离散数学(胡新启著)武汉大学出版社课后答案习题5
离散数学第一章部分课后习题参考答案
第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)0∨(0∧1) 0(2)(p?r)∧(﹁q∨s) (0?1)∧(1∨1) 0∧10.(3)(p∧q∧r)?(p∧q∧﹁r) (1∧1∧1)? (0∧0∧0)0(4)(r∧s)→(p∧q) (0∧1)→(1∧0) 0→0 117.判断下面一段论述是否为真:“是无理数。
并且,如果3是无理数,则也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: 是无理数 1q: 3是无理数0r: 是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(q→p)(5)(p∧r) (p∧q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q q p q→p (p→q)→(q→p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) (p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)(p∨(p∨q))∨(p∨r)p∨p∨q∨r1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)(p→(q∧r))(4)(p∧q)∨(p∧q)(p∨q) ∧(p∧q)证明(2)(p→q)∧(p→r)(p∨q)∧(p∨r)p∨(q∧r))p→(q∧r)(4)(p∧q)∨(p∧q)(p∨(p∧q)) ∧(q∨(p∧q)(p∨p)∧(p∨q)∧(q∨p) ∧(q∨q)1∧(p∨q)∧(p∧q)∧1(p∨q)∧(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(p→q)→(q∨p)(2)(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(p→q)→(q p)(p q)(q p)(p q)(q p)(p q)(q p)(q p)(p q)(p q)(p q)(p q)(p q)∑(0,2,3)主合取范式:(p→q)→(q p)(p q)(q p)(p q)(q p)(p(q p))(q(q p))1(p q)(p q) M1∏(1)(2) 主合取范式为:(p→q)q r(p q)q r(p q)q r0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p(q r))→(p q r)(p(q r))→(p q r)(p(q r))(p q r)(p(p q r))((q r))(p q r))1 11所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p q,(q r),r结论:p(4)前提:q p,q s,s t,t r结论:p q证明:(2)①(q r) 前提引入②q r ①置换③q r ②蕴含等值式④r 前提引入⑤q ③④拒取式⑥p q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t r 前提引入②t ①化简律③q s 前提引入④s t 前提引入⑤q t ③④等价三段论⑥(q t)(t q) ⑤置换⑦(q t)⑥化简⑧q ②⑥假言推理⑨q p 前提引入⑩p ⑧⑨假言推理(11)p q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p(q r),s p,q结论:s r证明①s 附加前提引入②s p 前提引入③p ①②假言推理④p(q r) 前提引入⑤q r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p q,r q,r s结论:p证明:①p 结论的否定引入②p﹁q 前提引入③﹁q ①②假言推理④¬r q 前提引入⑤¬r ④化简律⑥r¬s 前提引入⑦r ⑥化简律⑧r﹁r ⑤⑦合取由于最后一步r﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为,在(a)中为假命题,在(b)中为真命题。
离散数学第五章习题答案
离散数学第五章习题答案题目1: 定义一个关系R在集合A上,如果对于所有的a, b, c属于A,满足以下条件:- 如果(a, b)属于R,则(b, a)属于R。
- 如果(a, b)属于R且(b, c)属于R,则(a, c)属于R。
证明R是传递的。
答案:根据题目给出的条件,R是对称的和传递的。
首先,对称性意味着如果(a, b)属于R,那么(b, a)也必须属于R。
其次,传递性意味着如果(a, b)和(b, c)都属于R,那么(a, c)也必须属于R。
结合这两个性质,我们可以得出结论:对于任意的a, b, c属于A,如果(a, b)和(b, c)都属于R,那么(a, c)也属于R,从而证明了R的传递性。
题目2: 给定一个函数f: A → B,如果对于A中的每个元素a,都有唯一的b属于B使得f(a) = b,那么称f为单射(或一一映射)。
证明如果函数f是单射,那么它的逆函数f^-1也是单射。
答案:要证明f^-1是单射,我们需要证明对于B中的任意两个元素b1和b2,如果f^-1(b1) = f^-1(b2),则b1 = b2。
假设f^-1(b1) = a且f^-1(b2) = a',其中a, a'属于A。
由于f是单射,我们知道f(a) = b1且f(a') = b2。
根据f^-1的定义,我们有b1 = f(a) = f(a') = b2。
因此,如果f^-1(b1) = f^-1(b2),则b1必须等于b2,这证明了f^-1是单射。
题目3: 证明一个函数f: A → B是满射(或到上映射)当且仅当对于B中的每个元素b,都存在A中的元素a使得f(a) = b。
答案:首先,我们证明如果f是满射,那么对于B中的每个元素b,都存在A 中的元素a使得f(a) = b。
假设f是满射,这意味着B中的每个元素都是A中某个元素的像。
因此,对于B中的任意元素b,我们可以找到一个a属于A,使得f(a) = b。
离散数学-第五章习题答案
习题答案(P151~P153)1.用枚举法给出下列集合解:(2){-3,2}(4){5,6,7,8,9,10,11,12,13,14,15}2.用抽象法说明下列集合解:(2){x|x为素数,10<x<20}(4){x|x为中国的省会}(6){x|x=2k+1,k∈I}3.判断下列哪些∈关系成立,为什麽?解:根据只有集合中的元素才与该集合有∈关系,故(1)、(4)、(6)、(7)成立,(2)、(3)、(5)、(8)不成立。
4.判断下列哪些集合相等(全集是整数集合I)解:A=G,B=E,C=F6.写出下列集合的幂集解:(2)ρ({1,∅})={∅,{1},{∅},{1,∅}}(4)ρ({∅,{a},{∅}})={∅,{∅},{{a}},{{∅}},{∅,{a}},{∅,{∅}},{{a},{∅}},{∅,{a},{∅}}}7.当把“⊆”插入空位时哪一个为真?解:(1)、(2)、(3)、(6)为真,(4)、(5)为假。
8.设A、B、C分别是集合,若A∈B,B∈C,哪麽A∈C一定成立吗?解:不一定,例如,A={a},B={{a}},C={{{a}}},虽然A∈B,B∈C,但A∈C不成立。
10.设U={1,2,3,4,5},A={1,4},B={1,2,5}和C={2,4}试写出下列集合(8)ρ(A)-ρ(C)解:ρ(A)-ρ(C)={∅,{1},{4},{1,4}}-{∅,{2},{4},{2,4}}={{1},{1,4}}11.证明下列恒等式(1)A-(B⋂C)=(A-B)⋃(A-C)(2)(A-B)⋂B=∅解:(1)A-(B⋂C)= A⋂~(B⋂C)= A⋂(~B⋃~C)=(A⋂~B)⋃(A⋂~C)=(A-B)⋃(A-C)(2)(A-B)⋂B=(A⋂~B)⋂B= A⋂(~B⋂B)= ∅12.设A、B、C是集合,下列等式成立的条件是什么?(1)(A-B)⋃(A-C)=A(2)(A-B)⋃(A-C)= ∅解:(1)因为(A-B)⋃(A-C)= (A⋂~B)⋃(A⋂~C)= A⋂(~B⋃~C)= A⋂~(B⋂C)= A-(B⋂C)所以(A-B)⋃(A-C)=A 当且仅当A-(B⋂C)=A 由-的定义可知A⋂(B⋂C)=∅(2)由(1)可知,(A-B)⋃(A-C)=A-(B⋂C)所以(A-B)⋃(A-C)=∅当且仅当A-(B⋂C)=∅由定理5.11可知A⊆(B⋂C)13. 设A,B是集合(1)A-B=B,问A和B有何关系?(2)A-B=B-A, 问A和B有何关系?解:(1)A=B=φ。
离散数学课后习题答案
1.3.1习题1.1解答1设S = {2,a,{3},4},R ={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}⊆S,{{a},1,3,4}⊂R,R=S,{a}⊆S,{a}⊆R,φ⊆R,φ⊆{{a}}⊆R⊆E,{φ}⊆S,φ∈R,φ⊆{{3},4}。
解:{a}∈S ,{a}∈R ,{a,4,{3}} ⊆ S ,{{a},1,3,4 } ⊂ R ,R = S ,{a}⊆S ,{a}⊆ R ,φ⊆ R ,φ⊆ {{a}} ⊆ R ⊆ E ,{φ} ⊆ S ,φ∈R ,φ⊆ {{3},4 } 2写出下面集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A⊆B当且仅当ρ(A)⊆ρ(B);(2)ρ(A)⋃ρ(B)⊆ρ(A⋃B);(3)ρ(A)⋂ρ(B)=ρ(A⋂B);(4)ρ(A-B) ⊆(ρ(A)-ρ(B)) ⋃{φ}。
举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x⊆A。
由于A⊆B,故x⊆B,从而x∈ρ(B),于是ρ(A)⊆ρ(B)。
充分性,任取x∈A,知{x}⊆A,于是有{x}∈ρ(A)。
由于ρ(A)⊆ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A⊆B。
(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X⊆A或X⊆B∴X⊆(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ⊆ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ⊆ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X⊆A且X⊆B∴X⊆ A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ⊆ρ( A∩B)再证ρ( A∩B) ⊆ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y⊆ A∩B∴Y⊆A且Y⊆B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ⊆ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。
大学_《离散数学》课后习题答案
《离散数学》课后习题答案《离散数学》简介1、集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用3、代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数4、组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理5、数理逻辑部分:命题逻辑、一阶谓词演算、消解原理离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。
教学方式以课堂讲授为主,课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。
《离散数学》学科内容随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。
离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。
由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。
离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。
离散数学的应用遍及现代科学技术的诸多领域。
离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。
(完整word版)离散数学课后答案(word文档良心出品)
离散数学课后答案习题一6.将下列命题符号化。
(1)小丽只能从框里那一个苹果或一个梨.(2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:(1)(p Λ¬q )ν(¬pΛq)其中p:小丽拿一个苹果,q:小丽拿一个梨(2)(p Λ¬q )ν(¬pΛq)其中p:刘晓月选学英语,q:刘晓月选学日语14.将下列命题符号化.(1) 刘晓月跑得快, 跳得高.(2)老王是山东人或河北人.(3)因为天气冷, 所以我穿了羽绒服.(4)王欢与李乐组成一个小组.(5)李辛与李末是兄弟.(6)王强与刘威都学过法语.(7)他一面吃饭, 一面听音乐.(8)如果天下大雨, 他就乘班车上班.(9)只有天下大雨, 他才乘班车上班.(10)除非天下大雨, 他才乘班车上班.(11)下雪路滑, 他迟到了.(12)2与4都是素数, 这是不对的.(13)“2或4是素数, 这是不对的”是不对的.答:(1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高.(2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人.(3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服.(4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题.(5)p, 其中, p: 李辛与李末是兄弟.(6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语.(7)p∧q, 其中, p: 他吃饭, q: 他听音乐.(8)p→q, 其中, p: 天下大雨, q: 他乘班车上班.(9)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(10)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(11)p→q, 其中, p: 下雪路滑, q: 他迟到了.(12) ¬ (p∧q)或¬p∨¬q, 其中, p: 2是素数, q: 4是素数.(13) ¬ ¬ (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数.16.19.用真值表判断下列公式的类型:(1)p→ (p∨q∨r) (2)(p→¬q) →¬q(3) ¬ (q→r) ∧r(4)(p→q) →(¬q→¬p)(5)(p∧r) ↔( ¬p∧¬q)(6)((p→q) ∧ (q→r)) → (p→r)(7)(p→q) ↔ (r↔s)答:(1), (4), (6)为重言式.(3)为矛盾式.(2), (5), (7)为可满足式习题二9.用真值表求下面公式的主析取范式.(1) (pνq)ν(¬pΛr)(2) (p→q) →(¬p↔q)答:(1)(2)p q (p → q) →(¬p ↔ q)0 0 1 0 0 10 1 1 1 1 01 0 0 1 1 11 1 1 0 0 0从真值表可见成真赋值为01, 10.于是(p → q) →(¬p ↔ q) ⇔ m1 ∨ m211.用真值表求下面公式的主析取范式和主合取范式;(1) (pνq)Λr(2) p→(pνqνr)(3) ¬(q→¬p)Λ¬p15.用主析取范式判断下列公式是否等值:(1) (p→q) →r与q→ (p→r)(2) ¬(pΛq)与(¬pνq)答:(1)(p→q) →r ⇔¬(¬p∨q) ∨ r ⇔¬(¬p∨q) ∨ r ⇔ p¬∧q ∨ r ⇔p¬∧q∧(r¬∨r) ∨(p¬∨p) ∧(q¬∨q)∧r ⇔p¬∧q∧r ∨p¬∧q∧¬r ∨ p ∧q∧r ∨ p∧¬q∧r ∨¬p∧q∧r ∨¬p∧¬q∧r = m101 ∨ m100 ∨ m111 ∨m101 ∨ m011 ∨ m001 ⇔m1 ∨ m3 ∨ m4 ∨ m5 ∨ m7 = ∑(1, 3, 4, 5, 7).而 q→(p→r) ⇔¬q ∨(¬p∨r) ⇔¬q ∨¬p ∨r ⇔(¬p∨p)¬∧q∧(¬r∨r) ∨¬p∧(¬q∨q)∧(¬r∨r) ∨(¬p∨p)∧(¬q∨q)∧r ⇔(¬p¬∧q∧¬r)∨(¬p¬∧q∧r)∨(p¬∧q∧¬r)∨(p¬∧q∧r) ∨(¬p∧¬q∧¬r)∨(¬p∧¬q∧r)∨(¬p ∧q∧¬r)∨(¬p∧q∧r) ∨(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧¬q∧r)∨(p∧q∧r) = m0 ∨ m1 ∨ m4 ∨ m5 ∨ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m1 ∨ m3 ∨ m5 ∨m7 ⇔ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m4 ∨ m5 ∨ m7 ⇔∑(0, 1, 2, 3, 4, 5, 7). 两个公式的主吸取范式不同, 所以(p→q) →rk q→ (p→r).16. 用主析取范式判断下列公式是否等值:(1)(p→q) →r与q→ (p→r)(2) ¬ (p∧q)与¬ (p∨q)答:(1)(p→q) →r) ⇔m1∨m3∨m4∨m5∨m7q→ (p→r) ⇔m0∨m1∨m2∨m3∨m4∨m5∨m7所以(p→q) →r) k q→ (p→r)(2)¬ (p∧q) ⇔m0∨m1∨m2¬ (p∨q) ⇔m0所以¬ (p∧q) k ¬ (p∨q)习题三15.在自然推理系统P中用附加前提法证明下面各推理:(1)前提: p→ (q→r), s→p, q 结论: s→r(2)前提: (p∨q) → (r∧s), (s∨t) →u 结论: p→u答:(1)证明: ① s 附加前提引入② s→p 前提引入③ p ①②假言推理④ p→(q→r) 前提引入⑤ q→r ③④假言推理⑥ q 前提引入⑦ r ⑤⑥假言推理(2)证明: ① P 附加前提引入② p∨q ①附加③ (p∨q) → (r∧s) 前提引入④ r∧s ②③假言推理⑤④化简⑥ s∨t ⑤附加⑦ (s∨t) →u 前提引入⑧ u ⑥⑦假言推理16.在自然推理系统P中用归谬法证明下面推理:(1)前提: p→¬q, ¬r∨q, r∧¬s 结论: ¬p(2)前提: p∨q, p→r, q→s 结论: r∨s答:(1)证明: ① P 结论否定引入② p→¬q 前提引入③¬q ①②假言推理④¬r∨q 前提引入⑤¬r ③④析取三段论⑥ r∧¬s 前提引入⑦ r ⑥化简⑧¬r∧r ⑤⑦合取⑧ 为矛盾式, 由归谬法可知, 推理正确.(2)证明: ①¬ (r∨s) 结论否定引入② p∨q 前提引入③ p→r 前提引入④ q→s 前提引入⑤ r∨s ②③④构造性二难⑥¬ (r∨s) ∧ (r∨s) ①⑤合取⑥为矛盾式, 所以推理正确.18.在自然推理系统P中构造下面推理的证明.(1)如果今天是星期六, 我们就要到颐和园或圆明园去玩. 如果颐和园游人太多, 我们就不去颐和园玩. 今天是星期六. 颐和园游人太多. 所以我们去圆明园玩.(2)如果小王是理科学生, 他的数学成绩一定很好. 如果小王不是文科生, 他必是理科生. 小王的数学成绩不好. 所以小王是文科学生.(1)令 p: 今天是星期六;q: 我们要到颐和园玩;r: 我们要到圆明园玩;s:颐和园游人太多.前提: p→ (q∨r), s →¬q, p, s. 结论: r.证明① p 前提引入② p→q∨r前提引入③q∨r①②假言推理④s前提引入⑤ s →¬q前提引入⑥¬q ④⑤假言推理⑦ r ③⑥析取三段论r ¬q s →¬q sq∨r p→q∨r p(2)令p: 小王是理科生,q: 小王是文科生,r: 小王的数学成绩很好.前提: p→r, ¬q→p, ¬r 结论: q证明:① p→r 前提引入②¬r 前提引入③¬p ①②拒取式④¬q→p 前提引入⑤ q ③④拒取式习题四在一阶逻辑中将下列命题符号化:(1)没有不能表示成分数的有理数.(2)在北京卖菜的人不全是外地人.(3)乌鸦都是黑色的.(4)有的人天天锻炼身体. 没指定个体域, 因而使用全总个体域.答:(1) ¬∃x(F(x) ∧¬G(x))或∀x(F(x) →G(x)), 其中, F(x): x为有理数, G(x): x能表示成分数.(2) ¬∀x(F(x) →G(x))或∃x(F(x) ∧¬G(x)), 其中, F(x): x在北京卖菜,G(x): x是外地人.(3) ∀x(F(x) →G(x)), 其中, F(x): x是乌鸦, G(x): x是黑色的.(4) ∃x(F(x) ∧G(x)), 其中, F(x): x是人, G(x): x天天锻炼身体.5. 在一阶逻辑中将下列命题符号化:(1)火车都比轮船快.(2)有的火车比有的汽车快.(3)不存在比所有火车都快的汽车.(4)“凡是汽车就比火车慢”是不对的.答:因为没指明个体域, 因而使用全总个体域(1) ∀x∀y(F(x) ∧G(y) →H(x,y)), 其中, F(x): x是火车, G(y): y是轮船, H(x,y):x比y快.(2) ∃x∃y(F(x) ∧G(y) ∧H(x,y)), 其中, F(x): x是火车, G(y): y是汽车, H(x,y):x比y快.(3) ¬∃x(F(x) ∧∀y(G(y) →H(x,y))) 或∀x(F(x) →∃y(G(y) ∧¬H(x,y))), 其中, F(x): x是汽车, G(y): y是火车, H(x,y):x比y快.(4) ¬∀x∀y(F(x) ∧G(y) →H(x,y)) 或∃x∃y(F(x) ∧G(y) ∧¬H(x,y) ), 其中, F(x): x是汽车, G(y): y是火车, H(x,y):x比y慢.9.给定解释I如下:(a)个体域DI为实数集合\.(b)DI中特定元素⎯a =0.(c)特定函数⎯f (x,y)=x−y, x,y∈DI.(d)特定谓词⎯F(x,y): x=y,⎯G(x,y): x<y, x,y∈DI.说明下列公式在I下的含义, 并指出各公式的真值:(1) ∀x∀y(G(x,y) →¬F(x,y))(2) ∀x∀y(F(f(x,y),a) →G(x,y))(3) ∀x∀y(G(x,y) →¬F(f(x,y),a))(4) ∀x∀y(G(f(x,y),a) →F(x,y))答:(1) ∀x∀y(x<y→x≠y), 真值为1.(2) ∀x∀y((x−y=0) →x<y), 真值为0.(3) ∀x∀y((x<y) → (x−y≠0)), 真值为1.(4) ∀x∀y((x−y<0) → (x=y)), 真值为0.习题五5.给定解释I如下:(a) 个体域D={3,4}.(b)⎯f (x)为⎯f (3)=4,⎯f (4)=3.(c)⎯F(x,y)为⎯F(3,3)=⎯F(4,4)=0,⎯F(3,4)=⎯F(4,3)=1.试求下列公式在I下的真值:(1) ∀x∃yF(x,y)(2) ∃x∀yF(x,y)(3) ∀x∀y(F(x,y) →F(f(x),f(y)))答:(1) ∀x∃yF(x,y)⇔(F(3,3)∨F(3,4))∧(F(4,3)∨F(4,4))⇔(0∨1)∧(1∨0) ⇔1(2)∃x∀yF(x,y)⇔(F(3,3)∧F(3,4))∨(F(4,3)∧F(4,4))⇔(0∧1)∨(1∧0)⇔0(3)∀x∀y(F(x,y)→F(f(x),f(y)))⇔(F(3,3)→F(f(3),f(3)))∧(F(4,3)→F(f(4),f(3)))∧(F(3,4)→F(f(3),f(4)))∧(F(4,4)→F(f(4),f(4))) ⇔ (0→0)∧(1→1)∧(1→1)∧(0→0)⇔112.求下列各式的前束范式.(1) ∀xF(x) →∀yG(x, y);(3) ∀xF(x, y) ↔∃xG(x, y);答:前束范式不是唯一的.(1) ∀xF(x) →∀yG(x, y) ⇔∃x(F(x) →∀yG(x, y))⇔∃x∀y(F(x) → G(x, y)).(3) ∀xF(x, y) ↔∃xG(x, y) ⇔ (∀xF(x, y) →∃xG(x, y)) ∧ (∃xG(x, y) →∀xF(x, y)) ⇔ (∀x1F(x1, y) →∃x2G(x2, y)) ∧ (∃x3G(x3, y) →∀x4F(x4, y)) ⇔∃x1∃x2(F(x1, y) → G(x2, y)) ∧∀x3∀x4(G(x3, y) → F(x4, y)) ⇔∃x1∃x2∀x3∀x4((F(x1, y) → G(x2, y)) ∧ (G(x3, y) → F(x4, y))).13.将下列命题符号化, 要求符号化的公式全为前束范式:(1) 有的汽车比有的火车跑得快.(2) 有的火车比所有的汽车跑得快.(3) 说所有的火车比所有的汽车跑得快是不对的.(4) 说有的飞机比有的汽车慢是不对的.答:(1)令F(x):x是汽车,G(y):y是火车,H(x,y):x比y跑得快.∃x(F(x)∧∃y(G(y)∧H(x,y))⇔∃x∃y(F(x)∧G(y)∧H(x, y)).(2)令F(x):x是火车, G( y): y 是汽车,H(x,y):x比y跑得快.∃x(F(x)∧∀y(G(y)→ H(x,y)))⇔∃x∀y(F(x)∧(G y)→H(x,y))).;错误的答案:∃x∀y(F(x)∧G(y)→H(x,y)).(3)令F(x):x是火车,G(y):y是汽车,H(x,y):x比y跑得快.¬∀x(F(x)→∀y(G(y)→H(x,y)))⇔¬∀x∀y(F(x)→(G(y)→H(x,y)))⇔¬∀x∀y(F(x)∧G(y)→H(x,y))(不是前束范式)⇔∃x∃y(F(x)∧G(y)∧H(x,y)).(4)令F(x):x是飞机,G(y):y是汽车,H(x,y):x比y跑得慢.¬∃x(F(x)∧∃y(G(y)∧H(x,y)))⇔¬∃x∃y(F(x)∧G(y)∧H(x,y))(不是前束范式)⇔∀x∀y¬(F(x)∧G(y)∧H(x,y))⇔∀x∀y(F(x)∧G(y)→¬H(x,y)).21.24.在自然推理系统F中, 构造下面推理的证明:每个喜欢步行的人都不喜欢骑自行车. 每个人或者喜欢骑自行车或者喜欢乘汽车. 有的人不喜欢乘汽车, 所以有的人不喜欢步行. (个体域为人类集合) 答:令 F(x): x 喜欢步行, G( x): x喜欢骑自行车, H(x): x 喜欢乘汽车.前提:∀x(F(x)→¬G(x)), ∀x(G(x)∨H(y)),∃x¬H(x).结论:∃x¬F(x).② ∀x(G(x) ∨ H(y)) 前提引入② G(c) ∨ H(c) ①UI③∃x¬H(x) 前提引入④¬H(c) ③UI⑤ G(c) ②④析取三段⑥∀x(F(x) →¬G(x)) 前提引入⑦ F(c) →¬G(c) ⑥UI⑧¬F(c) ⑤⑦拒取⑨∃x¬F(x) ⑧EG习题七12.设A={0, 1, 2, 3}, R是A上的关系, 且R={〈0, 0〉, 〈0, 3〉, 〈2, 0〉, 〈2,1〉, 〈2, 3〉, 〈3, 2〉} 给出R的关系矩阵和关系图.16.设A={a,b,c,d}, R1,R2为A上的关系, 其中R1={〈a,a〉,〈a,b〉,〈b,d〉}R2={〈a,d〉,〈b,c〉,〈b,d〉,〈c,b〉} 求R1·R2, R2·R1,R1²,R2³. R1·R2={〈a,a〉,〈a,c〉,〈a,d〉},R2·R1={〈c,d〉}, R1²={〈a,a〉,〈a,b〉,〈a,d〉},R2³={〈b,c〉,〈b,d〉,〈c,b〉}20.设R1和R2为A上的关系,证明: (1)(R1∪R2) −1=R1−1∪R2−1(2)(R1∩R2) −1=R1−1∩R2−1答:(1)(R1∪R2)−1=R1−1∪R2−1任取〈x,y〉〈x,y〉(∈R1∪R2)−1⇔〈y,x〉(∈R1∪R2)⇔〈y,x〉∈R1∨ (y,x)∈R2)⇔〈x,y〉∈R1−1∨〈x,y〉∈R2−1⇔〈x,y〉∈R1−1∨R2−1所以(R1∪R2) −1=R1−1∪R2−1(2)(R1∩R2) −1=R1−1∩R2−1 任取〈x,y〉〈x,y〉(∈R1∩R2) −1⇔〈y,x〉(∈R1∩R2)⇔〈y,x〉∈R1∧ (y,x)∈R2)⇔〈x,y〉∈R1−1∧〈x,y〉∈R2−1⇔〈x,y〉∈R1−1∧R2−1所以(R1∪R2) −1=R1−1∩R2−126.33.43.16.47.。
离散数学课后习题答案
1-1,1-2(1) 解:a) 是命题,真值为T。
b) 不是命题。
c) 是命题,真值要根据具体情况确定。
d) 不是命题。
e) 是命题,真值为T。
f) 是命题,真值为T。
g) 是命题,真值为F。
h) 不是命题。
i) 不是命题。
(2) 解:原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。
(3) 解:a) (┓P ∧R)→Qb) Q→Rc) ┓Pd) P→┓Q(4) 解:a)设Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)设R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5) 解:a) 设P:王强身体很好。
Q:王强成绩很好。
P∧Qb) 设P:小李看书。
Q:小李听音乐。
P∧Qc) 设P:气候很好。
Q:气候很热。
P∨Qd) 设P: a和b是偶数。
Q:a+b是偶数。
P→Qe) 设P:四边形ABCD是平行四边形。
Q :四边形ABCD的对边平行。
PQf) 设P:语法错误。
Q:程序错误。
R:停机。
(P∨ Q)→ R(6) 解:a) P:天气炎热。
Q:正在下雨。
P∧Qb) P:天气炎热。
R:湿度较低。
P∧Rc) R:天正在下雨。
S:湿度很高。
R∨Sd) A:刘英上山。
B:李进上山。
A∧Be) M:老王是革新者。
N:小李是革新者。
M∨Nf) L:你看电影。
M:我看电影。
┓L→┓Mg) P:我不看电视。
Q:我不外出。
R:我在睡觉。
P∧Q∧Rh) P:控制台打字机作输入设备。
Q:控制台打字机作输出设备。
P∧Q1-3(1)解:a) 不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b) 是合式公式c) 不是合式公式(括弧不配对)d) 不是合式公式(R和S之间缺少联结词)e) 是合式公式。
离散数学习题答案精选全文完整版
可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。
(2)5是无理数。
(3)3是素数或4是素数。
(4)x2+3<5,其中x是任意实数。
(5)你去图书馆吗?(6)2与3都是偶数。
(7)刘红与魏新是同学。
(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。
(11)只有6是偶数,3才能是2的倍数。
(12)8是偶数的充分必要条件是8能被3整除。
(13)2025年元旦下大雪。
1、2、3、6、7、10、11、12、13是命题。
在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。
2.将上题中是简单命题的命题符号化。
(1)p:中国有四大发明。
(2)q:5是无理数。
(7)r:刘红与魏新是同学。
(10)s:圆的面积等于半径的平方乘π。
(1)t:2025年元旦下大雪。
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。
“5是有理数”的否定式是“5不是有理数”。
解:原命题可符号化为:p:5是有理数。
其否定式为:非p。
非p的真值为1。
4.将下列命题符号化,并指出真值。
(1)2与5都是素数。
(2)不但π是无理数,而且自然对数的底e也是无理数。
(3)虽然2是最小的素数,但2不是最小的自然数。
(4)3是偶素数。
(5)4既不是素数,也不是偶数。
a:2是素数。
b:5是素数。
c:π是无理数。
d:e是无理数。
f:2是最小的素数。
g:2是最小的自然数。
h:3是偶数。
i:3是素数。
j:4是素数。
k:4是偶数。
解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。
这五个复合命题的真值分别为1,1,1,0,0。
5.将下列命题符号化,并指出真值。
a:2是偶数。
b:3是偶数。
c:4是偶数。
离散数学课后习题答案
离散数学课后习题答案离散数学课后习题答案离散数学是计算机科学中的一门重要课程,它涵盖了诸多数学概念与技巧,为计算机科学的理论基础打下了坚实的基础。
在学习离散数学的过程中,课后习题是巩固知识、提高能力的重要途径。
然而,有时候我们会遇到一些难以解答的问题,需要参考一些答案来进行思考与学习。
本文将为大家提供一些离散数学课后习题的答案,希望能对大家的学习有所帮助。
一、集合论1. 设A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。
答案:A∪B={1,2,3,4},A∩B={2,3}。
2. 证明:任意集合A和B,有(A-B)∪(B-A)=(A∪B)-(A∩B)。
答案:首先,对于任意元素x,如果x属于(A-B)∪(B-A),那么x属于A-B或者x属于B-A。
如果x属于A-B,那么x属于A∪B,但x不属于A∩B;如果x属于B-A,同样有x属于A∪B,但x不属于A∩B。
所以(A-B)∪(B-A)属于(A∪B)-(A∩B)。
另一方面,对于任意元素x,如果x属于(A∪B)-(A∩B),那么x属于A∪B,但x不属于A∩B。
所以x属于A或者x属于B。
如果x属于A,但x不属于B,那么x属于A-B;如果x属于B,但x不属于A,那么x属于B-A。
所以x属于(A-B)∪(B-A)。
所以(A∪B)-(A∩B)属于(A-B)∪(B-A)。
综上所述,(A-B)∪(B-A)=(A∪B)-(A∩B)。
证毕。
二、逻辑与证明1. 证明:如果p为真命题,那么¬p为假命题。
答案:根据命题的定义,命题要么为真,要么为假,不存在其他情况。
所以如果p为真命题,那么¬p为假命题。
2. 证明:对于任意整数n,如果n^2为偶数,则n为偶数。
答案:假设n为奇数,即n=2k+1(k为整数)。
那么n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1。
根据偶数的定义,2(2k^2+2k)为偶数,所以n^2为奇数。
离散数学习题答案1-2-6-7-8-9章-2009-12-17
习题1:1. 解 (1){2,3,5,7,11,13,17,19}(2){x|x=20*k,k 是自然数}(3){2,-1}2. 解 (1){2,4}(2){1,2,3,4,5}(3){1,3}(4){1,3,5}3. 解 (1){1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}(2)φ(3)全体自然数(4){0,2,4,6,8,10,12,14,16,18,20}(5)1,3,5,7,9,11,13,15,17,19}4. 解 (1)正确(2)正确(3)错误(4)正确5. 解 (1)A={1},B={{1}},C={{1}}(2)A={1},B={{1}},C={{{1}}}6. 解 (1)正确。
由子集的定义。
(2) 不一定。
如:A={1},B={{1}},C={{1}}。
(3)不一定。
如:A={1},B={1,2},C={{1,2}}(4)不一定。
如:A={1},B={1,2},C={{1,2}}。
7. 解 A={1,2},B={1},C={2},有B A ≠,但是C B C A =成立。
A={1,2},B={1},C={1},有B A ≠,但是C B C A =成立。
8. 解 (1)φ(2){φ}(3){{φ}}(4){φ,{φ}}9. 解 (1){1,2,3,4,5,6,7,8,9}(2){0,1,2,3,4,5,6,7,8,9,10}(3){0,3,6,7,8,9}10. 解 33311. 解 2512. 解(1)454(2)124(3)22013. 解 (1){φ}(2){φ,{a}}(3){φ,{φ},{a},{φ,a}}(4){φ,{φ},{{φ}},{{φ},φ}}(5){φ,{{φ}},{φ},{a},{{φ},φ},{{φ},a},{φ,a},{{φ},φ,a}}14. 证明:假设B ≠C ,则至少存在一元素x ∈B 且x ∉C 。
离散数学第五章集合及其运算习题答案
h00 0 10000
习题四 15
b
e
求关系图对应的关系矩阵,
并求其传递闭包
d
a
c
f
ab c de f gh
h
g
a01 0 00000
b00 1 00000
c11 0 00000
d00 0 01000
e00 0 00100
f 00 0 00010
g00 0 00001
h00 0 10000
习题四 15
d
a
c
f
ab c de f gh
h
g
a01 1 00000
b00 1 00000
c11 1 00000
d00 0 01000
e00 0 00100
f 00 0 00010
g00 0 00001
h00 0 10000
习题四 15
b
e
求关系图对应的关系矩阵,
并求其传递闭包
d
a
c
f
ab c de f gh
求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四15求关系图对应的关系矩阵并求其传递闭包习题四16sr2证明
离散数学课后答案
离散数学课后答案第一章离散数学基础题目1问题:证明集合A和集合B的笛卡尔积的基数等于集合A 和集合B的基数的乘积。
答案:设集合A的基数为|A|,集合B的基数为|B|。
我们要证明集合A和集合B的笛卡尔积的基数等于集合A和集合B的基数的乘积,即|(A x B)| = |A| * |B|。
首先,我们可以将集合A x B表示为{(a, b) | a∈A, b∈B}。
由于A和B是两个集合,集合A x B中的元素可以看作是将A 中每个元素与B中每个元素组成的有序对。
因此,集合A x B 中的元素个数等于A中元素的个数乘以B中元素的个数,即|(A x B)| = |A| * |B|。
题目2问题:对任意两个集合A和B,证明A∩(A∪B) = A。
答案:要证明A∩(A∪B) = A,首先我们需要理解集合的交和并的定义。
- 集合的交:集合A∩B表示同时属于集合A和集合B的元素组成的集合。
- 集合的并:集合A∪B表示属于集合A或集合B的元素组成的集合。
现在,我们开始证明。
首先,根据集合的并的定义,A∪B 表示属于集合A或集合B的元素组成的集合。
因此,任意属于集合A的元素也一定属于A∪B,即A⊆A∪B。
其次,根据集合的交的定义,A∩(A∪B)表示同时属于集合A和集合A∪B的元素组成的集合。
由于A⊆A∪B,所以A中的元素一定属于A∪B,因此A∩(A∪B) = A。
综上所述,对任意两个集合A和B,A∩(A∪B) = A成立。
第二章命题逻辑题目1问题:证明合取命题的真值表达式。
答案:合取命题的真值表达式表示命题P和命题Q同时为真时合取命题为真,否则为假。
假设命题P和命题Q的真值分别为真(T)或假(F),那么合取命题的真值可以通过以下真值表得出:P Q P∧QT T TT F FF T FF F F从上述真值表可以看出,只有P和Q都为真时,合取命题才为真。
如果其中一个或两个命题为假,则合取命题为假。
题目2问题:证明命题的等价关系。
离散数学课后答案全集
第1章 命题逻辑P7 习题1. 给出下列命题的否定命题: (1)大连的每条街道都临海。
否命题:不是大连的每条街道都临海。
(2)每一个素数都是奇数。
否命题: 并非每一个素数都是奇数。
2. 对下述命题用中文写出语句: (1)()P R Q ⌝∧→如果非P 与R ,那么Q 。
(2)Q R ∧Q 并且R 。
3. 给出命题P Q →,我们把Q P →、P Q ⌝→⌝、Q P ⌝→⌝分别称为命题P Q →的逆命题、反命题、逆反命题。
(1)如果天不下雨,我将去公园。
解:逆命题:如果我去公园,则天不下雨; 反命题:如果天下雨,则我不去公园;逆反命题:如果我不去公园,则天下雨了。
(2)仅当你去我才逗留。
解:(此题注意:p 仅当q 翻译成p q →) 逆命题:如果你去,那么我逗留。
反命题:如果我不逗留,那么你没去。
逆反命题:如果你没去,那么我不逗留。
(3)如果n 是大于2的正整数,那么方程nn n xy z +=无整数解。
解:逆命题:如果方程nn n xy z +=无整数解,那么n 是大于2的正整数。
反命题:如果n 不是大于2的正整数,那么方程nn n x y z +=有整数解。
逆反命题:如果方程nn n xy z +=有整数解,那么n 不是大于2的正整数。
(4)如果我不获得更多的帮助,那么我不能完成这项任务。
解:逆命题:如果我不完成任务,那么我不获得更多的帮助。
反命题:如果我获得了更多的帮助,那么我能完成任务。
逆反命题:如果我能完成任务,那么我获得了更多的帮助。
4. 给P 和Q 指派真值T ,给R 和S 指派真值F ,求出下列命题的真值。
(1)(()(()()))P Q R Q P R S ⌝∧∨⌝∨↔⌝→∨⌝=(()(()()))T T F T T F F ⌝∧∨⌝∨↔⌝→∨⌝ =()T F T ⌝∨→ =T F ∨ =T(2)()Q P Q P ∧→→ =()T T T T ∧→→ =T T T ∧→ =T T →=T(3)((()))()P Q R P Q S ∨→∧⌝↔∨⌝=((()))()T T F T T F ∨→∧⌝↔∨⌝ =(())T T F T ∨→↔ =T T ↔ =T(4)()()P R Q S →∧⌝→ =()()T F T F →∧⌝→=()F F F ∧→=F5. 构成下来公式的真值表: (1)()Q P Q P ∧→→(2)()()()P Q R P Q P R ⌝∨∧↔∨∧∨(3)()P Q Q P P R ∨→∧→∧⌝(4)()P P Q R Q R ⌝→∧⌝→∧∨⌝6. 使用真值表证明:如果P Q ↔为T ,那么P Q →和Q P →都是T ,反之亦然。
离散数学课后答案五
5.1习题参考答案1、阮允准同学提供答案:解:设度数小于3的结点有x个,则有3×4+4×3+2x≥2×16解得:x≥4所以度数小于3的结点至少有4个所以G至少有11个结点2、阮允准同学答案:证明:由题意可知:度数为5的结点数只能是0,2,4,6,8。
若度数为5的结点数为0,2,4个,则度数为6的结点数为9,7,5个结论成立。
若度数为5的结点数为6,8个,结论显然成立。
由上可知,G中至少有5个6度点或至少有6个5度点。
3、晓津证明如下:设简单图有n个结点,某结点的度为最大度,因为简单图任一结点没有平行边,而任一结点的的边必连有另一结点,则其最多有n-1条边与其他结点相连,因此其度数最多只有n-1条,小于结点数n.4 \阮同学给出证明如下:证明:设G中所有结点的度数都小于3,即每个结点度数都小于等于2,则所有结点度数之和小于等于2n,所以G的边数必小于等于n,这和已知G有n+1条边相矛盾。
所以结论成立。
5、试证明下图中两个图不同构。
晓津证明:同构的充要条件是两图的结点和边分别存在一一对应且保持关联关系。
我们可以看出,(a)图和(b)图中都有一个三度结点,(a)图中三度结点的某条边关联着两个一度结点和一个二度结点,而(b)图中三度结点关联着两个二度结点和一个一度结点,因此可断定二图不是同构的。
6、画出所有5个结点3条边,以及5个结点7条边的简单图。
解:如下图所示:(晓津与阮同学答案一致)7、证明:下图中的图是同构的。
证明如下:在两图中我们可以看到有a→e,b→h,c→f,d→g两图中存在结点与边的一一对应关系,并保持关联关系。
8、证明:下面两图是同构的。
阮同学给出证明如下:证明:找出对应关系:a---q, b----r, c-----s, d----t, e-----u,f------v, g-----w, h----x9、证明:三次正则图必有偶数个结点。
阮同学证明如下:由题意可知每个结点度数都是3度,即每个结点均为奇结点,根据有偶数个奇结点可知,三次正则图必有偶数个奇结点。