纯弯梁弯曲的应力分析实验报告
梁的弯曲正应力实验报告

梁的弯曲正应力实验报告梁的弯曲正应力实验报告引言:弯曲是一种常见的力学现象,广泛应用于工程和建筑领域。
梁是一种常见的结构,在受到外力作用时会发生弯曲变形。
为了研究梁的弯曲行为,本实验通过对梁进行弯曲试验,测量梁上的正应力分布,以便了解梁的强度和稳定性。
实验目的:1. 通过实验测量梁上的正应力分布,了解梁的弯曲行为;2. 分析梁的弯曲现象对梁的强度和稳定性的影响;3. 探究不同材料和截面形状对梁的弯曲正应力分布的影响。
实验原理:当一根梁受到外力作用时,梁会发生弯曲变形。
在梁的顶部和底部,会出现正应力和负应力。
本实验主要关注梁上的正应力分布。
根据梁的弯曲理论,梁上的正应力与梁的截面形状、材料性质、外力大小和位置等因素有关。
实验装置和步骤:实验装置包括一根长梁、测力计、测量仪器等。
具体步骤如下:1. 将长梁固定在实验台上,确保梁的两端支持牢固;2. 在梁上设置几个不同位置的测力计,用于测量梁上的正应力;3. 施加外力于梁上,使其发生弯曲变形;4. 通过测力计测量梁上各位置的正应力,并记录数据;5. 根据实验数据,绘制梁上的正应力分布曲线。
实验结果与分析:根据实验数据,我们可以得出梁上的正应力分布曲线。
通常情况下,梁上的正应力分布呈现出一定的规律性。
在梁的顶部和底部,正应力较大,逐渐向中间递减,最终趋近于零。
这是因为在梁的顶部和底部,受力较大,产生了较大的正应力;而在梁的中间,受力相对较小,正应力逐渐减小。
实验中还可以观察到不同材料和截面形状对梁的弯曲正应力分布的影响。
例如,对比不同材料的梁,我们可以发现不同材料的梁上的正应力分布曲线有所差异。
这是因为不同材料的梁具有不同的弹性模量和抗弯强度,从而导致不同的正应力分布。
此外,梁的截面形状也对梁的弯曲正应力分布有影响。
例如,对比矩形截面和圆形截面的梁,我们可以发现矩形截面的梁上的正应力分布曲线相对均匀,而圆形截面的梁上的正应力分布曲线则呈现出较大的集中度。
纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告一、实验目的1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力计算公式二、实验仪器设备和工具3.XL3416 纯弯曲试验装置4.力&应变综合参数测试仪5.游标卡尺、钢板尺3、实验原理及方法在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为σ= My / I z式中M为弯矩,I z为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。
为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
实验采用半桥单臂、公共补偿、多点测量方法。
加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量σ实i=E△ε实i将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。
四、实验步骤1.设计好本实验所需的各类数据表格。
2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变片到中性层的距离y i。
见附表13.拟订加载方案。
先选取适当的初载荷P0(一般取P0 =10%P max左右),估算P max(该实验载荷范围P max≤4000N),分4~6级加载。
4.根据加载方案,调整好实验加载装置。
5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。
6.加载。
均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。
实验至少重复两次。
见附表27.作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。
附表1 (试件相关数据)附表2 (实验数据)P 50010001500200025003000载荷N △P 500500500500500εP -33-66-99-133-166△εP -33-33-34-334平均值-33.25εP -16-33-50-67-83△εP -17-17-17-162平均值16.75εP 00000△εP 00001平均值0εP 1532476379△εP 171516163平均值16εP 326597130163△εP 33323333 各 测点电阻应变仪读数µε5平均值32.75五、实验结果处理1.实验值计算根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算应变片至中性层距离(mm )梁的尺寸和有关参数Y 1-20宽 度 b = 20 mm Y 2-10高 度 h = 40 mm Y 30跨 度 L = 620mm (新700 mm )Y 410载荷距离 a = 150 mm Y 520弹性模量 E = 210 GPa ( 新206 GPa )泊 松 比 μ= 0.26惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4。
实验五 弯曲正应力实验报告

实验五弯曲正应力实验报告___________系____________专业__________班姓名____________ 学号_________ 1.实验目的:(1)测定梁在纯弯曲下的弯曲正应力大小及其分布规律。
(2)验证弯曲正应力计算公式。
(3)掌握电测方法。
2.实验设备:3.实验记录及计算结果:a.梁的已知数据试件材料:A3 钢弹性模量: E= GPa电阻片灵敏系数: K=试件尺寸电阻片到中性层的距离(mm)b = mm Y1= mmh = mm Y2= mmL = mm Y3= mma = mm Y4= mmI z= mm4Y5= mmb.实验记录:c.计 算:实验值计算:根据测得的应变增量平均值Δε平均,应用虎克定律算出各点对应的应力增量:平均实i i εσ∆•E =∆ (i=1,2,3,4,5)理论值计算:zii I y •∆M =∆理σ (i=1,2,3,4,5) 式中 : 123bh I z = ——惯性矩a 2∆P=∆M ——弯矩增量 y i ——各测点到中性层的距离d.正应力实验结果与理论计算值比较: 各测点正应力值(MPa )测点 1 2 3 4 5 实验值σ∆实 理论值σ∆理误差%100⨯∆∆-∆=理实理σσσe.按比例绘出(实测应力和理论计算应力)正应力分布图。
4.问题讨论:1)说明梁在纯弯曲时正应力沿梁高度的分布规律。
2)比较各测点的实测应力值与理论计算应力值,并分析产生误差的原因。
指导教师:________________________年_______月______日。
纯弯曲梁的正应力实验报告之欧阳治创编

姓名: 班级: 学号:实验报告 纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式 二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪 三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:zM yI σ⋅= 为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。
采用增量法加载,每增加等量荷载△P(500N)测出各点的应变增量△ε,求的各点应变增量的平均,从而求出应力增量:值△ε实iσ实i=E△ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。
四、原始数据:五、实验步骤:1. 打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。
3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。
按清零键,使测力计显示零。
4.应变仪调零。
按下“自动平衡”键,使应变仪显示为零。
5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。
用应变仪右下角的通道切换键来显示第5测点的读数。
以后,加力每次500N,到3000N为止。
6.读完3000N应变读数后,卸下载荷,关闭电源。
六、实验结果及处理:1.各点实验应力值计算,带入胡根据上表数据求得应变增量平均值△εPi克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P = 500N弯矩增量△M = △P/2×LP应力理论值计算(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。
实验三 梁的弯曲应力实验

实验三 梁的弯曲应力实验一、实验目的1、测定梁在纯弯曲时某一截面上的应力及其分布情况。
2、观察梁在纯弯曲情况下所表现的虎克定律,从而判断平面假设的正确性。
3、进一步熟悉电测静应力实验的原理并掌握其操作方法。
4、实验结果与理论值比较,验证弯曲正应力公式σ=My/I z的正确性。
5、测定泊松比μ。
二、实验设备1.纯弯梁的正应力的分布规律实验装置其装置如图3-1所示。
图3-1 纯弯梁实验安装图2.实验梁的安装与调整:在如图3-1所示位置处,将9.拉压力传感器安装在8.蜗杆升降机构上拧紧,将2.支座(两个)放于如图所示的位置,并对于加力中心成对称放置,将实验梁置于支座上,也称对称放置,将4.加力杆接头(两对)与6.加力杆(两个)连接,分别用3.销子悬挂在纯弯梁上,再用销子把11.加载下梁固定于图上所示位置,调整加力杆的位置两杆都成铅垂状态并关于加力中心对称。
摇动7.手轮使传感器升到适当位置,将10.压头放如图中所示位置,压头的尖端顶住加载下梁中部的凹槽,适当摇动手轮使传感器端部与压头稍稍接触。
检查加载机构是否关于加载中心对称,如不对称应反复调整。
注意:实验过程中应保证加载杆始终处于铅垂状态,并且整个加载机构关于中心对称,否则将导致实验结果有误差,甚至错误。
3. 实验梁的贴片:5#、4#分别位于梁水平上、下平面的纵向轴对称中心线上,1#片位于梁的中性层上,2#、3#片分别位于距中性层和梁的上下边缘相等的纵向轴线上,6#片与5#片垂直,如图3-3所示图3-3 纯弯梁贴片图三、实验原理图3-4为试样受力图图3-4 纯弯梁受力图为了测量应变随试样截面高度的分布规律,应变片的粘贴位置如图3.3所示。
这样可以测量试件上下边缘、中性层及其他中间点的应变,便于了解应变沿截面高度变化的规律。
由材料力学可知,矩形截面梁受纯弯时的正应力公式为式中:M为弯矩;y为中性轴至欲求应力点的距离;为横截面对z轴的惯性矩。
本实验采用逐级等量加载的方法加载,每次增加等量的载荷⊿P,测定各点相应的应变增量一次,即:初载荷为零,最大载荷为4kN,等量增加的载荷⊿P为1kN。
力学实验报告 纯弯曲梁的正应力实验

-2.93
������5
-5.86
3.5 结果分析
实际值 σ 实(MPa) 5.73 2.47 -0.206 -3.21 -5.81
相对误差(%) 2.26% 15.60% — 9.69% 0.85%
通过计算发现,在误差允许的范围内,大部分各数据符合实际要求。通过σ������ − ������������的关系图可以发现,随着与中性轴距离的增大,对应的应力值也增大,二者成 正比关系,符合梁在纯弯曲时横截面上理论分布规律。
σ1 实 = ������ × Δ̅̅̅���̅���1̅ = 5.73 × 106������������
σ2 实 = ������ × Δ̅̅̅���̅���2̅ = 2.47 × 106������������
σ3 实 = ������ × Δ̅̅̅���̅���3̅ = −0.206 × 106������������
六、实验体会
相对于实验一,在进行实验二的时候对于电测法的使用会有一定的了解和熟 悉度,但由于实验是对实验原理依然不是完全理解,所以做实验时还是存在一定 困难,但是所得到的数据和后期的计算结果还是很让人满意的。
5/5
四、实验数据及其处理
1.1 实验试件参数
应变片至中性层距离(mm)
y1
-20
y2
-10
y3
0
y4
10
y5
20
梁的尺寸和有关参数
宽度 b (mm)
20
高度 h (mm)
40
跨度 L(mm)
600
载荷距离 a(mm)
125
弹性模量 E (Gpa)
206
泊松比 μ
0.26
2.2 实验原始数据
实验报告-纯弯曲梁

纯弯曲梁横截面上正应力的测定
实验日期实验地点报告成绩
实验者班组编号环境条件℃、%RH 一、实验目的:
二、使用仪器:
三、实验原理:
四、实验数据记录:
1、梁的受力简图、弯矩图及测点布置示意图:
2、相关尺寸及常数:试样编号:
3、应变增量的测量:单位:×10-6
实验指导教师(签名):
五、实验数据处理:
六、实验结果:
七、思考题:
1、两个材料不同、几何尺寸及受载情况完全相同的梁,在同一位置处测得的应变是否相同?应力呢?为什么?
2、由理论计算出来的L σ∆与实际测量出来的c σ∆之间的误差主要是何原因产生的?
批阅报告教师(签名): 八、问题讨论:。
梁弯曲正应力实验报告

编号
1
2
3
4
5
6
7
载荷
F(kN)
读数
增量
读数
增量
读数
增量
读数
增量
读数
增量
读数
增量
读数
增量
F0=
FБайду номын сангаас=
F2=
F3=
F4=
平均增量
2.数据处理:(将各测点的实测应变换算成应力,与理论值比较)
测点编号
1
2
3
4
5
6
7
实测值
理论值
相对误差
3分别绘制应力、应变分布图。
五、回答思考题
梁弯曲正应力实验报告
学院系专业班试验日期
姓名学号同组者姓名
一、实验目的
二、实验设备
仪器名称及型号精度
纯弯曲正应力实验装置编号
三、试件尺寸及有关数据
试件尺寸:长L=mm,宽b=mm,高h= mm
纯弯曲段弯矩:M= kN·mm
弹性模量:E=GPa
应变片电阻值:R=灵敏系数K=
四、实验数据与整理
1.实测数据:
纯弯曲正应力分布实验报告

纯弯曲正应力分布实验报告篇一:弯曲正应力实验报告一、实验目的1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律;2、验证纯弯曲梁的正应力计算公式。
3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。
二、实验仪器和设备1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。
4、温度补偿块一块。
三、实验原理和方法弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。
用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。
根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:??My Ix式中:M为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。
由上式可知,沿横截面高度正应力按线性规律变化。
实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。
当增加压力?P时,梁的四个受力点处分别增加作用力?P/2,如下图所示。
为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。
此外,在梁的上表面和下表面也粘贴了应变片。
如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。
将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
σ实=Eε式中E是梁所用材料的弹性模量。
实图3-16为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε 把Δσ实与理论公式算出的应力??式中的M应按下式计算:实来依次求出各点应力。
??比较,从而验证公式的正确性,上述理论公????四、实验步骤1?Pa (3.16) 21、检查矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a,及各应变片到中性层的距离yi。
纯弯曲梁正应力实验报告

纯弯曲梁正应力实验报告材料力学课程实验报告纯弯曲梁正应力实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理梁试件的弹性模量梁试件的横截面尺寸h ㎜b ㎜支座到集中力作用点的距离d ㎜各测点到中性层的位置1y ㎜2y ㎜ 3y ㎜ 4y ㎜ 5y ㎜ 6y ㎜材料力学课程实验报告载荷N 静态电子应变仪读数106 1点 2点 3点 4点 5点 6点 F F 读数1 增量1 读数2 增量2 读数3 增量3 读数4 增量4 读数5 增量5 读数6 增量6 F 1 2 3 4 5 6 应变片位置 1点 2点 3点 4点 5点 6点实验应力值/MPa 理论应力值/MPa 相对误差/ 泊松比值注表中读数1、2、3、4、5、6为两次实验所得读数的平均值。
F为荷载增量的平均值。
1、2、3、4、5、6为各点应变增量的平均值材料力学课程实验报告四、应力分布图理论和实验的应力分布图画在同一图上五、思考题 1.为什么要把温度补偿片贴在与构件相同的材料上 2.影响实验结果的主要因素是什么材料力学课程实验报告测定材料E、实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理板试件尺寸试件截面宽b ㎜高h ㎜截面积oA mm2 NF oAFMPa 纵向应变106 横向应变106 1r 2r 3r 1r 2r 3r 材料力学课程实验报告数据处理方法 1平均法均均oAFE 均均计算过程 2最小二乘法niiniiiE121niiniii121 计算过程材料力学课程实验报告四、画出关系图理论和实验的关系图画在同一图上平均法理论和实验的关系图最小二乘法理论和实验的关系图五、思考题 1.试件尺寸和形式对测定弹性模量E有无影响 2.影响实验结果的因素有那些为何要用等量增载法进行实验材料力学课程实验报告圆管扭转应力试验实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理薄壁圆管尺寸外径D ㎜内径d ㎜加力臂长度L ㎜切变模量 Pa 弹性模量 Pa 泊松比电阻片号两次读数平均值两次读数平均值 1 2 3 4 5 6 注由于纯扭实验中004545故045采用1、4、3、6的绝对值加以平均表中电阻号1、4相对于45°应变片3、6相对于-45°应变片2、5相对于0°应变片材料力学课程实验报告四、计算B、D点实测时的主应力和主方向五、计算B、D点理论主应力和主方向六、思考题 1.求出实测主应力、主方向与理论主应力、主方向的相对误差。
材料力学弯曲正应力实验报告.doc

台州学院
机械工程学院实验报告班级学号姓名
实验课程:材料力学
实验项目:纯弯曲梁的正应力实验
实验日期:年月日
实验三纯弯曲梁的正应力实验
实验地点:实验日期:报告人:指导教师:室温:小组成员:
一、实验目的:
二、实验设备及仪器
三、绘制电测梁的弯曲实验装置简图和弯矩图
四、梁的基本参数及电阻应变片规格
1)实验梁尺寸及参数
五、实验数据
注:算得表中每上下相邻数据差后,按对应顺序填入此表,然后求出每竖栏数据的算术平均值。
六、数据处理与计算
1) 各点正应力增量实i σ∆和理论值理i σ∆及相对误差
2)绘出实验应力值和理论应力值的分布图
(分别以横坐标轴表示各测点的应力σi实和σi理,以纵坐标轴表示各测点距梁中性层位置y i,选用合适的比例绘出应力分布图)
七、思考题
1)影响实验结果准确性的主要因素是什么?
2)据实验结果解释梁弯曲时横截面上正应力分布规律。
3)实验时没有考虑梁的自重,会引起误差吗?为什么?
4)梁弯曲的正应力公式并未涉及材料的弹性模量E,而实测应力值的计算却用上了弹性模
量E,为什么?。
实验四 纯弯曲梁正应力测定试验

实验四 纯弯曲梁正应力测定试验一、实验目的1. 掌握电测法测定应力的基本原理和电阻应变仪的使用。
2. 验证梁的理论计算中正应力公式的正确性,以及推导该公式时所用假定的合理性。
二、试验原理梁弯曲理论的发展,一直是和实验有着密切的联系。
如在纯弯曲的条件下,根据实验现象,经过判断,推理,提出了如下假设:梁变形前的横截面在变形后仍保持为平面,并且仍然垂直于变形后梁的轴线,只是绕截面内的某一轴旋转了一定角度。
这就是所说的平面假设。
以此假设及单向应力状态假设为基础,推导出直梁在纯弯曲时横截面上任一点的正应力公式为 y I M z=σ (4-1) 式中:M--横截面上的弯矩;I z —横截面轴惯性矩;Y —所求应力点矩中性轴的距离。
整梁弯曲试验采用矩形截面的低炭钢单跨简支梁,梁承受荷载如图4-1所示。
图4-1 整梁弯曲试验装置 在这种载荷的作用下,梁中间段受纯弯曲作用,其弯矩为Fa ,而在两侧长度各为a 的两段内,梁受弯曲和剪切的联合作用,这两段的剪力各为±F 。
实验时,在梁纯弯曲段沿横截面高度自上而下选八个测点,在测点表面沿梁轴方向各粘贴一枚电阻应变片,当对梁施加弯矩M 时,粘贴在各测点的电阻应变片的阻值将发生变化。
从而根据电测法的基本原理,就可测得各测点的线应变值εj (角标j 为测点号,j=1,2,3, …,8)。
由于各点处于单向应力状态,由虎克定律求得各测点实测应力值R 实j ,即 j j E εσ=实梁表面的横向片是用来测量横向应变的,可用纵向应变与横向应变的关系求得横向变形系数μ值。
所谓叠梁,是两根矩形截面梁上下叠放在一起,两界面间加润滑剂,如图3-2所示。
两根梁的材料可相同,也可不同;两根梁的截面高度尺寸可相同,亦可相异。
只要保证在变形时两梁界面不离开即可。
图4-2 所示的叠梁,在弯矩M 的作用下,可以认为两梁界面处的挠度相等,并且挠度远小于梁的跨度;上下梁各自的中性轴,在小变形的前提下,各中性层的曲率近似相等。
纯弯曲实验报告

Page 1 of 10材料力学》课程实验报告纸实验二:梁的纯弯曲正应力试验实验目的1、 测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高 度变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即 横截面上正应力的大小沿高度线性分布。
2、 学习多点静态应变测量方法。
二:实验仪器与设备 :① 贴有电阻应变片的矩形截面钢梁实验装置 ② DH3818静态应变测试仪1三、实验原理(1)受力图主梁材料为钢梁,矩形截面,弹性模量 E=210GPa 高, 度 h=40.0mm ,宽度b=15.2mm 。
旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的 传递,分解为大小相等的两个集中力分别作用于主梁的 C 、D 截面。
对主梁进行 受力分析,得到其受力简图,如图 1 所示。
(2)内力图分析主梁的受力特点,进行求解并画出其内力图,我们得到 CD 段上的剪力为零,而弯矩则为常值,因此主梁的 CD 段按理论描述,处于纯弯曲状态。
主梁 的内力简图,如图 2 所示。
材料力学》课程实验报告纸Page 2 of 10(4)理论正应力根据矩形截面梁受纯弯矩作用时, 对其变形效果所作的平面假设, 即横截面 上只有正应力,而没有切应力(或 0 ),得到主梁纯弯曲 CD 段横截面上任一 高度处正应力的理论计算公式为M y i i 理论 IIz其中, M 为 CD 段的截面弯矩(常值) , I z 为惯性矩, y i 为所求点至中性轴的距 离。
(5)实测正应力测量时,在主梁的纯弯曲 CD 段上取 5 个不同的等分高度处( 1、2、3、4、 5),沿着与梁的纵向轴线平行的方向粘贴 5 个电阻应变片,如图 4所示。
在矩形截面梁上粘贴上如图 5.3所示的 2组电阻应变片,应变片 1-5 分别贴在 横力弯曲区, 6-10 贴在纯弯曲区,同一组应变片之间的间隔距离相等。
3)弯曲变形效果图(纵向剖面)材料力学》课程实验报告纸Page 3 of 10根据应变电测法的基本原理, 电阻应变片粘贴到被测构件表面, 构件在受到 外载荷作用,发生变形,应变片因感受测点的应变,而同步发生变形,从而自身 的电阻发生变化。
梁的弯曲正应力实验报告总结

梁的弯曲正应力实验报告总结梁的弯曲正应力实验是力学实验中的一项重要实验,通过该实验可以了解梁的弯曲变形规律和弯曲正应力的计算方法。
本文将对梁的弯曲正应力实验进行总结。
一、实验原理梁的弯曲正应力实验是通过在梁上施加一定的弯曲力,使梁发生弯曲变形,然后通过测量梁的变形量和力的大小,计算出梁的弯曲正应力。
梁的弯曲正应力可以用公式σ=M*y/I来计算,其中M为弯矩,y为梁上某一点到中性轴的距离,I为梁的截面惯性矩。
二、实验步骤1. 准备工作:将实验室内的环境调整到稳定状态,准备好实验所需的仪器和材料。
2. 实验装置:将梁放置在实验台上,将弯曲力施加在梁的一端,另一端固定在实验台上。
3. 测量变形量:通过测量梁的变形量,确定梁上某一点到中性轴的距离y。
4. 测量力的大小:通过测量施加在梁上的力的大小,确定弯矩M。
5. 计算弯曲正应力:根据公式σ=M*y/I,计算出梁的弯曲正应力。
三、实验结果通过实验,我们得到了梁的弯曲正应力的计算结果。
在实验中,我们可以通过改变施加在梁上的力的大小和位置,来观察梁的弯曲变形规律和弯曲正应力的变化情况。
实验结果表明,梁的弯曲正应力与施加在梁上的力成正比,与梁的截面惯性矩成反比。
四、实验分析通过梁的弯曲正应力实验,我们可以了解到梁的弯曲变形规律和弯曲正应力的计算方法。
在实际工程中,梁的弯曲正应力是一个非常重要的参数,它可以用来评估梁的强度和稳定性。
因此,对于工程师和设计师来说,了解梁的弯曲正应力的计算方法是非常必要的。
五、实验结论通过本次梁的弯曲正应力实验,我们得到了梁的弯曲正应力的计算结果。
实验结果表明,梁的弯曲正应力与施加在梁上的力成正比,与梁的截面惯性矩成反比。
因此,在实际工程中,我们需要根据梁的实际情况来选择合适的材料和截面形状,以保证梁的强度和稳定性。
梁的弯曲正应力实验是力学实验中的一项重要实验,通过该实验可以了解梁的弯曲变形规律和弯曲正应力的计算方法。
在实际工程中,了解梁的弯曲正应力的计算方法是非常必要的,可以帮助我们评估梁的强度和稳定性,从而保证工程的安全和可靠性。
纯弯曲梁的正应力测定的实验报告

贴片位置
b
8
y3
0
h
16
y2(y4)
a
200
y1(y5)
3应变读数记录
读数A
应变片号
载荷
1
2
3
4
A
0
120
567
168
637
92
4500
0
7449
91
4
522
606
4500
7481
8
120
461
184
576
92
4500
0
7510
89
12
399
545
4500
7540
16
120
338
185
514
三.实验原理及方法:
梁受纯弯曲时,根据平面假设和纵向纤维间无挤压的假设,得纯弯曲时正应力公式:
图1
在矩形截面梁纯弯曲部分(见图1,CD段),贴有四个应变片,其中3在中性层上,1,2和4,5分别贴在离中性层为梁高的1/4及上下表面,加载后,梁弯曲变形,由应变仪可测出个测量点的纵向应变 ,可确定横截面上正应力分布规律。
2:学习电测法。
主要实验仪器:1:弯曲试验装置。
2:电阻应变仪和预调平衡箱。
主要实验步骤:
一:取一矩形截面的等截面剪支梁AB,其上作用两个对称的集中力P/2,未加载前,在中间CD段表面画些平行于梁轴线的纵向线和垂直于梁轴线的横向线。加载后在梁的AC和DB两段内,各横截面上有不同的剪力和弯矩M。
二;在矩形截面梁弯曲部分,贴有四个应变片,其中3在中性层上,1,2,4,5分别在离中性层为梁高的1/4及上下表面,加载后,梁弯曲变形,由应变仪可测出各测量点的纵向应变,可确定横截面上的应变分布规律。
纯弯曲梁正应力实验报告-纯弯曲实验报告思考题

纯弯曲梁正应力实验报告材料力学课程实验报告纯弯曲梁正应力实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理梁试件的弹性模量11101.2EPa 梁试件的横截面尺寸h ㎜b ㎜支座到集中力作用点的距离d ㎜各测点到中性层的位置1y ㎜2y ㎜3y ㎜4y ㎜5y ㎜6y ㎜材料力学课程实验报告载荷N 静态电子应变仪读数106 1点2点3点4点5点6点F F 读数1 增量1 读数2 增量2 读数3 增量3 读数4 增量4 读数5 增量5 读数6 增量6 F 1 2 3 4 5 6 应变片位置1点2点3点4点5点6点实验应力值/MPa 理论应力值/MPa 相对误差/ 泊松比值注表中读数1、2、3、4、5、6为两次实验所得读数的平均值。
F为荷载增量的平均值。
1、2、3、4、5、6为各点应变增量的平均值材料力学课程实验报告四、应力分布图理论和实验的应力分布图画在同一图上五、思考题1.为什么要把温度补偿片贴在与构件相同的材料上2.影响实验结果的主要因素是什么材料力学课程实验报告测定材料E、实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理板试件尺寸试件截面宽b ㎜高h ㎜截面积oA mm2 NF oAFMPa 纵向应变106 横向应变106 1r 2r 3r 1r 2r 3r 材料力学课程实验报告数据处理方法1平均法均均oAFE 均均计算过程2最小二乘法niiniiiE121 niiniii121 计算过程材料力学课程实验报告四、画出关系图理论和实验的关系图画在同一图上平均法理论和实验的关系图最小二乘法理论和实验的关系图五、思考题1.试件尺寸和形式对测定弹性模量E有无影响2.影响实验结果的因素有那些为何要用等量增载法进行实验材料力学课程实验报告圆管扭转应力试验实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理薄壁圆管尺寸外径D ㎜内径d ㎜加力臂长度L ㎜切变模量111082.0G Pa 弹性模量11101.2E Pa 泊松比28.0 电阻片号kNPo1.0 kNPn1.1 两次读数平均值两次读数平均值1 2 3 4 5 6 注由于纯扭实验中004545故045采用1、4、3、6的绝对值加以平均表中电阻号1、4相对于45°应变片3、6相对于-45°应变片2、5相对于0°应变片材料力学课程实验报告四、计算B、D点实测时的主应力和主方向五、计算B、D点理论主应力和主方向六、思考题1.求出实测主应力、主方向与理论主应力、主方向的相对误差。
纯弯曲梁正应力实验报告-纯弯曲实验报告思考题

纯弯曲梁正应力实验报告材料力学课程实验报告纯弯曲梁正应力实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理梁试件的弹性模量11101.2EPa 梁试件的横截面尺寸h ㎜b ㎜支座到集中力作用点的距离d ㎜各测点到中性层的位置1y ㎜2y ㎜3y ㎜4y ㎜5y ㎜6y ㎜材料力学课程实验报告载荷N 静态电子应变仪读数106 1点2点3点4点5点6点F F 读数1 增量1 读数2 增量2 读数3 增量3 读数4 增量4 读数5 增量5 读数6 增量6 F 1 2 3 4 5 6 应变片位置1点2点3点4点5点6点实验应力值/MPa 理论应力值/MPa 相对误差/ 泊松比值注表中读数1、2、3、4、5、6为两次实验所得读数的平均值。
F为荷载增量的平均值。
1、2、3、4、5、6为各点应变增量的平均值材料力学课程实验报告四、应力分布图理论和实验的应力分布图画在同一图上五、思考题1.为什么要把温度补偿片贴在与构件相同的材料上2.影响实验结果的主要因素是什么材料力学课程实验报告测定材料E、实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理板试件尺寸试件截面宽b ㎜高h ㎜截面积oA mm2 NF oAFMPa 纵向应变106 横向应变106 1r 2r 3r 1r 2r 3r 材料力学课程实验报告数据处理方法1平均法均均oAFE 均均计算过程2最小二乘法niiniiiE121 niiniii121 计算过程材料力学课程实验报告四、画出关系图理论和实验的关系图画在同一图上平均法理论和实验的关系图最小二乘法理论和实验的关系图五、思考题1.试件尺寸和形式对测定弹性模量E有无影响2.影响实验结果的因素有那些为何要用等量增载法进行实验材料力学课程实验报告圆管扭转应力试验实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理薄壁圆管尺寸外径D ㎜内径d ㎜加力臂长度L ㎜切变模量111082.0G Pa 弹性模量11101.2E Pa 泊松比28.0 电阻片号kNPo1.0 kNPn1.1 两次读数平均值两次读数平均值1 2 3 4 5 6 注由于纯扭实验中004545故045采用1、4、3、6的绝对值加以平均表中电阻号1、4相对于45°应变片3、6相对于-45°应变片2、5相对于0°应变片材料力学课程实验报告四、计算B、D点实测时的主应力和主方向五、计算B、D点理论主应力和主方向六、思考题1.求出实测主应力、主方向与理论主应力、主方向的相对误差。
纯弯曲梁的正应力实验报告

姓名:班级:学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:σ=My/I z为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。
采用增量法加载,每增加等量荷载△P(500N)测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i,从而求出应力增量:σ实i=E△ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。
四、原始数据:五、实验步骤:1.打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。
3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。
按清零键,使测力计显示零。
4.应变仪调零。
按下“自动平衡”键,使应变仪显示为零。
5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。
用应变仪右下角的通道切换键来显示第5测点的读数。
以后,加力每次500N,到3000N 为止。
6.读完3000N应变读数后,卸下载荷,关闭电源。
六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P=500N弯矩增量△M=△P/2×a应力理论值计算σ理i=∆M∙YiI z(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯弯梁弯曲的应力分析实验报告
一、实验目的
1. 梁在纯弯曲时横截面上正应力大小和分布规律
2. 验证纯弯曲梁的正应力计算公式
3. 测定泊松比m
4. 掌握电测法的基本原理
二、实验设备
多功能实验台,静态数字电阻应变仪一台,矩形截面梁,游标卡尺三、实验原理
1. 测定弯曲正应力
本实验采用的是用低碳钢制成的矩形截面试件,实验装置简图如下所示。
计算各点的实测应力增量公式:,,,E,,实i实i
,Myi,,,计算各点的理论应力增量公式: iIz
2.测定泊松比
',,计算泊松比数值: ,,
四、实验步骤
1.测量梁的截面尺寸h和b,力作用点到支座的距离以及各个测点到中性层的距离;
2.根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即:
2bhF,,,,,然后确定量程,分级载荷和载荷重量; max3a
3.接通应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到应变仪的相应通道,调整应变仪零点和灵敏度值;
4.记录荷载为F的初应变,以后每增加一级荷载就记录一次应变值,直至加到 ; Fn
5.按上面步骤再做一次。
根据实验数据决定是否再做第三次。
五、实验数据及处理
11E,2.1,10梁试件的弹性模量Pa
梁试件的横截面尺寸, 40.20 ?,, 20.70 ? hb
支座到集中力作用点的距离, 90 ? d
各测点到中性层的位置:, 20.1 ? , 10.05 ? , 0 ? yyy312
, 10.05 ? , 20.1 ? yy54
,6静态电子应变仪读数 (,10)载荷(N)
1点 2点 3点 4点 5点 6点
读数增量读数增量读数增量读数增量读数增量增量读数
F,F ,,,,,,,,, ,,,,,,,,,335566112244
0 0 0 0 0 0 0
492 -27 -12 1 16 26 -10 492 -27 -12 1 16 26 -10
506 -31 -14 1 16 28 -8 998 -58 -26 2 32 54 -18
450 -10 -6 3 8 15 -4 1448 -68 -32 5 40 69 -22
262 -20 -6 1 8 12 -2
,,,,,, ,,,,,,,F 3561241710 -88 -38 6 48 81 -24
427.5 -22 -9.5 1.5 12 20.25 -6
应变片位置 1点 2点 3点 4点 5点 6点
实验应力值/MPa -4.62 -2.00 0.32 2.52 4.25 -1.26
理论应力值/MPa -3.45 -1.73 0 1.73 3.45
相对误差/% 33.9% 23.9% 45.7% 23.2%
,, 0.3 泊松比值
六、应力分布图(理论和实验的应力分布图画在同一图上)
y-σ应力分布曲线
30
20
10
δ理0δ实012345截面高度y-10
-20
-30
应力σ
七、思考题
1.为什么要把温度补偿片贴在与构件相同的材料上? 答:应变片是比较高精度的传感元件,必须考虑温度的影响,所以需要把温度补偿片贴在与构件相同的材料上,来消除温度带来的应变。
2.影响实验结果的主要因素是什么?
答:影响本实验的主要因素:实验材料生锈,实验仪器精度以及操作的过程。