(完整word版)初等数论期末考试试卷张

合集下载

初等数论试卷,最全面的答案,包括截图

初等数论试卷,最全面的答案,包括截图

初等数论考试试卷一、单项选择题:(1分/题X 20题=20分)1 •设x为实数,lx ]为x的整数部分,则(A )A.[xl X ::: lx ; E. [x I ::: x Ixl • 1 ;C. lx I x lx A:;1 ;D. lx I ::: X ::: Ix.l • 1 .2.下列命题中不正确的是(B )A.整数a i,a2,||(,a n的公因数中最大的称为最大公因数;C.整数a与它的绝对值有相同的倍数D.整数a与它的绝对值有相同的约数3 .设二元一次不定方程ax・by=c (其中a,b,c是整数,且a,b不全为零)有一整数解x o,y°,d二a,b,则此方程的一切解可表为(C )a bA.x =x°t, y 二y°t,t =0, _1,_2」H;d da bB.x = X o t, y 二y o t,t = 0, —1, _2」H;d db ac. x =X o t, y =y°t,t =0, _1,_2,川;d db aD. x =x°t, y 二y o t,t =0, 一1,_2,|";d d4. 下列各组数中不构成勾股数的是(D )A. 5, 12, 13;B. 7, 24, 25;C.3, 4, 5;D. 8, 16, 175. 下列推导中不正确的是(D )A.® 三b modm ,a2 三d modm = y a?三b b2modm ;B.Q= b mod m ,a2 = b2 modm = Qa? = bb 2mod m ;c. Q= b mod m = 时2 = ba 2modm ;2 2C. 一5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.a1= b1 modm = Q=b modm .6 .模10的一个简化剩余系是(D )A. 0,1,2,川,9;B. 1,2,3川1,10;7. a三b modm的充分必要条件是(A )A. ma —b;B. a —b m;C.m a +b;D. a +b m.&设f x =x42x38x 9,同余式f x三0 mod5的所有解为(C )A. x =1 或-1;B. x =1 或4;C. x 三1 或-1 mod5 ;D.无解.9、设f(x)= a n X n JlUII a1x • a°其中a i是奇数,若x = x0mod p 为f(x) = 0 mod p 的一个解, 则:(?)A. 了.三/.: mod p 厂定为f (x)三0(mod p勺,1的一个解B. '三I mod p「,::1,一定为f (x)三0 mod p :的一个解D. 若x三x° mod p -为f (x)三0 mod p -的一个解,则有x :三x° mod p10.设f (x)二a n x n|川|) ax a0,其中a i为奇数,a n丞Omodp,n p,则同余式f (x) =0 mod p 的解数:( )A.有时大于p但不大于n; B .不超过pC.等于p D .等于n11.若2为模p的平方剩余,则p只能为下列质数中的:( D )A. 3 B . 11 C . 13 D . 2312.若雅可比符号->1,则(C )Im丿2A. 同余式x三a modm 一定有解,B. 当a,m =1时,同余式x2=a mod p有解;C. 当m = p(奇数)时,同余式x2三a mod p有解;D. 当a二p(奇数)时,同余式x2三a mod p有解.13.若同余式x2三a mod2‘,〉-3, 2, a =1有解,则解数等于(A )C. 一5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.18. 若x 对模m 的指数是ab , a >0, ab >0,则a 对模m 的指数是(B ) A. a B . b C . ab D.无法确定19. f a , g a 均为可乘函数,则(A )A. f a g a 为可乘函数;B .f ag (a )C. f a g a 为可乘函数; D . f a - g a 为可乘函数 20. 设丄[a 为茂陛乌斯函数,则有(B )不成立A 二 J 1 =1B .空-1 =1C .二■-2 = -1D .二=9 =0二. 填空题:(每小题1分,共10分) 21. 3在45!中的最高次n = ________ 21 ___ ; 22.多元一次不定方程:a 1x 1a 2x 2 •丨II a n x^ N ,其中a 1 , a 2,…,a n , N 均为整数,n _ 2 ,有整数解的充分必要条件是 _ ( a 1 , a 2 ,…,a n ,) I N_a23.有理数一,0cavb ,(a,b )=1,能表成纯循环小数的充分必要条件是_ (10, b ) =1__;b-_24.设x 三冷 mod m 为一次同余式ax 三b modm , a = 0 mod m 的一个解,则它的所有解A . 414. A . 15. A . B . 3 C 模12的所有可能的指数为:( 1, 2, 4 B . 1, 2, 4, 6, 若模m 的原根存在,下列数中, 2 B .3 C16. 对于模5,下列式子成立的是 .2 A )12 C . 1, 2, m 不可能等于:(D .12B )3, D 4, 6,12 D •无法确定 )A. in d 32 =2 ind 3^=3C.in d 35 =0ind 310 二 ind 32 ind 3517. A. 下列函数中不是可乘函数的是: 茂陛鸟斯(mobius )函数w (a ); B. 欧拉函数■- a ;C. 不超过x 的质数的个数二x ;25. ____________________________ 威尔生(wilson )定理: _______________ (P —1)! +1 三0(modp ), p 为素数 _____________ ;26.勒让德符号'^03 |=1;訂013丿27. 若a, p [=1,则a 是模p 的平方剩余的充分必要条件是 a 2三1 mod p (欧拉判别条件; 28. 在模m 的简化剩余系中,原根的个数是 _讥営m __;29. 设。

初等数论练习题一(含答案)

初等数论练习题一(含答案)

初等数论练习题⼀(含答案)《初等数论》期末练习⼆⼀、单项选择题1、=),0(b ().A bB b -C bD 02、如果1),(=b a ,则),(b a ab +=().A aB bC 1D b a +3、⼩于30的素数的个数().A 10B 9C 8D 74、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C (mod )ac bc m ≡/D b a ≠5、不定⽅程210231525=+y x ().A 有解B ⽆解C 有正数解D 有负数解6、整数5874192能被( )整除.A 3B 3与9C 9D 3或97、如果a b ,b a ,则( ).A b a =B b a -=C b a ≥D b a ±=8、公因数是最⼤公因数的().A 因数B 倍数C 相等D 不确定9、⼤于20且⼩于40的素数有().A 4个B 5个C 2个D 3个10、模7的最⼩⾮负完全剩余系是( ).A -3,-2,-1,0,1,2,3B -6,-5,-4,-3,-2,-1C 1,2,3,4,5,6D 0,1,2,3,4,5,611、因为( ),所以不定⽅程71512=+y x 没有解.A [12,15]不整除7B (12,15)不整除7C 7不整除(12,15)D 7不整除[12,15]12、同余式)593(m od 4382≡x ().A 有解B ⽆解C ⽆法确定D 有⽆限个解⼆、填空题1、有理数ba ,0,(,)1ab a b <<=,能写成循环⼩数的条件是(). 2、同余式)45(mod 01512≡+x 有解,⽽且解的个数为( ). 3、不⼤于545⽽为13的倍数的正整数的个数为( ).4、设n 是⼀正整数,Euler 函数)(n ?表⽰所有( )n ,⽽且与n ()的正整数的个数.5、设b a ,整数,则),(b a ()=ab .6、⼀个整数能被3整除的充分必要条件是它的()数码的和能被3整除.7、+=][x x ().8、同余式)321(m od 75111≡x 有解,⽽且解的个数( ). 9、在176与545之间有( )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ).11、b a ,的最⼩公倍数是它们公倍数的( ).12、如果1),(=b a ,那么),(b a ab +=( ).三、计算题1、求24871与3468的最⼩公倍数?2、求解不定⽅程2537107=+y x .(8分)3、求??563429,其中563是素数. (8分) 4、解同余式)321(m od 75111≡x .(8分) 5、求[525,231]=?6、求解不定⽅程18116=-y x .7、判断同余式)1847(m od 3652≡x 是否有解?8、求11的平⽅剩余与平⽅⾮剩余.四、证明题1、任意⼀个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.(11分)2、证明当n 是奇数时,有)12(3+n .(10分)3、⼀个能表成两个平⽅数和的数与⼀个平⽅数的乘积,仍然是两个平⽅数的和;两个能表成两个平⽅数和的数的乘积,也是⼀个两个平⽅数和的数.(11分)4、如果整数a 的个位数是5,则该数是5的倍数.5、如果b a ,是两个整数,0 b ,则存在唯⼀的整数对r q ,,使得r bq a +=,其中b r ≤0.《初等数论》期末练习⼆答案⼀、单项选择题1、C2、C3、A4、A5、A6、B7、D8、A9、A 10、D 11、B 12、B⼆、填空题1、有理数ba ,1),(,0=b a b a ,能写成循环⼩数的条件是( 1)10,(=b ). 2、同余式)45(mod 01512≡+x 有解,⽽且解的个数为( 3 ). 3、不⼤于545⽽为13的倍数的正整数的个数为( 41 ).4、设n 是⼀正整数,Euler 函数)(n ?表⽰所有( 不⼤于 )n ,⽽且与n (互素)的正整数的个数.5、设b a ,整数,则),(b a ( ],[b a )=ab .6、⼀个整数能被3整除的充分必要条件是它的(⼗进位)数码的和能被3整除.7、+=][x x ( }{x ).8、同余式)321(m od 75111≡x 有解,⽽且解的个数( 3 ). 9、在176与545之间有( 12 )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ab ).11、b a ,的最⼩公倍数是它们公倍数的( 因数 ).12、如果1),(=b a ,那么),(b a ab +=( 1 ).三、计算题1、求24871与3468的最⼩公倍数?解:因为(24871,3468)=17所以[24871,3468]= 17346824871?=5073684 所以24871与3468的最⼩公倍数是5073684。

初等数论期末考试试卷张

初等数论期末考试试卷张

初等数论试卷 (B)一,选择题 (满分 15 分,每题3 分)1,下列不正确的是()A 设 m ∈ N , a , b ∈ Z , 若 ab(mod m) ,则 b a(mod m) 。

B 设 m ∈ N , a , b , c ∈ Z , 若 a b c(mod m) , 则 ac b(mod m) .C设 m ∈ N, a 1 ,b 1 , a 2 ,b 2∈ Z , , 若 a 1 b 1 (mod m) , a 2 b 2 (mod m) , 则a 1 a 2b 1b 2 ( m o md) 。

D设 m ∈ N , a , b ∈ Z , 若 a 2b 2 (mod m),则 ab(mod m) 。

2,下列哪一个为模 12 互质的剩余类()A[2] ,B [5] ,C [6], D [3] 。

3,下列哪一个有理数不可以化为有限小数( )A3, B7, C1, D 19 。

2060 51004,同余方程 x 2 2 0(mod 5) 的解为()Ax 0(mod 5) , B x 4(mod 5) , Cx 2(mod 5) , D 此方程无解。

5,下列哪一个同余方程组无解()x9(mod 25)x4(mod 9)A, Bx 7(mod 10) x 1(mod 6)x17(mod 25)x 19(mod14)C, D。

x 2(mod 45) x 26(mod 7)二,填空题(满分 10 分,每题 2 分)1,当 m =时, 3211(mod m) 和 17 11(mod m) 同时成立。

2,设 m ∈ N ,则为模 m 的非负最小完全剩余系。

3, (16)。

4,写出模 8 的一个简化剩余系:。

5,余式 x a(mod 5) 等价于等式:。

三,判断题(满分 10分,每题 2 分 )1,( m)为欧拉函数,则1(m)m 1 。

()2,设m ∈N,a∈Z ,(a,m =1,若整数集合a1 , a2 ,......,a( m)为模m的一个简化)剩余系,则aa1 , aa2 ,......,aa(m )也为模 m 的一个简化剩余系。

初等数论试卷和答案

初等数论试卷和答案

初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391] =[391,17221136⨯]=[1768,391]------------(4分) = 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解; ----------------------------(2分)化简得4873=+y x ; -------------------(1分)考虑173=+y x ,有1,2=-=y x , -------------------(2分)所以原方程的特解为48,96=-=y x , -------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。

福师期末考试《初等数论》复习题及参考答案

福师期末考试《初等数论》复习题及参考答案

福师期末考试《初等数论》复习题及参考答案复习题及参考答案一一、填空(40%)1 、求所有正约数的与等于15的最小正数为 考核知识点:约数,参见P14-19 2、若1211,,,b b b 是模11的一个完全剩余系,则121181,81,,81b b b +++也是模11的 剩余系.考核知识点:完全剩余系,参见P54-573.模13的互素剩余系为考核知识点:互素剩余系,参见P584.自176到545的整数中是13倍数的整数个数为 考核知识点:倍数,参见P11-13 5、如果p 是素数,a 是任意一个整数,则a 被p 整除或者考核知识点:整除,参见P1-4 6、b a ,的公倍数是它们最小公倍数的 .考核知识点:最小公倍数,参见P11-13 7、如果b a ,是两个正整数,则存在 整数r q ,,使r bq a +=,b r ≤0.考核知识点:整除,参见P1-4 8、如果n 3,n 5,则15( )n . 考核知识点:整除,参见P1-4二、(10%)试证:6|n(n+1)(2n+1),这里n 是任意整数。

考核知识点:整除的性质,参见P9-12 提示:i)若 则ii)若 则iii)若 则又三、(10%)假定a 是任意整数,求证a a (mod )++≡2103或a a (mod )+≡203考核知识点:二次同余式,参见P88提示:要证明原式成立,只须证明231a a ++,或者23a a +成立即可。

四、(10%)设p 是不小于5的素数,试证明21(mod24)p ≡ 考核知识点:同余的性质,参见P48-52 提示: 且是不小于5的素数.又且是不小于5的素数.只能是奇数且即即五、(15%)解同余式组 51(mod7)142(mod8)x x ≡⎧⎨≡⎩考核知识点:同余式,参见P74-75 提示∵ (14,8)=2 且 2 | 2 ∴ 14x ≡2(mod8) 有且仅有二个解解7x ≡1(mod4) ⇒ x ≡3 (mod4) ∴ 6x ≡10(mod8)的解为 x ≡3,3+4(mod8) 原同余式组等价于()()3mod 73mod8x x ≡⎧⎪⎨≡⎪⎩ 或()()3mod 77mod8x x ≡⎧⎪⎨≡⎪⎩ 分别解出两个解即可。

初等数论期末练习

初等数论期末练习

初等数论期末练习一、单项选择题2、如果(a,b) = l9则(ab,a + b)=()・A aB bC 1D a + b3、小于30的素数的个数()•A 10B 9C 8D 74、如果a = /?(mod 〃?),c是任意整数,则A ac =B a = bC ac T bc(modm)D a * b5、不定方程525x+231y = 210 ().A有解B无解C有正数解D有负数解6、整数5874192能被()整除.A 3 B3 与9 C 9 D3 或98、公因数是最大公因数的().A因数E倍数C相等D不确定9、大于20且小于40的素数有()•A4个E5个C2个D3个11、因为(),所以不定方程12v+15>- = 7没有解.A [12, 15]不整除7B (12, 15)不整除7C 7不整除(12, 15 )D 7不整除[12, 15]二、填空题1、有理数纟,0YdYb,(m)= l,能写成循环小数的条件是()・b2、同余式1力+15三0(mod45)有解,而且解的个数为().3、不大于545而为13的倍数的正整数的个数为().4、设“是一正整数,Euler函数久“)表示所有()“,而且与“()的正整数的个数.5、设a,b 整数,则(a,b)()= ab.6、一个整数能被3整除的充分必要条件是它的()数码的和能被3整除.7、x = [x] +().8、同余式llLv = 75(mod321)有解,而且解的个数().9、在176与545之间有()是17的倍数.10、如果肋A0,则[d,b](d,b)=().11、a,b的最小公倍数是它们公倍数的().12、如果(a,b) = l,那么(ab,a+b)=().三、计算题1、求24871与3468的最小公倍数?2、求解不定方程107A-+37J =25. (8分)$429、3、求—L其中563是素数•(8分)4、解同余式lllx三75(mod321)・(8分)5、求[525,231]=?6、求解不定方程6.v-lly = 18.7、判断同余式A2 =365(modl847)是否有解?8、求11的平方剩余与平方非剩余.四、证明题1、任意一个〃位数①“一…你①与其按逆字码排列得到的数勺①…的差必是9的倍数.(11分)2、证明当〃是奇数时,有3怦+1)・(10分)3、一个能表成两个平方数和的数与一个平方数的乘枳,仍然是两个平方数的和;两个能表成两个平方数和的数的乘积,也是一个两个平方数和的数.(11分)4、如果整数“的个位数是5,则该数是5的倍数.5、如果("是两个整数上A0,则存在唯一的整数对如•,使得a = bq+r^中0"Yd《初等数论》期末练习答案一、单项选择题2、C3、A4、A5、A6、E 8、A 9、A 11、B二、填空题1、有理数纟,0YdYb,(m)= l,能写成循环小数的条件是((M0) = l )・b2、同余式1S+15三0(mod45)有解,而且解的个数为(3 ).3、不大于545而为13的倍数的正整数的个数为(41 ).4、设〃是一正整数,Euler函数处“)表示所有(不大于",而且与“(互素)的正整数的个数.5、设整数,则(a,b) ( [a,b] ) = ab.6、一个整数能被3整除的充分必要条件是它的(十进位)数码的和能被3整除.7、X =[A]+({x} ).8、同余式llLz75(mod321)有解,而且解的个数(3 ).9、在176与545之间有(12 )是17的倍数.10、如果ab >■ 0,则[«,/?](«, b) =( ab ).11、a,b的最小公倍数是它们公倍数的(因数).12、如果(a,b) = l,那么(",a + b)=( 1 ).三、计算题1、求24871与3468的最小公倍数?解:因为(24871,3468) =17所以[24871,3468]= 24871x3468 17=5073684 所以24871与3468的最小公倍数是5073684。

初等数论试卷

初等数论试卷

2008—2009学年上学期期末试卷班级:科目:初等数论任课教师:学号:姓名:成绩:
一、判断题
1、一个整数的约数,其个数是有限的。

所以数1的约数的个数是有限的()
2、在有限数范围内整除与除尽不相同( )
3、连续四个三积为4的倍数()
4、如果一个偶数能被奇数整除,则所得的商一定是奇数()5被除数,商是整数、除数是自然数的除法叫整除()
6、零是任意不为零的整数的倍数,1是任意整数的约数()
7、质数与质都是讨论是否有约数的问题()
8、两个合数一定互质()
9、质数的个数是有限的()
10、一个合数的最小约数不一定是质数()
二、解答题.
1、求63、134、576的最小公倍数
2、求满足[]100
a
=b
a,的全部正整数组a,b.
(=
b
10
,
,
)
,
3、求152被23除所得的余数
4、已知两个数的最大公约数是25,最小公倍数是100,求这两个数。

5、一只公鸡5元钱,一只母鸡3元钱,三只小鸡1元钱,100元钱买100只鸡,问公鸡、母鸡、小鸡各多少只?。

最新初等数论试卷,最全面的答案,包括截图

最新初等数论试卷,最全面的答案,包括截图

初等数论考试试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数;B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数 【有最小的吗?】C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( C )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±± B.00,,0,1,2,;a bx x t y y t t d d =+=-=±± C.00,,0,1,2,;b ax x t y y t t d d =+=-=±± D.00,,0,1,2,;b ax x t y y t t d d=-=-=±±4.下列各组数中不构成勾股数的是( D)A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( D ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( A ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( C ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( ? )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .不超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( D )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( C ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( A )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为:( A )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的原根存在,下列数中,m 不可能等于:( D ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是 ( B ) A .322ind = B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( C ) A .茂陛鸟斯(mobius)函数w(a) ; B .欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18.若x 对模m 的指数是ab ,a >0,ab >0,则a χ对模m 的指数是( B ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( A ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( B )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = _____21____; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2≥n ,有整数解的充分必要条件是_(1a ,2a ,…,n a ,)︱N_;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_(10,b )=1__; 24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为2,__;25. 威尔生(wilson )定理:____()1p -!+1()0mod ,p p ≡为素数______; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=___1___; 27. 若)(,1a p =,则a 是模p 欧拉判别条件);28. 在模m 的简化剩余系中,原根的个数是___()()m φφ__;29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_g 与g+a p 中的奇数_; 30. ()48ϕ=___16___。

11-12 初等数论 期末试卷 A(数学091)

11-12 初等数论 期末试卷 A(数学091)

莆田学院期末考试试卷 (A )卷2011 —— 2012 学年第 一 学期课程名称: 初等数论 适用年级/专业: 数学091 试卷类别 开卷( )闭卷(√) 学历层次 本科 考试用时 120 分钟 《考生...注意:答案要全部抄到答题纸上,做在试卷上不给分.......................》.一、填空题(每空2分,共20分)1、已知1008,1134,1512a b c ===,则最小公倍数[,,]a b c = ① 。

2、在大于2的任意九个连续自然数中,最多只能有 ① 个素数。

3、不定方程444z y x =+有没有正整数解? ① 。

4、模5的绝对最小完全剩余系是 ① 。

5、Legendre 符号-90227⎛⎫= ⎪⎝⎭① 。

6、今天是星期四,问从今天起再过101010+37天是星期 ① 。

7、请描述费马(Fermat)小定理: ① 。

8、请构造一组勾股数(,,)a b c ,其中,,a b c 都为两位数且两两互质: ① 。

9、模13的简化剩余系中有 ① 个平方剩余,平方非剩余.....分别是 ② ?二、计算题(每小题10分,共50分)1、求不定方程6143280x y z ++=的整数解。

2、求联立同余式4290(mod143)29840(mod143)x y x y +-≡⎧⎨-+≡⎩的解。

3、解同余式43()0(mod35),()289f x f x x x x ≡=+++。

4、根据Legendre 符号的值可以判断二次同余式是否有解。

那么,(1) 根据Jacobi 符号的值是否也可以判断二次同余式是否有解?若可以,请说明为什么?若不可以,请给出一个反例。

(2) 请说明为什么可以使用Jacobi 符号的性质求Legendre 符号的值?5、已知正整数4921,,,a a a 的和为999,令d 为4921,,,a a a 的最大公约数,问d 的最大值为多少?三、证明题(共10分)证明:若12,m m 是互质的两个正整数,而12,x x 分别通过模12,m m 的完全剩余系,则2112m x m x 通过模12m m 的完全剩余系。

初等数论试卷,最全面的答案,包括截图

初等数论试卷,最全面的答案,包括截图

初等数论试卷,最全⾯的答案,包括截图初等数论考试试卷⼀、单项选择题:(1分/题X 20题=20分)1 ?设x为实数,lx ]为x的整数部分,则(A )A.[xl X ::: lx ; E. [x I ::: x Ixl ? 1 ;C. lx I x lx A:;1 ;D. lx I ::: X ::: Ix.l ? 1 .2.下列命题中不正确的是(B )A.整数a i,a2,||(,a n的公因数中最⼤的称为最⼤公因数;C.整数a与它的绝对值有相同的倍数D.整数a与它的绝对值有相同的约数3 .设⼆元⼀次不定⽅程ax?by=c (其中a,b,c是整数,且a,b不全为零)有⼀整数解x o,y°,d⼆a,b,则此⽅程的⼀切解可表为(C )a bA.x =x°t, y ⼆y°t,t =0, _1,_2」H;d da bB.x = X o t, y ⼆y o t,t = 0, —1, _2」H;d db ac. x =X o t, y =y°t,t =0, _1,_2,川;d db aD. x =x°t, y ⼆y o t,t =0, ⼀1,_2,|";d d4. 下列各组数中不构成勾股数的是(D )A. 5, 12, 13;B. 7, 24, 25;C.3, 4, 5;D. 8, 16, 175. 下列推导中不正确的是(D )A.? 三b modm ,a2 三d modm = y a?三b b2modm ;B.Q= b mod m ,a2 = b2 modm = Qa? = bb 2mod m ;c. Q= b mod m = 时2 = ba 2modm ;2 2C. ⼀5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.a1= b1 modm = Q=b modm .6 .模10的⼀个简化剩余系是(D )A. 0,1,2,川,9;B. 1,2,3川1,10;7. a三b modm的充分必要条件是(A )A. ma —b;B. a —b m;C.m a +b;D. a +b m.&设f x =x42x38x 9,同余式f x三0 mod5的所有解为(C )A. x =1 或-1;B. x =1 或4;C. x 三1 或-1 mod5 ;D.⽆解.9、设f(x)= a n X n JlUII a1x ? a°其中a i是奇数,若x = x0mod p 为f(x) = 0 mod p 的⼀个解, 则:(?)A. 了.三/.: mod p ⼚定为f (x)三0(mod p勺,1的⼀个解B. '三I mod p「,::1,⼀定为f (x)三0 mod p :的⼀个解D. 若x三x° mod p -为f (x)三0 mod p -的⼀个解,则有x :三x° mod p10.设f (x)⼆a n x n|川|) ax a0,其中a i为奇数,a n丞Omodp,n p,则同余式f (x) =0 mod p 的解数:( )A.有时⼤于p但不⼤于n; B .不超过pC.等于p D .等于n11.若2为模p的平⽅剩余,则p只能为下列质数中的:( D )A. 3 B . 11 C . 13 D . 2312.若雅可⽐符号->1,则(C )Im⼃2A. 同余式x三a modm ⼀定有解,B. 当a,m =1时,同余式x2=a mod p有解;C. 当m = p(奇数)时,同余式x2三a mod p有解;D. 当a⼆p(奇数)时,同余式x2三a mod p有解.13.若同余式x2三a mod2‘,〉-3, 2, a =1有解,则解数等于(A )C. ⼀5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.18. 若x 对模m 的指数是ab , a >0, ab >0,则a 对模m 的指数是(B )A. a B . b C . ab D.⽆法确定19. f a , g a 均为可乘函数,则(A ) A. f a g a 为可乘函数; B . f ag (a )C. f a g a 为可乘函数; D . f a - g a 为可乘函数20. 设丄[a 为茂陛乌斯函数,则有(B )不成⽴A ⼆ J 1 =1B .空-1 =1C .⼆■-2 = -1D .⼆=9 =0⼆. 填空题:(每⼩题1分,共10分)21.3在45!中的最⾼次n = ________ 21 ___ ; 22. 多元⼀次不定⽅程:a 1x 1 a 2x 2 ?⼁II a n x^ N ,其中a 1 , a 2,…,a n , N 均为整数,n _ 2 ,有整数解的充分必要条件是 _ ( a 1 , a 2 ,…,a n ,) I N_a23.有理数⼀,0cavb , (a,b )=1,能表成纯循环⼩数的充分必要条件是_ (10, b ) =1__; b- _ 24. 设x 三冷 mod m 为⼀次同余式ax 三b modm , a = 0 mod m 的⼀个解,则它的所有解 A . 414. A . 15. A . B . 3 C 模12的所有可能的指数为:( 1, 2, 4 B . 1, 2, 4, 6, 若模m 的原根存在,下列数中,2 B .3 C 16. 对于模5,下列式⼦成⽴的是.2 A )12 C . 1, 2, m不可能等于:( D . 12 B ) 3, D 4, 6,12 D ?⽆法确定 )A. in d 32 =2ind 3^=3 C. in d 35 =0ind 310 ⼆ ind 32 ind 35 17. A. 下列函数中不是可乘函数的是:茂陛鸟斯(mobius )函数w(a ); B. 欧拉函数■- a ;C. 不超过x 的质数的个数⼆x ;25. ____________________________ 威尔⽣(wilson )定理: _______________ (P —1)! +1 三0(modp ), p 为素数 _____________ ;26. 勒让德符号'^03 |= 1 ;訂013⼃27. 若a, p [=1,则a 是模p 的平⽅剩余的充分必要条件是 a 2三1 mod p (欧拉判别条件; 28.在模m 的简化剩余系中,原根的个数是 _讥営m __; 29.设。

初等数论试卷和答案

初等数论试卷和答案

初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则().A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15()n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数().A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果(),则不定方程c by ax =+有解. A c b a ),(B ),(b a c C c a D a b a ),(6、整数5874192能被()整除.A3B3与9C9D3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是().2、同余式)(mod 0m b ax ≡+有解的充分必要条件是().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为().4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者().5、b a ,的公倍数是它们最小公倍数的().6、如果b a ,是两个正整数,则存在()整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数.(8分) 四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为(][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者(与p 互素).5、b a ,的公倍数是它们最小公倍数的(倍数).6、如果b a ,是两个正整数,则存在(唯一)整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解[136,221,391]=[[136,221],391]=[391,17221136⨯]=[1768,391]------------(4分) =173911768⨯=104⨯391=40664.------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解;----------------------------(2分) 化简得4873=+y x ;-------------------(1分)考虑173=+y x ,有1,2=-=y x ,-------------------(2分)所以原方程的特解为48,96=-=y x ,-------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。

初等数论测试(带答案)

初等数论测试(带答案)

,其中
563
是素数.
(8 分)
四、证明题(第 1 小题 10 分,第 2 小题 11 分,第 3 小题 11 分,共 32 分)
n n2 n3 17、证明对于任意整数 n ,数 3 2 6 是整数.
18、证明相邻两个整数的立方之差不能被 5 整除. 19、证明形如 4n 1 的整数不能写成两个平方数的和.
A ac bc(mod m) B a b C ac T bc(mod m) D a b
5、如果( ),则不定方程 ax by c 有解.
A (a, b) c B c (a, b) C a c D (a, b) a
6、整数 5874192 能被( )整除. A 3 B 3与9 C 9 D 3或9
证明 设 n 是正数,并且 n 1(mod 4) ,
----------(3 分)
如果
n x2 y2 , 则因为对于模 4, x, y 只与 0,1,2,-1 等同余, 所以 x2 , y 2 只能与 0,1 同余,
所以
x2 y 2 0,1,2(mod 4) ,
而这与 n 1(mod 4) 的假设不符,
C 7 不整除(12,15) D 7 不整除[12,15]
12、同余式
( ).
A 有解 B 无解 C 无法确定 D 有无限个解
二、填空题 1、有理数 ,
,能写成循环小数的条件是( ).
2、同余式
有解,而且解的个数为( ).
3、不大于 545 而为 13 的倍数的正整数的个数为( ).
4、设 是一正整数,Euler 函数
429 67
27 67
(1)
27 1. 67 1 22
67 27
67 27

初等数论期末考试试卷张

初等数论期末考试试卷张

初等数论试卷(B)一,选择题(满分15分,每题3分)1,下列不正确的是( )A 设m ∈+N ,a ,b ∈Z ,若)(mod m b a ≡ ,则)(mod m a b ≡。

B 设m ∈+N ,a ,b ,c ∈Z ,若)(mod m c b a ≡+,则)(mod m b c a -≡.C 设m ∈+N ,,,11b a 22,b a ∈Z ,,若)(m od 11m b a ≡,)(m od 22m b a ≡,则)(m od 2121m b b a a ≡。

D 设m ∈+N ,a ,b ∈Z ,若)(m od 22m b a ≡ ,则)(mod m b a ≡。

2,下列哪一个为模12互质的剩余类( )A [2],B [5],C [6],D [3]。

3,下列哪一个有理数不可以化为有限小数( )A 203,B 607,C 51,D 10019。

4,同余方程)5(m od 022≡+x 的解为( )A )5(mod 0≡x ,B )5(mod 4≡x ,C )5(mod 2≡x ,D 此方程无解。

5,下列哪一个同余方程组无解( )A ⎪⎩⎪⎨⎧≡≡)10(mod 7)25(mod 9x x ,B ⎪⎩⎪⎨⎧≡≡)6(mod 1)9(mod 4x xC ⎪⎩⎪⎨⎧≡≡)45(mod 2)25(mod 17x x ,D ⎪⎩⎪⎨⎧≡≡)7(mod 26)14(mod 19x x 。

二,填空题(满分10分,每题2分)1,当m = 时,)(mod 1132m ≡和)(mod 1117m ≡同时成立。

2,设m ∈+N ,则 为模m 的非负最小完全剩余系。

3,=)16(ϕ 。

4,写出模8的一个简化剩余系: 。

5,余式)5(mod a x ≡等价于等式: 。

三,判断题(满分10分,每题2分 )1,)(m ϕ为欧拉函数,则1)(1-≤≤m m ϕ。

( )2, 设m ∈+N ,a ∈Z ,(a,m )=1,若整数集合{})(21,......,,m a a a ϕ为模m 的一个简化剩余系,则{})(21,......,,m aa aa aa ϕ也为模m 的一个简化剩余系。

最新福师期末考试《初等数论》复习题及参考答案

最新福师期末考试《初等数论》复习题及参考答案

福师期末考试《初等数论》复习题及参考答案本复习题页码标注所用教材为:教材名称 单价 作者版本 出版社 初等数论14.20闵嗣鹤,严士健第三版高等教育出版社复习题及参考答案一一、填空(40%)1 、求所有正约数的和等于15的最小正数为 考核知识点:约数,参见P14-19 2、若1211,,,b b b 是模11的一个完全剩余系,则121181,81,,81b b b +++也是模11的 剩余系.考核知识点:完全剩余系,参见P54-573.模13的互素剩余系为考核知识点:互素剩余系,参见P584.自176到545的整数中是13倍数的整数个数为 考核知识点:倍数,参见P11-13 5、如果p 是素数,a 是任意一个整数,则a 被p 整除或者考核知识点:整除,参见P1-46、b a ,的公倍数是它们最小公倍数的 . 考核知识点:最小公倍数,参见P11-137、如果b a ,是两个正整数,则存在 整数r q ,,使r bq a +=,b r ≤0.考核知识点:整除,参见P1-4 8、如果n 3,n 5,则15( )n . 考核知识点:整除,参见P1-4二、(10%)试证:6|n(n+1)(2n+1),这里n 是任意整数。

考核知识点:整除的性质,参见P9-12提示:i)若 则ii)若 则iii)若 则又三、(10%)假定a 是任意整数,求证a a (mod )++≡2103或a a (mod )+≡203考核知识点:二次同余式,参见P88提示:要证明原式成立,只须证明231a a ++,或者23a a +成立即可。

四、(10%)设p 是不小于5的素数,试证明21(mod 24)p ≡ 考核知识点:同余的性质,参见P48-52提示: 且是不小于5的素数.又 且是不小于5的素数.只能是奇数且即即五、(15%)解同余式组 51(mod7)142(mod8)x x ≡⎧⎨≡⎩考核知识点:同余式,参见P74-75 提示∵ (14,8)=2 且 2 | 2 ∴ 14x ≡2(mod8) 有且仅有二个解解7x ≡1(mod4) ⇒ x ≡3 (mod4) ∴ 6x ≡10(mod8)的解为 x ≡3,3+4(mod8) 原同余式组等价于()()3mod 73mod8x x ≡⎧⎪⎨≡⎪⎩ 或()()3mod 77mod8x x ≡⎧⎪⎨≡⎪⎩分别解出两个解即可。

(完整版)初等数论练习题二(含答案)

(完整版)初等数论练习题二(含答案)

《初等数论》期末练习一、单项选择题1 如果 ba , a b ,则().A a b Bab2、如果 3n , 5n ,贝U 15 (A 整除B 不整除 C3、 在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、 如果a b (modm ) ,c 是任意整数 贝UA ac bc(modm)B a bC ac bc(mod m) Dab5、 如果(),则不定方程ax by c 有解.A (a,b) cB c(a, b)C a cD (a, b)a6、 整数5874192能被()整除.A 3B 3 与 9C 9D 3 或 97、 如果 2n , 15n ,贝U 30( ) n . A 整除 B 不整除 C 等于 D 不一定& 大于10且小于30的素数有(). A 4个 B 5个 C 6个 D 7个9、 模5的最小非负兀全剩余系是( ). A -2,-1,0,1,2 B -5,-4,-3,-2,-1 C 1,2,3,4,5 D 0,1,2,3,4 10、 整数637693能被()整除. A 3 B 5 C 7 D 9二、填空题1、素数写成两个平方数和的方法是(). 2、 同余式ax b O (modm )有解的充分必要条件是().8、 如果同余式ax b O (modm )有解,则解的个数(). 9、 在176与545之间有()是13的倍数.10、 如果 ab 0 则[a,b ](a,b )=( ). Cab Dab )n . 等于 D 不一定 3、 如果a,b 是两个正整数,则不大于 4、 如果p 是素数,a 是任意一个整数 5、 a,b 的公倍数是它们最小公倍数的6、 如果a,b 是两个正整数,则存在a 而为b 的倍数的正整数的个数为 ().,则a 被p 整除或者().(). )整数 q, r ,使 a bq r, 0 r b. y 2有( ).11、如果(a,b) 1,那么(ab,a b)=().二、计算题1、求[136,221,391]=?2、求解不定方程9x 21y 144.3、解同余式12x 15 0(mod45).4294、求——,其中563是素数.(8分)5635、求[24871,3468]=?6、求解不定方程6x 17y 18.7、解同余式111x 75(mod321).8、求17的平方剩余与平方非剩余.四、证明题1、证明对于任意整数2n nn,数3 23—是整数.62、证明相邻两个整数的立方之差不能被5整除.3、证明形如4n 1的整数不能写成两个平方数的和4、如果整数a的个位数是5,则该数是5的倍数.5、证明相邻两个偶数的乘积是8的倍数.初等数论期末练习一答案、单项选择题1、D.2、A3、C4、A5、A6、B7、A8、C9、D 10、C二、填空题1、 素数写成两个平方数和的方法是(唯一的)2、 同余式ax b 0(modm)有解的充分必要条件是 ((a,m)b ).3、 如果a,b 是两个正整数,则不大于a 而为b 的倍数的正整数的个数为 ([-]). b4、 如果p 是素数,a 是任意一个整数,则a 被p 整除或者(与p 互素).5、 a,b 的公倍数是它们最小公倍数的(倍数).6、 如果a,b 是两个正整数,则存在(唯一)整数q, r ,使a bq r, 0 r b.7、 设p 是素数,则不定方程p x 2 y 2有(唯一解 ).8、 如果同余式ax b 0(mod m)有解,则解的个数((a, m)).9、 在176与545之间有(28 )是13的倍数.10、 如果 ab 0 则[a,b](a,b)=( ab ).11、 如果(a,b) 1,那么(ab, a b)=(1). 三、计算题1、求[136,221,391]=? ( 8 分) 解[136,221,391]=[[136,221],391]=[1768,391] 1768 391 17=104 391 =40664.解:因为(9,21)=3, 3144,所以有解;化简得3x 7y 48 ;考虑 3x 7y 1,有 x 2, y 1,所以原方程的特解为 x 96, y 48,因此,所求的解是 x 96 7t, y 48 3t,t Z 。

初等数论试卷和答案

初等数论试卷和答案

初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解.A c b a ),(B ),(b a cC c aD a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r π≤0.1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分) 四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r π≤0.1、 求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391] =[391,17221136⨯]=[1768,391]------------(4分) = 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解;----------------------------(2分)化简得4873=+y x ;-------------------(1分)考虑173=+y x ,有1,2=-=y x ,-------------------(2分)所以原方程的特解为48,96=-=y x ,-------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。

12.1初等数论试题

12.1初等数论试题

科目代号:6102座号:甘肃广播电视大学2012年1月期末考试开放本科数学与应用数学专业初等数论试卷一、填空题(每空2分,共10分)1.一个整数能被3整除的充分必要条件是它的()数码的和能被3整除。

2.+=][xx()。

3.同余式)321(mod75111≡x有解,而且解的个数( )。

4.在176与545之间有( )是17的倍数。

5.如果0ab>,则),](,[baba=( )。

二、单项选择题(每小题4分,共20分)1.如果)(mod mba≡,c是任意整数,则()。

A.)(mod mbcac≡ B. ba= C. ac T)(mod mbc D. ba≠2.不定方程210231525=+yx()。

A. 有解B. 无解C. 有正数解D.有负数解3.整数5874192能被( )整除。

A. 3B. 3与9C. 9D. 3或94.如果a b,b a,则( )。

A. ba= B. ba-= C. ba≥ D. ba±=5.公因数是最大公因数的()。

A. 因数B. 倍数C. 相等D.不确定三、计算题(每小题10分,共50分)1. 解同余式)321(mod 75111 x 。

2. 求[525,231]=?3. 求解不定方程18116=-y x 。

4. 判断同余式)1847(mod 3652≡x 是否有解?5. 求17的平方剩余与平方非剩余。

.四、证明题(每小题10分,共20分)1.任意一个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数。

2.一个能表成两个平方数和的数与一个平方数的乘积,仍然是两个平方数的和;两个能表成两个平方数和的数的乘积,也是一个两个平方数和的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初等数论试卷(B)一,选择题(满分15分,每题3分)1,下列不正确的是( )A 设m ∈+N ,a ,b ∈Z ,若)(mod m b a ≡ ,则)(mod m a b ≡。

B 设m ∈+N ,a ,b ,c ∈Z ,若)(mod m c b a ≡+,则)(mod m b c a -≡.C 设m ∈+N ,,,11b a 22,b a ∈Z ,,若)(m od 11m b a ≡,)(m od 22m b a ≡,则)(m od 2121m b b a a ≡。

D 设m ∈+N ,a ,b ∈Z ,若)(m od 22m b a ≡ ,则)(mod m b a ≡。

2,下列哪一个为模12互质的剩余类( )A [2],B [5],C [6],D [3]。

3,下列哪一个有理数不可以化为有限小数( )A 203,B 607,C 51,D 10019。

4,同余方程)5(m od 022≡+x 的解为( )A )5(mod 0≡x ,B )5(mod 4≡x ,C )5(mod 2≡x ,D 此方程无解。

5,下列哪一个同余方程组无解( )A ⎪⎩⎪⎨⎧≡≡)10(mod 7)25(mod 9x x ,B ⎪⎩⎪⎨⎧≡≡)6(mod 1)9(mod 4x xC ⎪⎩⎪⎨⎧≡≡)45(mod 2)25(mod 17x x ,D ⎪⎩⎪⎨⎧≡≡)7(mod 26)14(mod 19x x 。

二,填空题(满分10分,每题2分)1,当m = 时,)(mod 1132m ≡和)(mod 1117m ≡同时成立。

2,设m ∈+N ,则 为模m 的非负最小完全剩余系。

3,=)16(ϕ 。

4,写出模8的一个简化剩余系: 。

5,余式)5(mod a x ≡等价于等式: 。

三,判断题(满分10分,每题2分 )1,)(m ϕ为欧拉函数,则1)(1-≤≤m m ϕ。

( )2, 设m ∈+N ,a ∈Z ,(a,m )=1,若整数集合{})(21,......,,m a a a ϕ为模m 的一个简化剩余系,则{})(21,......,,m aa aa aa ϕ也为模m 的一个简化剩余系。

( )3,模m 的完全剩余系只有有限个。

( )4,循环小数5544301.0&&的循环节长度为4。

( ) 5,两整数相等,则必同余。

( ) 四,求解题(满分30分 )1,用“弃九法”验算下面式子是否正确:10018656763457828947=⨯。

('7)2,求117所化成的循环小数的循环节的长度。

('7)3,求同余方程)15(mod 69≡x 的所有解。

('8)4,求同余方程组⎪⎩⎪⎨⎧≡≡≡)7(mod 2)5(mod 3)3(mod 2x x x 的解。

('8)五,证明题(满分25分 )1,证明:对一切正整数x,都有 )8(m od 3371331632241552345++≡-+-++x x x x x x x 。

('7)2,设q p ,是两个大于3的质数,证明:).24(m od 22q p ≡('8)3,求证:当n 为奇数时,)()(n n b a b a ++。

('10)初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解.A c b a ),(B ),(b a cC c aD a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r π≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数. 2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r π≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391]=[391,17221136⨯]=[1768,391] = 173911768⨯=104⨯391=40664.2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解;化简得4873=+y x ;考虑173=+y x ,有1,2=-=y x ,所以原方程的特解为48,96=-=y x ,因此,所求的解是Z t t y t x ∈-=+-=,348,796。

3、解同余式)45(mod 01512≡+x . (8分)解 因为(12,45)=3¦5,所以同余式有解,而且解的个数为 3. 又同余式等价于)15(mod 054≡+x ,即y x 1554=+.我们利用解不定方程的方法得到它的一个解是(10,3),即定理4.1中的100=x .因此同余式的3个解为)45(mod 10≡x ,)45(mod 25)45(mod 34510≡+≡x ,)45(mod 40)45(mod 345210≡⨯+≡x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分) 解 把⎪⎭⎫ ⎝⎛563429看成Jacobi 符号,我们有⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛---42967)1(429674292429134429563429563)1(5634298142921563.214292---------------(3分)⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-=----27672767)1(67276742967429)1(429672167.212721429.2167----------------------(2分) 11311327)1(27132113.2127=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=--,-----------------(2分)即429是563的平方剩余. ---------------(1分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数. (10分) 证明 因为62332n n n ++=)32(62n n n ++=)2)(1(61++n n n , ------(3分)而且两个连续整数的乘积是2的倍数,3个连续整数的乘积是3的倍数, -----(2分)并且(2,3)=1, -----(1分) 所以从)2)(1(2++n n n 和)2)(1(3++n n n 有)2)(1(6++n n n ,-----(3分) 即62332n n n ++是整数. -----(1分)2、证明相邻两个整数的立方之差不能被5整除. (11分)证明 因为133)1(233++=-+n n n n , -------------(3分) 所以只需证明1332++n n T )5(mod .而我们知道模5的完全剩余系由-2,-1,0,1,2构成,所以这只需将n=0,±1,±2代入1332++n n 分别得值1,7,1,19,7.对于模5, 1332++n n 的值1,7,1,19,7只与1,2,4等同余,所以1332++n n T )5(mod ---------(7分)所以相邻两个整数的立方之差不能被5整除。

--------(1分)3、证明形如14-n 的整数不能写成两个平方数的和. (11分)证明 设n 是正数,并且)4(mod 1-≡n , ----------(3分)如果22y x n +=, ---------(1分)则因为对于模4,y x ,只与0,1,2,-1等同余,所以22,y x 只能与0,1同余,所以 )4(m od 2,1,022≡+y x , ---------(4分)而这与)4(mod 1-≡n 的假设不符, ---------(2分)即定理的结论成立. ------(1分)一、单项选择题1、=),0(b (C ).A b B b - D 02、如果a b ,b a ,则(D ).A b a = B b a -= C b a ≤ D b a ±=3、如果1),(=b a ,则),(b a ab +=(C ).A a B b C 1 D b a +4、小于30的素数的个数(A ).A 10 B 9 C 8 D 75、大于10且小于30的素数有( C ).A 4个 B 5个 C 6个 D 7个6、如果n 3,n 5,则15(A )n .A 整除 B 不整除 C 等于 D 不一定7、在整数中正素数的个数(C ).A 有1个 B 有限多 C 无限多 D 不一定二、计算题1、 求24871与3468的最大公因数?解: 24871=3468⨯7+595 3468=595⨯5+493 595=493⨯1+102 493=102⨯4+85102=85⨯1+17 85=17⨯5,所以,(24871,3468)=17.2、 求[24871,3468]=? 解:因为(24871,3468)=17 所以[24871,3468]=173********⨯=5073684 所以24871与3468的最小公倍数是5073684。

相关文档
最新文档