数字信号处理第三版答案程佩青
(完整word版)数字信号处理试卷及答案_程培青(第三版),推荐文档
河南工业大学数字信号处理 试卷考试方式:闭卷复查总分 总复查人一、填空题:(本大题共10小题,每空2分,共28分)请在每个空格中填上正确答案。
错填、不填均无分。
1、一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为;输入为x (n-3)时,输出为 。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f 与信号最高频率fs 关系为: 。
3、已知一个长度为N 的序列x(n),它的傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X (e jw )的 点等间隔 。
4、有限长序列x(n)的8点DFT 为X (K ),则X (K )= 。
5、无限长单位冲激响应(IIR )滤波器的结构上有反馈,因此是_ _____型的。
6、若正弦序列x(n)=sin(30n π/120)是周期的,则周期是N= 。
7、已知因果序列x(n)的Z 变换为X(z)=eZ -1,则x(0)=__________。
8、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,___ ___和__ _ ___四种。
9、DFT 与DFS 有密切关系,因为有限长序列可以看成周期序列的__________,而周期序列可以看成有限长序列的__________。
10、对长度为N 的序列x(n)圆周移位m 位得到的序列用x m (n)表示,其数学表达式为x m (n)=__________。
《数字信号处理》试卷A 第1页 ( 共 6 页 )二、选择填空题(本大题共6小题,每题2分,共12分)1、δ(n)的z 变换是 。
A. 1B.δ(w)C. 2πδ(w)D. 2π2、序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是 , 5点圆周卷积的长度是 。
A. 5, 5B. 6, 5C. 6, 6D. 7, 53、在N=32的时间抽取法FFT 运算流图中,从x(n)到X(k)需 级蝶形运算 过程。
《数字信号处理教程》程佩青第三版课后答案
(c)
x (n )
=
e
j
(
n 6
−π )
分析:
序列为 x (n ) = A cos( ω 0n + ψ ) 或 x(n) = A sin( ω 0n +ψ ) 时,不一定是周期序列,
①当 2π / ω 0 = 整数,则周期为 2π / ω 0 ;
7
②当 2π = P ,(有理数 P、Q为互素的整数)则周期 为 Q ; ω0 Q
x(n
− m)sin
2π 9
+
π 7
即 T [x(n − m)] = y(n − m)
∴系统是移不变的
T [ax1(n) + bx2 (n)]
=
[ax1
(n)
+
bx2
(n
)]sin(
2π 9
+
π 7
)
即有 T [ax1(n)+ bx2 (n)]
= ay1(n) + by2 (n)
∴系统是线性系统
(1) T [ x(n)] = g(n)x(n) (2) (3) T [ x(n)] = x(n − n0 ) (4)
j sin(
n 6
−π)
=
− cos
n 6
−
j sin
n 6
2π /ω 0 = 12π 5. 设系∴统是差非分周方期程的为。:
T 是无理数
y (n ) = ay (n − 1) + x(n )
其中 x(n) 为输入, y(n) 为输出。当边界条件选为
(1) y(0) = 0 (2) y(−1) = 0
4
第一章 离散时间信号与系统
数字信号处理教程 (第三版)程佩青 清华大学出版社dsp-ch5-1
X
第
二、有限阶IIR的表达式:
(其中至少有一个 ak≠0)
Y ( z) 系统函数: H ( z ) X ( z)
N
10 页
bk z k 1 ak z k
k 1
M
M
k 0 N
差分方程: y ( n ) ak y ( n k ) bk x (n k )
2、直接Ⅱ型(典范型)
13 页
只需实现N阶滤波器所需的最少的N个延时单元, 故称典范型。( N M )
X
第
14 页
直接Ⅰ型与直接Ⅱ型结构比较
1)直接Ⅰ型需要一个相加器,而直接Ⅱ型 需要两个相加器; 2)直接Ⅱ型需要的延迟器比直接Ⅰ型少, 因此所需的存储单元少;
3)从节约存储单元的角度来看,直接Ⅱ型
第
18 页
X
第
19 页
N 1 当M=N时,二阶因子配对方式有 ! 种 2 N 1 各二阶基本节的排列次序有 ! 种 2
X
第
级联型的特点:
20 页
• 调整系数 1k, 2k能单独调整滤波器的第k对零点, 而不影响其它零极点 调整系数1k , 2k 能单独调整滤波器的第k对极点, 而不影响其它零极点
方框图
流图
z
1
z
1
a
a
X
第 5 页
x(n)
z
-1
x(n-1)
x(n)
z -1
x(n-1)
支路増益
x(n)
x(n)
ax(n)
a x1(n)
a
网络 节点
ax(n)
源节点
数字信号处理(程佩青)课后习题解答(4)
数字信号处理(程佩青)课后习题解答(4)第四章快速傅立叶变换运算需要多少时间。
计算需要多少时间,用,问直拉点的,用它来计算每次复加速度为平均每次复乘需如果一台通用计算机的FFT DFT[x (n)]512s 5 s 50.1μμ 解: 解: ⑴ 直接计算: 复乘所需时间:复加所需时间: ⑵用FFT 计算:复乘所需时间: 复加所需时间:运算一次完成。
点试用一个为了提高运算效率值求今需要从值的点实序列是两个已知IFFT N n y n x k Y k X DFT n y n x N k Y k X ,,)(),()(),(,)(),()(),(.2s N T N 01152.0 512log 105 log 105 2251262261==??=--s T T T sN N T 013824.0 002304.0 512log 512105.0 log 105.0 2126262=+=∴===--sT T T sN N T 441536.1 130816.0 )1512(512105.0 )1(105.0 21662=+=∴=-=-=--s N T 31072.1 512105 105 262 61=??=??=--值的过程。
)(),(完成计算点)可用一次()()(综上所述,构造序列)()()()(可得:)()()(再根据都是实序列,)(),(由原题可知:)()()()(()()(性质:又根据可得序列点作对取序列依据题意解 ]Im[ ]Re[ ][][ ][ ).()( )()()( )()();()( ::n y n x IFFT N k jY k X k Z n z n y n z n x n jy n x n z n y n x n jy n x k Y jIDFT k X IDFT k jY k X IDFT DFT n z IFFT N k Z k jY k Xk Z k Y n y k X n x +===+=+=+=++=??。
程佩青《数字信号处理教程(第三版)》课后习题答案精编版
第一章 离散时间信号与系统
1 .直接计算下面两个序列的卷积和 y( n ) = x( n )* h( n )
h (n )
=
⎧an ⎨
⎩0
, 0 ≤ n ≤ N −1 , 其他n
x (n )
=
⎧⎪ β ⎨
n−n 0
⎪⎩ 0
,n0 ≤ n , n < n0
请用公式表示。
分析:
①注意卷积和公式中求和式中是哑变量 m ( n 看作参量),
y (n ) ={1,2,3,3,2,1} ;
②δ (n)* x(n) = x(n) , δ (n − m)* x(n) = x(n − m) ;
③卷积和求解时, n 的分段处理。
6
解:(1) y(n) = x(n) * h(n) = R5(n) (2) y(n) = x(n) * h(n) = {1,2,3,3,2,1}
β α
n +1
β α β =
n +1− N −n0
N−
N
α −β
y(n) = Nα n−n0 ,
(α = β )
, (α ≠ β )
如此题所示,因而要分段求解。
2 .已知线性移不变系统的输入为 x( n ) ,系统的单位抽样响应
为 h( n ) ,试求系统的输出 y( n ) ,并画图。
(1)x(n) = δ (n)
∑ ∑( ) n α m−n0 n−m = β α = β m=n0
nn β
n0
α
n β −n0
− β n0
α
β n +1 α
1
−
β α
α β =
− n +1− n0
数字信号处理试卷 程培青(第三版)
数字信号处理试卷一、填空题:(本大题共10小题,每空2分,共28分)1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为;输入为x(n-3)时,输出为。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f 与信号最高频率fs关系为:。
3、已知一个长度为N的序列x(n),它的傅立叶变换为X(ejw),它的N点离散傅立叶变换X(K)是关于X(ejw)的点等间隔。
4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。
5、无限长单位冲激响应(IIR)滤波器的结构上有反馈,因此是_ _____型的。
6、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 。
7、已知因果序列x(n)的Z变换为X(z)=eZ-1,则x(0)=__________。
8、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,___ ___和__ _ ___四种。
9、DFT与DFS有密切关系,因为有限长序列可以看成周期序列的__________,而周期序列可以看成有限长序列的__________。
10、对长度为N的序列x(n)圆周移位m位得到的序列用xm(n)表示,其数学表达式为xm(n)=__________。
二、选择填空题(本大题共6小题,每题2分,共12分)1、δ(n)的z变换是。
A. 1B.δ(w)C. 2πδ(w)D. 2π2、序列x1(n)的长度为4,序列x2(n)的长度为3,则它们线性卷积的长度是,5点圆周卷积的长度是。
A. 5, 5B. 6, 5C. 6, 6D. 7, 53、在N=32的时间抽取法FFT运算流图中,从x(n)到X(k)需级蝶形运算过程。
A. 4B. 5C. 6D. 34、下面描述中最适合离散傅立叶变换DFT的是()A.时域为离散序列,频域也为离散序列B.时域为离散有限长序列,频域也为离散有限长序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散周期序列,频域也为离散周期序列5、设系统的单位抽样响应为h(n),则系统因果的充要条件为()A.当n>0时,h(n)=0 B.当n>0时,h(n)≠0C.当n<0时,h(n)=0 D.当n<0时,h(n)≠06、已知序列Z变换的收敛域为|z|<1,则该序列为( )。
《数字信号处理》第三版课后习题答案
数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n 及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n nn n n n nnn n 2. 给定信号:25,41()6,040,nnx n n其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列;(3)令1()2(2)x n x n ,试画出1()x n 波形;(4)令2()2(2)x n x n ,试画出2()x n 波形;(5)令3()2(2)x n x n ,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n nnnn n n n n n (3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n,A 是常数;(2)1()8()j n x n e 。
解:(1)3214,73w w ,这是有理数,因此是周期序列,周期是T=14;(2)12,168ww,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1)()()2(1)3(2)y n x n x n x n;(3)0()()y n x n n ,0n 为整常数;(5)2()()y n x n ;(7)0()()n m y n x m 。
(完整word版)数字信号处理(程佩青)课后习题解答(5)
第五章 数字滤波器的基本结构1。
用直接I 型及典范型结构实现以下系统函数21214.06.028.02.43)(-----+++=z z z z z H分析:①注意系统函数H(z)分母的 0z 项的系数应该化简为1。
②分母), 2 , 1( ••••••=-i z i 的系数取负号,即为反馈链的系数。
解:21212.03.014.01.25.1)(-----+++=z z z z z H )2.03.0(14.01.25.12121----+--++=z z z z ∵)()(1)(1z X z Y z a zb z H Nn nn Mm mn=-=∑∑=-=- ∴3.01-=a ,2.02=a5.10=b ,1.21=b ,4.02=b2。
用级联型结构实现以下系统函数)8.09.0)(5.0()14.1)(1(4)(22++-+-+=z z z z z z z H 试问一共能构成几种级联型网络。
分析:用二阶基本节的级联来表达(某些节可能是一阶的)。
解: ∏------++=k k k k k z zz z A z H 2211221111)(ααββ )8.09.01)(5.01()4.11)(1(4211211------++-+-+=z z z z z z ∴ 4=A8.0 ,9.0 , 0,5.0 1,4.1 , 0 ,1 2212211122122111-=-====-===ααααββββ由此可得:采用二阶节实现,还考虑分子分母组合成二阶(一阶)基本节的方式,则有四种实现形式.3。
给出以下系统函数的并联型实现。
)8.09.01)(5.01(6.141.158.12.5)(211321------++--++=z z z z z z z H 分析:注意并联的基本二阶节和级联的基本二阶节是不一样的,这是因为系统函数化为部分分式之和,分子的1-z 的最高阶数比分母1-z 的最高阶数要低一阶,如果分子、分母多项式的1-z 的最高阶数相同,则必然会分解出一个常数项的相加(并联)因子。
数字信号处理教程 (第三版)程佩青 清华大学出版社dsp-ch6-4
18 页
(p p )
k 0 k
N 1
式中,s/Ω c=jΩ /Ω c。 令 λ =Ω /Ω c , λ 称 为 归 一 化 频 率 ; 令 p=jλ =s/Ω c,p称为归一化复变量,这样归一 化巴特沃斯的系统函数为
X
第
• pk为归一化极点,用下式表示:
19 页
pk s k / c e
X
第
5)低通巴特沃斯滤波器的设计步骤
• 确定技术指标: p p s s • 根据技术指标求出滤波器阶数N:
20 页
由 P 20lg H a ( j p )
2N
H a ( j p )
2
1 p 1 c
2N
p /10 得: 1 10 p N /10 c p 10 p 1 2N s s 10 s /10 1 s /10 同理:1 10 c /10 lg ksp s 10 1 则:N 令 sp ksp lg sp 10 /10 1 p
p s
取大于等于N的最小整数
X
第
21 页
求出归一化系统函数:
H a ( p) 1
(p p )
k 0 k
N 1
其中极点: pk e
1 2 k 1 j ( ) 2 2N
k 1,2,..., N
或者由N,直接查表得 H a ( p )
X
第
22 页
去归一化
s H a ( s) H a ( p) H a c
第 1 页
X
第
• 模拟滤波器按幅度特性可分成低通、高通、 带通和带阻滤波器,它们的理想幅度特性如图0 Ω H a (jΩ) 0
数字信号处理教程 程佩青 课后题答案
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
数字信号处理(程佩青)课后习题解答(8)
第八章 数字信号处理中有限字长效应1. 设数字滤波器的系统函数为:21174081822.07235682.11017221333.0)(---+-=z z z z H现用8 bit 字长的寄存器来存放其系数,试求此时表示式。
该滤波器的实际 )( ∧z H分析:把所有正数用b+1=8bit 寄存器长度表示,其中第一位存整数位,后七位用来存小数位。
2111022101022101022107421875.07265625.11015625.0)( )7421875.0()1011111.0( )11011110110.0()74081822.0( )7265625.1()1011101.1( )11011100100.1()7235682.1( )015625.0()0000010.0( )100000010001.0()017221333.0( , ,8 :---∧+-=∴=→⋅⋅⋅==→⋅⋅⋅==→⋅⋅⋅=z z z z H bit小数后七位用来存第一位用来存整数位号正数字长的寄存器存放无符设解).(),(,)().(),(0n ,00n ,)1(21)(,)(28)(? 50 , )( . ,.01,,, ,2222 ,,5 .)(4321c b d b a n x b P c n n a d c b a d c b a s b n重作当尾数采用舍入处理时重作其输入为所示系统研究种响应比较大时如何比较这两问时响应。
求出未量化系统在中输入的响应系统对。
试计算已量化的符号位和前四位即只保留乘法的结果作截尾处理。
或是其中寄存器值为符号位即位寄存器表示成原码量都用网络中的系数和所有变系统用定点算法实现。
⎪⎩⎪⎨⎧<≥-=-≤≤⨯+⨯+⨯+⨯=----32)(,,)(])41(6132[)(4111611132)411)(1(21)()()(1121)(4111)( )(:111111→-=∴-⋅--⋅=--=⋅=⇒-⋅=-=------n y n n u n y z z z z z H z X z Y z z X z z H a n 较大时即当解5.0)0()0(,5.0)0()0(,====∧x y x y 未量化时,截尾量化后666503906.0)5(625.0)5(^==y y 625.0)1(625.0)1(==∧y y 65625.0)2(625.0)2(==∧y y 6640625.0)3(625.0)3(==∧y y 666015625.0)4(625.0)4(==∧y y ,32)(,→n y n 未作量化处理时较大时当85)(y →∧n 作截尾处理时1111121)(4111)(:)(---+⋅=-+=z z X z z z H c 解)1(21)()()(141--=⋅=∴z z H z X z Y 0)(,),()41(21)(→=n y n n u n y n较大时当5.0)0()0(,5.0)0()0(,====∧x y x y 未量化截尾量化后125.0)1(125.0)1(==∧y y 03125.0)2(0)2(==∧y y 0078125.0)3(0)3(==∧y y 001953125.0)4(0)4(==∧y y 50004882812.0)5(0)5(==∧y y 0)(,→∞→∧,时,当未作量化处理n y n:,4111)()()( )(:1可得由解--==z z X z Y z H b)()1(41)(n x n y n y +-=()[]。
数字信号处理教程程佩青课后题答案
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2x(m)()h n m -n1 1 1 0 0 0 0 y(n) 0 11 1 1 12 2 1 1 13 3 1 1 1 1 34 0 1 1 1 1 2 511111(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列, nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
数字信号处理教程习题分析与解答(程佩青)第三章
第三章 离散傅立叶变换1.如下图,序列x(n)是周期为6的周期性序列,试求其傅立叶级数的系数。
∑∑=-===56265)(~)(~)(X ~:n nkj nkn e n x W n x k π解kj k j k j kj kj e e e e e 562462362262621068101214πππππ-----+++++=计算求得:。
339)5(~; 33)4(~ ; 0)3(~; 33)2(~;339)1(~;60)0(~j X j X X j X j X X +=-==+=-==。
并作图表示试求设)(~),(~)(~ .))(()(~),()(.264k X n x k X n x n x n R n x == ∑∑=-===56265)(~)(~)(~:n nk jnk n en x W n x k X π解k j kj k j e e e πππ---+++=3231。
计算求得: 3)5(~; 1)4(~ ; 0)3(~ ;1)2(~; 3)1(~ ; 4)0(~j X X X X j X X ====-==。
的周期卷积并作图与试求令其它,设 )(~)(~,))(()(~,))(()(~,)2()(,040,1)(.3464n h n x n h n h n x n x n R n h nn n n x ==-=⎩⎨⎧≤≤+=解:在一个周期内的计算值)(~)(~*)(~)(~m n h n h n x n y -==)(~)(~*)(~)(~m n h n h n x n y -==等各序列。
试画出所示如图已知)())((),())3((,))(()())((),())((,))((,13)(.47755633665n R n x n R n x n x n R n x n R n x n x P n x ----)()()5()(x(n)(4)N n 0 ),n -(n )()3()()()2()()(cos )()1()(52000n R n n x n nR n x n R a n x n R n a n x DFT N N N N n N ==<<===δω闭合形式表达式点试求以下有限长序列的])21sin()2sin()21sin()2sin([21])()()()([21)(]1111[)(][)(])([)()(cos )()()(cos )(:0)2(21020)2(2102)2(21)2(21)2(21222)2(21)2(21)2(21222)()(211)(10)(2110211000000000000000000002002002022002ϖπϖϖπϖωωϖπϖϖπϖϖπϖπϖπϖϖϖϖπϖπϖπϖϖϖωωωωωωωωππππππ-++⋅=--+--=--+--=+=+===---+---------+-++-----+---=---=+--=---=-∑∑∑∑k N e N e k N e N e a e ee e e e eeeee e a k R ee ee a k R eea k R e e e a k R en a k X n R n a n x k N j N j k Nj Njk Nj k Nj k Nj NjNjN jk Nj k N j k Nj NjNjNjN k j N j k j N j N N n nj N n nk j N N n nkj n j n j N n N nkj N N N N N N N 解)(111121)(21)()(21)()(cos )( )()(cos )( ) 1 (:)2()2(10)2(10)2(1020010200000k R e ee e a k R e e a k R e e e a k Re n a k X n R n a n x N k N j N j k Nj Nj N N n nN j N n nk N j N N n nk N j n j n j N n N nk N j N ⎥⎥⎦⎤⎢⎢⎣⎡--+--=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+===--+---=---=+--=---=-∑∑∑∑ωπωωπωωπωππωωπωω解⎥⎥⎥⎦⎤---⎢⎢⎢⎣⎡--=------+-++---)()()()(21)2(21)2(21)2(21222)2(21)2(21)2(212220000000ωπωπωπωωωωπωπωπωωωk Nj k N j k N j N jN jNjk N j k N j k N j Nj N j N j e e e eeee e e e e e a⎥⎥⎥⎥⎦⎤--⎢⎢⎢⎢⎣⎡+⋅=--+--)21sin()2sin()21sin()2sin(210)2(21020)2(21020000ωπωωπωωπωωπωk N e Nek N e Ne a k Nj Njk N j N jk Nj N N n nk NjnN n aea eak X n R a n x ππ210211)()()((2)--=---===∑)( )()( )()()( 0,)()( (3)02102010200k Re k Re n n k Re n x k X N n n n n x Nk n N j NN n nk N j N n NnkN j πππδδ--=--=-=-==<<-=∑∑)(1)( 11)1()())1(()(])1)2( 2[)1( 32()1)(()()()()( )()(411)1(32)1(321)1(110)1(1k R W Nk X N W W N k R W N k R N W N W W W N W W W nW nWW k X k R nW k X W k R nW k X n nR n x N kNkNkN N N n nk N N k N N k N k N k N N kN k N k N N n kn N N n nk Nk NN n N k n N k NN n N nkN N --=∴-=--+--=+--=-+-+++--++++=-=-==∴=∑∑∑∑∑-=---=+-=-=+-=∙∙∙∙∙∙)(kNN N n nkNN W Nk X n nR n x W n k X n R n n x --===∴=∑-=1)()()()4()( )()(5111022,则小题的结论根据第)(221111122)1(232)1(23210)1(2121)1(2)1()2()(12)2()(2)2(2)2()12()1(]1()2(4[)1(94)1)(()(k N kN kNN n nk NN n nkNk N N kN k N k N N k N k N k N N n kn NN n nk NkNN n kn N k NW N W N N k X W NN N k X N N nWN N W n N N W N W W W N W W W W n W nW k X W n k X W ---=∴----=+--=+--=-+--=-+-+++--++++=-=-=∑∑∑∑∑-=-=---=+-=-=+∙∙∙∙∙∙)∙∙∙±±±===∑-=,6,4,2,0)(~)3(?])0([)()2(?)()1(:;)(~1)(~).(~.61)/2(k k x X k X k X ek X Nn x n x N k nkN j 哪些序列列能做到成虚数外除时间原点使所有的哪些序列能够通过选择成为实数时间原点使所有的哪些序列能够通过选择问傅里叶级数这些序列可以表示成列如图画出了几个周期序π条件。
数字信号处理(程佩青)课后习题解答(7)
第七章 有限长单位冲激响应(FIR )数字滤波器的设计方法1. 用矩形窗设计一个FIR 线性相位低通数字滤波器。
已知 21,5.0==N c πω。
求出)(n h 并画出)(log 20ωj e H 曲线。
分析:此题给定的是理想线性相位低通滤波器,故⎪⎩⎪⎨⎧<<<<≤≤=-。
-- , , 0- , )(c c c c ωωππωωωωωωαωj j d e eH解:ωπππωωd eeH n h nj j d d ⎰-=)(21)()()](sin[21αωαωπωωπωωωωα--==⎰--n n d eec c c nj j cc⎪⎪⎩⎪⎪⎨⎧≤≤--====-=为其他故:其中n n n n n w n h n h N d c ,0200,)10(]2sin[)()()(5.0 102/)1( πππωα h( 0)= 9.7654073033E-4h( 1)= 3.5358760506E-2 h( 2)= -9.7657600418E-4 h( 3)= -4.5465879142E-2 h( 4)= 9.7651791293E-4 h( 5)= 6.3656955957E-2 h( 6)= -9.7658322193E-4 h( 7)= -1.0610036552E-1 h( 8)= 9.7643269692E-4 h( 9)= 3.1830877066E-1 h( 10)= 4.9902343750E-1 h( 11)= 3.1830900908E-1 h( 12)= 9.7669276875E-4 h( 13)= -1.0610023141E-1 h( 14)= -9.7654142883E-4 h( 15)= 6.3657015562E-2 h( 16)= 9.7660662141E-4 h( 17)= -4.5465819538E-2 h( 18)= -9.7654841375E-4 h( 19)= 3.5358794034E-2 h( 20)= 9.7658403683E-42.用三角形窗设计一个FIR 线性相位低通数字滤波器。
《数字信号处理》第三版课后习题答案
数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。