC QF (,)A a b (,)B m n (,)T x y a mx a+=b ny b +=(1,2)A -(3,4)B (,)T x y 1321x -+==--2432y +==(2,3)T -(2,4)A -(2,8)B -(2,6)C -(1,2)D --(1,2)E -(,)Q a b y x =(,)P m n 22y x =-(,)T x y (,)T x y ()11,M y -()21,N a y -26a2024年辽宁省中考适应性测试数学(一)答案及评分标准一、选择题:1.D ;2.B ;3.B ;4.A ;5.B ;6.D ;7.C ;8.B ;9.C ;10.D.二、填空题:11.;12.35;13.1;14. 4.6;15. 3.15.解析:在中,当时,,.轴交抛物线于点C ,,令,,.,,,,,.三、解答题:16.解:(1)原式4分;5分(2),,,,6分8分,.10分17.解:(1)设甲种书的单价是x 元,乙种书的单价是y 元,根据题意得,,2分解得,,3分答:甲种书的单价是25元,乙种书的单价是50元;4分(2)设该校购买m 本乙种书,则购买本甲种书,根据题意得,,6分解得,,7分答:该校最多可以购买30本乙种书.8分18.解:(1)144,4,,3分小明的成绩为82分,在甲校中位数85.25分以下,而小华的成绩82分,在乙校中位数81分以上,因此小华的成绩排名在前.5分()()33y y +-233y ax ax =-+0x =3y =(0,3)B ∴BD y ⊥ 3C B y y ∴==2333ax ax -+=10x ∴=23x =(3,3)C ∴3BC ∴=25DC BD = 2(3)5DC DC ∴=+2DC ∴=12332ACDS ∴=⨯⨯=△1293=-++-+=1a = 8b =-2c =224(8)412560b ac ∴-=--⨯⨯=>4x ∴==14x ∴=+24x =-212525300x y x y +=⎧⎨+=⎩2550x y =⎧⎨=⎩(50)m -()2550502000m m -+≤30m ≤85.25a =(2)(人),7分答:估计甲校400学生中成绩超过86分的大约有180人.8分19.解:(1)设y 与x 的函数表达式为,直线经过点,,,2分解得:.3分y 与x 之间的函数表达式为;4分(2)设每天利润为w 元,则,,6分,抛物线开口向下,,当时,7分.8分答:当销售单价为50元时,每天获取的利润最大,最大利润是4000元.20.解:(1)房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高所在的直线,,,,,在中,,,,,2分.3分答:屋顶到横梁的距离约为3.5米;(2)如图,过E 作于H ,设米,在中,,,,,4分2740018020+⨯=y kx b =+ y kx b =+(40,300)(55,150)4030055150k b k b +=⎧∴⎨+=⎩10700k b =-⎧⎨=⎩∴10700y x =-+(30)(30)(10700)w x y x x =-⋅=--+221010002100010(50)4000x x x -+-=--+100-< ∴3060x <≤ ∴50x =4000w =最大 AB //EF BC AG EF ∴⊥11126m 22EG FG EF ===⨯=30AEG ACB ∠=∠=︒Rt AGE △90AGE ∠=︒30AEG ∠=︒6EG =tan AG AEG EG ∠=tan 6tan 306AG EG AEG ∴=∠==︒⨯2 1.73 3.46 3.5m ≈⨯=≈AG EH CB ⊥EH x =Rt EDH △90EHD ∠=︒63.5EDH ∠=︒tan EH EDH DH ∠=tan tan 63.52EH x xDH EDH ∴==≈︒∠在中,,,,,5分,,解得:(米),7分四边形为矩形,(米),(米).8分答:房屋的高约为10米.21.解:(1)如图1,直线即为所求作;2分说明:连接,分别以点C ,点O 为圆心,大于为半径作弧,两弧分别交于点M ,N ,作直线交于点E ,以E 为圆心,长为半径作弧,交弧与点D ,作直线.图1图2(2)如图2,过点A 作于点E ,则,连接,为的切线,是的半径,,,3分为的直径,,4分,即,,,,5分,,,6分,,,,,,,7分在中,根据勾股定理,.8分22.解:(1)证明:,,,.1分旋转得到,,,.,,,Rt ECH △90EHC ∠=︒30ECH ∠=︒tan EH ECH CH ∠=tan tan 30EH xCH ECH ∴===∠︒8CH DH CD -== 82x-=1.730.58x x -= 6.5x ≈ EHBG 6.5EH BG ∴==3.46 6.59.9610AB AG BG ∴=+=+=≈AB CD CO 12CO MN CO EO AmB CD AE CD ⊥90AEC AED ∠=∠=︒OD CD O e OD O e CD OD ∴⊥90ODC ∴∠=︒AB O e 90ADB ∴∠=︒ADO ODB ADO ADC ∴∠+∠=∠+∠ODB ADC ∠=∠OD OB = ODB B ∴∠=∠B ADC ∴∠=∠45C ∠=︒ sin sin 45AE C AC ∴==︒=AC =4AE ∴=4sin 5ADC ∠=45AE AD ∴=5AD ∴=B ADC ∠=∠ 90ADB ∠=︒4sin 5AD B AB ∴==254AB ∴=Rt ABD △154BD ===AB AC = ABC C ∴∠=∠180A ABC C ∠+∠+∠=︒2180A C ∴∠+∠=︒ABC △FBE △C BEF ∴∠=∠BC BE =BEC C ∴∠=∠BEC BEF C ∴∠=∠=∠180BEC BEF AEF ∠+∠+∠=︒ 2180AEF C ∴∠+∠=︒,;2分(2)同理(1)得,.,旋转得到,,.3分,即..4分,,.,;5分(3)①,,D 为中点,,,,在中,根据勾股定理得.6分如图1,连接,.旋转得到,,.,,..,,,.7分,,,根据勾股定理得8分旋转得到,,,又,,,.,,即.9分由(2)得,,四边形为矩形,,,,,10分A AEF ∴∠=∠AG EG ∴=GAE GEA ∠=∠AG EG =AB AC = ADC △FDE △AC FE ∴=AB FE ∴=AB AG FE EG ∴-=-BG FG =GFB GBF ∴∠=∠2180AGE GAE ∠+∠=︒ 2180BGF GBF ∠+∠=︒AGE BGF ∠=∠GAE GBF ∴∠=∠//BF AC ∴AB AC ==2BC =BC AD BC ∴⊥90ADC ∴∠=︒112BD CD BC ===Rt ADC △2AD ===BE BF ADC △FDE △DC DE ∴=DA DF =BD DE ∴=C DEC ∴∠=∠DBE DEB ∠=∠180DBE DEB DEC C ∠+∠+∠+∠=︒ 22180DEB DEC ∴∠+∠=︒90DEB DEC ∴∠+∠=︒90BEC ∴∠=︒BE AC ∴⊥1122ABC S BC AD AC BE =⋅=⋅ △22∴⨯=BE ∴=AE ===ADC △FDE △90FDE ADC ∴∠=∠=︒ADF EDC ∴∠=∠DF DA = 1802ADFDAF DFA ︒-∠∴∠=∠=1802EDCC ︒-∠∠= C DAF ∴∠=∠90C DAC ∠+∠=︒ 90DAF DAC ∴∠+∠=︒90PAC ∠=︒//BF AC 90AFB ∴∠=︒∴AFBE BF AE ∴==AF BE ==//BF AC PFB PAC ∴△∽△PF BFPA AC∴==PF ∴=图1图212分解析:绕点D 顺时针旋转得到,,,,,,.又,..,,,即,又,,,即.,.,,,.即.四边形为矩形,同理①:.,.,,,.ADC △FDE △DE DC ∴=DEC DCE ∠=∠DA DF=DAF DFA ∴∠=∠ACD DEC ∠=∠DEC DCE ACD ∴∠=∠=∠90ADC FDE∠=∠=︒ ADF CDE ∴∠=∠AFD DCE ACD ∴∠=∠=∠DAC DFE ∠=∠ 90ACD DAC ∠+∠=︒ 90AFD DFE ∴∠+∠=︒90AFE ∠=︒BAD DAC ∠=∠ DAF DFA ∠=∠90BAD DAF ∴∠+∠=︒90BAF ∠=︒BD ED = DBE DEB ∴∠=∠1802BDE BED ︒-∠∴∠=1802EDC DEC -∠︒∠=180BDE EDC ∠+∠=︒18018022BDE EDC BED DEC ︒-∠-∠︒∴∠+∠=+360()3601809022BDE EDC -︒︒︒∠+∠-===︒90BEF ∠=︒∴ABEF 1122ABC S BC A AD B BE ⨯=⨯=△4∴=BE ∴=EC ===EF AB ==FC ∴=-=AF BE ==//FC AB QFC QAB ∴△∽△..23.解:(1),,;1分(2),,,,3分又,点D 是点C ,E 的“伴E 融合点”;4分(3)是直线上在第一象限内的一动点,,,,点是抛物线上一动点,,.点是点Q ,P 的“伴Q 融合点”,,,5分,,,6分,,,抛物线开口向下,有最大值1.的最高点的坐标为;7分(4),,.抛物线的开口向下,对称轴为直线,最高点为.①当时,,即时,点M 、N 在抛物线对称轴左侧,y 随x 的增大而增大,,点M 、N 之间的图象的最高点为N ,最低点为M .,FC FQ AB AQ ∴==FQ ∴=2(2)02x +-==4814y -+==--(0,1)T ∴-(1,2)E - (2,6)C -1211-+=-- 2(6)22+-=-(1,2)D -- ∴(,)Q a b y x =b a ∴=0a >(,)Q a a ∴(,)P m n 22y x =-22n m ∴=-()2,2P m m ∴- (,)T x y a m x a +∴=22a m y a -=ax a m ∴=+m ax a ∴=-2222()11m ax a y a a-=-=-22222(4111)ax ax x a a =-=+-+--()()222212221112y a x x a a x x a ∴=--+-=--+-+-222(1)2122(1)1a x a a a x =--++-=--+0a > 20a ∴-<∴(,)T x y ∴(1,1)22(1)1y a x =--+ 0a >20a -<1x =(1,1)11a -≤2a ≤02a <≤11a ->- ∴2222(11)12(11)16a a a a ⎡⎤∴---+----+=⎣⎦,,,,(舍),,;9分②若,即时,若,则,.当时,最高点为,最低点为..,.都不符合题意,舍去;11分③若,则最高点为,最低点为.,.,..13分综上,a 的值为1.222(2)1816a a a a --++-=222(2)86a a a a --+=0a > 22(2)86a a ∴--+=10a ∴=21a =1a ∴=11a ->2a >12y y =111(1)a --=--4a ∴=24a <≤(1,1)()11,M y -2212(11)16a a ⎡⎤∴----+=⎣⎦10a =243a =4a >(1,1)()21,N a y -2212(11)16a a a ⎡⎤∴----+=⎣⎦2740a a -+=1a =2a =a ∴=。

2018_2019学年度九年级数学下册5.5.4利用二次函数解决抛物线形拱桥问题同步练习

2018_2019学年度九年级数学下册5.5.4利用二次函数解决抛物线形拱桥问题同步练习

第 4 课时利用二次函数解决抛物线形拱桥问题知|识|目|标1.通过对抛物线形的拱桥有关问题的分析,会建立合适的平面直角坐标系解决抛物线形拱桥的有关实际问题.2.通过对抛物线形的隧道有关问题的分析,会建立合适的平面直角坐标系解决抛物线形隧道的有关实际问题.目标一会利用二次函数解决拱桥问题例 1 教材问题 3 针对训练如图5-5- 7,一座抛物线形拱桥架在一条河流上,这座拱桥下的水面离桥孔顶部 3 m 时,水面宽AB为6 m.(1)以拱桥的顶点为原点建立平面直角坐标系,求该抛物线相应的函数表达式;4(2) 连续几天的暴雨,使水位暴涨,测量知桥孔顶部到水面的距离为 3 m,此时水面宽CD为多少?图 5- 5-7【归纳总结】解决抛物线形拱桥问题的步骤(1)建立合适的平面直角坐标系;(2)依据题意,求出函数表达式;(3)根据要求解决问题.目标二会利用二次函数解决隧道问题例 2 教材补充例题如图5- 5- 8 所示,一条内设双向道隧道的截面由抛物线AED和矩形构成,矩形的长为 8 m,宽为 2 m ,以所在的直线为x 轴,线段的垂ABCD BC AB BC BC直平分线为 y 轴,建立平面直角坐标系,y 轴是抛物线的对称轴,顶点 E 到坐标原点 O的距离为 6 m.(1)求抛物线相应的函数表达式;(2)一辆货运卡车高 4 m,宽 2.4 m ,它能通过该隧道吗?图 5- 5-8【归纳总结】解决能否通过隧道问题的关键点车辆通过隧道问题一般情况是以抛物线的对称轴为车辆的对称轴进行解答.(1) 当已知宽度时,将宽度转化为相应的自变量代入到二次函数表达式中,求出高度( 函数值 ) .若求得的高度小于车辆的高度,则车辆不能通过;若求得的高度大于车辆的高度,则车辆能通过.(2)当已知高度时,可以将车辆的高度 ( 函数值 ) 代入到二次函数表达式中,求解一元二次方程,得到两个根,若两个根之间的差的绝对值大于车辆的宽度,则车辆能通过;若两个根之间的差的绝对值小于车辆的宽度,则车辆不能通过.知识点一建立适当坐标系,用二次函数知识解决抛物线形拱桥的实际问题此类问题往往以桥拱最高点为坐标原点,以水平线为x 轴,铅垂线为 y 轴,建立平面直角坐标系,然后根据题意确定坐标系内特殊点的坐标,从而确定二次函数表达式,再根据实际问题求出相应的二次函数中的问题,注意要检验结果.知识点二建立适当坐标系,用二次函数知识解决抛物线形建筑物中的实际问题日常生活中常见的抛物线形建筑物,如抛物线形大门、抛物线形隧道、抛物线形大棚等.建立的坐标系不同,得出的二次函数表达式也不同,但实际求得的结果是一致的.应注意选择便于解决问题的坐标系.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看作抛物线.如图5- 5 -9 所示,甩绳的甲、乙两名学生拿绳的手之间的距离为 4 m,距地面均为 1 m,学生丁、丙分别站在与甲拿绳的手水平距离为 2.5 m , 1 m 处,绳子在甩到最高处时刚好通过他们的头顶,已知学生丁的身高是 1.625 m ,求学生丙的身高.图 5- 5-9解:由抛物线的对称性可知,丙的身高与丁的身高相同,为 1.625 m.上述解答正确吗?若不正确,请说明理由,并写出正确的解答过程.详解详析【目标突破】例 1解:(1)如图所示.∵这座拱桥下的水面离桥孔顶部 3 m时,水面宽AB为 6 m,∴B(3,- 3) .设抛物线相应的函数表达式为 y= ax2,则- 3= 9a,1解得 a=-,31 2故该抛物线相应的函数表达式为y=-3x .4(2)由题意可得出 y=-3,4 1 2则-3=-3x ,解得 x1= 2, x2=- 2.故此时水面宽CD为4 .m[ 备选例题 ] 如图,河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3 m时,水面宽 AB为 6 m,当水位上升0.5 m时:(1)求水面的宽度 CD为多少米.(2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行.①若游船宽 ( 指船的最大宽度) 为2 m,从水面到棚顶的高度为 1.8m,则这艘游船能否从桥洞下通过?②若从水面到棚顶的高度为7m的游船能从桥洞下通过,则这艘游船的宽度最大是多少4米?解: (1) 设抛物线形桥洞相应的函数表达式为∵点 A(3 , 0) 和 E(0 , 3) 在函数图像上,y= ax2+ c.1∴9a+ c= 0,解得 a=-3,c=3,c=3,1∴y=- x2+ 3.3由题意可知,点 C 和点 D的纵坐标为0.5 ,1 2∴-3x +3= 0.5 ,30- 30解得 x1=2,x2=2,3030∴ CD=2 +2=30(m).即水面的宽度CD为30 m.88(2)①当 x= 1 时, y=3,∵3- 0.5>1.8 ,∴这艘游船能从桥洞下通过.791293 3②当 y=4+ 0.5 =4时,-3x + 3=4,解得 x1=2, x2=-2.∴这艘游船的宽度最大是 3 m.例 2 [ 解析 ] 根据题意确定点的坐标,即可求出函数表达式,然后根据车宽求出最大高度,或根据车高求允许通过的车辆宽度.解: (1) 由题意知 E(0 , 6) , A( - 4, 2) .设抛物线所对应的函数表达式为y=ax2+ 6.2将 x=- 4, y=2 代入上式,得2=( - 4) a+ 6,1解得a=- 4.1 2∴抛物线所对应的函数表达式为y=-4x + 6.1 2(2) 当 x= 2.4 时, y=-4× 2.4 + 6=4.56 > 4.∴高 4 ,宽 2.4 的货运卡车能通过该隧道.m m【总结反思】[ 反思 ] 不正确.错误地认为丙、丁是“对称的”.实际上,抛物线是轴对称图形,其对称轴是甲、乙两名学生的手所连线段的垂直平分线,如图所示.但丙、丁并不关于抛物线的对称轴对称.正解:建立如图所示的平面直角坐标系.2将 (2 ,1) , (0.5 , 1.625) 代入 y = ax 2+ k ,1= 4a + k , 得1.625 = 0.25a + k ,1 a =-,6解得5 k = 3,∴ y =- x 2+ 5.631当 x =- 1 时, y = 1.5.故学生丙的身高为1.5 m .。

九年级数学二次函数取值范围20专题训练

九年级数学二次函数取值范围20专题训练

九年级数学二次函数取值范围20专题训练九年级数学二次函数取值范围20专题训练一、单选题二、填空题1.已知抛物线 $y=2(x-1)+1$,当 $1<x<3$ 时,$y$ 的取值范围是 $\boxed{3<y<7}$。

2.函数 $y=\dfrac{2}{3(x+2)}$ 中,自变量 $x$ 的取值范围是 $\boxed{x\neq -2}$。

3.如果抛物线 $y=ax^2+bx+c$ 的开口向上,那么 $a$ 的取值范围是 $\boxed{a>0}$。

4.已知二次函数 $y=(m+1)x^2$ 有最大值,则 $m$ 的取值范围是 $\boxed{m<-1}$。

5.如果抛物线 $y=(2+k)x-k$ 的开口向下,那么 $k$ 的取值范围是 $\boxed{k>0}$。

6.已知二次函数 $y=x^2-4x+2$,关于该函数在 $-1\leqx\leq 3$ 的取值范围内,$y$ 的取值范围为 $\boxed{1\leq y\leq 7}$。

7.函数 $y=x^2-4x+3$,当 $y3}$。

8.已知 $y=-\dfrac{1}{2}x^2-\dfrac{3}{2}x+4$,$-10\leqx\leq 2$,则函数 $y$ 的取值范围是 $\boxed{\dfrac{11}{2}\leqy\leq 14}$。

9.已知抛物线 $y=(a+3)x^2$ 开口向下,那么 $a$ 的取值范围是 $\boxed{a<-3}$。

10.若抛物线 $y=(a-3)x^2$ 开口向上,则 $a$ 的取值范围是 $\boxed{a>3}$。

11.设二次函数 $y=x^2+ax+b$ 图像与 $x$ 轴有 $2$ 个交点,$A(x_1,0)$,$B(x_2,0)$;且 $-1<x_1<1$;$1<x_2<2$,那么$5a+2b$ 的取值范围是 $\boxed{-13\leq 5a+2b\leq -9}$;$a^2-2b$ 的取值范围是 $\boxed{0<a^2-2b<8}$。

北师大版九年级数学下册第2章 二次函数 章末综合题复习(含答案)

北师大版九年级数学下册第2章 二次函数 章末综合题复习(含答案)

北师大版九年级数学下册第二章二次函数章末综合题复习1、已知抛物线的顶点为(-1,-3),与y轴的交点为(0,-5).(1)求抛物线的表达式;(2)将(1)中所求的抛物线向右平移2个单位长度、向上平移3个单位长度会得到怎样的抛物线?(3)若(2)中所求抛物线的顶点不动将抛物线的开口方向相反,求符合此条件的抛物线的表达式.2、如果将抛物线y=2x2+bx+c沿直角坐标平面先向左平移3个单位长度,再向下平移2个单位长度,得到了抛物线y=2x2-4x+3.(1)试确定b,c的值;(2)求出抛物线y=2x2+bx+c的对称轴和顶点坐标.3、成都市某公司自主设计了一款可控温杯,每个生产成本为16元,投放市场进行了试销.经过调查得到每月销售量y(万个)与销售单价x(元)之间关系是一次函数的关系,部分数据如下:(1)求y与x之间的函数关系式;(2)该公司既要获得一定利润,又要符合相关部门规定(一件产品的利润率不得高于50%),请你帮助分析,公司销售单价定为多少时可获利最大?并求出最大利润.4、如图所示,用一根长度为18米的原材料制作一个矩形窗户边框(即矩形ABFE和矩形DCFE),原材料刚好全部用完.设窗户边框AB长度为x米,窗户总面积为S平方米(注:窗户边框粗细忽略不计).(1)求S与x之间的函数关系式;(2)若窗户边框AB的长度不少于2米,且边框AB的长度小于BC的长度,求此时窗户总面积S的最大值和最小值.5、已知二次函数y=ax2的图象与直线y=x+2交于点(2,m).(1)判断y=ax2的图象的开口方向,并说出此抛物线的对称轴、顶点坐标以及当x>0时,y的值随x值的增大而变化的情况;(2)设直线y=x+2与抛物线y=ax2的交点分别为A,B,如图所示.试确定A,B两点的坐标;(3)连接OA,OB,求△AOB的面积.6、如图,已知二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.(1)求此二次函数的关系式和点B的坐标;(2)在x轴的正半轴上是否存在点P,使得△P AB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.7、如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4).(1)求出图象与x轴的交点A,B的坐标;(2)在二次函数的图象上是否存在点P,使S△P AB=54S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.8、如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴的交点为A(0,3),与x轴的交点分别为B(2,0),C(6,0).直线AD∥x轴,在x轴上位于点B右侧有一动点E,过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P,Q.(1)抛物线的表达式为________;(2)当点E在线段BC上时,求△APC面积的最大值;(3)是否存在点P,使以A,P,Q为顶点的三角形与△AOB相似?若存在,求出此时点E的坐标;若不存在,请说明理由.9.已知直线l:y=kx+1与抛物线y=x2-4x.(1)求证:直线l与该抛物线总有两个交点;(2)如图,设直线l与该抛物线两个交点分别为A,B,O为原点,当k=-2时,求△OAB的面积.10、如图,抛物线y=-x2+2x+3与x轴交于点A,B,与y轴交于点C,在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小?若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由.11、如图,已知二次函数y=x2-4x+3的图象与x轴交于点A,B,与y轴交于点C,若点P为抛物线上的一点,点F为对称轴上的一点,且以点A,B,P,F为顶点的四边形为平行四边形,求点P的坐标.12、如图,顶点为M的抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,在y轴上是否存在一点P,使得△P AM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.13、如图所示,抛物线y =ax 2+bx +4的顶点坐标为(3,254),与y 轴交于点A .过点A 作AB ∥x 轴,交抛物线于点B ,点C 是第四象限的抛物线上的一个动点,过点C 作y 轴的平行线,交直线AB 于点D .(1)求抛物线的函数表达式;(2)若点E 在y 轴的负半轴上,且AE =AD ,直线CE 交抛物线y =ax 2+bx +4于点F . ①求点F 的坐标;②过点D 作DG ⊥CE 于点G ,连接OD ,ED ,当∠ODE =∠CDG 时,求直线DG 的函数表达式.14、如图,抛物线y =ax 2+bx +3(a ≠0)与x 轴、y 轴分别交于A (-1,0),B (3,0),C 三点. (1)求抛物线的表达式;(2)x 轴上是否存在点P ,使PC +12PB 最小?若存在,请求出点P 的坐标及PC +12PB 的最小值;若不存在,请说明理由;(3)连接BC ,设E 为线段BC 的中点.若M 是抛物线上一动点,将点M 绕点E 旋转180°得到点N ,当以B ,C ,M ,N 为顶点的四边形是矩形时,直接写出点N 的坐标.15、如图,已知抛物线y =ax 2+bx +c 与直线y =12x +12相交于A (-1,0),B (4,m )两点,抛物线y =ax 2+bx +c交y 轴于点C (0,-32),交x 轴正半轴于点D ,抛物线的顶点为M .(1)求抛物线的表达式及点M的坐标;(2)设P为直线AB下方的抛物线上一动点,当△P AB的面积最大时,求此时△P AB的面积及点P的坐标;(3)Q为x轴上一动点,N是抛物线上一点,当△QMN∽△MAD(点Q与点M对应)时,求点Q的坐标.16、如图1,在平面直角坐标系中,已知抛物线y=ax2+bx-5,与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;(3)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;(4)若点K为x轴上一点,连接CK,请你直接写出2CK+KB的最小值.参考答案1、已知抛物线的顶点为(-1,-3),与y轴的交点为(0,-5).(1)求抛物线的表达式;(2)将(1)中所求的抛物线向右平移2个单位长度、向上平移3个单位长度会得到怎样的抛物线?(3)若(2)中所求抛物线的顶点不动将抛物线的开口方向相反,求符合此条件的抛物线的表达式.解:(1)根据题意设抛物线的表达式为y=a(x+1)2-3,将(0,-5)代入,得a-3=-5.解得a=-2.∴抛物线的表达式为y=-2(x+1)2-3=-2x2-4x-5.(2)y=-2(x-1)2.(3)所求抛物线的表达式为y=2(x-1)2.2、如果将抛物线y=2x2+bx+c沿直角坐标平面先向左平移3个单位长度,再向下平移2个单位长度,得到了抛物线y=2x2-4x+3.(1)试确定b,c的值;(2)求出抛物线y=2x2+bx+c的对称轴和顶点坐标.解:(1)∵y=2x2-4x+3=2(x-1)2+1,∴现将其向上平移2个单位长度,向右平移3个单位长度可得原函数,即y=2(x-4)2+3.∴y=2x2-16x+35.∴b=-16,c=35.(2)由y=2(x-4)2+3,得顶点坐标为(4,3),对称轴为直线x=4.3、成都市某公司自主设计了一款可控温杯,每个生产成本为16元,投放市场进行了试销.经过调查得到每月销售量y (万个)与销售单价x (元)之间关系是一次函数的关系,部分数据如下:(1)求y 与x 之间的函数关系式;(2)该公司既要获得一定利润,又要符合相关部门规定(一件产品的利润率不得高于50%),请你帮助分析,公司销售单价定为多少时可获利最大?并求出最大利润.解:(1)设y 与x 之间的函数关系式为y =kx +b . 把(20,60),(30,40)代入,得⎩⎪⎨⎪⎧20k +b =60,30k +b =40,解得⎩⎪⎨⎪⎧k =-2,b =100. ∴y 与x 之间的函数关系式为y =-2x +100.(2)∵每个生产成本为16元,一件产品的利润率不得高于50%, ∴x ≤(1+50%)×16=24.设该公司每月获得的利润为w 万元,则 w =y (x -16) =(-2x +100)(x -16) =-2x 2+132x -1 600 =-2(x -33)2+578.∵图象开口向下,对称轴左侧w 随x 的增大而增大, ∴当x =24时,w 最大,最大值为416.答:公司销售单价定为24元时可获利最大,最大利润为每月416万元.4、如图所示,用一根长度为18米的原材料制作一个矩形窗户边框(即矩形ABFE 和矩形DCFE ),原材料刚好全部用完.设窗户边框AB 长度为x 米,窗户总面积为S 平方米(注:窗户边框粗细忽略不计).(1)求S 与x 之间的函数关系式;(2)若窗户边框AB 的长度不少于2米,且边框AB 的长度小于BC 的长度,求此时窗户总面积S 的最大值和最小值.解:(1)由题意可得,S =x ·18-3x 2=-32x 2+9x .(2)由题意可得,2≤x <18-3x2,解得2≤x <3.6,∵S =-32x 2+9x ,2≤x <3.6,∴当x =3时,S 取得最大值,此时S =272;当x =2时,S 取得最小值,此时S =12.答:窗户总面积S 的最大值是272平方米,最小值是12平方米.5、已知二次函数y =ax 2的图象与直线y =x +2交于点(2,m ).(1)判断y =ax 2的图象的开口方向,并说出此抛物线的对称轴、顶点坐标以及当x >0时,y 的值随x 值的增大而变化的情况;(2)设直线y =x +2与抛物线y =ax 2的交点分别为A ,B ,如图所示.试确定A ,B 两点的坐标; (3)连接OA ,OB ,求△AOB 的面积.解:(1)把点(2,m )代入y =x +2,解得m =4, ∴交点坐标为(2,4). 把点(2,4)代入y =ax 2,得 a =1.∴二次函数的表达式为y =x 2.∴抛物线的对称轴为y 轴,顶点坐标为(0,0), 当x >0时,y 随x 的增大而增大. (2)由题意,得x 2=x +2,解得x 1=2,x 2=-1,则y 1=4,y 2=1. ∴A (2,4),B (-1,1).(3)设直线y =x +2与y 轴的交点为D ,则点D 坐标为(0,2), ∴S △AOB =S △DOB +S △DOA =12×2×1+12×2×2 =3.6、如图,已知二次函数y =-x 2+bx +3的图象与x 轴的一个交点为A (4,0),与y 轴交于点B . (1)求此二次函数的关系式和点B 的坐标;(2)在x 轴的正半轴上是否存在点P ,使得△P AB 是以AB 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)把点A (4,0)代入二次函数,得 0=-16+4b +3, 解得b =134.∴二次函数的关系式为y =-x 2+134x +3.当x =0时,y =3, ∴点B 的坐标为(0,3).(2)作AB 的垂直平分线交x 轴于点P ,连接BP ,则BP =AP ,此时点P 即为所求. 设BP =AP =x ,则OP =4-x , 在Rt △OBP 中,BP 2=OB 2+OP 2, 即x 2=32+(4-x )2, 解得x =258.∴OP =4-258=78,即P (78,0).∴在x 轴的正半轴上存在点P ,使得△P AB 是以AB 为底边的等腰三角形,且点P 的坐标为(78,0).7、如图是二次函数y =(x +m )2+k 的图象,其顶点坐标为M (1,-4). (1)求出图象与x 轴的交点A ,B 的坐标;(2)在二次函数的图象上是否存在点P ,使S △P AB =54S △MAB ?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)∵抛物线y =(x +m )2+k 的顶点坐标为M (1,-4), ∴y =(x -1)2-4.令y =0,即(x -1)2-4=0. 解得x 1=3,x 2=-1. ∴A (-1,0),B (3,0).(2)∵△P AB 与△MAB 同底,且S △P AB =54S △MAB ,∴|y P |=54|y M |=54×4=5,即y P =±5.又∵点P 在二次函数y =(x -1)2-4的图象上, ∴y P ≥-4.∴y P =5.令(x -1)2-4=5,解得x 1=4,x 2=-2, ∴存在这样的点P ,其坐标为(4,5)或(-2,5).8、如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与y 轴的交点为A (0,3),与x 轴的交点分别为B (2,0),C (6,0).直线AD ∥x 轴,在x 轴上位于点B 右侧有一动点E ,过点E 作平行于y 轴的直线l 与抛物线、直线AD 的交点分别为P ,Q .(1)抛物线的表达式为y =14x 2-2x +3;(2)当点E 在线段BC 上时,求△APC 面积的最大值;(3)是否存在点P ,使以A ,P ,Q 为顶点的三角形与△AOB 相似?若存在,求出此时点E 的坐标;若不存在,请说明理由.解:(2)设直线AC 的表达式为y =kx +m ,∴⎩⎪⎨⎪⎧6k +m =0,m =3.解得⎩⎪⎨⎪⎧k =-12,m =3.∴直线AC 的表达式为y =-12x +3.设△APC 的面积为S ,直线l 与AC 的交点为F . 设P (t ,14t 2-2t +3)(2≤t ≤6),则F (t ,-12t +3).∴PF =-14t 2+32t .∴S =S △PF A +S △PFC =12PF ·t +12PF ·(6-t ) =12(-14t 2+32t )×6=-34(t -3)2+274. ∴当t =3时,S 最大=274,即△APC 面积的最大值为274.(3)存在点P ,使以A ,P ,Q 为顶点的三角形与△AOB 相似. 理由:连接AB ,则在△AOB 中,∠AOB =90°,AO =3,BO =2, 设E (n ,0)(n >2),则Q (n ,3),P (n ,14n 2-2n +3),当14n 2-2n +3=3时,此时,点P ,Q 重合, 即n =0(舍)或n =8,不能构成△APQ ,∴n ≠8. ①当2<n <8时,AQ =n ,PQ =-14n 2+2n ,若△AOB ∽△AQP ,则AO AQ =OBQP ,即3n =2-14n 2+2n . ∴n =0(舍)或n =163.∴E (163,0).若△AOB ∽△PQA ,则AO PQ =OBQA,即2n =3-14n 2+2n . ∴n =0(舍)或n =2(舍);②当n >8时,AQ =n ,PQ =14n 2-2n ,若△AOB ∽△AQP ,则AO AQ =OBQP ,即3n =214n 2-2n . ∴n =0(舍)或n =323.∴E (323,0).若△AOB ∽△PQA ,则AO PQ =OBQA ,即2n =314n 2-2n . ∴n =0(舍)或n =14.∴E (14,0).综上所述,存在点P ,使以A ,P ,Q 为顶点的三角形与△AOB 相似,此时点E 的坐标为(163,0),(323,0)或(14,0).9、已知直线l :y =kx +1与抛物线y =x 2-4x . (1)求证:直线l 与该抛物线总有两个交点;(2)如图,设直线l 与该抛物线两个交点分别为A ,B ,O 为原点,当k =-2时,求△OAB 的面积.解:(1)证明:联立⎩⎪⎨⎪⎧y =kx +1,y =x 2-4x ,化简,得x 2-(4+k )x -1=0, ∴Δ=(4+k )2+4>0.∴直线l 与该抛物线总有两个交点. (2)当k =-2时,y =-2x +1. 设直线AB 交x 轴于点C .令y =0,则-2x +1=0, ∴x =12.∴C (12,0).∴OC =12.过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E ,联立⎩⎪⎨⎪⎧y =x 2-4x ,y =-2x +1,解得⎩⎨⎧x =1+2,y =-1-22或⎩⎨⎧x =1-2,y =22-1.∴A (1-2,22-1),B (1+2,-1-22). ∴AF =22-1,BE =1+2 2. ∴S △AOB =S △AOC +S △BOC =12OC ·AF +12OC ·BE =12OC ·(AF +BE ) =12×12×(22-1+1+22) = 2.10、如图,抛物线y =-x 2+2x +3与x 轴交于点A ,B ,与y 轴交于点C ,在抛物线的对称轴上是否存在一点P ,使得△P AC 的周长最小?若存在,请求出点P 的坐标及△P AC 的周长;若不存在,请说明理由.解:在y =-x 2+2x +3中,令y =0,则-x 2+2x +3=0.解得x 1=-1,x 2=3. ∴A (-1,0),B (3,0).在y =-x 2+2x +3中,令x =0,则y =3.∴C (0,3).连接BC 交抛物线的对称轴于点P ,连接AP ,则点P 即为所求.此时△P AC 的周长最小,等于AC +BC . ∵A (-1,0),B (3,0),C (0,3),∴AC =12+32=10,BC =32+32=3 2. ∴AC +CB =10+3 2.∴△P AC 的周长最小为10+3 2. 设直线BC 的表达式为y =kx +t .把点B (3,0),C (0,3)代入,得⎩⎪⎨⎪⎧3k +t =0,t =3.解得⎩⎪⎨⎪⎧k =-1,t =3. ∴直线BC 的表达式为y =-x +3. ∴y P =-1+3=2.∴存在点P (1,2)使△P AC 的周长最小,最小值为10+3 2.11、如图,已知二次函数y =x 2-4x +3的图象与x 轴交于点A ,B ,与y 轴交于点C ,若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A ,B ,P ,F 为顶点的四边形为平行四边形,求点P 的坐标.解:在y =x 2-4x +3中,令y =0,则x 2-4x +3=0,解得x 1=1,x 2=3. ∴A (1,0),B (3,0).①当AB 为平行四边形一条边时,如图1, 则AB =PF =2.∵抛物线的对称轴为直线x =2, ∴点P 的坐标为(4,3);当点P 在对称轴左侧时,点P 的坐标为(0,3); ②当AB 是平行四边形的对角线时,如图2, AB 的中点坐标为(2,0).设点P 的横坐标为m ,则PF 的中点坐标为(m +22,0),∴m +22=2,解得m =2.∴点P 的坐标为(2,-1).综上所述,点P 的坐标为(4,3)或(0,3)或(2,-1).图1 图212、如图,顶点为M 的抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,与y 轴交于点C ,在y 轴上是否存在一点P ,使得△P AM 为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.解:在y =-x 2+2x +3中,令y =0,则-x 2+2x +3=0. 解得x 1=3,x 2=-1. ∴A (3,0),B (-1,0).∵y =-x 2+2x +3=-(x -1)2+4, ∴M (1,4).∴AM 2=(3-1)2+42=20. 设点P 坐标为(0,p ), 则AP 2=32+p 2=9+p 2, MP 2=12+(4-p )2=17-8p +p 2. ①若∠P AM =90°,则AM 2+AP 2=MP 2. ∴20+9+p 2=17-8p +p 2,解得p =-32.∴P (0,-32).②若∠APM =90°,则AP 2+MP 2=AM 2. ∴9+p 2+17-8p +p 2=20,解得p 1=1,p 2=3. ∴P (0,1)或(0,3).③若∠AMP =90°,则AM 2+MP 2=AP 2. ∴20+17-8p +p 2=9+p 2,解得p =72.∴P (0,72).综上所述,当点P 的坐标为(0,-32)或(0,1)或(0,3)或(0,72)时,△P AM 为直角三角形.13、如图所示,抛物线y =ax 2+bx +4的顶点坐标为(3,254),与y 轴交于点A .过点A 作AB ∥x 轴,交抛物线于点B ,点C 是第四象限的抛物线上的一个动点,过点C 作y 轴的平行线,交直线AB 于点D .(1)求抛物线的函数表达式;(2)若点E 在y 轴的负半轴上,且AE =AD ,直线CE 交抛物线y =ax 2+bx +4于点F . ①求点F 的坐标;②过点D 作DG ⊥CE 于点G ,连接OD ,ED ,当∠ODE =∠CDG 时,求直线DG 的函数表达式.解:(1)∵抛物线y =ax 2+bx +4的顶点坐标为(3,254),∴y =a (x -3)2+254=ax 2-6ax +9a +254.∴9a +254=4.∴a =-14.∴抛物线的表达式为y =-14x 2+32x +4.(2)①设C (m ,-14m 2+32m +4).∵AD =AE ,AD ∥x 轴,CD ∥y 轴,∴AD =AE =m . ∵OA =4,∴OE =m -4.∵点E 在y 轴的负半轴上,∴E (0,4-m ). 设直线CE 的表达式为y =kx +b . 则⎩⎪⎨⎪⎧b =4-m ,mk +b =-14m 2+32m +4. 解得⎩⎪⎨⎪⎧k =-14m +52,b =4-m.∴直线CE 的表达式为y =(-14m +52)x +4-m .联立两个函数表达式,得-14x 2+32x +4=(-14m +52)x +4-m .∴-14x 2+(14m -1)x +m =0,x 2+(4-m )x -4m =0,(x +4)(x -m )=0,解得x 1=-4,x 2=m .∴定点F (-4,-6).②如图,过点E 作EH ⊥CD 于点H ,交DG 于点Q ,连接OQ ,由①知OE =m -4. ∵∠DAE =∠ADH =∠EHD =90°,AD =AE ,∴四边形AEHD 是正方形. ∴∠EDH =45°,AD =AE =DH =EH . ∵∠ODE =∠CDG ,∴∠ODE +∠EDQ =∠EDQ +∠CDG =45°,即∠ODQ =45°. ∴∠ADO +∠CDG =45°.在OA 的延长线上取AP =QH ,连接PD , 又∵∠P AD =∠QHD =90°,AD =DH , ∴△P AD ≌△QHD (SAS ). ∴PD =DQ ,∠ADP =∠CDG . ∴∠ADP +∠ADO =45°=∠ODQ . 又∵OD =OD ,∴△PDO ≌△QDO (SAS ).∴OP =OQ .∵EH =DH ,∠EHC =∠DHQ ,∠GEH =∠CDG , ∴△EHC ≌△DHQ (ASA ).∴CH =QH =14m 2-32m -4-(m -4)=14m 2-52m =AP .∴OQ =OP =OA +AP =4+14m 2-52m .∵OE =m -4,EQ =EH -QH =m -(14m 2-52m )=-14m 2+72m ,在Rt △OEQ 中,由勾股定理,得OE 2+EQ 2=OQ 2, ∴(m -4)2+(-14m 2+72m )2=(4+14m 2-52m )2,m 3-10m 2-24m =0,解得m 1=0(舍),m 2=12,m 3=-2(舍). ∴D (12,4),Q (6,-8).设直线DG 的表达式为y =k ′x +b ′,则⎩⎪⎨⎪⎧12k′+b′=4,6k′+b′=-8,解得⎩⎪⎨⎪⎧k′=2,b′=-20. ∴直线DG 的函数表达式为y =2x -20.14、如图,抛物线y =ax 2+bx +3(a ≠0)与x 轴、y 轴分别交于A (-1,0),B (3,0),C 三点. (1)求抛物线的表达式;(2)x 轴上是否存在点P ,使PC +12PB 最小?若存在,请求出点P 的坐标及PC +12PB 的最小值;若不存在,请说明理由;(3)连接BC ,设E 为线段BC 的中点.若M 是抛物线上一动点,将点M 绕点E 旋转180°得到点N ,当以B ,C ,M ,N 为顶点的四边形是矩形时,直接写出点N 的坐标.解:(1)∵抛物线y =ax 2+bx +3(a ≠0)与x 轴交于点A (-1,0),B (3,0), ∴设抛物线的表达式为y =a (x +1)(x -3)=ax 2-2ax -3a . ∴-3a =3.∴a =-1.∴抛物线的表达式为y =-x 2+2x +3.(2)在x 轴下方作∠ABD =30°,交y 轴负半轴于点D ,则BD =2OD . ∵B (3,0),∴OB =3.根据勾股定理,得BD 2-OD 2=32, ∴4OD 2-OD 2=9. ∴OD =3,BD =2 3.∵抛物线的表达式为y =-x 2+2x +3, ∴C (0,3).∴OC =3.∴CD =3+ 3. 过点P 作PB ′⊥BD 于点B ′, 在Rt △PB ′B 中,PB ′=12PB ,∴PC +12PB =PC +PB ′.当点C ,P ,B 在同一条直线上时,PC +12PB 最小,最小值为CB ′,∵S △BCD =12CD ·OB =12BD ·CB ′,∴CB ′=CD·OB BD =(3+3)×323=3(3+1)2, 即PC +12PB 的最小值为3(3+1)2.∵OB =OC =3,∴∠OBC =∠OCB =45°. ∴∠DBC =45°+30°=75°.∴∠BCP =90°-75°=15°.∴∠OCP =30°. ∵OC =3,∴OP = 3.∴P (3,0).(3)如备用图,设M (m ,-m 2+2m +3), ∵以B ,C ,M ,N 为顶点的四边形是矩形, ∴∠BMC =90°.∵点A 在x 轴负半轴上,且∠BOC =90°, ∴点M 在x 轴上方的抛物线上.过点M 作ME ⊥x 轴于点E ,MF ⊥y 轴于点F , ∴∠MEO =∠MFO =90°=∠EOF . ∴四边形OEMF 是矩形. ∴∠EMF =90°.∴∠BME =∠CMF . 又∵∠BEM =∠CFM =90°, ∴△BEM ∽△CFM . ∴BE CF =MEMF, 即3-m -m 2+2m +3-3=-m 2+2m +3m .∴m =1±52或3(舍去).∴M (1+52,5+52)或(1-52,5-52).∵点N 是点M 关于点E (32,32)的对称点,∴点N 的坐标为(5-52,1-52)或(5+52,1+52).15、如图,已知抛物线y =ax 2+bx +c 与直线y =12x +12相交于A (-1,0),B (4,m )两点,抛物线y =ax 2+bx +c交y 轴于点C (0,-32),交x 轴正半轴于点D ,抛物线的顶点为M .(1)求抛物线的表达式及点M 的坐标;(2)设P 为直线AB 下方的抛物线上一动点,当△P AB 的面积最大时,求此时△P AB 的面积及点P 的坐标; (3)Q 为x 轴上一动点,N 是抛物线上一点,当△QMN ∽△MAD (点Q 与点M 对应)时,求点Q 的坐标.解:(1)把点B (4,m )代入y =12x +12中,得m =52,∴B (4,52).把点A (-1,0),B (4,52),C (0,-32)代入y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧a -b +c =0,16a +4b +c =52,c =-32.解得⎩⎪⎨⎪⎧a =12,b =-1,c =-32.∴抛物线的表达式为y =12x 2-x -32. ∵y =12x 2-x -32=12(x -1)2-2, ∴点M 的坐标为(1,-2).(2)如图1所示,过点P 作y 轴的平行线交AB 于点H ,设点P 的坐标为(m ,12m 2-m -32), 则H (m ,12m +12), ∴PH =12m +12-(12m 2-m -32)=-12m 2+32m +2. ∵点P 为直线AB 下方的抛物线上一动点,∴-1<m <4.∴S △P AB =12×HP ·(x B -x A )=12×(-12m 2+32m +2)×5=-54(m -32)2+12516. ∵-54<0,∴当m =32时,S △P AB 最大,最大为12516, 此时点P (32,-158). (3)如图2所示,在y =12x 2-x -32中,令y =0,解得x 1=-1,x 2=3,∴D (3,0). ∵M (1,-2),A (-1,0),∴△AMD 为等腰直角三角形.∵△QMN ∽△MAD ,∴△QNM 为等腰直角三角形,且∠MQN =90°,MQ =NQ .设点N 的坐标为(n ,12n 2-n -32), 易证:△QEN ≌△MFQ ,∴FQ =EN =2,MF =EQ =12n 2-n -32. ∴12n 2-n -32+1=n +2.解得n =5或-1(舍). ∴点Q 的坐标为(7,0).根据对称性可知,点Q 的坐标为(-5,0)时也满足条件,∵△ADM 是等腰直角三角形,∴当点Q 是AD 的中点,N 与A 或D 重合时,△QMN ∽△MAD ,此时Q (1,0).综上所述,点Q 的坐标为(7,0)或(-5,0)或(1,0).16、如图1,在平面直角坐标系中,已知抛物线y =ax 2+bx -5,与x 轴交于A (-1,0),B (5,0)两点,与y 轴交于点C .(1)求抛物线的函数表达式;(2)若点D 是y 轴上的一点,且以B ,C ,D 为顶点的三角形与△ABC 相似,求点D 的坐标;(3)如图2,CE ∥x 轴与抛物线相交于点E ,点H 是直线CE 下方抛物线上的动点,过点H 且与y 轴平行的直线与BC ,CE 分别相交于点F ,G ,试探究当点H 运动到何处时,四边形CHEF 的面积最大,求点H 的坐标及最大面积;(4)若点K 为x 轴上一点,连接CK ,请你直接写出2CK +KB 的最小值.解:(1)∵点A (-1,0),B (5,0)在抛物线y =ax 2+bx -5上,∴⎩⎪⎨⎪⎧a -b -5=0,25a +5b -5=0,解得⎩⎪⎨⎪⎧a =1,b =-4. ∴抛物线的表达式为y =x 2-4x -5.(2)令x =0,则y =-5,∴C (0,-5).∴OC =OB =5.∴∠OBC =∠OCB =45°.∴AB =6,BC =52,AC =26.要使以B ,C ,D 为顶点的三角形与△ABC 相似,则有AB CD =BC BC 或AB BC =BC CD. ①当AB CD =BC BC时,CD =AB =6, ∴D (0,1).②当AB BC =BC CD 时,652=52CD, ∴CD =253.∴D (0,103). ∴点D 的坐标为(0,1)或(0,103). (3)设H (t ,t 2-4t -5),∵CE ∥x 轴,∴点E 的纵坐标为-5.∵点E 在抛物线上,∴x 2-4x -5=-5.∴x =0(舍)或x =4.∴E (4,-5).∴CE =4.∵B (5,0),C (0,-5),∴直线BC 的表达式为y =x -5.∴F (t ,t -5).∴HF =t -5-(t 2-4t -5)=-(t -52)2+254. ∵CE ∥x 轴,HF ∥y 轴,∴CE ⊥HF .∴S 四边形CHEF =12CE ·HF =-2(t -52)2+252. ∴当t =52时,四边形CHEF 的面积最大为252. 当t =52时,t 2-4t -5=254-10-5=-354, ∴H (52,-354). (4)如图3,作点C 关于x 轴的对称点E (0,5),将△BKC 绕点B 逆时针旋转60°,得到△BHF ,连接HK ,EF ,EK ,过点F 作FM ⊥x 轴于点M ,∵B (5,0),C (0,-5),∴BO =CO =5.∴BC =52,∠CBO =45°.∵点C ,点E 关于x 轴对称,∴EK =CK .∵将△BKC 绕点B 逆时针旋转60°得到△BHF ,∴BK =BH ,CK =HF ,BF =BC =52,∠KBH =60°=∠CBF .∴△KBH 是等边三角形.∴KB =KH .∴2CK +KB =HF +EK +KH .∴当E ,K ,H ,F 四点共线时,2CK +KB 的值最小,最小值为EF 的长.∵∠FBM =180°-45°-60°=75°,BF =52,∴BM =53-52,MF =53+52.∴EF=(53-52+5)2+(53+52+5)2=53+5,即2CK+KB的最小值为53+5.。

初三数学试题大全

初三数学试题大全

初三数学试题答案及解析1.(12分)如图,直线y=x-1和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求抛物线的解析式;密封线内请不要答题(2)求不等式x2+bx+c<x-1的解集(直接写出答案). (3)设直线AB交抛物线对称轴与点D,请在对称轴上求一点P(D点除外),使△PBD为等腰三角形.(直接写出点P的坐标,不写过程)【答案】见解析【解析】(1)将A(1,0),B(3,2)代入y=x2+bx+c得∴∴y=x2-3x+2(2)由图可知,当1<x<3,不等式x2+bx+c<x-1(3)y=x2-3x+2的对称轴方程为x=设P点坐标为(如果等腰△PBD中PB=PD那么即(同理PB=BD,PD=BD2. .若一个圆锥的母线长是它底面半径的3倍,则它的侧面展开图的圆心角为度.【答案】120【解析】2πr=,解得n=120°,侧面展开图的圆心角为120度.3.在直角梯形中,,为边上一点,,且.连接交对角线于,连接.下列结论:①;②为等边三角形;③;④其中结论正确的是()A.只有①②B.只有①②④C.只有③④D.①②③④【答案】B【解析】略4.建设新农村,农村大变样.向阳村建起了天然气供应站,气站根据实际情况,每天从零点开始至凌晨4点,只打开进气阀,在以后的16小时(4∶00-20∶00),同时打开进气阀和供气阀,20∶00-24∶00只打开供气阀,已知气站每小时进气量和供气量是一定的,下图反映了某天储气量与(小时)之间的关系.【1】求0∶00-20∶00之间气站每小时增加的储气量;【答案】(1)根据图形:0∶00-20∶00之间气站每小时增加的储气量为:(238-30)÷20=10.4(米3/小时)【2】求20∶00-24∶00时,与的函数关系式,并画出函数图象;【答案】设气站每小时进气量为米3,每小时供气量为米3,根据题意,得解得:……(4分)在20∶00-24∶00只打开供气阀门,到24:00时,气站的储气量为238-4×49.5=40,即当时,;又当时,……(5分)设20∶00-24∶00时,与的函数关系式为,则解得:………………………(7分)所以,图形如图所示【3】照此规律运行,从这天零点起三昼夜内,经过__小时气站储气量达到最大?最大值为___.(请把答案直接写在在横线上,不必写过程)【答案】68小时,2585.(本小题8分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的三个条件(请从其中选择一个):①AB=ED;②BC=EF;③∠ACB=∠DFE.【答案】【解析】略6.如图所示,△ABC中,DE∥BC,AD=5,BD=10,DE=6,则BC的值为A.6B.12C.18D.24【答案】C【解析】略7.(本题满分10分)如图.AB是⊙O的直径,AD是弦,∠DBC=∠A.【1】(1)求证:BC与⊙O相切.【答案】(1)略【2】(2)若OC是BD的垂直平分线,垂足为E,BD=6,CE=4,求AD的长.【答案】(2)AD=8.如图,AB、AC、BD是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为___________。

2020年春冀教版九年级数学下册30.4 第1课时 抛物线形问题

2020年春冀教版九年级数学下册30.4 第1课时 抛物线形问题

30.4 二次函数的应用第1课时 抛物线形问题1.图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的关系式是( )A .y=-2x 2B .y=2x 2C 、212y x =-D 、212y x =第1题 第2题 ,则、y第3题 第4题4、某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x 2+4x (单位:米)的一部分,则水喷出的最大高度是( )A 、4米B 、3米C 、2米D 、1米5.有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的解析式为第5题 第6题 第7题 第8题6、如图,一小孩将一只皮球从A 处抛出去,它经过的路线是某个二次函数图像的一部分,如果他的出手处A 距地面OA 为1m ,球路的最高点为B (8,9),则这个二次函数的表达式为 ,小孩将球抛出约 米。

7、如图,某中学教学楼前喷水池喷出的抛物线形水柱,其解析式为242y x x =-++,则水柱的最大高度是 米。

8、如图是某公园一圆形喷水池,水流在各个方向沿形状相同的抛物线落下,建立如下图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处M (1,2.25),则该抛物的解析式为 。

如果不考虑其他因素,那么水池的半径至少要 m ,才能使喷出的水流不至落到池外。

9、如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM 为12米,现以O为原点米,OM 所在的直线为x 轴建立直角坐标系。

(1)直接写出点M 的坐标及抛物线顶点P 的坐标;(2)求这条抛物线的解析式;(3)若有搭建一个矩形的“支撑架”AD-DC-CB,使C,D 点在抛物线上,A,B 点在地面OM上,则这个“支撑架”总长的最大值是多少?10、杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看作一个点)的路线是抛物线23315y x x =-++的一部分,如图所示。

九年级数学中考专题复习 :二次函数---抛物线的变换 专题训练

九年级数学中考专题复习 :二次函数---抛物线的变换 专题训练

二次函是---抛物线的变换专题训练题1. 下列二次函数的图像,不能通过函数y=3x2的图像平移得到的是( )A. y=3x2+2B. y=3(x-1)2C. y=3(x-1)2+2D. y=2x22. 将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A.y=2(x-3)2-5 B.y=2(x+3)2+5C.y=2(x-3)2+5 D.y=2(x+3)2-55. 关于抛物线y =x 2-2x +1,下列说法错误的是( ) A .当x >1时,y 随x 的增大而减小 B .与x 轴有一个交点 C .对称轴是直线x =1 D .开口向上6. 抛物线y =-35(x +12)2-3的顶点坐标是( )A .(12,-3)B .(-12,-3)C .(12,3)D .(-12,3)7. 下列各点在抛物线y =2x 2上的是( )A .(2,1)B .(1,-2)C .(1, 2)D .(-1,-2) 8. 关于二次函数y =x 2与y =-x 2,下列叙述正确的有( ) ①它们的图象都是抛物线; ②它们的图象的对称轴都是y 轴; ③它们的图象都经过点(0,0);④二次函数y =x 2的图象开口向上,二次函数y =-x 2的图象开口向下. A .4个 B .3个 C .2个 D .1个9. 在同一直角坐标系中,抛物线y =2x 2,y =12x 2,y =-12x 2的共同点是( )A.关于y轴对称,y随x的增大而增大 B.关于y轴对称,开口向上C.关于y轴对称,y随x的增大而减小 D.关于y轴对称,顶点在原点上10. 将二次函数y=2x2-2x+1的图像绕它的顶点A旋转,则旋转180°后的抛物线的函数解析式为( )A. y=-x2+2x+1B. y=-x2-2x+1C. y=-x2+2x-1D. y=x2+2x+111. 如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.12. 已知点(x1,-7)和点(x2,-7)(x1≠x2)均在抛物线y=ax2上,则当x=x1+x2时,y的值是________13. 如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为____________.14. 已知点(x1,y1),(x2,y2)均在抛物线y=x2-1上,若x1<x2<0,则y1 y2 (>;=;<)15. 抛物线y=2x2-1在y轴右侧的部分逐渐______(填“上升”或“下降”).16. 将二次函数y=(x-1)2+2的图像绕原点旋转180°后的抛物线的图像的解析式为17. 二次函数y=a(x-h)2的图象可由抛物线y=ax2平移得到.当h>0时,抛物线y=ax2向________平移h个单位得y=a(x-h)2;当h<0时,抛物线y=ax2向________平移│h│个单位得y=a(x-h)2.18. 抛物线y=-5(x-2)2的顶点坐标是19. 对于抛物线y=2(x-1)2,下列说法中正确的有个①开口向上;②顶点为(0,-1);③对称轴为直线x=1;④与x轴的交点坐标为(1,0).20. 将抛物线y=x2向______平移______个单位得到抛物线y=(x+5)2;将抛物线y=x2向______平移______个单位得到抛物线y=(x-5)2.21. 将抛物线y=-x2向左平移2个单位后,得到的抛物线的解析式是22. 如图,将抛物线y=2x2向右平移a个单位长度,顶点为A,与y轴交于点B,若△AOB 为等腰直角三角形,则a =________.23. 一条抛物线的形状、开口方向与抛物线y =12x 2相同,对称轴及顶点与抛物线y =3(x -2)2相同,求该抛物线的解析式.24. 将抛物线y =-13x 2-2x -6配成顶点式,指出其对称轴,并回答x 为何值时,y 随x 的增大而减小.25. 已知一条抛物线的开口方向和形状大小与抛物线y =-8x 2都相同,并且它的顶点在抛物线y =2(x +32)2的顶点上.(1)求这条抛物线的解析式;(2)求将(1)中的抛物线向左平移5个单位后得到的抛物线的解析式;(3)将(2)中所求抛物线绕顶点旋转180°,求旋转后的抛物线的解析式.26. 在平面直角坐标系内,二次函数图象的顶点为A(1,-4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使得平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.27. 如图,抛物线的顶点为A(-3,-3),此抛物线交x轴于O,B两点.(1)求此抛物线的解析式;(2)求△AOB的面积;(3)若抛物线上另一点P满足S△POB=S△AOB,请求出点P的坐标.28. 如图,已知抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B,C.(1)求抛物线的解析式;(2)求抛物线的顶点M的坐标;(3)求四边形ACMB的面积.29. 已知抛物线y=-(x-m)2+1与x轴的交点为A,B(B在A的右边),与y轴的交点为C.(1)写出m=1时与抛物线有关的三个正确结论;(2)当点B在原点的右边,点C在原点下方时,是否存在△BOC为等腰三角形的情形?若存在,求出m的值,若不存在,请说明理由.30. 如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,且A点坐标为(-3,0),经过B点的直线交抛物线于点D(-2,-3).(1)求抛物线的解析式和直线BD的解析式;(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a的值;如果不存在,请说明理由.参考答案:1—10 DACBA BCADC11. x<-1或x>412. 013. (-2,0)14. >15. 上升16. y=-(x+1)2-217. 右 左 18. (2,0) 19. 320. 左 5 右 5 21. y =-(x +2)2 22. 1223. 解:根据题意得:a =12,顶点坐标为(2,0),则抛物线解析式为y =12(x -2)224. 解:y =-13(x +3)2-3,对称轴为直线x =-3,当x >-3时,y 随x 的增大而减小25. 解:(1)y =-8(x +32)2(2)y =-8(x +132)2(3)y =8(x +132)226. 解:(1)y =(x -1)2-4(2)将抛物线y =(x -1)2-4向右平移1个单位后经过坐标原点,且平移后图象与x 轴另一个交点为(4,0)27. 解:(1)设抛物线解析式为y =a(x +3)2-3,过点(0,0),∴9a -3=0,∴a =13,∴y =13(x +3)2-3(2)令y =0,B(-6,0),∴S △AOB =6×32=9 (3)∵P 点纵坐标为3,代入抛物线得:13(x +3)2-3=3,∴x =-3±32, ∴P 点坐标为(-3±32,3)28. (1)y =x 2-2x -3(2)M(1,-4)(3)连接OM ,则S 四边形ACMB =S △AOC +S △OCM +S △OMB =12×1×3+12×1×3+12×3×4=9或作MN⊥AB 于点N ,则S =S △AOC +S 梯形OCMN +S △MNB29. 解:(1)正确的结论有:①顶点坐标为(1,1);②图象开口向下;③图象的对称轴为x =1;④函数有最大值1;⑤当x <1时y 随x 的增大而增大;⑥当x >1时,y 随x 的增大而减小等(2)由题意,若△BOC 为等腰三角形,则只能OB =OC.由-(x -m)2+1=0,解得x =m +1或x =m -1.∵B 在A 的右边,所以B 点的横坐标为x =m +1>0,OB =m +1.又∵当x =0时,y =1-m 2<0.由m +1=m 2-1,解得m =2或m =-1(舍去).存在△BOC 为等腰三角形的情形,此时m =230. (1)y =x 2+2x -3, y =x -1(2)∵直线BD 的解析式为y =x -1,且EF∥BD,∴设直线EF 的解析式为y =x +m ,若四边形BDFE 是平行四边形,则DF∥x 轴.∴D,F 两点的纵坐标相等,把y =-3代入y =x 2+2x -3得x 1=-2,x 2=0,∴F(0,-3),代入y =x +m ,得m =-3,∴y =x -3,令y =0,得x =3,∴E(3,0),即a =3。

九年级数学下第30章二次函数30.4二次函数的应用第1课时建立坐标系解抛物线形问题习题冀教

九年级数学下第30章二次函数30.4二次函数的应用第1课时建立坐标系解抛物线形问题习题冀教

(2)如图②,桥面上方有3根高度均为4 m的支柱CG、OH、 DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线, 其最低点到桥面距离为1 m.
①求出其中一条钢缆抛物线的函数表达式. 解:由题意可知右边钢缆所在抛物线的顶点坐标为(6, 1),设其表达式为 y2=a2(x-6)2+1. 将点 H(0,4)的坐标代入 y2=a2(x-6)2+1, 得 4=a2(0-6)2+1,解得 a2=112.
(2)在(1)的条件下,当运动员运动的水平距离为多少米时, 运动员与小山坡的竖直距离为1米? 解:设运动员运动的水平距离为 m 米时,运动员与小山
坡的竖直距离为 1 米. 依题意得-18m2+32m+4-(-112m2+76m+1)=1, 整理得(m-12)(m+4)=0,解得 m1=12,m2=-4(舍去). 答:运动员运动的水平距离为 12 米时,运动员与小山坡 的竖直距离为 1 米.
冀教版 九年级
30.4.1
第三十章 二次函数
建立坐标系解抛 物线形问题
习题链接
温馨提示:点击 进入讲评
1
6
2
3
4
5
1 【2021·衢州】如图①是一座抛物线形拱桥侧面示意 图.水面宽AB与桥长CD均为24 m,在距离D点6 m的 E处,测得桥面到桥拱的距离EF为1.5 m,以桥拱顶点 O为原点,桥面为x轴建立 平面直角坐标系.
5 【2021·广西北部湾经济区】2022年北京冬奥会即将召 开,激起了人们对冰雪运动的极大热情.如图是某跳 台滑雪训练场的横截面示意图,
取某一位置的水平线为 x 轴,过跳台终点 A 作水平线 的垂线为 y 轴,建立平面直角坐标系,图中的抛物线 C1:y=-112x2+76x+1 近似表示滑雪场地上的一座小 山坡,某运动员从点 O 正上方 4 米处的 A 点滑出, 滑出后沿一段抛物线 C2:y=-18x2+bx+c 运动.

九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)

1、抛物线y =x 2-2x +1的对称轴是( )(A )直线x =1 (B )直线x =-1(C )直线x =2 (D )直线x =-22、对于2)3(22+-=x y 的图象下列叙述正确的是 ( )A 、顶点坐标为(-3,2) B 、对称轴为y=3C 、当3≥x 时y 随x 增大而增大D 、当3≥x 时y 随x 增大而减小3、函数y =ax 2(a ≠0)的图象经过点(a ,8),则a 的值为 ( )A.±2 B.-2 C.2 D.3 4、自由落体公式h =21gt 2(g 为常量),h 与t 之间的关系是 ( ) A.正比例函数 B.一次函数C.二次函数 D.以上答案都不对 5、对于任意实数m ,下列函数一定是二次函数的是 ( )A .22)1(x m y -=B .22)1(x m y +=C .22)1(x m y +=D .22)1(x m y -= 6、二次函数y=x 2图象向右平移3个单位,得到新图象的函数表达式是 ( ) A.y=x 2+3 B.y=x 2-3C.y=(x+3)2D.y=(x-3)27、某工厂第一年的利润是20万元,第三年的利润是y 万元,与平均年增长率x 之间的函数关系式是_____。

8、某学校去年对实验器材投资为2万元,预计今明两年的投资总额为y 万元,年平均增长率为x 。

则y 与x 的函数解析式_____。

9、m 取___时,函数)1()(22+++-=m mx x m m y 是以x 为自变量的二次函数. 10、已知二次函数y=-41x 2+x+2指出 (1)函数图像的对称轴和顶点坐标;(2)把这个函数的图像向左、向下平移2个单位,得到哪一个函数的图像?1、抛物线y=x2-2x+1的对称轴是( )(A)直线x=1 (B)直线x=-1(C)直线x=2 (D)直线x=-22、对于2)3(22+-=x y 的图象下列叙述正确的是 ( )A 、顶点坐标为(-3,2) B 、对称轴为y=3C 、当3≥x 时y 随x 增大而增大D 、当3≥x 时y 随x 增大而减小3、函数y =ax 2(a ≠0)的图象经过点(a ,8),则a 的值为 ( )A.±2 B.-2 C.2 D.3 4、自由落体公式h =21gt 2(g 为常量),h 与t 之间的关系是 ( ) A.正比例函数 B.一次函数C.二次函数 D.以上答案都不对 5、对于任意实数m ,下列函数一定是二次函数的是 ( )A .22)1(x m y -=B .22)1(x m y +=C .22)1(x m y +=D .22)1(x m y -= 6、二次函数y=x 2图象向右平移3个单位,得到新图象的函数表达式是 ( ) A.y=x 2+3 B.y=x 2-3C.y=(x+3)2D.y=(x-3)27、某工厂第一年的利润是20万元,第三年的利润是y 万元,与平均年增长率x 之间的函数关系式是_____。

九年级数学二次函数全章测试题及答案

九年级数学二次函数全章测试题及答案

二次函数 测试 姓名一、填空题(每小题4分,共24分)1.抛物线y =-x 2+15有最______点,其坐标是______.2.若抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,则过A ,B 两点的直线的解析式为____. 3.若抛物线y =ax 2+bx +c (a ≠0)的图象与抛物线y =x 2-4x +3的图象关于y 轴对称,则函数y =ax 2+bx +c 的解析式为______.4.若抛物线y =x 2+bx +c 与y 轴交于点A ,与x 轴正半轴交于B ,C 两点,且BC =2,S △ABC =3,则b =______.5.二次函数y =x 2-6x +c 的图象的顶点与原点的距离为5,则c =______.6.二次函数22212--=x x y 的图象在坐标平面内绕顶点旋转180°,再向左平移3个单位,向上平移5个单位后图象对应的二次函数解析式为____________. 二、选择题(每小题4分,共28分)7.把二次函数253212++=x x y 的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点是( )A .(-5,1)B .(1,-5)C .(-1,1)D .(-1,3)8.若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( )A .ab x -=B .x =1C .x =2D .x =39.已知函数4212--=x x y ,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <1B .x >1C .x >-2D .-2<x <410.二次函数y =a (x +k )2+k ,当k 取不同的实数值时,图象顶点所在的直线是( )A .y =xB .x 轴C .y =-xD .y 轴11.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论: ①abc >0;②a +b +c =2;21>a ③;④b <1.其中正确的结论是( ) A .①②B .②③,C .②④D .③④12.下列命题中,正确的是( )①若a +b +c =0,则b 2-4ac <0;②若b =2a +3c ,则一元二次方程ax 2+bx +c =0有两个不相等的实数根;③若b 2-4ac >0,则函数y =ax 2+bx +c 的图象与坐标轴的公共点的个数是2或3; ④若b >a +c ,则一元二次方程ax2+bx +c =0,有两个不相等的实数根. A .②④B .①③C .②③D .③④13. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线 上的点,且-1<x1<x2,x3<-1,则y1,y2,y3的大小关系是( )A. y1<y2<y3B. y2<y3<y1C. y3<y1<y2D. y2<y1<y3 14.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( ) A.B.C.D.三、解答题(14-16每小题12分,17-18每小题16分共68分)15.已知二次函数y =ax 2+bx +c (a ≠0)的图象经过一次函数323+-=x y 的图象与x 轴、y 轴的交点,并也经过(1,1)点.求这个二次函数解析式,并求x 为何值时,有最大(最小)值,这个值是什么?16.已知抛物线y =-x 2+bx +c 与x 轴的两个交点分别为A (m ,0),B (n ,0),且4=+n m ,⋅=31n m (1)求此抛物线的解析式;(2)设此抛物线与y 轴的交点为C ,过C 作一条平行x 轴的直线交抛物线于另一点P ,求△ACP 的面积.17.已知抛物线y=ax2+bx+c经过点A(-1,0),且经过直线y=x-3与x轴的交点B及与y轴的交点C.(1)求抛物线的解析式; (2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.18.在直角坐标平面内,点 O为坐标原点,二次函数 y=x2+(k-5)x-(k+4) 的图象交 x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.19.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.20.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).根据图象提供的信息解答下面问题:(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)(2)求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?参考答案1.高,(0,15). 2.y =-x -2. 3.y =x 2+4x +3. 4.b =-4. 5.c =5或13. 6.⋅+--=21212x x y7.C . 8.D . 9.A . 10.C . 11.C . 12.B . 13.C . 14.221)3(21--=x y 顶点坐标)21,3(-,对称轴方程x =3,当y <0时,2<x <4,.15.,325212+-=x x y 当25=x 时,⋅-=81最小值y16.(1)由31,4==+n m n m 得m =1,n =3.∴y =-x 2+4x -3;(2)S △ACP =6. 17.(1)直线y =x -3与坐标轴的交点坐标分别为B (3,0),C (0,-3),以A 、B 、C三点的坐标分别代入抛物线y =ax 2+bx +c 中,得⎪⎩⎪⎨⎧-==++=+-,3,039,0c c b a c b a 解得⎪⎩⎪⎨⎧-=-==.3,2,1c b a ∴所求抛物线的解析式是y =x 2-2x -3. (2)y =x 2-2x -3=(x -1)2-4,∴抛物线的顶点坐标为(1,-4).(3)经过原点且与直线y =x -3垂直的直线OM 的方程为y =-x ,设M (x ,-x ), 因为M 点在抛物线上,∴x 2-2x -3=-x .⎪⎪⎩⎪⎪⎨⎧⋅±-=±=2131,2131y x 因点M 在第四象限,取,2131+=x ).2131,2131(+-+∴M 18解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8 ∴x1x2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求(2)由已知平移后的函数解析式为:y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5),P(2,-9).19. 解: (1)依题意:(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1 ∴B(5,0)由,得M(2,9)作ME ⊥y 轴于点E , 则可得S △MCB=15.20.解:(1)一件商品在3月份出售时利润为:6-1=5(元).(2)由图象可知,一件商品的成本Q (元)是时间t (月)的二次函数,由图象可知, 抛物线的顶点为(6,4),∴可设Q =a (t -6)2+4.又∵图象过点(3,1), ∴1=a (3-6)2+4,解之⋅-=31a,84314)6(3122-+-=+--=∴t t t Q 由题知t =3,4,5,6,7.(3)由图象可知,M (元)是t (月)的一次函数,∴可设M =kt +b . ∵点(3,6),(6,8)在直线上,⎩⎨⎧=+=+∴.86,63b k b k 解之⎪⎩⎪⎨⎧==.4,32b k .432+=∴t M)8431(4322-+--+=-=∴t t t Q M W 12310312+-=t t 311)5(312+-=t 其中t =3,4,5,6,7.∴当t =5时,311=最小值W 元 ∴该公司在一月份内最少获利11000030000311=⨯元.。

精品解析:2018届华师大版九年级数学下册同步试题:易错专题:抛物线的变换(原卷版)

精品解析:2018届华师大版九年级数学下册同步试题:易错专题:抛物线的变换(原卷版)

易错专题:抛物线的变换类型一 抛物线的平移1. 要将抛物线y=x 2+2x+3平移后得到抛物线y=x 2,下列平移方法正确的是( )A. 向左平移1个单位长度,再向上平移2个单位长度B. 向左平移1个单位长度,再向下平移2个单位长度C. 向右平移1个单位长度,再向上平移2个单位长度D. 向右平移1个单位长度,再向下平移2个单位长度2. 如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是21y x =+,则原抛物线的解析式不可能的是( )A. 21y x =-B. 265y x x =++ C. 244y x x =++ D. 2817y x x =++ 类型二 抛物线的旋转3. 将抛物线y =-12(x -3)2+5绕顶点旋转180°后的关系式为__________________. 4. 如图,一段抛物线y=﹣x (x ﹣1)(0≤x≤1)记为m 1,它与x 轴交点为O 、A 1,顶点为P 1;将m 1绕点A 1旋转180°得m 2,交x 轴于点A 2,顶点为P 2;将m 2绕点A 2旋转180°得m 3,交x 轴于点A 3,顶点为P 3,…,如此进行下去,直至得m 10,顶点为P 10,则P 10的坐标为______.类型三 抛物线的对称5. 抛物线y =ax 2+2ax +a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( )A . (12,0) B. (1,0) C. (2,0) D. (3,0) 6. 已知二次函数y =2 x 2+9x+34,当自变量x 取两个不同的值x 1、x 2时,函数值相等,则当自变量x 取x 1+x 2时的函数值与A. x =1时的函数值相等B. x =0时的函数值相等C. x =时的函数值相等D. x =-时的函数值相等 7. 已知二次函数y =2x 2-12x +5,则该函数图象关于x 轴对称的图象的关系式为________________. 8. 如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x= -2,点C 在抛物线上,且位于点A 、B 之间(C 不与A 、B 重合).若△ABC 的周长为a ,则四边形AOBC 的周长为_________ .( 用含a 的式子表示).9. 已知抛物线2:p y ax bx c =++的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为'C ,我们称以A 为顶点且过点'C ,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线'AC 为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是221y x x =++和22y x =+,则这条抛物线的解析式为________. 10. 如图,已知抛物线C 1:y=a 1x 2+b 1x+c 1和C 2:y=a 2x 2+b 2x+c 2都经过原点,顶点分别为A ,B ,与x 轴的另一个交点分别为M 、N ,如果点A 与点B ,点M 与点N 都关于原点O 成中心对称,则抛物线C 1和C 2为姐妹抛物线,请你写出一对姐妹抛物线C 1和C 2,使四边形ANBM 恰好是矩形,你所写的一对抛物线解析式是___________易错专题:抛物线的变换类型一 抛物线的平移1. 要将抛物线y=x 2+2x+3平移后得到抛物线y=x 2,下列平移方法正确的是( )A. 向左平移1个单位长度,再向上平移2个单位长度B. 向左平移1个单位长度,再向下平移2个单位长度C. 向右平移1个单位长度,再向上平移2个单位长度D. 向右平移1个单位长度,再向下平移2个单位长度【答案】D【解析】【分析】原抛物线顶点坐标为(-1,2),平移后抛物线顶点坐标为(0,0),由此确定平移规律.【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0), 则平移的方法可以是:将抛物线y=x 2+2x+3向右移1个单位,再向下平移2个单位.故选D .【点睛】本题考查抛物线的平移,熟记抛物线平移的规律是解题的关键.2. 如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是21y x =+,则原抛物线的解析式不可能的是( )A. 21y x =-B. 265y x x =++C. 244y x x =++D. 2817y x x =++ 【答案】B【解析】【分析】先把函数化为顶点式y=(x-h )2+k ,根据图象左移加,右移减,图象上移加,下移减,可得答案.【详解】A 、y=x 2-1,先向上平移1个单位得到y=x 2,再向上平移1个单位可以得到y=x 2+1,故A 正确; B 、y=x 2+6x+5=(x+3)2-4,无法经两次简单变换得到y=x 2+1,故B 错误;C 、y=x 2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2-2)2=x 2,再向上平移1个单位得到y=x 2+1,故C正确;D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4-2)2+1=(x+2)2+1,再向右平移2个单位得到y=x2+1,故D正确;故选:B.【点睛】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反,掌握运算法则是解题关键.类型二抛物线的旋转3. 将抛物线y=-12(x-3)2+5绕顶点旋转180°后的关系式为__________________.【答案】y=12(x-3)2+5【解析】抛物线y=-12(x-3)2+5绕顶点旋转180°,则顶点(3,5)不变,对称轴不变,抛物线的开口方向相反,所以旋转后的抛物线解析式为y=12(x-3)2+5.故答案为y=12(x-3)2+5.4. 如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为______.【答案】(9.5,﹣0.25)【解析】试题分析:y=﹣x(x﹣1)(0≤x≤1),OA1=A1A2=1,P2P4=P1P3=2,P2(1.5,﹣0.25)P10的横坐标是1.5+2×[(10﹣2)÷2]=9.5,P10的纵坐标是﹣0.25,故答案为(9.5,﹣0.25).考点:1、规律题;2、二次函数图象的几何变换类型三抛物线的对称5. 抛物线y=ax2+2ax+a2+2的一部分如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是()A. (12,0) B. (1,0) C. (2,0) D. (3,0)【答案】B 【解析】【分析】【详解】y=ax2+2ax+a2+2的对称轴为直线x=-2a2a=-1,所以点(-3,0)关于直线x=-1的对称点的坐标为(1,0).故选B.6. 已知二次函数y=2 x2+9x+34,当自变量x取两个不同的值x1、x2时,函数值相等,则当自变量x取x1+x2时的函数值与A. x=1时的函数值相等B. x=0时的函数值相等C. x=时的函数值相等D. x=-时的函数值相等【答案】B【解析】∵y=2x2-9x+34,∴对称轴为x=92a4b-=,而自变量x取两个不同的值x1,x2时,函数值相等,∴x1+x2=92,而x=92和x=0关于x=94对称,当自变量x取x1+x2时的函数值应当与x=0时的函数值相等.故选B.7. 已知二次函数y =2x 2-12x +5,则该函数图象关于x 轴对称的图象的关系式为________________.【答案】y =-2(x -3)2+13【解析】y =2x 2-12x +5=2(x -3)2-13,顶点坐标为(3,-13),其图象关于x 轴对称的顶点坐标为(3,13),所以对称后的图象的关系式为y =-2(x -3)2+13.故答案为y =-2(x -3)2+13.8. 如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x= -2,点C 在抛物线上,且位于点A 、B 之间(C 不与A 、B 重合).若△ABC 的周长为a ,则四边形AOBC 的周长为_________ .( 用含a 的式子表示).【答案】a+4【解析】∵抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x =-2,∴OB =4.由抛物线的对称性知AB =AO ,∴四边形AOBC 的周长为AO +AC +BC +OB =△ABC 的周长+OB =a +4.故答案为a +4. 点睛: 本题考查了二次函数的性质.此题利用了抛物线的对称性,解题的技巧性在于把求四边形AOBC 的周长转化为求(△ABC 的周长+OB )是值.9. 已知抛物线2:p y ax bx c =++的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为'C ,我们称以A 为顶点且过点'C ,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线'AC 为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是221y x x =++和22y x =+,则这条抛物线的解析式为________.【答案】223y x x =--【解析】【分析】先求出y=x 2+2x+1和y=2x+2的交点C′的坐标为(1,4),再求出“梦之星”抛物线y=x 2+2x+1的顶点A 坐标(-1,0),接着利用点C 和点C′关于x 轴对称得到C (1,-4),则可设顶点式y=a (x-1)2-4,然后把A 点坐标代入求出a 的值即可得到原抛物线解析式.【详解】∵y=x 2+2x+1=(x+1)2,∴A 点坐标为(−1,0),解方程组22122y x x y x ⎧=++⎨=+⎩得10x y =-⎧⎨=⎩或14x y =⎧⎨=⎩, ∴点C′的坐标为(1,4),∵点C 和点C′关于x 轴对称,∴C(1,−4),设原抛物线解析式为y=a(x−1)2−4,把A(−1,0)代入得4a−4=0,解得a=1,∴原抛物线解析式为y=(x−1)2−4=x 2−2x−3.故答案为y=x 2−2x−3.【点睛】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质与运算.10. 如图,已知抛物线C 1:y=a 1x 2+b 1x+c 1和C 2:y=a 2x 2+b 2x+c 2都经过原点,顶点分别为A ,B ,与x 轴的另一个交点分别为M 、N ,如果点A 与点B ,点M 与点N 都关于原点O 成中心对称,则抛物线C 1和C 2为姐妹抛物线,请你写出一对姐妹抛物线C 1和C 2,使四边形ANBM 恰好是矩形,你所写的一对抛物线解析式是___________【答案】233y x x =-+,2323y x x =+(答案不唯一,只要符合条件即可). 【解析】 试题分析:因点A 与点B ,点M 与点N 都关于原点O 成中心对称,所以把抛物线C 2看成抛物线C 1以点O 为旋转中心旋转180°得到的,由此即可知a 1,a 2互为相反数,抛物线C 1和C 2的对称轴直线关于y 轴对称,由此可得出b 1=b 2.抛物线C 1和C 2都经过原点,可得c 1=c 2,设点A (m ,n ),由题意可知B (-m ,-n ),由勾股定理可得AB =.由图象可知MN=︱4m ︱,又因四边形ANBM 是矩形,所以AB=MN,4m =,解得223,m n m n ==即,设抛物线的表达式为2()y a x m n =-+,任意确定m 的一个值,根据3m n =±n 的值,抛物线过原点代入即可求得表达式,然后在确定另一个表达式即可.l 例如,当m=1时,,抛物线的表达式为2(1)y a x =-+x=0,y=0代入解得a=,即2y =+,所以另一条抛物线的表达式为2y =+.考点:旋转、矩形、二次函数综合题.。

九年级数学二次函数取值范围20专题训练

九年级数学二次函数取值范围20专题训练

九年级数学二次函数取值范围20专题训练九年级数学二次函数取值范围20专题训练一、单选题二、填空题1.已知抛物线y=2(x-1)+1,当1<x<3时,y的取值范围是______________2.函数y=(2/3)(x+2)的开口向上,那么m的取值范围是.3.如果抛物线y=x^2+mx有最大值,则m的取值范围是________.4.已知二次函数y=(m+1)x^2,则m的取值范围是________.5.如果抛物线y=(2+k)x-k的开口向下,那么k的取值范围是__________.6.已知二次函数y=x^2-4x+2,在-1≤x≤3的取值范围内,y的取值范围为_______.7.函数y=x^2-4x+3,当y<0时,x的取值范围________.8.已知y=-(2/4)x^2-3x+4(-10≤x≤2),则函数y的取值范围是______.9.已知抛物线y=(a+3)x^2开口向下,那么a的取值范围是____________.10.若抛物线y=(a-3)x^2开口向上,则a的取值范围是__________.11.设二次函数y=x^2+ax+b图像与x轴有2个交点,A(x1,0),B(x2,0);且x1<x2<2,那么5a+2b的取值范围是_____________;a^2-2b的取值范围是______________.12.已知y=-(1/2)x^2-3x+4(-10≤x≤0),则函数y的取值范围是_____.13.若抛物线y=ax^2经过点(2,y1),(3,y2),且y1>y2>-8,则a的取值范围为________.14.当-3≤x≤0时,-x^2+2mx-2m+2≤0,则m的取值范围是_______.15.抛物线y=a(x-6)+k经过点(0,2),当x=9时y>2.43,当x=18时y<2,则k的取值范围是__________.试卷第1页,总2页16.在函数y=(x-2)/(x^2+2)中自变量X的取值范围是_____________.17.已知点(m,n)在直线y=x-2上,且k=m^2+n^2,则k的取值范围为________.18.点A(x1,y1)和B(x2,y2)在抛物线y=x^2+2mx+2上。

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)一、单选题 1.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是21.560s t t =-+.飞机着陆后到停下来滑行的距离是( )mA .300B .400C .500D .6002.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数2142y x x =-刻画,斜坡可以用一次函数12y x =刻画.下列结论错误的是( )A .小球距O 点水平距离超过4米呈下降趋势B .当小球水平运动2米时,小球距离坡面的高度为6米C .小球落地点距O 点水平距离为7米D .当小球拋出高度达到8m 时,小球距O 点水平距离为4m3.小康在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()2116399y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则小康此次掷球的成绩(即OA 的长度)是( )A .8mB .7mC .6mD .5m4.如图,要修建一个圆形喷水池,在池中心O 点竖直安装一根水管,在水管的顶端A 处安一个喷水头,使喷出的抛物线形水柱与水池中心O 点的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心O 点3m ,则水管OA 的高是( )A.2m B.2.25m C.2.5m D.2.8m5.学校组织学生去同安进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且喷口B为该抛物线的顶点.洗手液瓶子的截面图下面部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径12cmGH=,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗于液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()A.122cm B.123cm C.62cm D.6cm6.某公园有一个圆形喷水池,喷出的水流呈抛物线形,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数解析式为2305h t t=-,那么水流从喷出至回落到地面所需要的时间是()A.6s B.4s C.3s D.2s7.如图所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一壁灯,两壁灯间的水平距离为6m,则厂门的高度约为()A.307B.387C.487D.5078.如图,一座拱桥的轮廓是抛物线型,桥高10米,拱高8米,跨度24米,相邻两支柱间的距离均为6米,则支柱MN的长度为()A.6米B.5米C.4.5米D.4米二、填空题9.如图,已知一抛物线形大门,其地面宽度AB长10米,一位身高1.8米的同学站在门下离门角B点1米的D 处,其头顶刚好顶在抛物线形门上C处.则该大门的最高处离地面高h为米.10.如图所示,抛物线形拱桥的顶点距水面2m时,测得拱桥内水面宽为12m.当水面升高1m后,拱桥内水面的宽度减少m.11.从地面竖直向上抛出一小球,小球的高度h(米)与小球的运动时间(秒)之间的关系式是()2h t t t=-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出秒时,两个30506小球在空中相撞.12.从地面竖直向上跑出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是()2=-≤≤,小球运动到s时,达到最大高度.h t t t3020613.如图,以40m/s的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系2=-+,小520h t t球飞行过程中能达到的最大高度为m.14.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到A最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.15.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点为m.16.某次踢球,足球的飞行高度h(米)与水平距离x(米)之间满足2=-+,则足球从离地到落地的560h x x水平距离为米.三、解答题AA的17.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的最高点C离地面1距离为8m.(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m ,宽为4m ,如果该隧道内设双向行车道,那么这辆货车能否安全通过?18.掷实心球是中考体育考试的项目.如图是一男生所掷实心球的行进路线(抛物线的一部分)的高度()y m 与水平距离()x m 之间的函数图象,且掷出时起点处高度为2m ,当到起点的水平距离为4m 时,实心球行进至最高点,此时实心球与地面的距离为3m .(1)求抛物线的函数解析式;(2)在该市的评分标准中,实心球从起点到落地点的水平距离大于等于10m 时,即可得满分,试判断该男生在此项考试中能否得满分,并说明理由(参考数据:3 1.73≈).19.南湖大桥作为我市首个全面采用数控技术的桥体音乐喷泉项目,历经多年已经成为长春市民夜间休闲放松的网红打卡地.其中喷水头喷出的水柱轨迹呈抛物线形状,喷水头P 距水面7.5m ,水柱喷射水平距离为5m 时,达到最大高度,此时距水面10m ,水柱落在水面A 点处.将收集到数据建立如图所示的平面直角坐标系,水柱喷出的高度()m y 与水平距离()m x 之间的函数关系式是21()y a x h k =-+.(1)求抛物线的表达式.(2)现调整P 的出水角度,其喷出的水柱高度()m y 与水平距离()m x 之间的函数关系式是220.1 1.2y x x m =-++,落点恰好在A 点右边的B 点处,求AB 的长.(结果精确到0.1m ,参考数据:11110.54=)20.图①是古代的一种远程投石机,其投出去的石块运动轨迹是抛物线的一部分.据《范蠡兵法》记载:“飞石重十二斤,为机发,行二百步”,其原理蕴含了物理中的“杠杆原理”.在如图②所示的平面直角坐标系中,将投石机置于斜坡OA 的底部点O 处,石块从投石机竖直方向上的点C 处被投出,已知石块运动轨迹所在抛物线的顶点坐标是()50,25,5OC =.(1)求抛物线的表达式;(2)在斜坡上的点A 建有垂直于水平线OD 的城墙AB ,且75OD =,12AD =,9AB =,点D ,A ,B 在一条直线上.通过计算说明石块能否飞越城墙AB .参考答案:1.D2.B3.B4.B。

2023年九年级中考数学专题复习:二次函数综合题(角度问题)含答案

2023年九年级中考数学专题复习:二次函数综合题(角度问题)含答案

2023年九年级中考数学专题复习: 二次函数综合题(角度问题)1.已知抛物线2y x bx c =++经过点()1,0A -和点()0,3C -,与x 轴交于另一点B .(1)求抛物线的解析式;(2)点P 为第四象限内抛物线上的点,连接,,CP AP AC ,如图1,当CP AC ⊥时,求P 点坐标;(3)设点M 为抛物线上的一点,若2MAB ACO ∠=∠时,求M 点坐标.2.如图,已知抛物线213y x bx c =-++交x 轴于()30A -,,()4,0B 两点,交y 轴于点C ,点P 是抛物线上一点,连接AC 、BC .(1)求抛物线的表达式;(2)连接OP ,BP ,若2BOP AOC S S =△△,求点P 的坐标;(3)在抛物线的对称轴上是否存在点Q ,使得∠QBA =75°?若存在,直接写出点Q 的坐3.已知抛物线y=ax2+2x+c过A(﹣1,0),C(0,3),交x轴于另一点B.点P是抛物线上一动点(不与点C重合),直线CP交抛物线对称轴于点N.(1)求抛物线的解析式;(2)连接AN,当∠ANC=45°时,求P点的横坐标;(3)如图2,过点N作NM∠y轴于点M,连接AM,当AM+MN+CN的值最小时,直接写出N点的坐标.4.如图,抛物线y=34x2+bx+c交x轴于A,B两点,交轴于点C,点A,B的坐标分别为(-1,0),(4,0).(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求∠CPB的面积最大时点P的坐标;(3)若M是抛物线上一点,且∠MCB=∠ABC,请直接写出点M的坐标.5.如图,抛物线y 14=x 2+bx +c 与直线y 12=-x +3分别交于x 轴,y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为A ,顶点为D ,连接CD 交x 轴于点E .(1)求该抛物线的解析式;(2)点F ,G 是对称轴上两个动点,且FG =2,点F 在点G 的上方,请求出四边形ACFG 的周长的最小值;(3)连接BD ,若P 在y 轴上,且∠PBC =∠DBA +∠DCB ,请直接写出点P 的坐标.6.如图∠,二次函数2y ax bx c =++(a ≠0)的图象经过点A (1-,0),并且与直线122y x =-相交于坐标轴上的B 、C 两点,动点P 在直线BC 下方的二次函数的图象上. (1)求此二次函数的表达式;(2)如图∠,连接PC ,PB ,设∠PCB 的面积为S ,求S 的最大值; (3)如图∠,过点A ,C 作直线,求证AC ∠BC ;(4)如图∠,抛物线上是否存在点Q ,使得∠ABQ =2∠ABC ?若存在,则求出直线BQ 的解析式;若不存在,请说明理由.7.如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于(1,0)A ,(4,0)B 两点,与y 轴交于点(0,2)C .(1)求抛物线的表达式; (2)求证:CAO BCO ∠=∠;(3)若点P 是抛物线上的一点,且PCB ACB BCO ∠+∠=∠,求直线CP 的表达式.8.如图,已知抛物线(2)(4)y a x x =+-(a 为常数,且a >0)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线34y x b =-+与抛物线的另一交点为D .(1)若点D 的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与∠ABC 相似,求a 的值;(3)在(1)的条件下,直线BD 上是否存在点E ,使∠AEC =45°?若存在,请直接写出点E 的横坐标;若不存在,请说明理由.9.如图,直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,抛物线y =﹣x 2+bx +c 经过B 、C 两点,与x 轴另一交点为A ,顶点为D . (1)求抛物线的解析式.(2)如果一个圆经过点O 、点B 、点C 三点,并交于抛物线AC 段于点E ,求∠OEB 的(3)在抛物线的对称轴上是否存在点P ,使∠PCD 为等腰三角形,如果存在,直接写出点P 的坐标,如果不存在,请说明理由.(4)在抛物线的对称轴上是否存在一点P ,使∠APB =∠OCB ?若存在,求出PB 2的值;若不存在,请说明理由.10.在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A ,B 两点且与x 轴负半轴交于点C .(1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一个动点,当2ABD BAC ∠=∠时,求点D 的坐标;(3)已知E 是x 轴上的点,F 是抛物线上的动点,当B ,C ,E ,F 为顶点的四边形是平行四边形时,求出所有符合条件的E 的坐标.11.如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A ,B 两点且与x 轴的负半轴交于点C .(1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一个动点,当2ABD BAC ∠=∠时,求点D 的坐(3)已知E是x轴上的点,F是抛物线上的动点,当B,C,E,F为顶点的四边形是平行四边形时,求出所有符合条件的E点的坐标,12.如图1,抛物线2=-+与x轴交于A(-2,0)、B(4,0)两点,与y轴交于y ax x c点C,直线l与抛物线交于A、D两点,其中D点的横坐标为2.(1)求抛物线的解析式以及直线AD的解析式;(2)点P是抛物线上位于直线AD下方的动点,过点P作x轴,y轴的平行线,交AD 于点E、F,当PE+PF取最大值时,求点P的坐标;(3)如图2,连接AC,点Q在抛物线上,且满足∠QAB=2∠ACO,求点Q的坐标.13.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P 的坐标;(3)在(2)的条件下,在对称轴上是否存在一点Q,连接PQ,将线段PQ绕点Q顺时针旋转90°,使点P恰好落在抛物线上?若存在,请求出点Q的坐标;若不存在,请14.抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴正半轴交于点C .(1)如图1,若()1,0A -,()3,0B , ∠求抛物线2y x bx c =-++的解析式;∠Р为抛物线上一点,连接AC 、PC ,若AC PC ⊥,求点P 的坐标;(2)如图2,D 为x 轴下方抛物线上一点,连DA ,DB ,若290BDA BAD ∠+∠=︒,求点D 的纵坐标.(1)如图1,抛物线21y ax bx =++与x 轴交于点A 和点()3,0B ,对称轴为直线1x =; ∠求抛物线的解析式;∠点P 为抛物线上一动点,PN BC ⊥,垂点为N ,当PCN △与BOC 相似时,直接写出P 点坐标;(2)点D 为抛物线顶点,若抛物线上有且只有一个点Q 的横坐标是纵坐标的2倍,且45DCO ∠=︒,求a 的值.16.如图,点B ,C 分别在x 轴和y 轴的正半轴上,OB ,OC 的长分别为28120x x -+=的两个根()OC OB >,点A 在x 轴的负半轴上,且3OA OC OB ==,连接AC .(1)求过A ,B ,C 三点的抛物线的函数解析式;(2)点P 从点C 出发,以每秒2个单位长度的速度沿CA 运动到点A ,点Q 从点O 出发,以每秒1个单位长度的速度沿OC 运动到点C ,连接PQ ,当点P 到达点A 时,点Q 停止运动,求CPQ S △的最大值;(3)M 是抛物线上一点,是否存在点M ,使得15ACM ∠=︒?若存在,请求出点M 的坐标;若不存在,请说明理由.17.如图,已知二次函数2y x bx c =-++的图象经过点()()1,0,3,0A B -,与y 轴交于点C .(1)求抛物线的解析式;(2)点D 为抛物线的顶点,求BCD △的面积;(3)抛物线上是否存在点P ,使PAB ABC ∠=∠,若存在,请直接写出点P 的坐标;若不存在,请说明理由.18.已知直线43y x n =-+交x 轴于点A ,交y 轴于点C (0,4),抛物线223y x bx c =++经过点A ,交y 轴于点B (0,-2),点P 为抛物线上一个动点,设P 的横坐标为m (m >0),过点P 作x 轴的垂线PD ,过点B 作BD ∠PD 于点D ,联结PB . (1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)将△BDP 绕点B 旋转得到△BD P '',且旋转角∠PB P '=∠OAC ,当点P 对应点P '落在y 轴上时,求点P 的坐标.19.如图,顶点为(),P m m (0m >)的二次函数图象与x 轴交于点()2,0A m ,点B 在该图象上,直线OB 交二次函数图象对称轴l 于点M ,点M 、N 关于点P 对称,连接BN 、(1)求该二次函数的关系式(用含m 的式子表示).(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题: ∠连接OP ,当12OP MN =时,请判断NOB 的形状,并说明理由. ∠求证:BNM ONM ∠=∠.20.如图1,已知抛物线21y x =-与x 轴交于A ,B 两点,与y 轴交于点D . (1)求直线BD 的解析式;(2)P 为抛物线上一点,当点Р到直线BD 的距离为P 的坐标; (3)如图2,直线y t =交抛物线与M ,N 两点,C 为抛物线上一点,当90MCN ∠=︒时,请探究点C 到MN 的距离是否为定值.参考答案:1.(1)223y x x =--(2)(73,209-) (3)点M 的坐标为939,416⎛⎫- ⎪⎝⎭或1557,416⎛⎫ ⎪⎝⎭2.(1)211433y x x =-++(2)(﹣5,﹣6)或(6,﹣6)(3)存在,Q 的坐标为(12,(123.(1)2y x 2x 3=-++(2)44(3)(1,32)4.(1)239344y x x =-- (2)92,2P ⎛⎫- ⎪⎝⎭ (3)M 的坐标为()3,3-或531125,749⎛⎫ ⎪⎝⎭5.(1)抛物线的解析式为:21234y x x =-+(2)四边形ACFG 2(3)点P 的坐标为(0,﹣2)或(0,18)6.(1)213222y x x =--;(2)4;(4)存在,41633y x =-和41633y x =-+. 7.(1)215222y x x =-+;(3)直线CP 的解析式为423y x =-+或2y =8.(1):y =14x 2-12x -2;(2)a (3)在直线BD 上不存在点E ,使∠AEC =45°.理由见解析9.(1)y =﹣x 2+2x +3;(2)45°;(3)存在,点P (1,2)、(1,3)、(1,4)、(1,、(1,4;(4)存在,.10.(1)213222y x x =-++;(2)(2,3);(3)()3,2或2⎫-⎪⎪⎝⎭. 11.(1)抛物线得解析式为213222y x x =-++;(2)点D 的坐标为()2,3;(3)E 点的坐标为(2,0)或(52,0)或(52,0)或(-4,0). 12.(1)2142y x x =--,2y x =--;(2)P (0,-4);(3)点Q 的坐标为440(,)39-,20104(,)39. 13.(1)y =x 2-4x +3,顶点(2,-1);(2)(113,169);(3)(2,109)或(2,319) 14.(1)∠2–23y x x =++;∠720(,)39P ;(2)1- 15.(1)∠212133y x x =-++;∠()2,1,1735,416⎛⎫- ⎪⎝⎭,52,3⎛⎫-- ⎪⎝⎭;(2)1916a =或22516a =16.(1)21262y x x =--+;(2(3)存在,M 4⎡-⎢⎣⎦或(4--- 17.(1)2y x 2x 3=-++;(2)3;(3)存在,P 1(2,3),P 2(4,-5) 18.(1)224233y x x =--;(2)72或12;(3)P (258,1132)或(7255,896-) 19.(1)()12y x x m m =--;(2)∠等腰直角三角形20.(1)1y x =-;(2)P ⎝⎭或P ⎝⎭;(3)C 到MN 的距离为定值1.。

初三数学二次函数的性质试题答案及解析

初三数学二次函数的性质试题答案及解析

初三数学二次函数的性质试题答案及解析1.抛物线y=5(x﹣2)2+1的顶点是.【答案】(2,1)【解析】根据抛物线的顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),可直接写出顶点坐标.解:抛物线y=5(x﹣2)2+1的顶点是(2,1).故答案为:(2,1).点评:此题主要考查了二次函数的性质,二次函数顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.2.已知抛物线y=x2﹣2x﹣3与y轴交于点C,则点C的坐标是;若点C′是点的C关于该抛物线的对称轴对称点,则C′点的坐标是.【答案】(0,﹣3),(2,﹣3)【解析】要知抛物线y=x2﹣2x﹣3与y轴交点C的坐标,应知点C的横坐标是0,把0代入即可,抛物线关于对称轴具有对称性,从而可求出点C‘的纵坐标,代入即可求出横坐标.即求出答案.解:抛物线y=x2﹣2x﹣3与y轴交于点C,当x=0时 y=02﹣2×0﹣3=﹣3,∴点C的坐标是(0,﹣3),y=x2﹣2x﹣3,这里a=1,b=﹣2,∴﹣=﹣=1,即:对称轴是x=1,∵点C′是点C关于该抛物线的对称轴对称的点,点C的坐标是(0,﹣3),∴点C′也在抛物线y=x2﹣2x﹣3上,且C′点的纵坐标也是﹣3,当y=﹣3时 x2﹣2x﹣3=﹣3,解得:x1=0,x2=2,∴C′点的坐标是:(2,﹣3),故答案为:(0,﹣3),(2,﹣3).点评:此题主要考查对抛物线的性质的理解和掌握,能正确求出抛物线上点的坐标;并能利用抛物线的对称轴的对称性,求出对称点的坐标.3.已知抛物线的表达式是y=2(x+2)2﹣1,那么它的顶点坐标是.【答案】(﹣2,﹣1)【解析】已知解析式为抛物线的顶点式,可直接写出顶点坐标.解:∵y=2(x+2)2﹣1是抛物线解析式的顶点式,∴根据顶点式的坐标特点可知,顶点坐标为(﹣2,﹣1).故答案为(﹣2,﹣1).点评:本题主要考查了求抛物线的顶点坐标的方法,确定抛物线的顶点坐标的方法可以用配方法或公式法.4.已知抛物线的顶点坐标为(﹣1,﹣2),且通过点(1,10),则该抛物线的解析式为.【答案】y=3(x+1)2﹣2【解析】设抛物线的解析式为y=a(x+1)2﹣2.然后将点(1,10)代入其中,利用待定系数法求该抛物线的解析式即可.解:由题意,可设抛物线的解析式为y=a(x+1)2﹣2.∵该抛物线的解析式通过点(1,10),∴10=a(1+1)2﹣2,解得,a=3;故该抛物线的解析式是:y=3(x+1)2﹣2.点评:本题考查了待定系数法求二次函数的解析式.解答该题时,要充分利用已知条件“抛物线的顶点坐标为(﹣1,﹣2)”来设该抛物线的解析式.5.二次函数y=﹣2(x﹣1)(x﹣3)的图象的对称轴是.【答案】直线x=2【解析】此题先化抛物线的解析式为一般式,再用对称轴公式求解即可.解:∵y=﹣2(x﹣1)(x﹣3)=﹣2x2+8x﹣6,∴x=﹣=2.故答案是:直线x=2.点评:此题主要考查二次函数y=ax2+bx+c(a,b,c为常数,a≠0)对称轴公式,要求掌握并灵活运用.公式为x=﹣.6.根据图中的抛物线可以判断:当x 时,y随x的增大而减小.【答案】<1【解析】要确定抛物线的单调性首先要知道其对称轴,然后根据对称轴来确定x的取值范围.解:根据图象可知对称轴为x=(﹣1+3)÷2=1,所以当x<1时,y随x的增大而减小;当x=1时,y有最小值.故答案为:<1;点评:此题主要考查了函数的单调性与对称性.7.已知抛物线y=x2+(2m+1)x+m+1,根据下列条件分别求m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为x=1.【答案】(1)m=﹣1(2)m=±(3)m=﹣【解析】(1)将原点(0,0)代入抛物线方程,求得m值;(2)根据根的判别式解答;(3)由对称轴方程解答m值.解:(1)∵抛物线y=x2+(2m+1)x+m+1过原点,∴点O(0,0)满足该抛物线方程,∴0=m+1,解得m=﹣1;(2)∵抛物线的顶点在x轴上,∴△=(2m+1)2﹣4(m+1)=0,即4m2﹣3=0,解得,m=±;(3)∵抛物线的对称轴为x=1,∴2m+1=﹣2,解得m=﹣.点评:本题主要考查了待定系数法求二次函数解析式.解答此题时,用到了二次函数的根的判别式△=b2﹣4ac、对称轴方程x=﹣及方程解的意义.8.已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0).求二次函数的解析式.【答案】y=x2﹣2x﹣3【解析】根据题意知,将A(2,﹣3),B(﹣1,0)代入二次函数的解析式,利用待定系数法法求该二次函数的解析式即可.解:根据题意,得,解得,;∴该二次函数的解析式为:y=x2﹣2x﹣3.点评:本题主要考查了待定系数法求二次函数的解析式.解题时,借用了二次函数图象上点的坐标特征:经过图象上的点一定在函数图象上,且图象上的每一个点均满足该函数的解析式.9.一个二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,求这个函数的关系式.【答案】y=4x2+5x【解析】先设二次函数的一般关系式,然后将已知条件代入其中并解答即可.解:设二次函数的关系式为y=ax2+bx+c(a≠0),∵二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,∴点(0,0),(﹣1,﹣1),(1,9)满足二次函数的关系式,∴,解得,所以这个函数关系式是:y=4x2+5x.点评:本题主要考查的是利用待定系数法求二次函数解析式.10.根据条件求下列抛物线的解析式:(1)二次函数的图象经过(0,1),(2,1)和(3,4);(2)抛物线的顶点坐标是(﹣2,1),且经过点(1,﹣2).【答案】(1)y=x2﹣2x+1(2)y=﹣x2﹣x﹣【解析】(1)设抛物线的解析式是y=ax2+bx+c,把(0,1),(2,1),(3,4)代入得到一个三元一次方程组,求出方程组的解即可;(2)根据抛物线的顶点坐标设抛物线的解析式是:y=a(x+2)2+1,把(1,﹣2)代入得到一个关于a的方程,求出a的值即可.解:(1)设抛物线的解析式是y=ax2+bx+c,把(0,1),(2,1),(3,4)代入得:,解得:,∴y=x2﹣2x+1.(2)设抛物线的解析式是:y=a(x+2)2+1,把(1,﹣2)代入得:﹣2=a(1+2)2+1,∴a=﹣,∴y=﹣(x+2)2+1,即y=﹣x2﹣x﹣.点评:本题考查了用待定系数法求出二次函数的解析式,解三元一次方程组,解一元一次方程等知识点的理解和掌握,关键是看学生如何正确地设抛物线的解析式,注意抛物线的解析式有:①三点式y=ax2+bx+c;②顶点式y=a(x﹣h)2+k,顶点坐标是(h,k);③交点式y=a(x﹣m)(x﹣n),抛物线与x轴的交点坐标是(m,0),(n,0).11.已知反比例函数y=与一次函数y=kx﹣2的图象都经过点A(a,﹣4),且一次函数y=kx﹣2的图象与x轴交于点B.(1)求a、k的值;(2)若抛物线y=x2+bx+c过点A、B,求此抛物线的解析式.【答案】(1)k=1(2)y=x2+x﹣6【解析】(1)把A(a,﹣4)代入y=求出a,把A的坐标代入直线求出k即可;(2)根据直线的解析式求出B的坐标,把A、B的坐标代入抛物线得出关于b、c的方程组,求出即可.解:(1)把A(a,﹣4)代入y=得:﹣4=,∴a=﹣2,即A(﹣2,﹣4),代入y=kx﹣2得:﹣4=﹣2k﹣2,∴k=1,答:a=﹣2,k=1.解:(2)直线是y=x﹣2,把y=0代入得:0=x﹣2,∴x=2,∴B(2,0),把A(﹣2,﹣4),B(2,0)代入y=x2+bx+c得:,解得:b=1,c=﹣6,y=x2+x﹣6,答:此抛物线的解析式是y=x2+x﹣6.点评:本题主要考查对解二元一次方程组,解一元一次方程,用待定系数法求抛物线的解析式,反比例函数与一次函数的交点问题,一次函数图象上点的坐标特征等知识点的理解和掌握,能熟练地运用这些性质进行计算是解此题的关键.12.直线y=2x+3与抛物线y=ax2交于A、B两点,已知A点的横坐标是3,求A、B两点的坐标及抛物线的解析式.【答案】(﹣1,1)【解析】首先根据点A的横坐标求得其纵坐标,然后代入抛物线求得其解析式,然后联立组成方程组后求交点坐标即可.解:∵直线y=2x+3与抛物线y=ax2交于A、B两点且A点的横坐标是3,∴点A的纵坐标y=2×3+3=9,∴点A的坐标为(3,9),将点A的坐标代入y=ax2得:a=1,∴抛物线的解析式为y=x2,∴解得:或∴点B的坐标为:(﹣1,1).点评:本题考查了二次函数的性质,重点是知道如何求两图象的交点坐标.13.抛物线y=(x+1)2﹣3的顶点坐标是()A.(1,﹣3)B.(﹣1,﹣3)C.(1,3)D.(﹣1,3)【答案】B【解析】已知抛物线的顶点式,可直接写出顶点坐标.解:由y=(x+1)2﹣3,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣3),故选B.点评:考查将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.14.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示.线一定经过点(2,0);④在对称轴左侧,y随x增大而减小.从表可知,说法正确的个数有()A.1个 B.2个 C.3个 D.4个【答案】B【解析】根据表中数据和抛物线的对称性,可得到抛物线的开口向下,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);因此可得抛物线的对称轴是直线x=,再根据抛物线的性质即可进行判断.解:根据图表,抛物线与y轴交与(0,6),①正确;∵抛物线经过点(0,6)和(1,6),∴对称轴为x==,∴②正确;设抛物线经过点(x,0),∴x==解得:x=3∴抛物线一定经过(3,0),故③错误;在对称轴左侧,y随x增大而增大,④错误故选B.点评:本题考查了抛物线y=ax2+bx+c的性质:抛物线是轴对称图形,它与x轴的两个交点是对称点,对称轴与抛物线的交点为抛物线的顶点;a<0时,函数有最大值,在对称轴左侧,y随x增大而增大.15.抛物线y=﹣3(x﹣3)2+5的顶点坐标为()A.(3,5)B.(﹣3,5)C.(5,﹣3)D.(5,3)【答案】A【解析】因为y=﹣3(x﹣3)2+5是二次函数的顶点式,根据顶点式可直接写出顶点坐标.解:∵抛物线解析式为y=﹣3(x﹣3)2+5,∴二次函数图象的顶点坐标是(3,5).故选A.点评:本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.16.已知二次函数y=x2+bx+c的图象上有三个点(﹣1,y1)、(1,y2)、(3,y3),若y1=y3,则()A.y2>c>y1B.y2<c<y1C.c>y1>y2D.c<y1<y2【答案】B【解析】根据已知得出(﹣1,y1)和(3,y3)关于二次函数数y=x2+bx+c的对称轴对称,抛物线的开口向上,求出对称轴是直线x=1,根据0<1<3即可求出答案.解:∵y1=y3,∴(﹣1,y1)和(3,y3)关于二次函数数y=x2+bx+c的对称轴对称,∴二次函数y=x2+bx+c的对称轴是直线x==1,且二次函数图象的开口向上,∵x=0时,y=c,0<1<3,∴y2<c<y1,故选B.点评:本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.17.(2011•淮北模拟)给出下列四个命题:正确命题的个数是()(1)若点A在直线y=2x﹣3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;(2)若A(a,m)、B(a﹣1,n)(a>0)在反比例函数y=的图象上,则m<n;(3)一次函数y=﹣2x﹣3的图象不经过第三象限;(4)二次函数y=﹣2x2﹣8x+1的最大值是9.A.1个B.2个C.3个D.4个【答案】B【解析】根据题意和函数的有关性质,逐一判断每个命题的正确性.解:(1)联立或,解得或所以点A的坐标为(3,3)或((1,﹣1),在第一或第四象限正确(2)反比例函数y=,在每个象限内y随x的增大而减小,点A在第一象限,而点B不能确定在第几象限,无法比较m、n的大小,错误(3)一次函数y=﹣2x﹣3的图象不经过第一象限,错误(4)二次函数y=﹣2x2﹣8x+1,可化为y=﹣2(x+2)2+9所以二次函数y=﹣2x2﹣8x+1的最大值是9,正确.(1)、(4)正确,故选B.点评:此题考查了二次函数的增减性和最值,一次函数、反比例函数的增减性,以及一次函数的图象性质.18.(2010•无锡一模)二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0B.0<y<m C.y>m D.y=m【答案】C【解析】根据对称轴及函数值判断a的取值范围,从而得出a﹣1<0,因为当x是y随x的增大而减小,所以当x=a﹣1<0时,函数值y一定大于m.解:当x=a时,y<0,则a的范围是x1<a<x2,又对称轴是x=,所以a﹣1<0,当x是y随x的增大而减小,当x=0是函数值是m.因而当x=a﹣1<0时,函数值y一定大于m.故选C.点评:本题主要考查了二次函数的对称轴,以及增减性.19.抛物线y=﹣2(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,﹣3)C.(﹣2,3)D.(﹣1,3)【答案】D【解析】已知抛物线的顶点式,可直接写出顶点坐标.解:由y=﹣2(x+1)2+3,根据顶点式的坐标特点可知,顶点坐标为(﹣1,3),故选D.点评:考查将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.20.已知抛物线y=5(x﹣1)2,下列说法中,你认为不正确的是()A.顶点坐标为(1,0)B.对称轴为直线x=0C.当x>1时,y随x的增大而增大D.当x<1时,y随x的增大而减小【答案】B【解析】根据二次函数y=5(x﹣1)2的性质,利用排除法求解.解:A、顶点坐标为(1,0),正确,不符合题意;B、对称轴为直线x=1,错误,符合题意;C、当x>1时,y随x的增大而增大,正确,不符合题意;D、当x<1时,y随x的增大而减小,正确,不符合题意.故选B.点评:本题考查了二次函数的性质,牢记形如y=a(x﹣h)2的二次函数的性质是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故选 D. 4.在同一直角坐标系中,抛物线 y=x2+4x-5 与直线 y=2x-6 的交点个数是( A.0 个 B.1 个 C.2 个 D.3 个 )
解答:解:根据题意得 y=x2+4x−5 与 y=2x−6,消去 y 得到 x2+4x-5=2x-6,整理得 x2+2x+1=0,
因为△=22-4×1=0, 方程有两个相等的实数解, 所以方程组有一组解, 所以抛物线 y=x2+4x-5 与直线 y=2x-6 有一个交点.故选 B. 5.二次函数 y=x2+bx+c 的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( A.x=4 B.x=3 C.x=-5 D.x=-1 )
解答:解:由图象可知:当 x=1 时 y<0,∴a+b+c<0;故①正确;由图象可知抛物线与 x 轴有两个交点,
∴△>0,故②错误;∵抛物线的开口方向向下,∴a<0;∵抛物线与 y 轴的交点在 y 轴的正半轴上,∴c>0; ∵对称轴为 x=-=-1<0,又∵a<0,∴b<0,故 abc>0,故③错误; ∵x=-=-1,∴b=2a,故④正确;当 x=-1 时 y>0,∴a-b+c>0,∴①、④、⑤正确.故选 B. 9.关于 x 的一元二次方程 x2-x-n=0 没有实数根,则抛物线 y=x2-x-n 的顶点在( A.第一象限 B.第二象限 C.第三象限 D.第四象限 )
12.若抛物线 y=x2+(k-1)x+(k+3)经过原点,则 k=_______
解答:解:∵点(0,0)在抛物线 y=x2+(k-1)x+(k+3)上,∴k+3=0,解得 k=-3,故答案为:-3
13.将二次函数 y=x2-2x-1 化成 y=a(x-h)2+k 的形式是______________
2
解答:解:(1)根据题意得:y=x+3 , y=−x2+2x+3,解得:x=0, y=3 或 x=1, y=4,
则 A、B 两点的坐标是 A(0,3)B(1,4),∵A、B 两点的坐标是 A(0,3)B(1,4), ∴OA=3,边 OA 上的高是 1,∴S△OAB=0.5×3×1=1.5; 26.围羊圈三间(它的平面图为大小相等的三个长方形),一面利用旧墙,其它各墙(包括中间隔墙)都 是木料,已知现有木料可围 24 米长的墙,试求每间羊圈的长与宽各是多 少时总面积最大,并求最大面积.
解答:解:如图,设 B′C=x,那么 DC=24-4x,SA’B’CD=x (24-4x) =24x-4x2,
当 x=-=3 时, 总面积最大, 最大为 36(平方米) , 此时:A′B′=DC=12(米) DE=EF=FC=3m,答:每间羊圈的长与宽各是 4 米,3 米时总面积最大, 最大面积为 36 平方米.
解答:解:解法一:把(-1,0)、(2,0),(1,2),代入 y=ax2+bx+c,
得 a−b+c=0, 4a+2b+c=0, a+b+c=2,解得:a=−1, b=1, c=2,∴这个函数的表达式为 y=-x2+x+2; 解法二:设函数的解析式为 y=a(x+1)(x-2),把(1,2)代入得:a=-1, ∴函数解析式为 y=-(x+1)(x-2),即 y=-x2+x+2. 23.求抛物线 y=2x2-5x-3 的对称轴、顶点坐标,与 x 轴的交点坐标以及关于 x 轴对称的抛物线的解析式.
解答:解:∵y=2x2-5x-3=2(x-1.25)2-6.125,
∴抛物线的对称轴为直线 x=1.25,顶点坐标为(1.25,6.125), 令 y=0,得 x 的两根为 x1=3,x2=-0.5,即与 x 轴的交点坐标:(3,0),(-0.5,0). 所求抛物线与抛物线 y=2x2-5x-3 关于 x 轴对称,横坐标不变,纵坐标互为相反数,即-y=2x2-5x-3, 因此所求抛物线的解析式是 y=-2x2+5x+3. 24.已知二次函数的图象的顶点坐标为(3,-2)且与 y 轴交于(0,2.5 ) (1)求函数的解析式;(2)当 x 为何值时,y 随 x 增大而增大.
三、解答题(共 60 分)
21.若抛物线 y=x2-2x-3 经过点 A(m,0)和点 B(-2,n),求点 A、B 的坐标.
解答:解:∵抛物线 y=x2-2x-3 经过点 A(m,0)和点 B(-2,n),∴0=m2-2m-3,n=(-2)2-2(-2)-3
∴(m-30(m+1)=0,n=5.∴m=3 或-1;n=5.故 A 的坐标为(3,0),(-1,0),B 的坐标为(-2,5) 22.已知抛物线与 x 轴交于点 M(-1,0)、N(2,0),且经过点(1,2),求这个函数的表达式.
-2
C、y= x ,分母中含自变量,不是二次函数,错误; D、a=0 时,a2=0,不是二次函数,错误.故选 A. 2.抛物线 y=x2-1 的顶点坐标是( )
A.(0,-1)B.(0,1)C.(-1,0)D.(1,0)
解答:解:由抛物线 y=x2-1 可知,抛物线的顶点坐标是(0,-1).故选 A.
解答:解:y=x2-2x+1-2=(x-1)2-2,对称轴为 x=1,当 x=6 时,y 最大值=62-2×6-1=23;y 最小值=-2.故选 B
二、填空题(每题 3 分,共 30 分)
11.当 m=__________时,函数 y=(m-1)x
m2+1
是关于 x 的二次函数.
解答:解:依题意可知 m2+1=2 得 m=1 或 m=-1 又因为 m-1≠0∴m≠1∴当 m=-1 时,这个函数是二次函数.
解答:解:(1)设函数的解析式是:y=a(x-3)2-2
根据题意得:9a-2=2.5,解得:a=0.5;∴函数解析式是:y=0.5( x − 3) -2; (2)∵a=0.5>0∴二次函数开口向上, 又∵二次函数的对称轴是 x=3.∴当 x>3 时,y 随 x 增大而增大. 25.若直线 y=x+3 与二次函数 y=-x2+2x+3 的图象交于 A、B 两点,求以 A、B 及原点 O 为顶点的三角形 的面积.
解答:解:∵抛物线 y=x2+bx+c 与 y 轴交于点 A,令 x=0 得,A(0,c),
∵该抛物线的开口向上,且与 x 轴的正半轴交于 B、C 两点,∴抛物线与 y 轴的交点在 y 轴的正半轴, ∴c>0,设方程 x2+bx+c=0 的两个根为 x1,x2,∴x1+x2=-b,x1x2=c,∵BC=2=|x1-x2|.∵S△ABC=3,∴c=3, ∵|x1-x2|= ( x1 x2 )2 4 x1x2 ,∴4=b2-12,∵x1+x2=-b>0∴b<0∴b=-4.∴bc=(-4)×3=-12.故答案是:-12.
解答:解:∵抛物线 y=ax2+bx+c 在 x 轴的下方,∴由二次函数图象与系数关系知 a<0,且与 x 轴没有
交点,即所对应二次方程没有解,∴△=b2-4ac<0,故选 A 8. 二次函数 y=ax2+bx+c 的图象如图,下列结论: ①a+b+c<0;②△<0;③abc<0; ④b=2a;⑤a-b+c>0,正确 的个数是( )A.4 个 B.3 个 C.2 个 D.1 个
解答:解:∵(3,-8)和(-5,-8)关于对称轴对称,
∴对称轴 x=(3-5)÷ 2 =-1,故选 D. 6. (2014•青岛模拟) 已知反比例函数 y = k x 的图象如图, 则二次函数 y=2kx2-x+k2 的图象大致为 ( )
A.
B.
C.
D.
解答:解:∵反比例函数图象在第二四象限,∴k<0,∴二次函数图象开口向下,
抛物线对称轴为直线 x=-
1 <0,∵k2>0,∴二次函数图象与 y 轴的正半轴相交. 2 2k
纵观各选项,只有 D 选项图象符合.故选 D. 7.抛物线 y=ax2+bx+c 在 x 轴的下方,则所要满足的条件是( )
A.a<0,b2-4ac<0 B.a<0,b2-4ac>0 C.a>0,b2-4ac<0 D.a>0,b2-4ac>0
2m2-5m+2=0,m1=0.5,m2=2,∵m<1,∴m=0.5.故答案为:0.5. 17.抛物线 y=-x2+4x+1 在 x 轴上截得的线段长度是_________
解答:解:设抛物线 y=-x2+4x+1 与 x 轴的交点为:(x1,0),(x2,0),∵x1+x2=4,x1•x2=-1,
∴|x1-x2|= 4 2 4 (1) =2 5 ,∴抛物线在 y=-x2+4x+1 在 x 轴上截得的线段长度是 2 5 .故答案为:2 5 18.已知二次函数 y=(m-2)x2+2mx-(3-m)的图象的开口向上,顶点在第三象限,且交于 y 轴的负半轴, 则 m 的取值范围是 ____________
解答:解:∵抛物线 y=(m-5)x2+(m2-2m-15)x-4 的顶点在 y 轴上,∴(- m2−2m−15)/2(m−5)=0,
解得 m=-3.故答案为-3. 16.已知二次函数 y=(m-1)x2+2mx+3m-2,则当 m=______时,其最大值为 0.
解答:解:a=m-1,b=2m,c=3m-2,∵二次函数有最大值为 0,∴a<0 即 m-1<0,且 4ac−b2=0,化简得
3.把抛物线 y=3x2 先向上平移 2 个单位,再向右平移 3 个单位,所得的抛物线是( A.y=3(x+3)2-2 B.y=3(x+3)2+2 C.y=3(x-3)2-2 D.y=3(x-3)2+2 )
相关文档
最新文档