基于CRISPR Cas9技术基因敲除小鼠(Cas9-KO)的制作方法-2018-2-28

合集下载

基因敲除小鼠的制作方法

基因敲除小鼠的制作方法

基因敲除小鼠的制作方法基因敲除小鼠是一种常用的遗传工具,在科学研究中被广泛应用于功能基因组学和疾病模型研究。

基因敲除是指通过特定技术手段,将小鼠体内的目标基因完全沉默或失活,从而研究该基因在发育、生理以及疾病机制中的功能。

本文将介绍基因敲除小鼠的制作方法,包括设计目标基因的敲除载体、胚胎干细胞的筛选和注射、外显子敲除策略的选择等。

1.设计目标基因的敲除载体敲除载体是嵌入目标基因的重要工具。

它通常包含正向与反向的同源臂(homology arms)以及选择标记(如抗生素抗性基因)。

同源臂的长度通常在2-5 kb之间,确保在同源重组时准确而有效地替代目标基因。

此外,敲除载体中还应该包含可诱导甲基化的Cre-loxP重组体系或者FLP-FRT重组体系,以用于后续的基因定向敲除或基因重新组装。

2.筛选胚胎干细胞胚胎干细胞是从内胚层发育而来的多潜能细胞,可以分化为整个鼠体的各种组织和器官。

敲除载体首先需要通过电转或霰粒枪等手段转染到胚胎干细胞系中。

转染后,胚胎干细胞需要进行抗生素筛选,以过滤未转染的细胞。

为了确保目标基因的敲除率,可以使用增强绿色荧光蛋白(eGFP)等标记基因,通过荧光显微镜观察转染细胞的表达情况。

3.敲除载体注射到小鼠受精卵中一旦确认胚胎干细胞中存在敲除载体,接下来就是将胚胎干细胞植入小鼠受精卵。

这个步骤一般由经验丰富的研究人员或者专业公司进行。

首先,选择合适的受精卵(通常为C57BL/6J小鼠品系),然后利用显微操作技术,将敲除载体注射到受精卵的核酸注入腔。

注射后,将受精卵转入对应营养液中培养一定时间,以期达到最佳着床率。

4.敲除鼠胚移植到配子体内经过培养后,将敲除的胚胎植入雌性激素准备好的代孕小鼠(通常为白色的株系,如ICR)。

移植后,将代孕小鼠继续养育,直至分娩。

5.验证敲除小鼠的敲除效果通过提取敲除小鼠的DNA,可以利用PCR、Southern blot和DNA测序等技术验证敲除效果。

《2024年利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《2024年利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》篇一一、引言基因编辑技术近年来在生物学和医学领域取得了巨大的突破,其中CRISPR-Cas9系统因其高效、精确的特性,已成为基因编辑的主要工具之一。

本文旨在探讨利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系的方法和过程,为基因编辑技术的进一步应用提供参考。

二、DUSP9基因与小鼠胚胎干细胞DUSP9基因是一种重要的蛋白磷酸酶基因,其编码的蛋白在细胞信号传导过程中具有重要作用。

小鼠胚胎干细胞(Mouse Embryonic Stem Cells, mESCs)是研究发育生物学和基因编辑的重要工具。

通过构建DUSP9基因敲除的小鼠胚胎干细胞系,可以研究DUSP9基因在细胞发育、分化以及疾病发生过程中的作用。

三、CRISPR-Cas9系统简介CRISPR-Cas9系统是一种基于细菌免疫系统的基因编辑技术,其原理是通过将特定的RNA与Cas9蛋白结合,形成复合物,然后识别并切割DNA序列,从而实现对基因的敲除或修改。

CRISPR-Cas9系统具有精确度高、效率高、成本低等优点,是现代基因编辑的主要手段。

四、构建DUSP9基因敲除小鼠胚胎干细胞系的步骤1. 载体构建:设计并合成针对DUSP9基因的特异性gRNA 序列,并将其与Cas9蛋白的表达载体一起构建成CRISPR-Cas9表达系统。

2. 细胞培养与转染:将小鼠胚胎干细胞培养至适当状态,然后利用转染技术将CRISPR-Cas9表达系统导入细胞中。

3. 基因编辑:通过CRISPR-Cas9系统识别并切割DUSP9基因的DNA序列,实现DUSP9基因的敲除。

4. 克隆筛选与鉴定:筛选并培养获得成功的DUSP9基因敲除小鼠胚胎干细胞克隆,通过PCR、测序等方法鉴定敲除效果。

5. 细胞系建立与保存:将成功构建的DUSP9基因敲除小鼠胚胎干细胞系进行保存与扩大培养,以备后续研究使用。

《利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》篇一一、引言随着基因编辑技术的发展,CRISPR-Cas9系统已成为一种强大的工具,用于在生物医学研究中精确地编辑基因组。

DUSP9基因作为一种重要的基因,其功能在多种生物学过程中起着关键作用。

因此,构建DUSP9基因敲除小鼠胚胎干细胞系,对于研究DUSP9基因的功能及其在疾病发生发展中的作用具有重要意义。

本文旨在详细介绍利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系的过程。

二、材料与方法1. 材料小鼠胚胎干细胞(mESCs)、CRISPR-Cas9系统、相关基因编辑工具、培养基、生长因子等。

2. 方法(1)设计CRISPR-Cas9系统:根据DUSP9基因的序列信息,设计合适的CRISPR-Cas9系统,包括sgRNA和Cas9蛋白。

(2)制备mESCs细胞:培养mESCs细胞至合适的状态,以便进行基因编辑。

(3)转染与编辑:将CRISPR-Cas9系统转染至mESCs细胞中,利用Cas9蛋白对DUSP9基因进行切割。

(4)筛选与鉴定:通过PCR、Western blot、qRT-PCR等方法,筛选出成功敲除DUSP9基因的mESCs细胞,并进行鉴定。

三、实验过程1. 设计并构建CRISPR-Cas9系统,选择合适的sgRNA序列和Cas9蛋白表达载体。

2. 培养mESCs细胞至合适的状态,进行转染。

3. 观察转染后的细胞生长情况,确保Cas9蛋白的表达。

4. 利用PCR、Western blot、qRT-PCR等方法筛选出成功敲除DUSP9基因的mESCs细胞。

5. 对筛选出的细胞进行扩增培养,并保存于液氮中备用。

四、结果与讨论1. 结果(1)成功构建了CRISPR-Cas9系统,并将其转染至mESCs 细胞中。

(2)成功筛选出敲除DUSP9基因的mESCs细胞,并通过PCR、Western blot、qRT-PCR等方法进行了鉴定。

基于CRISPRCas9技术的基因敲入敲除策略

基于CRISPRCas9技术的基因敲入敲除策略

基于CRISPRCas9技术的基因敲入敲除策略一、本文概述随着生物科技的飞速发展,基因编辑技术已成为现代生物医学研究的重要工具。

其中,CRISPR-Cas9技术以其高效、精确的特性,在基因敲入敲除策略中展现出了巨大的潜力。

本文旨在全面介绍基于CRISPR-Cas9技术的基因敲入敲除策略,包括其原理、应用、优缺点以及未来的发展趋势。

通过对这一技术的深入剖析,我们期望为科研人员提供一个清晰、全面的视角,以更好地理解和应用CRISPR-Cas9技术,推动生物医学领域的研究进展。

二、CRISPR-Cas9技术的基本原理CRISPR-Cas9(Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein 9)技术是一种强大的基因编辑工具,它源自细菌的自然防御机制,即CRISPR系统。

这一系统允许细菌存储并记忆过去遭遇过的病毒DNA片段,以便在未来遇到相同病毒时,能够识别并切割这些病毒DNA,从而抵抗病毒感染。

CRISPR-Cas9系统通过这一机制被改造为一种精确的基因编辑工具,用于在真核细胞(如人类细胞)中进行基因敲除和敲入操作。

CRISPR-Cas9技术的基本原理可以分为三个主要步骤:目标识别、DNA切割和修复。

一个由RNA和Cas9蛋白组成的复合物被设计用来识别特定的DNA序列。

这个RNA分子,通常被称为单链导向RNA(sgRNA),能够与Cas9蛋白结合,并指导Cas9蛋白在目标DNA序列上定位。

sgRNA的设计是关键,它必须能够准确地与目标DNA序列配对,以确保Cas9蛋白能够在正确的位置进行切割。

一旦Cas9蛋白在目标DNA序列上定位,它就会切割DNA双链,产生一个双链断裂(DSB)。

细胞对DSB的修复机制有两种主要方式:非同源末端连接(NHEJ)和同源重组(HR)。

NHEJ是一种错误易发的修复方式,它通常会导致DNA序列的插入、删除或替换,从而导致基因功能的丧失,这种机制常被用于基因敲除。

《利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》篇一一、引言随着基因编辑技术的发展,CRISPR-Cas9系统已成为现代生物医学研究中常用的基因编辑工具之一。

它为科研人员提供了强大的基因敲除、插入或突变的能力,在多种模型动物制备及疾病研究领域具有广泛的应用前景。

本文旨在介绍利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系的过程,为相关研究提供技术参考。

二、材料与方法1. 材料(1) CRISPR-Cas9系统相关组件(包括Cas9蛋白、sgRNA 等);(2) 小鼠胚胎干细胞系;(3) DUSP9基因特异性敲除载体;(4) 培养基、试剂及其他实验耗材。

2. 方法(1) 设计并构建DUSP9基因敲除载体;(2) 准备小鼠胚胎干细胞系并进行细胞培养;(3) 将DUSP9基因敲除载体与胚胎干细胞共培养,实现基因编辑;(4) 筛选并扩增成功敲除DUSP9基因的胚胎干细胞;(5) 对敲除细胞进行鉴定及保存。

三、实验过程1. DUSP9基因敲除载体的构建根据DUSP9基因序列,设计并合成sgRNA序列,构建DUSP9基因敲除载体。

通过PCR扩增获得目的片段,将其克隆至载体中,构建成功后的载体通过测序验证其准确性。

2. 小鼠胚胎干细胞的培养与准备将小鼠胚胎干细胞置于适宜的培养条件下进行培养,待细胞生长至适宜状态时进行后续实验。

3. 基因编辑及筛选将DUSP9基因敲除载体与小鼠胚胎干细胞共培养,通过CRISPR-Cas9系统实现DUSP9基因的敲除。

随后,通过PCR、测序等方法筛选出成功敲除DUSP9基因的胚胎干细胞。

4. 鉴定与保存对筛选出的成功敲除DUSP9基因的胚胎干细胞进行鉴定,包括细胞形态观察、生长曲线绘制、基因型鉴定等。

将鉴定合格的细胞进行保存,以备后续实验使用。

四、结果与讨论1. 结果通过CRISPR-Cas9系统成功构建了DUSP9基因敲除小鼠胚胎干细胞系,并筛选出成功敲除DUSP9基因的细胞。

基于CRISPRCas9技术的TRPS1基因敲除小鼠模型的构建

基于CRISPRCas9技术的TRPS1基因敲除小鼠模型的构建

38基于CRISPR/Cas9技术的TRPS1基因敲除小鼠模型的构建李腾雁,刘文杰,赵宏,蔡建强*(国家癌症中心/ 国家肿瘤临床医学研究中心/ 中国医学科学院北京协和医学院肿瘤医院肝胆外科,北京 100021)李腾雁 博士研究生中国医学科学院北京协和医学院肿瘤医院肝胆外科目的:基于CRISPR/Cas9技术构建敲除TRPS1基因的杂合子小鼠,并进行鉴定。

方法: C57BL/6N小鼠自行交配后,使用Cas9/sgRNA注射受精卵的方法构建基因敲除小鼠,对可遗传的小鼠基因型进行鼠尾检测,TRPS1杂合子敲除小鼠分别与野生型小鼠交配,获得具有稳定基因型的小鼠。

结果:本实验通过使用Cas9/sgRNA注射受精卵的方法,所有繁殖小鼠经鼠尾基因型鉴定,证实成功构建了18只TRPS1基因敲除的杂合子小鼠。

结论:基于CRISPR/Cas9技术成功构建了敲除TRPS1基因的杂合子小鼠。

关键词:CRISPR/Cas9;TRPS1;结直肠癌;基因敲除小鼠摘要基金支持:国家自然科学基金(81672461) ;国家自然科学基金(81972311) ;深圳市“医疗卫生三名工程”(SZSM202011010)首都卫生发展科研专项项目(2018-1-4021);中国医学科学院医学与健康科技创新工程(2016-I2M-1-001,2017-12M-4-002) *通信作者:蔡建强************************Generation of TRPS1 knockout mice by CRISPR/Cas9-mediated gene targetingAbstractObjectives: This study aimed to construct and identify heterozygous mice knocked out of TRPS1 gene based on CRISPR/ Cas9 technology.Methods: After self-mating of C57BL/6N mice, TRPS1 knockout mice were constructed by injecting fertilized eggs with Cas9/sgRNA, and the mouse genotypes of heritable mice were detected by tail. TRPS1 heterozygous knockout mice were mated with wild-type mice to obtain mice with stable genotypes.Results: In this experiment, the fertilized eggs were injected with cas9 / sgRNA, all breeding mice were identified by tail genotype, 18 TRPS1 knockout heterozygous mice were successfully constructed.Conclusion: In this study, we successfully constructed TRPS1 knockout heterozygous mice based on CRISPR / cas9 technology, which provided a research platform for further research on the role of TRPS1 in the occurrence, development and possible liver metastasis of colorectal cancer at the animal level.Keywords: CRISPR/Cas9; TRPS1; Colorectal cancer; Gene knockout mouseLi Tengyan, Liu Wenjie, Zhao Hong, Cai Jianqiang*(National Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China)我国结直肠癌(colorectal cancer,CRC)的发病率和死亡率均保持上升趋势。

crispr-cas9基因敲除小鼠原理

crispr-cas9基因敲除小鼠原理

CRISPR—CAS9基因敲除原理
CRISPR/Cas9(Clustered Regularly Interspaced Short Palindromic Repeats)是最新出现的一种由RNA指导Cas核酸酶对靶向基因进行特定DNA修饰的技术。

CRISPR 是细菌和古细菌为应对病毒和质粒不断攻击而演化来的获得性免疫防御机制。

在这一系统中,crRNA(CRISPR-derived RNA)通过碱基配对与tracrRNA(trans-activating RNA)结合形成双链RNA,此tracrRNA/crRNA二元复合体指导Cas9蛋白在crRNA引导序列靶定位点剪切双链DNA达到对基因组DNA进行修饰的目的。

Cas9结合gRNA,gRNA 的长度约为80个核苷酸,包含两个区域:gRNA 5' 端前20个核苷酸对应于靶标DNA,能结合在靶DNA 上的约60个核苷酸(gRNA 长度取决于表达gRNA 的质粒)形成一个发夹结构,这个结构能帮助gRNA 与Cas9结合,并由此指导与DNA 的结合.
通过gRNA上的靶点序列,在目标基因组上找到靶点序列,并揭开双螺旋,Cas9将剪切DNA双链,造成DNA双链断裂。

Cas9使用简单,可满足多个靶点同时操作。

Insertion /deletion NHEJ HDR
gRNA
Cas9
Donor vector
基因敲除小鼠流程:。

使用 CRISPR-Cas9 创建转基因小鼠的方案

使用 CRISPR-Cas9 创建转基因小鼠的方案

使用 CRISPR-Cas9 创建转基因小鼠的方案虽然近年来已经开发了几种基因组编辑工具,包括锌指结构和 TALENs(转录激活物样效应物核酸酶),但没有一种能像CRISPR/Cas9系统那样高效,该系统由一个RNA引导的DNA内切酶 (Cas9) 和对应的引导RNA(CRISPR) 组成。

利用该系统,研究人员能够实现一步敲除多个基因的等位基因的突变小鼠1。

只需两三周的时间,即可创造出子携带条件性等位基因和报告基因的小鼠2,并且该方案。

特别要注意的是,该过程不需要创建修改的小鼠ES细胞过程,该过程有时会十分困难3。

随着 Cas9 敲入和敲除小鼠的发展,预计越来越多的实验室将选择 CRISPR/Cas9 系统来生成转基因小鼠模型。

使用CRISPR-Cas9创建转基因小鼠的方案动物学研究。

2016 年 7 月 18 日;37(4): 205–213.利用 CRISPR/Cas9 和单倍体胚胎干细胞系统产生基因修饰的小鼠。

图 1.在小鼠胚胎上使用 CRISPR/Cas9 基因组编辑创建转基因小鼠的示意图。

通过共注射 Cas9 mRNA 和向指导 RNA,多个基因靶标可以在小鼠胚胎中一次敲除。

(改编自Yang H,Wang H 和 Jaenisch R. Nat Protoc。

2014 年 8 月;9(8):1956-68.)Sigma-Aldrich 是为基因组编辑提供工具和定制服务的领导者,包括 ZFN 和CRISPR/cas9。

默克还提供了广泛的小鼠胚胎验证培养基和试剂组合,用于储存、转移和扩增用于在EmbryoMAX™名下创建转基因小鼠模型的小鼠胚胎。

浏览所有的基因组编辑产品浏览所有经小鼠胚胎验证的试剂小鼠胚胎和ES细胞培养基小鼠ES细胞培养基实验方案和过程成功的小鼠模型项目的提示1.了解实验目的并开展研究。

生成正确的小鼠需要完全理解被测试依据的假设。

例如,研究者可能希望验证这样的假设:突变肝脏中的转运蛋白可能会减轻特定药物的肝毒性作用。

《2024年利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《2024年利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》篇一一、引言在生物学研究领域,基因编辑技术日益显示出其巨大的潜力和应用前景。

CRISPR-Cas9系统作为一种强大的基因编辑工具,已在多个物种中成功用于构建基因敲除模型。

本文旨在介绍如何利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系,为相关研究提供参考。

二、材料与方法1. 材料(1)小鼠胚胎干细胞(mESCs);(2)CRISPR-Cas9系统相关试剂;(3)DUSP9基因敲除载体;(4)显微操作设备及试剂;(5)实验动物(小鼠)。

2. 方法(1)设计并构建DUSP9基因敲除载体;(2)将载体与mESCs共转染,使DUSP9基因发生双链断裂;(3)利用CRISPR-Cas9系统对断裂的DUSP9基因进行修复,形成基因敲除突变;(4)筛选并扩增基因敲除的mESCs;(5)将基因敲除的mESCs注射到小鼠囊胚中,生成转基因小鼠。

三、实验过程1. 载体构建及转染首先,设计并构建DUSP9基因敲除载体。

该载体应包含靶向DUSP9基因的识别序列、切割位点及修复模板。

随后,将载体与mESCs共转染,使DUSP9基因发生双链断裂。

此过程需在显微操作下进行,确保转染效率和准确性。

2. CRISPR-Cas9系统修复及筛选利用CRISPR-Cas9系统对断裂的DUSP9基因进行修复。

通过非同源末端连接或同源重组等方式,使基因发生突变,形成DUSP9基因敲除的突变体。

随后,通过PCR、测序等方法筛选并扩增基因敲除的mESCs。

3. 转基因小鼠生成及鉴定将扩增得到的基因敲除的mESCs注射到小鼠囊胚中,通过胚胎移植技术生成转基因小鼠。

随后,通过PCR、免疫组化等方法对转基因小鼠进行鉴定,确认DUSP9基因是否成功敲除。

四、结果与讨论1. 结果利用CRISPR-Cas9系统成功构建了DUSP9基因敲除的小鼠胚胎干细胞系。

通过PCR、测序等方法验证了DUSP9基因的敲除效率及准确性。

CRISPRCas基因敲除小鼠

CRISPRCas基因敲除小鼠
• 使得CRISPR-Cas9应用更广泛。
2024/9/22
3
Cre-dependent Cas9 Rosa26 targeting 矢量图
Rosa26,使转 录可被诱导
荧光蛋白
2024/9/22
4
转入Cas9后与野生小鼠对比
2024/9/22
5
神经系统荧光对比
2024/9/22
6
三种试验测试效果:
2024/9/22
有转入目旳基因 旳小鼠大多细胞目旳 基因发生移码突变, 目旳基因转录和翻译 都明显下调。
11
二、腺病毒转入大脑皮层额叶
2024/9/22
目的基因是NeuN
12
目旳基因发生旳变化
✓ 缺失一位 ✓ 缺失多位 ✓ 插入一位 ✓ 插入多位
2024/9/22
13
2024/9/22
荧光显示具有Cre/Cas9 旳组织中NeuN体现明显降 低,而非转入非目旳旳 sgRNA则目旳蛋白无影响
2024/9/22
24
总结
• 事实证明将Cre-dependent引入Cas9工具中, 能够大大扩展Cas9旳用途。
• 后来用此措施能够更加好旳对基因进行修整, 已达成更多旳试验,为人类医学和生物学作 出贡献。
2024/9/22
25
Thanks!
2024/9/22
多为移码突变
19
Lkb1旳基因变化
2024/9/22
• 多为移码突变
20
Kras旳基因变化
2024/9/22
21
P53和Lkb1不断被损坏, Kras则被修补变得越发优势
2024/9/22
22
最终肺中出现肿瘤

基因敲除小鼠制备的流程

基因敲除小鼠制备的流程

基因敲除小鼠的制备流程基因敲除小鼠已经成为现代生命科学基础研究和药物研发领域不可或缺的实验动物模型,在生命科学、人类医药和健康研究领域中发挥着重要的作用。

基于胚胎干细胞的基因打靶技术、EGE技术(基于Crispr cas9技术)是当下比较火热的基因敲除小鼠制备技术。

利用这两种技术制备基因敲除小鼠的流程是什么样的?一、基于胚胎干细胞的基因打靶技术制备基因敲除小鼠的流程:1.课题设计,订购课题BAC菌;2.按照课题设计,完成打靶载体设计和构建;3.将重组载体电转到胚胎干细胞中,用G418筛选转染后的胚胎干细胞,得到阳性克隆;4.进一步通过PCR和southern blot杂交技术(基因敲除小鼠检测金标准)对上一步得到的阳性克隆进行筛选,得到稳定整合外源基因的胚胎干细胞阳性克隆;5.将胚胎干细胞阳性克隆注射到小鼠囊胚中,并植入到假孕小鼠的子宫内;6.得到嵌合鼠,并获得F1阳性杂合子小鼠。

基于胚胎干细胞的基因打靶技术制备基因敲除小鼠是目前为止唯一一个可以满足几乎所有基因组修饰要求的打靶技术,但目前只应用在小鼠的基因敲除上,而且其周期长工作量大。

二、利用EGE技术(基于Crispr cas9技术)制备基因敲除小鼠的流程1.设计构建识别靶序列的sgRNA;2.设计构建致靶基因切割的EGE系统载体质粒;3.利用百奥赛图自主开发的UCA试剂盒对sgRNA/Cas9进行活性检测;4.设计构建打靶载体;5.体外转录sgRNA/Cas9 mRNA;6.小鼠受精卵原核注射sgRNA/Cas9 mRNA和打靶载体;7.获得Fo代小鼠,利用PCR对Fo代小鼠进行基因型鉴定;8.获得F1代小鼠,利用PCR和southern blot杂交技术(基因敲除小鼠检测金标准)对F1代小鼠进行基因型鉴定。

虽然EGE技术(基于Crispr cas9技术)制备基因敲除小鼠看似比基于胚胎干细胞的基因打靶技术制备基因敲除小鼠流程繁琐,其实不然,EGE技术(基于Crispr cas9技术)系统构建简单,基因敲除/敲入效率高,速度快,可实现多基因、多物种基因敲除/敲入,最快2个月即可得到F0代阳性鼠,5个月得到F1F1代杂合子小鼠。

用CRISPR Cas9方案构建双基因敲除鼠, 获得双基因敲除纯合子小鼠的交配方案

用CRISPR Cas9方案构建双基因敲除鼠, 获得双基因敲除纯合子小鼠的交配方案

双基因敲除小鼠繁殖工作:CRISPR/Cas9方案构建双基因敲除鼠,得到F0杂合子之后,如何建系才能获得双基因敲除纯合子小鼠?这是经常被问到的问题,下面就简单回答一下。

假设我们的目的基因为A和B,通常用CRISPR/Cas9方法得到的基因敲除鼠为杂合子,双杂合子小鼠基因型为AaBb,大写字母代表野生型(dominant),小写字母代表突变型(recessive)。

得到F0杂合子(AaBb)之后,可以用以下方案之一来获得双基因敲除纯合子小鼠:方案一:1.将双杂合子小鼠(AaBb)与野生鼠(AABB)交配,理论上将得到25%的野生型(AABB),25%基因A单杂合子(AaBB),25%基因B单杂合子(AABb)及25%双杂合子小鼠(AaBb)。

2.将所得到的双杂合子小鼠(AaBb)互交(inter-cross),理论上6.25%的后代将会是双基因敲除纯合子小鼠(aabb),见下图。

3.由于双基因敲除实验中一般都需要单基因敲除动物作为对照,所以在进行上面小鼠breeding的同时可以将基因A单杂合子(AaBB)互交,在后代中鉴定出基因A纯合子(aaBB),同样将基因B单杂合子(AABb)互交,在后代中鉴定出基因B纯合子(AAbb)。

方案二:将双杂合子小鼠(AaBb)与单基因纯合子(如aaBB)交配,所生小鼠中约25%为基因A纯合子而基因B杂合子(aaBb,见下图左)。

然后将aaBb小鼠互交,理论上后代小鼠中25%为双基因敲除纯合子小鼠(aabb),见下图右。

需要特别注意的几个问题:1)上面所讲的方法适用于位于不同的染色体两个基因的基因敲除,如果两个基因位于同一条染色体上,要通过上述方法得到双基因敲除纯合子小鼠很难;2)上述方法有赖于基因特异性的Genotyping PCR assays。

在开始setup breeding之前必须将两个目的基因特异性的Genotyping PCRassays 准备好;3)要事先研究一下目的基因敲除后有无胚胎致死性,是否影响其生长发育等。

小鼠大脑基因实验报告(3篇)

小鼠大脑基因实验报告(3篇)

第1篇一、实验背景随着神经科学研究的深入,理解大脑的基因调控机制对于揭示神经疾病的发生机理和开发新的治疗方法具有重要意义。

本研究旨在通过基因编辑技术,探究特定基因在小鼠大脑发育和功能中的作用,为相关疾病的预防和治疗提供新的思路。

二、实验目的1. 利用CRISPR/Cas9基因编辑技术敲除小鼠大脑中特定基因。

2. 观察基因敲除对小鼠大脑发育、行为和认知功能的影响。

3. 分析敲除基因对小鼠大脑中相关通路和基因表达的影响。

三、实验材料与方法1. 实验材料- 小鼠胚胎干细胞(ES细胞)- CRISPR/Cas9系统- 实验小鼠(C57BL/6小鼠)- 实验试剂:DNA聚合酶、限制性内切酶、DNA连接酶、PCR引物等2. 实验方法(1)基因编辑1. 设计靶向特定基因的CRISPR/Cas9系统,包括sgRNA和Cas9蛋白。

2. 将sgRNA和Cas9蛋白导入小鼠ES细胞,进行基因编辑。

3. 对编辑后的ES细胞进行筛选,获得基因敲除的细胞系。

4. 将基因敲除的细胞系注射到C57BL/6小鼠的受精卵中,获得基因敲除的小鼠。

(2)小鼠行为和认知功能测试1. 观察基因敲除小鼠的生长发育、行为和运动能力。

2. 对小鼠进行认知功能测试,包括Morris水迷宫实验、Y迷宫实验等。

(3)基因表达分析1. 提取小鼠大脑样本,进行RNA提取和cDNA合成。

2. 利用PCR、RT-qPCR等方法检测敲除基因的表达水平。

3. 对小鼠大脑样本进行蛋白质组学分析,检测相关蛋白的表达水平。

四、实验结果1. 基因敲除成功敲除了小鼠大脑中特定基因,并通过PCR、RT-qPCR等方法验证了基因敲除的效果。

2. 小鼠行为和认知功能与野生型小鼠相比,基因敲除小鼠在Morris水迷宫实验中表现出明显的空间学习障碍,提示该基因可能参与小鼠的认知功能。

3. 基因表达分析敲除基因后,小鼠大脑中相关通路和基因表达发生了显著变化。

具体表现为:1. 神经递质合成酶的表达水平降低。

基因敲除小鼠的方法

基因敲除小鼠的方法

基因敲除小鼠的方法
1. CRISPR/Cas9基因编辑技术,CRISPR/Cas9技术是一种高效的基因编辑工具,可以用来精确地敲除小鼠基因。

首先,科学家设计合成一段RNA序列,使其与目标基因序列相匹配,然后将这段RNA和Cas9蛋白复合体导入小鼠胚胎内。

复合体会通过识别并切割目标基因,导致基因敲除。

2. 胚胎干细胞技术,另一种常见的基因敲除小鼠方法是利用胚胎干细胞。

科学家可以将设计好的基因敲除载体导入小鼠胚胎干细胞中,使其发生基因敲除。

然后,这些修改过的干细胞可以被植入小鼠胚胎内,从而产生基因敲除小鼠。

3. 遗传改造小鼠技术,除了CRISPR/Cas9和胚胎干细胞技术,科学家还可以利用遗传改造技术来实现基因敲除。

这种方法涉及到选择性育种和杂交,通过选择性地交配和繁殖,最终得到具有特定基因敲除的小鼠品系。

总的来说,基因敲除小鼠的方法主要包括CRISPR/Cas9基因编辑技术、胚胎干细胞技术和遗传改造小鼠技术。

这些方法都是在实验室条件下进行的,需要经过严格的实验设计和操作流程,以确保
基因敲除的准确性和有效性。

同时,这些方法也为科学家提供了强大的工具,用于研究基因在生物体内的功能和作用机制。

基于CRISPRCas9构建小鼠UOX基因敲除模型

基于CRISPRCas9构建小鼠UOX基因敲除模型

高尿酸血症(hyperuricemia)是由嘌呤代谢紊乱,尿酸排泄障碍引起的血尿酸异常为临床表现的异质性疾病。

尿酸病理性升高有5%~12%的风险导致尿酸结晶累积并损伤关节[1],引起痛风、急性及慢性关节炎等。

并且,高尿酸血症易引发并发症,如高血压、高血脂、2型糖尿病、冠心病。

临床上常规的高尿酸血症及痛风治疗手段为口服降尿酸药物[2],目前尚未有根治痛风的药物,新型降尿酸药物开发需要利用高尿酸动物模型进行降尿酸药物药效及药理筛选。

故建立稳定性好,更接近患者发病特征的高尿酸动物模型,能提高新型降尿酸药物开发效率及成药性,优化痛风治疗格局。

近年来, CRISPR/Cas9基因编辑技术凭借其简便性、特异性和高效性,在疾病动物模型构建领域应用日趋广泛和深入。

该研究利用CRISPR/Cas9,敲除小鼠基因组内尿酸氧化DOI:10.16662/ki.1674-0742.2020.07.032基于CRISPR/Cas9构建小鼠UOX基因敲除模型张茹君1,夏海林1,朱赟2,黄晶3,孟雨菡21.常州卡文斯实验动物有限公司,江苏常州213104;2.江苏科标医学检测有限公司,江苏常州213161;3.百格基因科技(江苏)有限公司,江苏常州213000[摘要]目的通过CRISPR/Cas9获得UOX基因敲除的小鼠纯合品系,为建立高尿酸血小鼠动物模型奠定基础。

方法根据小鼠UOX基因第三外显子前后两个位点设计双sgRNA,通过PCR、体外转录和纯化获得sgRNA和Cas9mRNA。

将sgRNA和Cas9mRNA显微注射进小鼠原核胚后,体外培养至二细胞胚阶段,进行胚胎移植至代孕母鼠。

F0代小鼠出生后,提取其DNA进行电泳分析和测序分析。

F0代交配繁殖至F2代获得UOX缺失的小鼠纯合品系。

结果显微注射sgRNA和Cas mRNA至原核胚,成功获得50枚囊胚。

移植后生育17只幼鼠。

其中,有8只小鼠UOX基因缺失突变,突变率为47.06%。

《2024年利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《2024年利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》篇一一、引言基因编辑技术为现代生物学研究带来了巨大的突破。

在众多基因编辑技术中,CRISPR-Cas9系统以其高精度、高效率的特性备受关注。

本篇论文旨在探讨利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系的过程、结果以及相关讨论。

二、材料与方法1. 材料小鼠胚胎干细胞系、DUSP9基因序列信息、CRISPR-Cas9系统相关试剂等。

2. 方法(1)设计并合成针对DUSP9基因的CRISPR-Cas9系统指导RNA(gRNA)。

(2)将gRNA与Cas9蛋白共同转入小鼠胚胎干细胞中。

(3)通过PCR、Western Blot等方法检测DUSP9基因的敲除情况。

(4)对敲除后的胚胎干细胞进行扩增、培养,并分析其生物学特性。

三、实验结果1. DUSP9基因敲除效率分析通过PCR和Western Blot等方法,我们成功检测到DUSP9基因的敲除情况。

在转导了CRISPR-Cas9系统的胚胎干细胞中,DUSP9基因的敲除效率达到了XX%。

2. 胚胎干细胞的生物学特性分析通过对敲除后的胚胎干细胞进行扩增、培养,我们发现其增殖能力、分化能力等生物学特性均与野生型胚胎干细胞无显著差异。

3. 基因敲除小鼠模型的构建与验证将敲除DUSP9基因的胚胎干细胞注射到小鼠囊胚中,成功构建了DUSP9基因敲除小鼠模型。

通过对小鼠进行基因检测,验证了DUSP9基因的敲除情况。

四、讨论本实验利用CRISPR-Cas9系统成功构建了DUSP9基因敲除小鼠胚胎干细胞系,为进一步研究DUSP9基因的功能及其在相关疾病中的作用提供了有力工具。

同时,本实验也证明了CRISPR-Cas9系统在基因编辑领域的广泛应用和可靠性。

在实验过程中,我们注意到以下几点:首先,gRNA的设计与合成是影响基因敲除效率的关键因素之一,需要针对目标基因的序列信息进行精确设计。

一文教你如何利用CRISPRCas9技术建立小鼠敲除模型

一文教你如何利用CRISPRCas9技术建立小鼠敲除模型

一文教你如何利用CRISPRCas9技术建立小鼠敲除模型作者:Ryan来源:科研小助手公众号Manipulation of mouse genome with minimal off-target by microinjection of one-cell embryos with paired sgRNAs and nickaseWhile CRISPR/Cas9 technique has been widely used in genome editing regarding multiple organisms, the off-target effect can’t be neglected. Subsequently, to conquer the off-target effect, many strategies have been applied including longer sgRNA (about 26bp) and nickase combined with paired sgRNAs. Here we described a good menthod for generating the mutant mice/conditional knockout mice with minimal off-target by microinjection of one-cell embryos with paired sgRNAs and Cas9 nickase. Moreover, paired sgRNAs and nickase can also mutate multiple genes simultaneously, or to generate large deletions up to at least 10kb or more.Comparison of Cas9 and nickase (Cas9D10A)Figure 1. Cas9 nickase strategy. Cas9 nickase induces a double strand break adjacent CRISPR sites (TS1 and TS2) onopposite DNA strands. Constrastly, single-stand nicks at off-target sites (OTS) for either sgRNA will be corrected by the base-excision repair pathway, thus minimizing off-target mutations. P, PAM site.Plasmidsused in the protocolT7-Nickase(Cas9-D10A):T7-sgRNA:ReagentsPlasmids: T7-Nickase(Cas9-D10A) and T7-sgRNAmMESSAGE mMACHINE®T7 Ultra kit (Ambion, AM1345)MEGAshortscript TM Kit(Ambion, AM1354)RNeasy Mini Kit (QIAGEN,74104)MEGAclear TM Kit(Ambion, AM1908)RNAsecure TM Reagent(Ambion, AM7005)QIAprep Spin Miniprep Kit(QIAGEN, 27104)MiniElute PCRPurification Kit (QIAGEN, 28004)BsaI (NEB, R0535S)AgeI (NEB, R0552S)DraI (TAKARA, D1037A)T4 DNA Ripid ligation Kit(NEB,M2200S)PMSG (Sansheng, China,50IU/ml in normal saline, Aliquot and store at -80℃)HCG (Sansheng, China,50IU/ml in normal saline, Aliquot and store at -80℃)EmbryoMax® Injection Biffer (Millipore, MR-095-10F)ProteinaseK(Merck,1245680100, 20 mg/ml in water, Aliquot and store at -20℃)Lysis buffer (10 μMTris-H Cl, 0.4 M NaCl, 2 μM EDTA, 1% SDS) Phenol (Tris-saturated),Chloroform and alcoholPCR clearing Kit (Axygen,AP-PCR-50)T7EN1 (NEB, M0302L)PrimerSTAR HS DNA Polymerase (TAKARA, DR010A)pMD19T-vector kit(TAKARA, 3271)EquipmentCentrifuge(RT and 4℃)VortexOneDrop OD-1000+ SpectrophotometerThermocyclerThermomixerThermo-controlledwater bath(37℃,42℃ and 58℃)ProcedureConstructionof sgRNA expression vectors1. Design of paired sgRNA oligos.Select paired sgRNAs in a tail-to-tail orientation and separated by 10-30 bp, which have the sequence 5’-CCN(52-72)GG.All possible paired sites for mouse and human exons are available on website(/htgt/wge/). For each sgRNA, the 5’-GGN(19)GGmotif is preferred, however, 5’-GN(20)GG or 5’-N(21)GG are also satisfactory. BLAT or BLAST the sgRNA target sites in UCSC or ENSEMBL genome browsers to find those with few or no highly related sites in the genome.Order oligos as below:For 5’-GGN(19)GGmotifTop strand oligo:Bottom strand Oligo:For 5’-GGN(20)GG motifFor 5’-GGN(21)GG motif2. Annealing oligos prior to cloning.4.5μl Top Oligo (100 μM)4.5μl Bottom Oligo (100 μM)1μl NEB buffer 2Annealing oligos using a thermocycler with the following program:95℃,5 min; 95-85℃ at -2℃/s; 85-25℃ at -0.1℃/s; hold at 4℃.3. Preparation of T7-sgRNA plasmid.2 μg T7-sgRNA plasmid.1 μl CutSmart Buffer1 μl BsaIAdd H2O up to 50 μl and incubate at 37℃ for 2 h with occasional shake.Purify the digeston product using MinElutePCR Purification Kit.4. Ligation of annealed oligos with BsaI-digested T7-sgRNA4 μl annealed oligos2 μl (25 ng/μl) digested T7-sgRNA10×NEB ligation buffer 1 μlddH2O 2 μlNEB T4 DNA ligase 1 μlUp to 10 μlncubate at 22℃for 30 min5. Transformation and plate on Kan+plate (50 μg/ml).6. Confirm correct Insertion of sgRNA oligosby sequencing using M13-47 primer.7. Mini-prep T7-sgRNA plasmid using QIAprepSpin Miniprep Kit.Transcriptionof sgRNAs in vitro1. Ensurethat reagents, tubes and tips are RNase-free and that the work is done in aribonuclease-free enviroment.2. Digestpaired sgRNA plasmids with DraI and purify the digestion fragment.10 μg paired sgRNA plasmids (5 μg each)10 μl 10×Mbiffer5 μl DraI (15 U/μl)Add H2O up to 100 μl and incubate at 37℃ for 3 h with occasional shake.Check plasmids were digested completely bygel electrophoresis, loading 2 μl in 1% agarose gel.Two bands (1621 and 1152 bp) will beobserved. It is not necessary tio gel-purify the band harboring the sgRNAsequence.Add 4 μl RNAsecure and incubate at 60 ℃ for 10 min in a thermomixer.Purify and elute the digestion product with 10 μl RNase-free water usingMinElute PCR Purification Kit, 5-8 μg of DNA will be recovered.For mutiplexing experiments, two or more paired sgRNAs may be digested simultaneously in one tube.Alternatively, the transcription template containing the T7 promoter sgRNAsequence may be prepared by PCR amplification from a bacterial colony using thefollowing primers and PCR program:sgRNA-For:5’-TCTCGCGCGTTTCGGTGATGACGGsgRNA-Rev:5’-AAAAAAAGCACCGACTCGGTGCCACTTTTTCProgram:94℃,5min; ((98 ℃ ,10s; 72-62℃, -1℃/cycle, 15s; 72 ℃, 30s) 10 cycles, (98℃, 10s;62 ℃, 15s; 72 ℃, 30s) 25 cycles); 72 ℃, 5 min; hold at 4℃.Inactivate RNases byadding RNA secure and purify the PCR product using the MinElute PCR PurificationKit.3. Invitro transcription of sgRNAs using MEGAshortscriptTMKit.1 μl T710× Reaction Buffer1 μl T7 ATP Solution (75 mM)1 μl T7 CTP Solution (75 mM)1 μl T7 GTP Solution (75 mM)1 μl T7 UTP Solution (75 mM)4 μl purified template (more than 2 μg for plasmids, 700 ng-1000 ng for PCR products)1 μl T7 Enzyme Mix10 μl of transcription volume is OK.Incubate the reaction at 37 ℃ for 4-6 h in water bath or Thermocycler (Set thehot lid to 50 ℃).Add 1 μl TURBODNase and incubate at 37 ℃ for 15 min to remove the DNA template.4. Purify the sgRNAs by MEGAclearTM Kitaccording to the manufacturer’s instructions.RNA elutionoption 2 in the manual is preferred.Precipitatewith 5 M Ammonium Acetate and ethanol.Resuspendthe pellet using the 30 μl RNase free water.20-50 μgRNA will be obtained depending on the quality of DNA template.5.Assess sgRNA yield using the One Drop OD-1000+Spectrophotometer (or equivalent) and sgRNA quality by gel electrophoresis. RNAis loaded in DNA loading buffer and run on 1% agarose gel (180 V for 10 min).6.Aliquot and store at -80 ℃. The sgRNAs are stablefor one year without freeze-thaw cycles.Transcription of Nickase (Cas9-D10A) in vitro1. Ensure that reagents, tubes and tips are RNase-freeand that the work is done in a ribonuclease-free enviroment.2. Digest T7-Nickase (Cas9-D10A) plasmid with AgeIandpurify the digestion product.10 μgT7-Nickase (Cas9-D10A)10 μl NEBbuffer I4 μl AgeIAdd H2O upto 100 μl and incubate at 37 ℃ for 3 h with occasional shake.Add 4 μlRNAsecure and incubate at 60 ℃ for 10 min in a thermomixer.Check for complete digestion of the plasmid byelectrophoresis, loading 2 μl in 1% agarose gel.Purify and elute the digestion product with 10 μlRNas e-free water using MinElute PCR Purification Kit, 5-8 μg DNA will berecovered.3.In vitro transcribe Cas9-D10A using mMESSAGE mMACHINE® T7 Ultra Kit according to the manufacturer’s instruction.4. Purify the Nickase (Cas9-D10A) mRNA by RNeasy MiniKit ac cording to the manufacturer’s instructions.5. Assess sgRNA yield using the One Drop OD-1000+Spectrophotometer (or equivalent) and sgRNA quality by gel electrophoresis. RNAis loaded in DNA loading buffer and run on a 1% agarose gel (180V for 10 min).A yield of 30-60 μg mRNA is expected.Note: Due to the size of the Nickase (Cas9-D10A) mRNA, no visible size shift is seenafter poly-A tailing. The mRNA quality is good if a smear is not observed.6. Aliquot and store at -80 ℃. Nickase (Cas9-D10A)mRNA is stable for one year without freeze-thaw cycles.Collection of zygotes1. Superovulate 4-week-old female C57BL/6J (about12-14g) mice by intraperitoneal injection with PMSG (5 IU/100 μl) at 14:00 ofday 1 and with HCG (5 IU/100 μl) at 13:00 of day 3.2. Cross superovulated females with males (C57BL/6J orCBA).3. Identify plugged females at 9:00 of day4. Collectone-cell embryos as decribed in Reyon, D. et al, 2012.Preparation of microinjection mixture1. Thaw aliquot of the Cas9-D10A mRNA and sgRNAs onice. Dilute the Cas9-D10A mRNA with Embryo Max® Injection Buffer to a concentration of 20 ng/μl and sgRNAs (5 ng/μl each) in a final volume of 50 μl. Pipette the mixture upand down several times2. Centrifuge at 4 ℃ for 1 min at top sped, andcarefully transfer 45 μl supernatant to a new tube. Always keep the tube onice.Microinjection and embryo transferMicroinjection and embryo transfer are performed using standard methods for generation of transgenic mice as described in Andras,N. et al., 2003, Cold Spring Harb Protoc. We prefer to inject the RNA mixture into both the cytoplasm and larger (male) pronucelus.Genotyping founders1. Tail tips from founders (5-day-old) are collected and digested overnight at 55 ℃ with lysis buffer containing 100 μg/ml Proteinase K. Genomic DNA is extracted by phenol-chloroform and purified by ethanol precipitation.2. Target region(300-700 bp) are PCR amplified from genomic DNA and the products are purified with the PCR Cleanup Kit. Purified PCR products are denatured and reannealed in NEB buffer 2 in a thermocycler using the following programme;95℃,5 min; 95-85 ℃ at -2℃/s; 85-25 ℃ at -0.1℃/s; hold at 4℃.3. Hybridized PCR products are digested with 0.5 μlT7EN1 at 37℃ for 30 min and separated by 2% agarose gel. Mutant founders will yield lower molecular weight cleavage bands.4. Cloning and sequencing of PCR amplicons from genimic DNA of mutant founders is used to characterize the mutations. T-A cloning of PCR products us performed using the pMD19T kit (TAKARA) according to manufacturer’s instructions.TroubleshootingProblemSolution SgRNA expression plasmid does not contain insertpUC57-sgRNA vector is not digested completely.Extend the incubation time and shake thedigestion product occasinally. Colony PCR canbe used to identify the positive coloniesusing 5’-TTGTACTGAGAGTGCACCATATG-3’ and the bottom strand sgRNA oligoLow yield of sgRNAsa. Use the recommended kits to improve the quality of plasmids and templateb. Increase the amount of template or use the PCR product as template. Electrophoresis of sgRNAs shows more than one band a. sgRNAs can form dimers. Always keep sgRNAson ice. A low amount of dimer will not affectthe function of sgRNA.b. DNA template is incompletely digested.Circular template can produce longertranscripts. Extend the incubation time and shake the digestion product occasionally. c. DNA template contamination. Add more TURBO DNase and extend incubation time.Cas9-D10A mRNA produces a smear on an agrose gel a. Use RNAsecure to inactivate RNase contaminationb. Use the recommended kits to improve thequality of the DNA template.(QIAGEN Mini-prepand PCR clean-up kits are recommended)Time Taken4 days for the construction of sgRNA expression vectors.1 day for the in vitro transcription and preparation of sgRNAs. 1 day for the in vitro transcription and preparation of Cas9-D10A mRNA.4 days for the superovulationb of females, collection of 1-cell embryos and microinjections1 week for the genotyping of founder animals.。

CRISPRCas9基因敲除小鼠模型

CRISPRCas9基因敲除小鼠模型

CRISPRCas9基因敲除小鼠模型
根据基因序列设计合成sgRNA,针对Knockin插入点或点突变位置构建含Knockin片段或点突变的同源序列,与Cas9 mRNA共同注射到小鼠受精卵胞质,Cas9核酸酶、sgRNA、基因组靶序列结合并切割双链DNA,以含Knockin的同源序列为模版修复基因组DNA,最终获得在目的DNA序列插入Knockin片段或点突变的Knockin小鼠。

根据基因序列设计合成两个sgRNA,分别针对两个Loxp的插入点,构建含Loxp的同源序列,与Cas9 mRNA共同注射到小鼠受精卵胞质,Cas9核糖酶、sgRNA、基因组靶序列结合并切割双链DNA,以含Loxp同源序列为模板修复基因组DNA,最终获得在待敲除目的DNA序列两端各有一个Loxp序列的Flox小鼠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于CRISPR Cas9技术基因敲除小鼠(Cas9-KO)的制作方法
一、CRISPR/Cas9靶向基因敲除小鼠制作的基本技术原理:
通过CRISPR/Cas9基因敲除技术,crRNA通过碱基配对与tracrRNA(trans-activating RNA)结合,形成双链RNA。

这一tracrRNA:crRNA二元复合体指导Cas9蛋白在crRNA引导序列靶标的特定位点剪切双链DNA。

在与crRNA引导序列互补的位点,Cas9蛋白的HNH核酸酶结构域剪切互补链而Cas9 RuvC-like 结构域剪切非互补链,实现敲除目的基因的功能,制备基因敲除小鼠模型。

二、具体步骤如下:
一)模型制作策略制作:利用生物信息学手段(NCBI&IMPC&MGI),分别仔细分析目的基因敲除后小鼠的生存能力及繁育能力,并结合邻近基因的影响,最终选择合适的敲除区域进行敲除方案的设计,出具相应的制作策略。

二)载体的设计和构建:使用麻省理工学院的CRISPR Design工具
(/),依据中靶Score的高低及脱靶Score的高低设计一对长度为20bp的针对靶标DNA的寡聚核苷酸链序列用于制备sgRNA,并在该靶区域设计引物用于后续阳性小鼠的基因鉴定。

1、制备sgRNA的实验方法步骤:
1)线性化pUC57-GDNA-T7载体
中提pUC57-GDNA-T7载体,用BsaI线性化过夜。

胶回收保存备用。

2)引物退火及加磷酸
将上下游引物(干粉)稀释,再进行引物退火及加磷酸。

3)连接&阳性菌落筛选
取步骤二中的加磷酸产物与线性化载体pUC57-GDNA-T7进行连接,该连接反应在干式恒温器中进行。

对连接产物进行转化,涂板,37°C培养箱过夜培养。

再用PCR&测序的方法筛选阳性克隆,再将测序正确的克隆进行甘油菌保种,-80°C保存备用
4)制备转录模板
以构建好的sgRNA载体为模板进行PCR扩增,将PCR产物切胶回收,回收产物离心后倒掉上清留DNA沉淀,再溶解DNA。

再吸1 μl测DNA浓度,浓度应介于300-500ng/μl,OD260/280介于1.8-2.0范围内。

5)最后进行sgRNA转录,将得到的sgRNA测浓度,跑电泳,分装保存。

三)Cas9/sgRNA的显微注射:将转录好的Cas9 mRNA,sgRNA混合使用显微操作仪将混合物显微注射到小鼠受精卵的胞浆中,再将受精卵移植到假孕的母鼠子宫中,等待F0代小鼠出生。

四)F0 小鼠的鉴定:在F0代小鼠出生后5-7天时,采用剪脚趾法标记小鼠,并将剪取鼠尾组织用在靶区域设计的引物进行鉴定,选取PCR阳性的样品进行测序。

五)F0代小鼠的可遗传性检测:将PCR以及测序正确的F0代小鼠与野生型C57BL/6小鼠进行交配,产生F1代小鼠,依据F0代小鼠的鉴定方法对F1代小鼠进行鉴定,获得的阳性F1代杂合子小鼠即可稳定遗传。

相关文档
最新文档