2015年职高数学高考试题

合集下载

山西省2019-2015近五年高职高考对口升学考试(数学)试题及答案

山西省2019-2015近五年高职高考对口升学考试(数学)试题及答案

山西省近五年对口升学高考2019-2015数学真题目录山西省2019年对口升学高考数学试题 (1)参考答案 (3)山西省2018年对口升学高考数学试题 (4)参考答案 (6)山西省2017年对口升学高考数学试题 (7)参考答案 (10)山西省2016年对口升学考试数学试题 (11)参考答案 (14)山西省2015年对口升学高考数学试题 (15)参考答案 (17)山西省2019年对口升学高考数学试题本试卷分选择题和非选择题两部分,满分100分,考试时间90分钟。

一、单项选择题(本大题共10小题,每小题3分,共计30分)1.设A={x |x ≥0}则下列正确的是()A.{}A∈0 B.A⊂0 C.A∈∅ D.A⊂∅2.下列函数在定义域内为增函数的是()A.21xy = B.xy 21log = C.xy -=2 D.xy 1=3.已知21log 3=x ,则=x ()A.23x = B.321=x C.x=213 D.321⎪⎭⎫⎝⎛=x 4.已知等差数列的前三项和123=S ,则=2a ()A.4B.3C.12D.85.已知()1,2-=AB ,()4,m BC =,当A 、B 、C 三点共线时,m 的值为()A.2B.-2C.8D.-86.= 60cos ()A.21 B.21- C.23 D.23-7.下列函数为奇函数的是()A.x x y +=2 B.xx y +=3 C.12+=x y D.xy =8.=+4lg 3lg ()A.7lg B.4lg 3lg ⋅ C.12 D.12lg 9.,//,,//βαβα⊥n m 则()A.nm // B.nm ⊥ C.α//n D.β//m10.抛物线12+=y x 的准线方程为()A.45-=x B.43=x C.1-=x D.41-=x 二、填空题(本题共8小题,每题4分,共计32分)1.632aa a ⋅=_____________________.2.()⎩⎨⎧<-≥-=0,10,x x x x x f ,则()()1f f =______________________.3.设0cos >x ,则x 的取值范围为___________________.4.,6021 ===b a b a 则()=-⋅b a a ________________.5.设直线012=+-y x 与01=-+y ax 垂直,则a =________________.6.设正方体的边长为1,则它的外接球的直径为________________.7.平面内有5个点,任意3点都不在同一条直线上,共可以连_____条直线.8.()21101转化为十进制数为___________________.三、解答题(本大题共6小题,共38分)1.(6分)求函数x x x y 2ln 22+--=的定义域.2.(6分)三个数构成等比数列,这三个数的和为14,积为64,求这三个数.3.(6分)在ABC ∆中,1312cos ,54cos ==B A ,求C cos .4.(6分)已知直线b x y +=,圆02222=+-+y x y x 中,b 为何值时,直线与圆相切.5.(6分)某人射击4次,每次射中的概率均为0.6,求他在4次射击中,至少射中2次的概率.6.(8分)已知三角形两边之和为4,这两条边的夹角为60º,求此三角形的最小周长.山西省2019年对口升学高考数学试题数学参考答案一、选择题1-5DACAD,6-10ABDBB 二、填空题1.a2.-23.⎭⎬⎫⎩⎨⎧∈+<<-z k k x k x ,2222ππππ4.0 5.2 6.37.108.13三、解答题1.解:依题意⎩⎨⎧>≥--02022x x x ,解得2≥x ,所求定义域为[)+∞,22.解:因为三个数成等比数列,所以可设这三个数分别为m,mp,mp²于是有m+mp+mp²=14(1)m•mp•mp²=64(2)由(2)得mp=4(3)代入(1)得m+4+4p=14(4)解(3)(4)得m=2p=2或m=8p=1/2于是这三个数分别是2,4,8或8,4,23.解:2235sin 1cos 1cos 513A AB B =-==-()6533)sin sin cos (cos )cos(]cos[cos -=--=+-=+-=B A B A B A B A C π4.解:圆02222=+-+y x y x 的圆心,半径分别为(1,-1),2由d=r 得:()211)1(122=-++--b,解得4,021-==b b 5.设所求概率为P()()8208.010144=--=P P P 6.设三角形已知两边中一边为x,则另一边为4-x,第三边长为()4231612360cos )4(2)4(2222+-=+-=---+x x x x x x x 当x=2时,第三边长最小为2,于是所求三角形最小周长为4+2=6.山西省2018年对口升学高考数学试题一、单项选择题(本题共10题,每小题3分,共30分)1.设全集U=R ,集合A={X I IX-1I ≤2},B={X I X ≤0},则A ∩(C U B)=()A.[0,3]B(0,3]C[-1,0]D(-1,0]2.在等比数列{a n }中,已知a 1=3,a 2=6,则a 4=()A.12B.18C.24D.483.lg3+lg5=()A.lg8B.lg3*lg5C.15D.lg154.下列函数为偶函数的是()A.y=sinxB.y=sin(π+x)C.y=sin(π-x)D.y=sin(2π-x)5.下列函数在定义域内为增函数的是()A.Y=x 0.5B.y=log 0.5xC.y=2-xD.y=x16.已知向量a =(m,-1),b =(m,6-m),而且b a ⊥则m=()A.-3B.2C.-3或2D.-2或37.已知log 3x=2,则()A.X 2=3B.X=23C.32=XD.3X =28.如果角α的终边过点P (-3,4)则cos α=()A.-3/5B.3/5C.-4/5D.4/59.设直线m 平行于平面α,直线n 垂直于平面β,而且α⊥β,n ⊄α则必有()A.m//nB.m ⊥nC.m ⊥βD.n//α10.已知F 1,F 2是椭圆191622=+Y X 的两焦点,过点F 2的直线交椭圆于A,B 两点,若二、填空题(共8题,每小题4分共计32分)1.=+-3324)271(2.设⎩⎨⎧<-≥-=0,0,)(x x x x x f 则=-+)1()1(f f 3.已知曲线y=2sin(x-3π)与直线y=α有交点,则α的取值范围是4.已知向量a ,b 满足I a I=I b I=I a -b I=1,则=∙b a 5.如果直线x+ay+3=0与直线2x+y-3=0垂直,则a=6.一个圆锥高为4,母线长为5,则该圆锥的体积是7.设(1-2x )5=a 0+a 1x+…+a 5x 5,则a 0+a 1+a 2+a 3+a 4+a 5=8.十进制15的二进制是三.解答题(本大题共6小题,共38分)1.(6分)求函数)(2x 2ln )(X x f -=的定义域和最大值2.(6分)设{an}是公差为正数的等差数列a 1=1,而且a 1,a 2,a 5成等比,求通项公式a n3.(6分)已知2cos sin 3=-αα,求sin α的值4.(6分)已知过原点的直线l 与圆x 2+(y-5)2=16相切,求直线l 的方程5.(6分)从0,1,2,3这四个数中任取两个数a ,b (a ≠b )求随机变量X=ab 的分布列6.(8分)已知在∆ABC 中,∠BAC=1200,BC=3,AC=1,(1)求∠B;(2)若D 为BC 边上一点,DC=2BD ,求AD 的长度。

2015年广东省3+证书高职高考数学试卷〖含答案〗(真题)和答案

2015年广东省3+证书高职高考数学试卷〖含答案〗(真题)和答案

22. (本小题满分 12 分)
已知函数
f
(x)
a
cos(
x
6
)
的图像经过点
2
,
1 2
.
(1)求 a 的值;
(2)若 sin 1 , 0 ,求 f ( ) .
3
2
23.(本小题满分 14 分)
在等差数列an 中,已知 a4 9, a6 a7 28 .
(1)求数列 an 的通项公式;
16. 若等比数列an 满足 a1 4 , a2 20 ,则an 的前 n 项和 an
.
17.质检部门从某工厂生产的同一批产品中随机抽取100 件进行质检,发现其中有 5
件不合格品,由此估计这批产品中合格品的概率是
.
18.已知向量 a 和 b 的夹角为 3 ,且 a 2 , b 3 ,则 a b
只有一项是符合题目要求的。)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



1. 设集合 M 1, 4 , N 1,3,5 ,则 M N=
(
).
A.0
B. 1
C. 0,1, 2
D. 1,0,1, 2
2. 函数 f (x) 1 x 的定义域是
(
).
A. ,1
B. 1,
C. ,1
D. (, )
3. 不等式 x2 7x 6 0 的解集是
(
).
A. 1,6
B. ,1 6,
C.
D. (, )
4. 设 a 0 且 a 1,x, y 为任意实数,则下列算式错误的是
(
).
A. a0 1
B. ax ay axy

高考职高数学试卷

高考职高数学试卷

考试时间:120分钟总分:100分一、选择题(每题5分,共30分)1. 已知函数$f(x) = 2x - 3$,则函数的图像是()A. 上升的直线B. 下降的直线C. 水平直线D. 抛物线2. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)3. 已知等差数列的前三项分别为1,a,b,且a+b=5,则数列的公差是()A. 2B. 3C. 4D. 54. 如果等比数列的第一项为2,公比为$\frac{1}{2}$,则数列的第5项是()A. $\frac{1}{16}$B. $\frac{1}{8}$C. $\frac{1}{4}$D. 25. 下列函数中,是奇函数的是()A. $f(x) = x^2 + 1$B. $f(x) = |x|$C. $f(x) = x^3$D. $f(x) = \sqrt{x}$二、填空题(每题5分,共25分)6. 已知$3^x = 27$,则$x=$ __________。

7. 在直角坐标系中,点P(-3,4)到原点O的距离是 __________。

8. 等差数列{an}的前n项和为$S_n = 4n^2 - 3n$,则第5项an= __________。

9. 若函数$f(x) = x^2 - 4x + 3$的图像与x轴有两个交点,则其判别式$\Delta=$ __________。

10. 在三角形ABC中,角A、B、C的对边分别为a、b、c,且$a^2 + b^2 - c^2 = 12$,则角C的余弦值cosC= __________。

三、解答题(共45分)11. (15分)已知函数$f(x) = x^2 - 2ax + a^2$,其中a是常数。

(1)求函数$f(x)$的图像与x轴的交点坐标;(2)若$f(x)$在x=1时取得最小值,求a的值。

12. (15分)已知数列{an}是等比数列,且$a_1 = 2$,$a_3 = 8$。

河北省2015年对口高考数学试题

河北省2015年对口高考数学试题
2 2 2 6. a (1,2), 向量 b (2, m) ,若 a b ,则 2a 3b 等于( ������
) A. (-5,7) B. (-4,7) C. (-1,7) D. (-4,5) 的最小正周期为( ) 7.函数 y sin x cos x A. B. C. 3 D. 2
������ +1 ������−1
1 x
则f
������ +1 ������−1
=___________.
3 19.若 ( ) 9 x ,则 x 的取值范围为_________________. 3
9 x2 lg( x 3)的定义域是__________________. 4������ ������������������3 5 − 2 + ������������������9 25 + ������������������ + ������ 0 =______. 3
20.已知 f ( x) ax3 bx 2, 且 f 3 17, 则 f (3) _____________. 21.在等差数列{an}中,������1 + ������2 + ������3 = 36 则������2 =_________. 22.设 a b 6, a 3, b 2 2, 则 a, b ____. 24.过直线 x+y-6=0 与 2x-y-3=0 的交点,且与直线 3x+2y-1=0 平行的直线方程为 _____________. 25.lo������3 0.3, 30.3 , 0.33 按从小到大排列的顺序是_______________. 26.设直线 y=x+2 与抛物线 y = ������ 2 交于 A、B 两点,则线段 AB 的中点坐标为 _________. 27. 设直线 a 与 b 是异面直线, 直线 c∥a, 则直线 b 与直线 c 的位置关系是_________. 28.若△ABC 满足������2 − ������ 2 + ������ 2 − ������������ = 0,则∠B=___________. 29.已知平面α与β 平行,直线 l 被两平面截得的线段长为 63cm,直线 l 与平面所 成的角是 60°,则这两平面间的距离为_______. 30.从数字 1,2,3,4,5 中任取三个不同的数,可以作为直角三角形三条边的概 率是_____________. 三、解答题: (本大题共 7 小题,共 45 分.请在答题卡中对应题号下面指定的位置 作答,要写出必要的文字说明和演算步骤) 31. (5 分)已知集合 A {x | x 2 x 6 0}, B {x || x m | 4 ,若 A B ,求 m 的取值范 围。 32. (8 分)某农场计划使用可以做出 30 米栅栏的材料,在靠墙(墙足够长)的位 置围出一块矩形的菜园(如图) ,问: (1)要使菜园的面积不小于 100 平方米,试 确定与墙平行栅栏的长度范围; (2)与墙平行栅栏的长为多少时,围成的菜园面积 最大?最大面积为多少? 33 . ( 6 分 ) 在 递 增 的 等 比 数 列 ������������ 中 , sn 为 数 列 前 n 项 和 , 若 ������1 + ������������ = 17, ������2 ������������−1 = 16, ������������ = 31, 求 n 及公比 q. 34. (7 分) 已知 a (cos , 1), 向量 b (sin ,2) , 当 a / / b 时, 求3 cos 2 θ + 2 sin 2������的值.35. (6 分)求以椭圆 x y 1 的右焦点为圆心,且与双曲线 x y 1 的渐近线相切的圆的标

职高数学高考试题及答案

职高数学高考试题及答案

职高数学高考试题及答案题目一:选择题(每题4分,共25题)1. 已知函数$f(x) = 2x^2 + 3x - 4$,则$f(-1)$的值等于()。

A. -8B. -7C. -6D. -52. 在等差数列$\{a_n\}$中,已知$a_1 = 5$,$d = 2$,若$a_{10} = 23$,则$a_2$的值等于()。

A. 9B. 10C. 11D. 123. 函数$f(x) = a^x$($a > 0$)的定义域为全体实数,当$a > 1$时,$f(x)$是()函数。

A. 增函数B. 减函数C. 常数函数D. 正值函数4. 若方程$x^3 - mx^2 + (m - 4)x - 4 = 0$的一个实根是4,则$m$的值等于()。

A. 2B. 4C. 6D. 85. 在等差数列$\{a_n\}$中,已知$a_5 - a_3 = 8$,若$a_2 = 7$,则$d$的值等于()。

A. 1B. 2C. 3D. 46. 抛物线$y = ax^2 + bx + c$的图象关于直线$x = 1$对称,则$a + b + c$的值等于()。

A. -1B. 0C. 1D. 27. 在等差数列$\{a_n\}$中,已知$a_1 = 3$,$a_n = 17$,$S_n = 85$,则$n$的值等于()。

A. 5B. 6C. 7D. 88. 若$\log_2{x} = \log_{\frac{1}{2}}{y}$,则$x$与$y$的关系是()。

A. $x = \frac{1}{y}$B. $x = y$C. $xy = 1$D. $x + y = 0$9. 在等差数列$\{a_n\}$中,$a_1 = 3$,$a_2 = 5$,若$a_1 + a_2 +\ldots + a_n = 2n^2 + n$,则$n$的值等于()。

A. 3B. 4C. 5D. 610. 在平面直角坐标系中,点$A(1, 2)$到直线$2x - y + 3 = 0$的距离等于()。

2015年高考数学试卷附详细答案

2015年高考数学试卷附详细答案

2015年高考数学试卷一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•原题)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2] C.(1,2)D.[1,2]2.(5分)(2015•原题)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•原题)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•原题)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•原题)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•原题)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•原题)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinxB.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|8.(5分)(2015•原题)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•原题)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•原题)已知函数f(x)=,则f(f(﹣3))= ,f(x)的最小值是.11.(6分)(2015•原题)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•原题)若a=log43,则2a+2﹣a= .13.(4分)(2015•原题)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•原题)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•原题)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0= ,y0= ,|= .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•原题)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•原题)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•原题)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•原题)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•原题)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年高考数学试卷(理科)答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(原题卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由析:已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.考点:众数、中位数、平均数.专题: 概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7.考点:伪代码.专题: 图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m ﹣n的值为﹣3.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2).考点: 指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.考点:两角和与差的正切函数.专题: 三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和"可得a n=.再利用“裂项求和”即可得出.解答:解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和"方法、“裂项求和"方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.考点:双曲线的简单性质.专题: 计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.考点:根的存在性及根的个数判断.专题: 综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g(x )与φ(x)=﹣f (x )﹣1的图象如图所示,图象有两个交点;所以方程|f (x )+g(x )|=1实根的个数为4. 故答案为:4. 点评:本题考查求方程|f (x )+g (x )|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k •a k+1)的值为.考点:数列的求和. 专题:等差数列与等比数列;平面向量及应用. 分析: 利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出. 解答解:=+:=++++=++ =++,∴(a k •a k+1)=+++++++…+++++++…+=+0+0 =.故答案为:9.点评: 本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤) 15.(14分)(2015•江苏)在△ABC 中,已知AB=2,AC=3,A=60°. (1)求BC 的长; (2)求sin2C 的值.考点: 余弦定理的应用;二倍角的正弦. 专题: 解三角形. 分析:(1)直接利用余弦定理求解即可. (2)利用正弦定理求出C 的正弦函数值,然后利用二倍角公式求解即可. 解答:解:(1)由余弦定理可得:BC 2=AB 2+AC 2﹣2AB •ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB <BC ,∴C 为锐角, 则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点: 直线与平面平行的判定;直线与平面垂直的性质.专题: 证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2。

职高高考数学试卷及答案

职高高考数学试卷及答案

考试时间:120分钟满分:150分一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若函数f(x) = ax^2 + bx + c的图像开口向上,则下列说法正确的是:A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b > 0, c < 0D. a < 0, b < 0, c > 02. 已知等差数列{an}的首项为2,公差为3,则第10项an的值为:A. 29B. 30C. 31D. 323. 下列函数中,在区间(-∞,+∞)上为增函数的是:A. y = x^2 - 2x + 1B. y = -x^2 + 4x - 3C. y = 2x - 3D. y = x^3 - 3x^2 + 4x - 14. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 75°B. 105°C. 120°D. 135°5. 已知等比数列{bn}的首项为3,公比为2,则第5项bn的值为:A. 24B. 48C. 96D. 1926. 下列各式中,正确的是:A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^27. 若直线l的方程为y = 2x + 1,则l的斜率为:A. 2B. -2C. 1D. -18. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则圆的半径为:A. 1B. 2C. 3D. 49. 在直角坐标系中,点A(1,2)关于y轴的对称点为:A.(-1,2)B.(1,-2)C.(-1,-2)D.(1,2)10. 若等差数列{an}的前n项和为Sn,且S3 = 12,S5 = 30,则首项a1为:A. 2B. 4C. 6D. 8二、填空题(本大题共5小题,每小题10分,共50分。

2015年上海春季高考数学试卷

2015年上海春季高考数学试卷

2015年上海市普通高等学校春季招生统一考试(暨上海市普通高中学业水平考试)数学试卷考生注意:1.本试卷两考合一,春季高考=学业水平考+附加题;春季高考,共36道试题,满分150分.考试时间130分钟(学业水平考,共29题,满分120分.考试时间90分钟;附加题共7题,满分30分.考试时间40分钟).2.本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚的填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.第I 卷一、填空题(本大题共有12题,满分36分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分.1.设全集{1,2,3}U =.若{1,2}A =,则U A =ð . 2.计算:1i i += (i 为虚数单位).3.函数sin(2)4y x π=+的最小正周期为 .4.计算:223lim 2n n n n→∞-=+ .5.以点(2,6)为圆心、1为半径的圆的标准方程为 .6.已知向量(1,3)a =r ,(,1)b m =-r.若a b ⊥r r ,则m = . 7.函数[]224,0,2y x x x =-+∈的值域是 .8.若线性方程组的增广矩阵为0201a b ⎛⎫ ⎪⎝⎭、解为21x y =⎧⎨=⎩,则a b += . 9.方程lg(21)lg 1x x ++=的解为 .10.在921x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项的值为 . 11.用数字1、2、3、4、5组成无重复数字的三位数,其中奇数的个数为 (结果用数值表示).12.已知点(1,0)A ,直线:1l x =-,两个动圆均过A 且与l 相切,其圆心分别为1C 、2C .若动点M满足22122C M C C C A =+uuuu r uuuu r uuu r,则M 的轨迹方程为 .二、选择题(本大题共有12题,满分36分)每题有且只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得3分,否则一律得零分. 13.若0a b <<,则下列不等式恒成立的是( ) (A )11a b>(B )a b ->(C )22a b > (D )33a b <14.函数()21y x x =≥的反函数为( )(A ))1y x =≥ (B ))1y x =≤- (C ))0y x =≥ (D ))0y x =≤ 15.不等式2301x x ->-的解集为( )(A )3,4⎛⎫-∞ ⎪⎝⎭(B )2,3⎛⎫-∞ ⎪⎝⎭ (C )()2,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭ (D )2,13⎛⎫ ⎪⎝⎭16.下列函数中,是奇函数且在()0,+∞单调递增的为 ( ) (A )2y x =(B )13y x =(C )1y x -= (D )12y x-=17.直线3450x y --=的倾斜角为 ( )(A )3arctan 4 (B )3arctan 4π- (C )4arctan 3 (D )4arctan 3π-18.底面半径为1、母线长为2的圆锥的体积是 ( )(A )2π(B (C )23π (D )319.以点()3,0-和()3,0为焦点、长轴长为8的椭圆方程为( )(A )2211625x y += (B )221167x y += (C )2212516x y += (D )221716x y +=20.在复平面上,满足1z z i -=+(i 为虚数单位)的复数z 所对应的点的轨迹为( ) (A )椭圆 (B )圆 (C )线段 (D )直线 21.若无穷等差数列{}n a 的首项10a >,公差0d <,{}n a 的前n 项和为n S ,则( ) (A )n S 单调递减 (B )n S 单调递增 (C )n S 有最大值 (D )n S 有最小值22.已知0a >,0b >.若4a b +=,则( ) (A )22a b +有最小值 (B(C )11a b+有最大值(D23.组合数()12**22,,m m m n n n C C C n m m N n N --++≥≥∈∈恒等于( )(A )2m n C + (B )12m n C ++ (C )1m n C + (D )11m n C ++ 24.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x x x b =++>,其中,a b R ∈.下列说法正确的是( )(A )对任意a ,1P 是2P 的子集;对任意b ,1Q 不是2Q 的子集 (B )对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集 (C )存在a ,使得1P 不是2P 的子集;对任意b ,1Q 不是2Q 的子集 (D )存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集三、解答题(本大题共有8题,满分78分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 25.(本题满分8分)如图,在正四棱柱1111ABCD A B C D -中,1AB =,1D B 和平面ABCD所成角的大小为1A26.(本题满分8分)已知a是实数,函数24()x axf xx++=是奇函数,求()f x在()0,+∞上的最小值及取到最小是时x的值.27.(本题满分8分)某船在海平面A处测得灯塔B在北偏东30︒方向,与A相距6.0海里.船由A向正北方向航行8.1海里达到C处,这时灯塔B与船相距多少海里(精确到0.1海里)?B在船的什么方向(精确到1︒)?28.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.已知点1F 、2F 依次为双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,126F F =,()10,B b -, ()20,B b .(1)若a =(3,4)d =-u r为方向向量的直线l 经过1B ,求2F 到l 的距离; (2)若在双曲线C 上存在点P ,使得122PB PB ⋅=-uuu r uuu r,求b 的取值范围.第II 卷一、选择题(本大题满分9分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得3分,否则一律得0分. 1.对于集合A B 、,“A B ≠”是“A B A B ⊂≠I U ”的( )(A)充分非必要条件 (B )必要非充分条件 (C)充要条件 (D )既非充分又非必要条件2.对于任意实数a 、b ,2()a b kab -≥均成立,则实数k 的取值范围是( ) (A) {}4,0- (B )[]4,0- (C) ](0-∞, (D )][(40-∞-∞U ,,+)3.已知数列{}n a 满足413n n n n a a a a ++++=+(n N *∈),那么( )(A) {}n a 是等差数列 (B ){}21n a -是等差数列 (C) {}2n a 是等差数列 (D ){}3n a 是等差数列二、填空题(本大题满分9分)本大题共有3小题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得0分.4.关于x 的实系数一元二次方程220x px ++=的两个虚数根为1z 、2z ,若1z 、2z 在复平面上对应的点是经过原点的椭圆的两个焦点,则该椭圆的长轴长为 .5.已知圆心为O ,半径为1的圆上有三点A 、B 、C ,若7580OA OB OC ++=u u u r u u u r u u u r r,则BC =u u u r.6.函数()f x 与()g x 的图像拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A ,(1,1)B ,(0,0)O ,(1,1)C --,(0,1)D -五个点,若()f x 的图像关于原点对称的图形即为()g x 的图像,则其中一个函数的解析式可以为 .三、解答题(本大题满分12分)解答本题必须在答题纸相应编号的规定区域内写出必要的步骤. 7. 对于函数()f x 、()g x ,若存在函数()h x ,使得()()()f x g x h x =⋅,则称()f x 是()g x 的 “()h x 关联函数”。

山西省2019-2015近五年高职高考对口升学考试(数学)试题及答案

山西省2019-2015近五年高职高考对口升学考试(数学)试题及答案

山西省近五年对口升学高考2019-2015数学真题目录山西省2019年对口升学高考数学试题 (1)参考答案 (3)山西省2018年对口升学高考数学试题 (4)参考答案 (6)山西省2017年对口升学高考数学试题 (7)参考答案 (10)山西省2016年对口升学考试数学试题 (11)参考答案 (14)山西省2015年对口升学高考数学试题 (15)参考答案 (17)山西省2019年对口升学高考数学试题本试卷分选择题和非选择题两部分,满分100分,考试时间90分钟。

一、单项选择题(本大题共10小题,每小题3分,共计30分)1.设A={x |x ≥0}则下列正确的是()A.{}A∈0 B.A⊂0 C.A∈∅ D.A⊂∅2.下列函数在定义域内为增函数的是()A.21xy = B.xy 21log = C.xy -=2 D.xy 1=3.已知21log 3=x ,则=x ()A.23x = B.321=x C.x=213 D.321⎪⎭⎫⎝⎛=x 4.已知等差数列的前三项和123=S ,则=2a ()A.4B.3C.12D.85.已知()1,2-=AB ,()4,m BC =,当A 、B 、C 三点共线时,m 的值为()A.2B.-2C.8D.-86.= 60cos ()A.21 B.21- C.23 D.23-7.下列函数为奇函数的是()A.x x y +=2 B.xx y +=3 C.12+=x y D.xy =8.=+4lg 3lg ()A.7lg B.4lg 3lg ⋅ C.12 D.12lg 9.,//,,//βαβα⊥n m 则()A.nm // B.nm ⊥ C.α//n D.β//m10.抛物线12+=y x 的准线方程为()A.45-=x B.43=x C.1-=x D.41-=x 二、填空题(本题共8小题,每题4分,共计32分)1.632aa a ⋅=_____________________.2.()⎩⎨⎧<-≥-=0,10,x x x x x f ,则()()1f f =______________________.3.设0cos >x ,则x 的取值范围为___________________.4.,6021 ===b a b a 则()=-⋅b a a ________________.5.设直线012=+-y x 与01=-+y ax 垂直,则a =________________.6.设正方体的边长为1,则它的外接球的直径为________________.7.平面内有5个点,任意3点都不在同一条直线上,共可以连_____条直线.8.()21101转化为十进制数为___________________.三、解答题(本大题共6小题,共38分)1.(6分)求函数x x x y 2ln 22+--=的定义域.2.(6分)三个数构成等比数列,这三个数的和为14,积为64,求这三个数.3.(6分)在ABC ∆中,1312cos ,54cos ==B A ,求C cos .4.(6分)已知直线b x y +=,圆02222=+-+y x y x 中,b 为何值时,直线与圆相切.5.(6分)某人射击4次,每次射中的概率均为0.6,求他在4次射击中,至少射中2次的概率.6.(8分)已知三角形两边之和为4,这两条边的夹角为60º,求此三角形的最小周长.山西省2019年对口升学高考数学试题数学参考答案一、选择题1-5DACAD,6-10ABDBB 二、填空题1.a2.-23.⎭⎬⎫⎩⎨⎧∈+<<-z k k x k x ,2222ππππ4.0 5.2 6.37.108.13三、解答题1.解:依题意⎩⎨⎧>≥--02022x x x ,解得2≥x ,所求定义域为[)+∞,22.解:因为三个数成等比数列,所以可设这三个数分别为m,mp,mp²于是有m+mp+mp²=14(1)m•mp•mp²=64(2)由(2)得mp=4(3)代入(1)得m+4+4p=14(4)解(3)(4)得m=2p=2或m=8p=1/2于是这三个数分别是2,4,8或8,4,23.解:2235sin 1cos 1cos 513A AB B =-==-()6533)sin sin cos (cos )cos(]cos[cos -=--=+-=+-=B A B A B A B A C π4.解:圆02222=+-+y x y x 的圆心,半径分别为(1,-1),2由d=r 得:()211)1(122=-++--b,解得4,021-==b b 5.设所求概率为P()()8208.010144=--=P P P 6.设三角形已知两边中一边为x,则另一边为4-x,第三边长为()4231612360cos )4(2)4(2222+-=+-=---+x x x x x x x 当x=2时,第三边长最小为2,于是所求三角形最小周长为4+2=6.山西省2018年对口升学高考数学试题一、单项选择题(本题共10题,每小题3分,共30分)1.设全集U=R ,集合A={X I IX-1I ≤2},B={X I X ≤0},则A ∩(C U B)=()A.[0,3]B(0,3]C[-1,0]D(-1,0]2.在等比数列{a n }中,已知a 1=3,a 2=6,则a 4=()A.12B.18C.24D.483.lg3+lg5=()A.lg8B.lg3*lg5C.15D.lg154.下列函数为偶函数的是()A.y=sinxB.y=sin(π+x)C.y=sin(π-x)D.y=sin(2π-x)5.下列函数在定义域内为增函数的是()A.Y=x 0.5B.y=log 0.5xC.y=2-xD.y=x16.已知向量a =(m,-1),b =(m,6-m),而且b a ⊥则m=()A.-3B.2C.-3或2D.-2或37.已知log 3x=2,则()A.X 2=3B.X=23C.32=XD.3X =28.如果角α的终边过点P (-3,4)则cos α=()A.-3/5B.3/5C.-4/5D.4/59.设直线m 平行于平面α,直线n 垂直于平面β,而且α⊥β,n ⊄α则必有()A.m//nB.m ⊥nC.m ⊥βD.n//α10.已知F 1,F 2是椭圆191622=+Y X 的两焦点,过点F 2的直线交椭圆于A,B 两点,若二、填空题(共8题,每小题4分共计32分)1.=+-3324)271(2.设⎩⎨⎧<-≥-=0,0,)(x x x x x f 则=-+)1()1(f f 3.已知曲线y=2sin(x-3π)与直线y=α有交点,则α的取值范围是4.已知向量a ,b 满足I a I=I b I=I a -b I=1,则=∙b a 5.如果直线x+ay+3=0与直线2x+y-3=0垂直,则a=6.一个圆锥高为4,母线长为5,则该圆锥的体积是7.设(1-2x )5=a 0+a 1x+…+a 5x 5,则a 0+a 1+a 2+a 3+a 4+a 5=8.十进制15的二进制是三.解答题(本大题共6小题,共38分)1.(6分)求函数)(2x 2ln )(X x f -=的定义域和最大值2.(6分)设{an}是公差为正数的等差数列a 1=1,而且a 1,a 2,a 5成等比,求通项公式a n3.(6分)已知2cos sin 3=-αα,求sin α的值4.(6分)已知过原点的直线l 与圆x 2+(y-5)2=16相切,求直线l 的方程5.(6分)从0,1,2,3这四个数中任取两个数a ,b (a ≠b )求随机变量X=ab 的分布列6.(8分)已知在∆ABC 中,∠BAC=1200,BC=3,AC=1,(1)求∠B;(2)若D 为BC 边上一点,DC=2BD ,求AD 的长度。

2015年江苏高考数学试卷(含附加题)

2015年江苏高考数学试卷(含附加题)
(1)写出 的值;
(2)当 时,写出 的表达式,并用数学归纳法证明。
【答案】.
【解析】
【答案】
【解析】
13.已知函数 , ,则方程 实根的个数为。
【答案】
【解析】
14.设向量 ,则 的值为。
【答案】.
【解析】
二.解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明.证明过程或演算步骤.
15.(本小题满分14分)
在△ABC中,角A,B,C的对边分别为AB=2,AC=3,A=60o
一.填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.
1.设集合A={1,2,3 },B={2,4,5 },则A∪B中元素的个数.
【答案】
【解析】
2.已知一组数据4、6、5、8、7、6,那么这组数的平均数为.
【答案】
【解析】
3.若复数 z 满足z2=3+4i (i是虚数单位),则复数z 的模_________________
【答案】
【解析】
4.根据如图所示的伪代码,可知输出的结果S为___________
s←1
I←1
WhileI<8
s←s+2
I←I+3
End While
Print s
【答案】
【解析】
5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随
机摸出2只球,则这两只球颜色不同的概率是▲.
A.(几何证明选讲选做题)
A、(本小题满分10分)
如图,在 中, , 的外接圆圆O的弦 交 于点D
求证:
【答案】
【解析】
B.(矩阵与变换选做题)(本小题满分10分)

2015年高考数学试卷真题附详细解析

2015年高考数学试卷真题附详细解析

2015年高考数学试卷一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(真题卷)数学(理科)1.(5分)(2015•真题)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2]C.(1,2)D.[1,2]2.(5分)(2015•真题)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•真题)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•真题)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∂n0∈N*,f(n0)∉N*且f(n0)>n0D.∂n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•真题)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•真题)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•真题)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinx B.f(sin2x)=x2+xC.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|8.(5分)(2015•真题)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•真题)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•真题)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•真题)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•真题)若a=log43,则2a+2﹣a=.13.(4分)(2015•真题)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•真题)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•真题)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•真题)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•真题)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•真题)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•真题)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•真题)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(真题卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∂n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC 通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),析:由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。

浙江省 2015 年高等职业技术教育招生考试 数 学 试 卷答案

浙江省 2015 年高等职业技术教育招生考试 数 学 试 卷答案

1
16
4
b
3 8
1 4
3 8
a
5 8
3 4
1 2
3 4
1
5 4
3 2
1
3 2
2
5 2
3
(答全对得 3 分,每行或每列答对得 0.5 分) (3)由(1)(2)可得:
1 3 1 5 3 20 5 第一行各数和为:16+32+8+32+16=32=8,
第二行各数和为:18+136+14+156+38=54,
22.【答案】 {-5,7} 【解析】 ∵三个数 4,x-1,9 成等比数列,∴有(x-1)2=4×9
=36,解得 x=-5 23.【答案】
或29x=【7.解析】
两个人分别出“石头”与“剪刀”有两种可能,且各自出“石
头”与“剪刀”的概率为13,P=2×13×13=29. 24.【答案】 26C612x-5 【解析】 ∵展开式的中间一项为第 7 项,∴中间一项为 26C612x-5.
3
25.【答案】 32 cm3 【解析】 设正方体的边长为 a,∵体对角线为 3cm,∴( 2a)2+a2
3
=32,得 a= 3,∴体积 V=32 cm3.
26.【答案】 (x+2)2+(y+2)2=4 【解析】 因为圆与第三象限的 x,y 轴相切,所以圆心 为(-2,-2),半径为 2,故圆的标准方程为(x+2)2+(y+2)2=4.
三、解答题(本大题共 8 小题,共 60 分)
1 27.【解】因为直线 x+2y-1=0 的斜率 K1=-2(1 分)
所以由题意得过点 A、B 的直线斜率为 2(2 分)
淘宝:合智美图 专注中职升学考前教辅
6-n 由斜率公式得:2=n-(-1)(2 分) 解得 n=43 (2 分) 28.【解】(1)∵-12<0,f(-12)=3-2×(-12)=4(2 分)

职高高考真卷(数学)

职高高考真卷(数学)

数 学全卷满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题5分,共50分)1,若集合A={x|-2<x ≤5},B={x|1<x <6},则A ∩B=( )A {x|-2<x ≤1}B {x|5<x <6}C {x|1<x ≤5}D {x|-2<x <6} 2,若a 与b 均为实数,则a ²=b ²是a=b 成立的( )A 必要而不充分条件B 充分而不必要条件C 充要条件D 既不充分有不必要条件3,不等式15--x x >2的解集是( ) A ∅ B (-3,1) C (-∞,-3) D (3,+∞) 4,下列函数为奇函数的是( )A f(x)=x ²B f(x)=21x C f(x)=52x D f(x)=31x 5,下列函数中为指数函数的是( )A y=2·3xB y=-4xC y=x 6D y=5x6,与角32π终边相同的角是( ) A 240° B 300° C 480° D 600°7,过两点A(-1,-5)与B(-4,-2)的直线的倾斜角为( )A -135°B -45°C 45°D 135°8,若一条直线与两条平行直线相交,则这三条直线所确定的平面个数是( )A 0B 1C 2D 39,等差数列-3,0,3,6,…的第13项等于( )A -99B -33C 33D 9910,将3个不同的球任意地放入4个不同的盒中,其不同的放法种数为( )A 4B 24C 64D 81二、填空题(本大题共5小题,每小题5分,共25分)11,函数y=2+x +121-x 的定义域为 。

(用区间表示) 12,化简8lg 5lg 2lg )5lg 1(2+-= 。

13,在△ABC 中,若|BC |=6,|BA |=8,且∠B=60°,则BC ·BA = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年内蒙古自治区高等职业院校 对口招收中等职业学校毕业生单独考试
一、选择题
1. 已知全集U={1,3,5,7,9},A={3,5,7},B={5,9},则B A C u )(=( )
A. {3,5,9}
B. {5,7,9}
C. {1,5,9}
D. {1,3,5,9} 2.不等式022>--x x 的解集是( )
A. ),1()2,(+∞--∞
B.(-1,2)
C.),2()1,(+∞--∞
D.(-2,1)
3.已知指数函数)1,0()(≠>=a a a x f x 的图象经过点)2
1
,1(-,则=)3(f ( )
A. 6
B. 21
C.8
1
D. 8
4.已知0tan cos >⋅θθ,那么角θ是( )
A. 第一或第二象限角
B. 第三或第四象限
C. 第一或第三象限角
D. 第二或第四象限
5.已知向量)2,1(),3,2(-==,若)//()2(m +-,则实数m 的值是( )
A.2
B.21-
C.-2
D. 2
1
6.在等差数列}{n a 中,已知6,7142+==a a a ,则5a =( ) A. 5 B.9 C.11 D. 13
7.已知过点)0,2(-A 和),3(a B 的直线与直线0112=--y x 互相垂直,则a 的值为( )
A. 25-
B.-10
C.2
5
D. 10
8. 从1,2,3,4,5这5个数中,任取2个数,则这2个数的和为奇数的概率是( )
A .
54 B .53 C . 52 D. 5
1
9. 已知椭圆116
252
2=+
y x 的左焦点为F ,椭圆与y 轴的正半轴交于点A ,O 为坐标原点,AF OB ⊥,点B 为垂足,则||OB = ( ) A.
512 B.125 C. 2512 D. 2
5 10. 已知α表示平面,n m 、是两条不同的直线,则下列命题中正确的是( ) A. 若,,α⊥⊥n n m 则α//m B. 若,//,//ααn m 则n m // C. 若,,//α⊥m n m 则α⊥n D. 若,,α⊥⊥n n m 则n m ⊥ 11.函数a x y +=与x y a log =在同一直角坐标系中的图象大致是( )
A. B. C. D.
12.已知21F F 、
分别是双曲线19
162
2=-y x
的左、右焦点,点P 是双曲线上的一点,
10||1=PF ,则||2PF =( )
A. 2
B. 18
C. 2或18
D. 8或18 二、填空题
13. 2
9
log 6log 125333
1++= .
14. )4
sin()3cos(45cos 65sin
π
πππ--+= . 15.已知抛物线经过点P (4,-2),且其焦点在x 轴上,顶点为坐标原点,则此抛物线的标准方程是 .
16. 已知三棱锥BCD A -的所有棱长都为2,N M 、分别为棱BC AD 、的中点,则MN 的长为 .
17. 若55443322105)13(x a x a x a x a x a a x +++++=-,则54321a a a a a ++++= . 18. 经过点P (1,-1)的直线l 与圆0142
2
=--+x y x 相交于B A 、两点,且52||=AB ,则直线l 的方程是 . 三、解答题
19.(本小题满分8分)
已知βα、均为锐角,且5
5
)cos(,53sin -=+=βαα,求βsin 的值.
20.(本小题满分8分)
已知向量)1,1(),2,1(),2,3(-=-== (1)若c n b m a +=,求实数n m 、的值 ; (2)若实数k 满足c b a k ⊥+)(,求|2|b c k -.
21.(本小题满分10分)
已知数列}{n a 是等差数列,数列}{n b 是等比数列,且16,2411===b b a .
(1)求数列}{n b 的通项公式.
(2)若1633=+b a ,求数列}{n a 的前n 项和n S .
22.(本小题满分10分)
已知二次函数)0()(2≠++=a c bx ax x f 对任意R x ∈都有x x f x f 2)()1(=-+,且
1)0(=f .
(1)求函数)(x f 的解析式;
(2)当11≤≤-x 时,不等式m x x f +>3)(恒成立,求实数m 的取值范围.
23.(本小题满分12分)
已知圆C 过点)1,1(-A 和)2,2(B ,且圆心在x 轴上. (1)求圆C 的标准方程;
(2)若点D 在圆C 上,且经过点D 的圆C 的切线与直线3+=x y l :平行,求点D 的坐标.
24.(本小题满分12分)
如图,四棱锥ABCD P -中,底面ABCD 为平行四边形, 60=∠DAB ,2=AB ,
1==AD PD ,ABCD PD 平面⊥.
(1)求证:PA BD ⊥;
(2)求异面直线PC 与AD 所成角的余弦值.
A
B
C
D
P。

相关文档
最新文档