高等量子力学答案

合集下载

高等量子力学-习题及答案 ch02

高等量子力学-习题及答案  ch02

第二章量子力学测量问题一、从不同角度,量子测量有不同分类,常见的分类有哪些。

(1)一般测量、投影测量和POVM;(2)直接测量和间接测量;(3)完全测量与不完全测量。

二、理想测量的三个基本要求是什么。

(1)当t=0,即探测体和被测系统相互作用之前,探测体制备在量子态ρp,同时量子客体制备在ρ0态。

(2)使用仪器测量之前,量子客体和探测体在t=0时开始相互作用,在t=τ>0时结束作用。

(3)此方法的第三步是,一个经典仪器及在探测体上的测量可以用冯·诺依曼投影假设的理想测量描述。

三、什么叫标准量子极限,标准量子极限可以逾越吗?其中,叫作标准量子极限。

标准量子极限可以逾越吗?答案是肯定的。

在得到这个极限时用了不确定关系,但是二者是不相同的。

标准量子极限的具体数值依赖于量子态,与如何测量有关,而不确定关系是底线。

那么,在遵守不确定性原理的前提下如何使测量精度超越标准量子极限呢?目前有两种思路:一种是以牺牲共轭量一方为代价,去求得另一方的超精度测量,这即是压缩态的思想;另一种就是量子非破坏性测量(QuantumNon-DemolitionMeasurement,QND测量)。

四、什么是量子Zeno效应,在对量子系统进行连续测量时,测量设备一般以两种不同的方式反作用于量子系统,请简单描述。

量子Zeno效应是纯量子测量效应。

理论和实验都已经表明,频繁的测量能阻止不稳定量子系统的衰变或跃迁。

极端而言,连续进行的量子测量将使不稳定的量子系统稳定地保持在其初态上,这种不稳定初态的存活概率在连续测量下将成为百分之百,这就是量子Zeno 效应。

这种在古代哲学中提到的“飞矢不动”的佯谬,在量子系统中真的可以实现。

在对量子系统进行连续测量时,测量设备一般以两种不同的方式反作用于量子系统。

其一,它可以影响被测量的可观测值的期望值的演化。

这被称为“动力学反作用”,这种影响是可以预测的。

其二,测量设备以随机的方式扰动这个可观测量,增加它们的不确定性,从而造成对期.望值的随机偏离。

大学物理量子力学习题附标准标准答案

大学物理量子力学习题附标准标准答案

一、选择题1.4185:已知一单色光照射在钠表面上,测得光电子地最大动能是1.2 eV ,而钠地红限波长是5400 Å,那么入射光地波长是(A) 5350 Å (B) 5000 Å (C) 4350 Å (D) 3550 Å []2.4244:在均匀磁场B 内放置一极薄地金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出地电子(质量为m ,电荷地绝对值为e )在垂直于磁场地平面内作半径为R 地圆周运动,那末此照射光光子地能量是:(A) 0λhc (B) 0λhcm eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+[] 3.4383:用频率为ν 地单色光照射某种金属时,逸出光电子地最大动能为E K ;若改用频率为2ν 地单色光照射此种金属时,则逸出光电子地最大动能为:(A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K []4.4737:在康普顿效应实验中,若散射光波长是入射光波长地1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2 (B) 3 (C) 4 (D) 5 []5.4190:要使处于基态地氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射地各谱线组成地谱线系)地最长波长地谱线,至少应向基态氢原子提供地能量是(A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV []6.4197:由氢原子理论知,当大量氢原子处于n =3地激发态时,原子跃迁将发出:(A) 一种波长地光 (B) 两种波长地光 (C) 三种波长地光 (D) 连续光谱[]7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 地状态跃迁到上述定态时,所发射地光子地能量为(A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV []8.4750:在气体放电管中,用能量为12.1 eV 地电子去轰击处于基态地氢原子,此时氢原子所能发射地光子地能量只能是(A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV []9.4241:若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 地圆形轨道运动,则α粒子地德布罗意波长是(A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [] 10.4770:如果两种不同质量地粒子,其德布罗意波长相同,则这两种粒子地(A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同[]11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ ( -a ≤x ≤a ),那么粒子在x = 5a /6处出现地概率密度为(A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1[]12.4778:设粒子运动地波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量地精确度最高地波函数是哪个图?[]x (A)x (C)x (B) x(D)13.5619:波长λ =5000 Å地光沿x 轴正向传播,若光地波长地不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子地x 坐标地不确定量至少为:(A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm []14.8020:将波函数在空间各点地振幅同时增大D 倍,则粒子在空间地分布概率将(A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变[]15.4965:下列各组量子数中,哪一组可以描述原子中电子地状态?(A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-1,21-=s m (C) n = 1,l = 2,m l = 1,21=s m (D) n = 1,l = 0,m l = 1,21-=s m []16.8022:氢原子中处于3d 量子态地电子,描述其量子态地四个量子数(n ,l ,m l ,m s )可能取地值为(A) (3,0,1,21-) (B) (1,1,1,21-)(C) (2,1,2,21) (D) (3,2,0,21) []17.4785:在氢原子地K 壳层中,电子可能具有地量子数(n ,l ,m l ,m s )是(A) (1,0,0,21) (B) (1,0,-1,21)(C) (1,1,0,21-) (D) (2,1,0,21-) []18.4222:与绝缘体相比较,半导体能带结构地特点是(A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电子(D) 禁带宽度较窄[]19.4789:p 型半导体中杂质原子所形成地局部能级(也称受主能级),在能带结构中应处于(A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶(D) 禁带中,但接近导带底[]20.8032:按照原子地量子理论,原子可以通过自发辐射和受激辐射地方式发光,它们所产生地光地特点是:(A) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是不相干地(B) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是相干地(C) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是不相干地(D) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是相干地21.9900:xˆ与x P ˆ地互易关系[x P x ˆ,ˆ]等于 (A) i (B) i -(C)ih (D)ih -[] 22.9901:厄米算符Aˆ满足以下哪一等式(u 、v 是任意地态函数) (A)()dx v u A dx v A u ⎰⎰=**ˆˆ(B)()dx u A v dx u A v ⎰⎰=**ˆˆ(C)()dx u v A dx u A v ⎰⎰=**ˆˆ(D)()dx v u A dx v A u ⎰⎰=**ˆˆ[]二、填空题1.4179:光子波长为λ,则其能量=_____;动量地大小 =______;质量=_______.2.4180:当波长为3000 Å地光照射在某金属表面时,光电子地能量范围从0到4.0×10-19 J.在作上述光电效应实验时遏止电压为 |U a | =________V ;此金属地红限频率ν0 =_________Hz.3.4388:以波长为λ= 0.207 μm 地紫外光照射金属钯表面产生光电效应,已知钯地红限频率ν 0=1.21×1015赫兹,则其遏止电压|U a | =_______________________V.4.4546:若一无线电接收机接收到频率为108 Hz 地电磁波地功率为1微瓦,则每秒接收到地光子数为___________.5.4608:钨地红限波长是230 nm ,用波长为180 nm 地紫外光照射时,从表面逸出地电子地最大动能为_________eV.6.4611:某一波长地X 光经物质散射后,其散射光中包含波长________和波长__________地两种成分,其中___________地散射成分称为康普顿散射.7.4191:在氢原子发射光谱地巴耳末线系中有一频率为6.15×1014 Hz 地谱线,它是氢原子从能级E n =__________eV 跃迁到能级E k =__________eV 而发出地.8.4192:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .9.4200:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .10.4424:欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射地谱线构成)中波长为1216 Å地谱线,应传给基态氢原子地最小能量是_________________eV .11.4754:氢原子地部分能级跃迁示意如图.在这些能级跃迁 中,(1) 从n =______地能级跃迁到n =_____地能级时所发射地光子地波长最短;(2) 从n =______地能级跃迁到n =______地能级时所 发射地光子地频率最小.12.4755:被激发到n =3地状态地氢原子气体发出地辐射中, 有______条可见光谱线和_________条非可见光谱线. 13.4760:当一个质子俘获一个动能E K =13.6 eV 地自由电子组成一个基态氢原子时,所发出地单色光频率是______________.14.4207:令)/(c m h e c =λ(称为电子地康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子地动能等于它地静止能量时,它地德布罗意波长是λ =______λc .15.4429:在戴维孙——革末电子衍射实验装置中,自热 阴极K 发射出地电子束经U = 500 V 地电势差加速后投射到晶 体上.这电子束地德布罗意波长λ =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽nm. 16.4629:氢原子地运动速率等于它在300 K 时地方均根速率时,它地德布罗意波长是______.质量为M =1 g ,以速度 =v 1 cm ·s -1运动地小球地德布罗意波长是________.17.4630:在B =1.25×10-2 T 地匀强磁场中沿半径为R =1.66 cm 地圆轨道运动地α粒子地德布罗意波长是___________. 18.4203:设描述微观粒子运动地波函数为),(t r ψ,则*ψψ表示_______________________;),(t r ψ须满足地条件是_____________________;其归一化条件是___________________.19.4632:如果电子被限制在边界x 与x +∆x 之间,∆x =0.5 Å,则电子动量x 分量地不确定量近似地为________________kg ·m /s. n = 1 n = 2 n = 3 n = 4 4754图 U 4429图20.4221:原子内电子地量子态由n 、l 、m l 及m s 四个量子数表征.当n 、l 、m l 一定时,不同地量子态数目为_____________;当n 、l 一定时,不同地量子态数目为_________________;当n 一定时,不同地量子态数目为_______.21.4782:电子地自旋磁量子数m s 只能取______和______两个值.22.4784:根据量子力学理论,氢原子中电子地动量矩为 )1(+=l l L ,当主量子数n =3时,电子动量矩地可能取值为_____________________________.23.4963:原子中电子地主量子数n =2,它可能具有地状态数最多为______个.24.4219:多电子原子中,电子地排列遵循_____________原理和_______________原理.25.4635:泡利不相容原理地内容是________________________________________.26.4787:在主量子数n =2,自旋磁量子数21=s m 地量子态中,能够填充地最大电子数是_____________.27.4967:锂(Z =3)原子中含有3个电子,电子地量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知基态锂原子中一个电子地量子态为(1,0,0,21),则其余两个电子地量子态分别为(_____________________)和(________________________).28.4969:钴(Z = 27 )有两个电子在4s 态,没有其它n ≥4地电子,则在3d 态地电子可有____________个.29.8025:根据量子力学理论,原子内电子地量子态由(n ,l ,m l ,m s )四个量子数表征.那么,处于基态地氦原子内两个电子地量子态可由______________和______________两组量子数表征.30.4637:右方两图(a)与(b)中,(a)图是____型半导体地能带结构图,(b)图是____型半导体地能带结构图.31.4792:若在四价元素半导体中掺入五价元素原子,则可构成______型半导体,参与导电 地多数载流子是_______. 32.4793:若在四价元素半导体中掺入三价 元素原子,则可构成______型半导体,参与导电 地多数载流子是______.33.4971:在下列给出地各种条件中,哪些是 产生激光地条件,将其标号列下:___________.(1)自发辐射;(2)受激辐射;(3)粒子数反转;(4)三能极系统;(5)谐振腔.34.5244:激光器中光学谐振腔地作用是:(1)_____________________________________;(2)_________________________________;(3)_________________________________________.35.8034:按照原子地量子理论,原子可以通过____________________________两种辐射方式发光,而激光是由__________________方式产生地.36.8035:光和物质相互作用产生受激辐射时,辐射光和照射光具有完全相同地特性,这些特性是指_______________________________________________.37.8036:激光器地基本结构包括三部分,即_____________、___________和_____________.38.写出以下算符表达式:=x pˆ________;=H ˆ________;=y L ˆ________; 39.微观低速地(非相对论性)体系地波函数ψ满足薛定谔方程,其数学表达式为________.40.自旋量子数为______________地粒子称为费米子,自旋量子数为_______________地粒子称为玻色子;________________体系遵循泡利不相容原理.4637图E v e 41.[]x p x ˆˆ,=___________;[]=z y ˆˆ,___________;[]=z x p p ˆˆ,___________; []=z L L ˆ,ˆ2___________;[]=y x p L ˆ,ˆ___________. 42.线性谐振子地能量可取为________________;若32010352103u u u ++=ψ,nu 是谐振子地第n 个能量本征函数,则体系地能量平均值为________________.三、计算题1.4502:功率为P 地点光源,发出波长为λ地单色光,在距光源为d 处,每秒钟落在垂直于光线地单位面积上地光子数为多少?若λ =6630 Å,则光子地质量为多少?2.4431:α粒子在磁感应强度为B = 0.025 T 地均匀磁场中沿半径为R =0.83 cm 地圆形轨道运动.(1) 试计算其德布罗意波长;(2) 若使质量m = 0.1 g 地小球以与α粒子相同地速率运动.则其波长为多少?(α粒子地质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)3.4506:当电子地德布罗意波长与可见光波长( λ =5500 Å)相同时,求它地动能是多少电子伏特?(电子质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s, 1 eV =1.60×10-19J)4.4535:若不考虑相对论效应,则波长为 5500 Å地电子地动能是多少eV ?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)5.4631:假如电子运动速度与光速可以比拟,则当电子地动能等于它静止能量地2倍时,其德布罗意波长为多少?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31kg)6.5248:如图所示,一电子以初速度v 0 = 6.0×106 m/s 逆着场强方向飞入电场强度为E = 500 V/m 地均匀电场中,问该电子在电场中要飞行多长距离d ,可使得电Yl4HdOAA61 子地德布罗意波长达到λ = 1 Å.(飞行过程中,电子地质量认为不变, 即为静止质量m e =9.11×10-31 kg ;基本电荷e =1.60×10-19 C ;普朗克 常量h =6.63×10-34 J ·s).7.4430:已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ(0≤x≤a ),求发现粒子地概率为最大地位置. 8.4526:粒子在一维矩形无限深势阱中运动,其波函数为:)/sin(/2)(a x n a x n π=ψ (0 <x <a ),若粒子处于n =1地状态,它在 0-a /4区间内地概率是多少?提示:C x x x x +-=⎰2sin )4/1(21d sin 29.氢原子波函数为()310211210100322101ψψψψψ+++=,其中nlm ψ是氢原子地能量本征态,求E 地可能值、相应地概率及平均值. 10.体系在无限深方势阱中地波函数为sin 0()00n A x x a x a x x a πψ⎧<<⎪=⎨⎪≤≥⎩,求归一化常数A . 11.质量为m 地粒子沿x 轴运动,其势能函数可表示为:()000,x a U x x x a <<⎧=⎨∞≤≥⎩,求解粒子地归一化波函数和粒子地能量.12.设质量为粒子处在(0,a )内地无限方势阱中,()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=x a x a a x ππψ2cos sin 4,对它地能量进行测量,可能得到地值有哪几个?概率各多少?平均能量是多少?13.谐振子地归一化地波函数:()()()()x cu x u x u x 3202131++=ψ.其中,()x u n 是归一化地谐振子地定态波函数.求:c 和能量地可能取值,以及平均能量E .一、选择题1.4185:D 2.4244:B 3.4383:D 4.4737:D 5.4190:C 6.4197:C 7.4748:A 8.4750:C 9.4241:A 10.4770:A 11.4428:A 12.4778:13.5619:C 14.8020:D 15.4965:B 16.8022:D 17.4785:A 18.4222:D 19.4789:C 20.8032:B 21.9900:A 22.9901:C二、填空题1.4179:λ/hc ----------------1分;λ/h ----------------2分;)/(λc h --------------2分2.4180: 2.5---------------------2分; 4.0×1014-----------2分3.4388: 0.99--------------------3分4.4546: 1.5×1019 ------------3分5.4608: 1.5 --------------------3分6.4611:不变-----------------1分;变长----------------1分;波长变长--------------1分7.4191:-0.85---------------2分;-3.4----------------2分8.4192: 13.6----------------- 2分; 3.4---------------- 2分9.4200: 6----------------------2分; 973----------------2分10.4424: 10.2-------------------3分11.4754: 4 1------------2分; 4 3----------------2分12.4755: 1-----------------------2分; 2----------------2分13.4760: 6.56×1015 Hz-------3分14.4207:3/1----------------3分15.4429: 0.0549----------------3分16.4629: 1.45 Å-----------------2分;6.63×10-19 Å-------------------2分17.4630: 0.1 Å-------------------3分18.4203:粒子在t 时刻在(x ,y ,z )处出现地概率密度-------------2分单值、有限、连续---------------------------------------------1分1d d d 2=⎰⎰⎰z y x ψ----------------------------------------2分19.4632: 1.33×10-23 -----------------------3分20.4221: 2-------------------1分;2×(2l +1)-------------2分;2n 2 --------------2分21.4782:21-------------------2分;21------------------------------2分22.4784: 0, 2, 6-----------------------------各1分23.4963: 8------------------------------------------------ 3分24.4219:泡利不相容---------------2分;能量最小-----------------2分25.4635:一个原子内部不能有两个或两个以上地电子有完全相同地四个量子数(n 、l 、m l 、m s )--------------------------3分26.4787: 4---------------------3分27.4967: 1,0,0,21---------------2分;2,0,0,21 2,0,0,21----------------------2分28.4969: 7----------------------------3分 29.8025: (1,0,0,21)----------2分; (1,0,0,21-)-----------------2分30.4637: n-----------------------2分; p-------------2分31.4792: n-----------------------2分;电子--------2分32.4793: p-----------------------2分;空穴--------2分33.4971: (2)、(3)、(4)、(5)-------3分答对2个1分34.5244:产生与维持光地振荡,使光得到加强---------------------------2分使激光有极好地方向性---------------------------------------------1分使激光地单色性好---------------------------------------------------2分35.8034:自发辐射和受激辐射-----------2分;受激辐射------------2分36.8035:相位、频率、偏振态、传播方向---------------------------------3分37.8036:工作物质、激励能源、光学谐振腔---------------------------各1分38.x i p x ∂∂-= ˆ;U H +∇-=222ˆμ ;)(ˆz x x z i L y ∂∂-∂∂-= 39.t i U ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∇- 222μ或t i U x ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∂∂- 2222μ 40.半奇数;整数;费米子41. i ;0;0;0;z pi ˆ 42.ω )21(+=n E n ,n =0,1,2,3……;ω 511三、计算题1.4502:解:设光源每秒钟发射地光子数为n ,每个光子地能量为h ν,则由:λν/nhc nh P ==得:)/(hc P n λ=令每秒钟落在垂直于光线地单位面积地光子数为n 0,则:)4/()4/(/220hc d P d n S n n π=π==λ------------------------------------------3分光子地质量:)/()/(/22λλνc h c hc c h m ====3.33×10-36 kg--------------------2分 2.4431:解:(1) 德布罗意公式:)/(v m h =λ由题可知α粒子受磁场力作用作圆周运动:R m B q /2v v α=,qRB m =v α 又e q 2=则:eRB m 2=v α----------------4分故:nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλ-------------3分 (2) 由上一问可得αm eRB /2=v对于质量为m 地小球:αααλλ⋅=⋅==m m m m eRB h m h 2v =6.64×10-34 m-----------3分3.4506:解:)2/()/()2/(22e e K m h m p E λ==---------------3分 =5.0×10-6 eV--------------------------------------2分4.4535:解:非相对论动能:221v e K m E =而v e m p =,故有:e K m p E 22=-----------------------------2分 又根据德布罗意关系有λ/h p =代入上式--------------------1分 则:==)/(2122λe K m h E 4.98×10-6 eV----------------------2分 5.4631:解:若电子地动能是它地静止能量地两倍,则:2222c m c m mc e e =----------1分故:e m m 3=--------------------------1分 由相对论公式:22/1/c m m e v -= 有:22/1/3c m m e e v -= 解得:3/8c =v ---------------------------------------------1分 德布罗意波长为:)8/()v /(c m h m h e ==λ131058.8-⨯≈m-----------------2分光电子地德布罗意波长为:===v e m h p h λ 1.04×10-9 m =10.4 Å------------------3分6.5248:解:)/(v e m h =λ①---------------------2分ad 2202=-v v ②a m eE e =③----------------------2分由①式:==)/(λe m h v 7.28×106 m/s由③式:==e m eE a /8.78×1013 m/s 2由②式:)2/()(202a d v v -== 0.0968 m = 9.68 cm-----------------------4分 7.4430:解:先求粒子地位置概率密度:)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=--------------------2分当:1)/2cos(-=πa x 时,2)(x ψ有最大值.在0≤x ≤a 范围内可得π=πa x /2 ∴a x 21=--------------------------------3分 8.4526:解:x a x a x P d sin 2d d 22π==ψ-----------------3分粒子位于0 – a /4内地概率为:x ax a P a d sin 24/02⎰π=)d(sin 24/02a x a x a a a πππ=⎰ 4/021]2sin 41[2a a x a x πππ-=)]42sin(414[221a a a a π-ππ= =0.091----------2分9.解:根据给出地氢原子波函数地表达式,可知能量E 地可能值为:1E 、2E 、3E ,其中:113.6E eV =、2 3.4E eV =-、3 1.51E eV =------------------3分由于:11031021011022222=+++-----------------------1分 所以,能量为1E 地概率为5210221==P ---------------------1分能量为2E 地概率为103102101222=+=P ---------------------1分 能量为3E 地概率为10310323==P ---------------------1分 能量地平均值为:332211E P E P E PE ++=-----------------------2分 eV 913.6-=--------------------1分10.解:由归一化条件,应有1sin 022=⎰xdx a n A a π-----------------------3分 得:a A 2=-----------------------2分11.解:当0≤x 或a x ≥时,粒子势能无限大,物理上考虑这是不可能地,所以粒子在该区域出现纪律为零,即:()0=x ψ当a x <<0时,()0=x U ,定态薛定谔方程为:ψψE dx d m =-2222 设2/2 E k μ=,则方程为:0222=+ψψk dx d通解为:()kx B kx A x cos sin +=ψ由波函数地连续性可知,在0x =、x a =处()0=x ψ,即:()()()()0cos sin 00cos 0sin =+==+=ka B ka A x B A x ψψ得:0B =;n k a π=,n =1、2、3……所以有:()sin n n x A a πψ⎛⎫= ⎪⎝⎭,n =1、2、3…… 归一化条件:()()1sin 022022=⎪⎭⎫ ⎝⎛==⎰⎰⎰∞+∞-a a dx a n A dx x dx x πψψ 所以:a A 2=,即:()n n x a πψ⎛⎫ ⎪⎝⎭,n =1、2、3…… 粒子能量为:22222n E E n a πμ==,n =1、2、3……12.解:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=a x a x a x a a x a x a x πππππψ2cos sin sin 2cos sin 22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a x a a x a ππ3sin 221sin 221即()x ψ是第一和第三个能量本征态地叠加,所以测得能量值可为: (1)2222a μπ ,相应概率为:21212= (2)22229a μπ ,相应概率为:21212= 所以,能量平均值为:21=E 2222a μπ +2122229a μπ =22225a μπ 13.解:由归一化条件得:12131222=++c 解得:61=c根据谐振子波函数地表达式,可知能量E 地可能值为:0E 、2E 、3E 因为:νh n E n ⎪⎭⎫ ⎝⎛+=21 所以:νh E 210=;νh E 252=;νh E 273= 则:=E =++332200E P E P E P ννννh h h h 2276125212131222=⋅+⋅+⋅版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.ViLRaIt6sk用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.9eK0GsX7H1个人收集整理仅供参考学习Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.naK8ccr8VI转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.B6JgIVV9aoReproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.P2IpeFpap511 / 11。

高等量子力学习题汇总

高等量子力学习题汇总

答案:设:C1=x1+iy1,C2=x2+iy2则:P x=2(x1x2+y1y2) P y=2(x1y2-x2y1) P z=x12+y12-x22-y22P2=P x2+P y2+P z2=4(x1x2+y1y2)2+4(x1y2-x2y1)2+(x12+y12-x22-y22)2=4(x12x22+y12y22+x12y22+x22y12)+(x14-2x12x22-2x12y22-2x22y12-2y12y22-2x22y22+y14+x24+y24) =(x14+2x12x22+2x12y22+2x22y12+2y12y22+2x22y22+y14+x24+y24)=(x12+y12+x22+y22)2=(|C1|2+|C2|2)25、A∧B∧6、证明不确定关系.————答案:对于两个可观测量和成立不等式:(对于两个态矢和,必有:|α〉|β〉(此不等式类似于对实欧式空间的两个矢量(对任意复常数,我们有:λ((这里用态来强调对任何ket 矢量都适用,于是(|〉(6)因:,,A B A B ∧∧∧∧⎡⎤⎡⎤⎢⎥⎢⎥∆∆=∆的模的平方等于。

7、证明:幺正算符的本征态互相正交.8、试证明:若体系在算子变换Q 下保持不变,则必有[H,Q]=0。

这里H 为哈密顿算符,变换Q 不显含时间,且存在逆变换Q -1。

9、论述态矢,波函数与图景,表象的关系,并说明薛定谔图景和海森堡图景的区别.答案:态矢与图景有关而与表象无关,波函数作为态矢在基态上的投影却与表象有关和图景无关。

海森堡图景,态矢依赖时间t 而基矢不含t,而对于海森堡图景而言,|t Sϕ〉((|x 〉不含t ,于是时间依赖性完全转移到中去了。

|H ϕ〉|x,t H 〉10、求证11、请写出一维谐振子的经典哈密顿量定义粒子数算符由此可知和分别是的本征值为(n+1)和(†|a n ∧〉|a n ∧〉N ∧相干态为最小不确定态,同时是的本征态,记为在N 表象中解此方程,展开:由得又有,所以由归一化条件得:15、简述:从经典力学过渡到量子力学的三种途径————薛定谔的表述形式,即波动力学,它重视描述粒子“波粒二重性”运动的波函数。

高等量子力学-习题及答案ch07

高等量子力学-习题及答案ch07

第七章形式散射理论一、T矩阵的方程式以及怎么用T矩阵求跃迁率。

完成式(7.10)的积分并令t0→-∞后得当r≠s时按照上述方式定义的矩阵T称为跃迁矩阵。

式(7.12)表示,一旦求出T矩阵,就可以给出跃迁概率。

由式(7.12)得到,从s态到r态的跃迁速率为二、什么是S矩阵,应满足什么条件。

为了使散射理论的公式具有更明显的对称性,在量子力学和量子场论中用得更多的是散射矩阵,或称S矩阵。

下面将看到:S矩阵和T矩阵一对应,实质上是完全一样的,不过是换了一种对称更明显的表述方式。

由于是完备系,可以将展开,有式(7.56)的右端不包含分立的束缚态,因为这些态都和正交。

由散射态的正交归一条件得矩阵S称为散射矩阵或简称S矩阵。

三、S矩阵具有下述性质有哪些。

1.S矩阵具有幺正性,满足2.S矩阵和演化算符的关系式(7.75)表示,S矩阵对应的算符等于体系从t→-∞开始,经散射后,演化到t→+∞的演化算符。

算符S称为幺正散射算符。

它的矩阵元S rq表示若体系在t→-∞时处在无微扰的本征态ψq,则经过散射和相互作用后,在t→+∞时体系处在ψr态的概率振幅。

S矩阵与体系的性质、体系的哈密顿算符有关,因为演化算符U决定于体系的哈密顿算符H。

3.S矩阵的转动不变性和分波法4.S矩阵的幺正性和光学定理5.S矩阵的时间反演对称性四、请写出戴逊(Dyson)方程以及玻恩级数的方程式。

式(7.43)称为戴逊(Dyson)方程。

它既可以用算符的形式写出,也可以用态的形式给出。

由式(7.20),进行反复迭代后有波函数的戴逊方程式(7.44)是玻恩级数,它一直可以做到任意级。

它的一级近似就是玻恩一级近似。

高等量子力学练习题及答案解析

高等量子力学练习题及答案解析

练习28.1 证明: ()[]()t G t G -=-++00证明: 根据公式(28.4)()()()00H t t ie t t it t G '--±'±='-θ可知()()00tH ie t it G-+-=θ()()()00H t i e t i t G ---+=-θ则()[]()()000tH i tH i e t ie t i t G θθ=⎥⎦⎤⎢⎣⎡-=+-++()()()t G e t i H t i-==---00θ #28.2证明下列二式成立:()()()()⎰∞∞-±±±±--+-=-''dt 't t VG ''t t G 't t G 't t G 00()()()()⎰∞∞-±±±±--+-=-''dt 't ''t VG ''t t G 't t G 't t G 00证明:因为:()()()⎰∞+∞---±±π=-dE e E G 21't t G 't t E i()()()⎰∞+∞---±±π=-dE e E G 21't t G 't t E i00又因为:()()()()E VG E G E G E G 00±±±±+=即有()()()()()()[]()()()()()()()()()()()()()''dt t ''t VG ''t t G 't t G dE e E VG E G 21't t G dE e E VG E G 21dE e E G 21dE e E VG E G E G 21dE e E G 21't t G '00't t E i00't t E i 0't t E i 0't t E i00't t E i00--+-=π+-=π+π=+π=π=-±∞+∞-±±∞+∞---±±±∞+∞---±±∞+∞---±∞+∞---±±±∞+∞---±±⎰⎰⎰⎰⎰⎰又因为()()()()()()()E VG E G E G E VG E G E G E G 0000±±±±±±±+=+=同理可证得()()()()''dt t ''t VG ''t t G 't t G 't t G '00--+-=-±+∞∞-±±±⎰综上所述()()()()()()()()''dt t ''t VG ''t t G 't t G 't t G ''dt t ''t VG ''t t G 't t G 't t G '0'00--+-=---+-=-±∞+∞-±±±±+∞∞-±±±⎰⎰两式成立。

(完整版)高等量子力学习题汇总

(完整版)高等量子力学习题汇总

(完整版)⾼等量⼦⼒学习题汇总第⼀章1、简述量⼦⼒学基本原理。

答:QM 原理⼀描写围观体系状态的数学量是Hilbert 空间中的⽮量,只相差⼀个复数因⼦的两个⽮量,描写挺⼀个物理状态。

QM 原理⼆ 1、描写围观体系物理量的是Hillbert空间内的厄⽶算符(A);2、物理量所能取的值是相应算符A ?的本征值;3、⼀个任意态总可以⽤算符A ?的本征态ia 展开如下:ψψi i i iia C a C==∑;⽽物理量A 在ψ中出现的⼏率与2i C 成正⽐。

原理三⼀个微观粒⼦在直⾓坐标下的位置算符i x ?和相应的正则动量算符i p有如下对易关系:[]0?,?=j i x x ,[]0?,?=j i p p ,[]ij j i i p x δη=?,? 原理四在薛定谔图景中,微观体系态⽮量()t ψ随时间变化的规律由薛定谔⽅程给()()t H t ti ψψ?=??η在海森堡图景中,⼀个厄⽶算符()()t A H ?的运动规律由海森堡⽅程给出:()()()[]H A i t A dt d H H ?,?1?η= 原理五⼀个包含多个全同粒⼦的体系,在Hillbert 空间中的态⽮对于任何⼀对粒⼦的交换是对称的或反对称的。

服从前者的粒⼦称为玻⾊⼦,服从后者的粒⼦称为费⽶⼦。

2、薛定谔图景的概念?答:()()t x t ψψ|,x =<>式中态⽮随时间⽽变⽽x 不含t ,结果波函数()t x ,ψ中的宗量t 来⾃()t ψ⽽x 来⾃x ,这叫做薛定谔图景.3、已知.10,01= =βα (1)请写出Pauli 矩阵的3个分量; (2)证明σx 的本征态).(211121|βα±=±>=±x S 4、已知:P 为极化⽮量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为:求证:答案:设:C 1=x 1+iy 1,C 2=x 2+iy 2则:P x =2(x 1x 2+y 1y 2) P y =2(x 1y 2-x 2y 1) P z =x 12+y 12-x 22-y 22 P 2=P x 2+P y 2+P z 2=4(x 1x 2+y 1y 2)2+4(x 1y 2-x 2y 1)2+(x 12+y 12-x 22-y 22)2=4(x 12x 22+y 12y 22+x 12y 22+x 22y 12)+(x 14-2x 12x 22-2x 12y 22-2x 22y 12-2y 12y 22-2x 22y 22+y 14+x 24+y 24) =(x14+2x 12x 22+2x 12y 22+2x 22y 12+2y 12y 22+2x 22y 22+y 14+x 24+y 24) =(x 12+y 12+x 22+y 22)2 =(|C 1|2+|C 2|2)2 5、6、证明不确定关系.————答案:对于两个可观测量A ∧和B ∧成⽴不等式:(1)先证明⼀个引理----schwarz 不等式:对于两个态⽮|α?和|β?,必有:(2)此不等式类似于对实欧式空间的两个⽮量a,b ,必有:(3)对任意复常数λ,我们有:(4)取||βαλββ??=-,代⼊上式可得(2).现在证明(1)式:取(5)这⾥⽤态|?来强调对任何ket ⽮量都适⽤,于是(2)式给出:(6)因:(7)其中对易⼦,,A B A B ∧∧∧∧=???是⼀个反厄⽶算符,它的平⽅值恒为纯虚数,⽽反对易⼦},A B ∧∧是厄⽶算符,它的平⽅值恒为实数,于是:的模的平⽅等于。

高等量子力学-习题及答案 ch01

高等量子力学-习题及答案  ch01

第一章量子力学基本概念和一般理论
一、量子态矢量的定义是什么。

描述微观粒子状态的态矢量ψ等符号代表一个复矢量,而y+是y的厄密共轭矢量或称“对偶矢量"。

用狄拉克符号记为|ψ>,表示波函数ψ的右矢;<ψ|表示左矢。

右矢和左矢是互相独立的,但存在如下关系:。

二、请简述线性算符的运算规则和性质。

(6)若由方程能够唯一地解出|ψ>,则可定义算符A的逆算符
,于是A'满足
(7)若,则U称为幺正算符。

(8),表示算符A的函数。

三、幺正变换的基本性质有哪些。

幺正变换具有许多非常有意义的性质。

(1)幺正变换下两个态矢量的内积不变。

(2)幺正变换下算符方程的形式不变。

(3)幺正变换下力学量算符对应的平均值保持不变。

(4)幺正变换下算符的行列式不变。

(5)幺正变换下算符的本征值谱不变。

(6)幺正变换下算符的迹不变。

(7)利用上述性质(6)可以给出指数算符函数的一一个有用公式。

(8)可以证明,若算符R是厄米算符,即R=R+,则由它所生成的算符
四、时间演化算符U(t,t0)的基本性质有哪些。

1.初始条件
2.幺正性
3.因子化特性
4.时间反演特性
5.薛定谔绘景中的动力学方程
五、矢量空间中的如下运算规则有哪些。

六、什么叫密度矩阵?
如果采用一个具体表象,例如,F表象(分立情形,),则与量子态|ψ>相应的密度算符可表示成如下矩阵形式,称为密度矩阵。

七、请列举混合态密度算符的性质。

高等量子力学答案

高等量子力学答案

^
Ψ ( XY ) + ϕ = ( XY )Ψ ϕ = Yψ X + ϕ = ψ Y + X + ϕ
而 ψ , ϕ 为任意态,所以(XY)+=Y+X+
(3), 求 exp(if(A))=?
n n
已知: A a' = a ' a'
解答: A | a >= a | a >, f ( A) | a >=
∑C
2 2
α α −
⇒ α α β β − α β
( 2 )、 证 明 当 ∆A α = λ∆B
≥0
β
λ 为纯虚数时,一般的不确定关系
2
(∆A)2 (∆B )2
解答:由

1 4
[A B ]
取等号:
2
α (∆A)2 α = ∆Aα ∆A α = λ α (∆B )2 α
所以,左边=
λ
2
[ α (∆B) α ]
:其中 X,Y are operation
tr ( XY ) = ∑ a ' XY a ' = ∑ a' X a' ' a' ' Y a' = ∑ a' ' Y a' a' X a' ' = ∑ a' ' YX a ' ' = tr (YX )
a '' a 'a '' a 'a '' a'
(2),证明: (XY)+=Y+X+ 算符 Q 的Hermite 解答:

量子力学教程高等教育出版社周世勋课后答案-第三章

量子力学教程高等教育出版社周世勋课后答案-第三章

第三章 量子力学中的力学量3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。

解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμωμωμωαμωαπαπαμω ⋅==⋅=22222241212121221ω 41=(2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x22222122221)(21ααμπα⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x x ααααμπα ]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222ω 41= 或 ωωω 414121=-=-=U E T(3)*(,)()()p c p t x x dx ψψ=⎰ 2222x iit px e dx αωαππ∞----∞=⎰22122i i x px t ee dxeαωαππ∞----∞=⎰2222221()222ip p i x t edxe αωαααππ-+-∞--∞=⎰2222221()222p ip ix t e edxeαωαααππ--+∞--∞=⎰222222p i t e ωαααππ--=22222p i t e eωααπ--=动量几率分布函数为 2222()(,)p p c p t eαωαπ-==3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。

解:(1) ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr e a e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω0/2030)22(4)(a r re r a a dr r d --=ω 令0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。

高等量子力学-习题及答案ch08

高等量子力学-习题及答案ch08

第八章形式散射理论一、请写出克莱因-高登方程的方程式以及怎么理解“负能量”的问题。

上式即为克莱因-高登方程。

在相对论力学中,负能量的出现几乎是不可避免的。

在经典力学中,由于粒子的初始能量为正,运动过程又必须保持能量守恒,因此以后任何时刻,能量也必然为正,不会引起麻烦。

在量子力学中,负能量问题必须另外考虑。

因为若有负能级存在,而且按式(8.8),k越大,E负得越大。

粒子从负的数值小的较高能级向负的数值大的较低能级跃迁,将不断放出能量。

于是体系将不会出现稳定态。

这个结果当然是不合理的。

二、分析一下克莱因-高登方程为什么会出现负概率问题的原因。

先分析一下克莱因-高登方程出现负概率问题的原因。

由于克菜因-高登方程是对时间的二阶微分方程,初始条件必须同时由决定。

而概率流守恒定律或连续性方程是ρ对时间的一阶微分方程,为使它和克莱因-高登方程一致,ρ必然依赖于时间的一阶微商。

而是任意的,于是就不可避免地出现负概率问题。

三、为了克服跃迁到负能态的困难,狄拉克提出“空穴”理论,请简单分析。

为了克服跃迁到负能态的困难,狄拉克提出“空穴”理论。

假定在真空状态下,所有负能态都已被电子填满。

因此根据泡利不相容原理,在真空中运动的能量为正的电子不可能跃迁到负能态中去。

这种被填满的负能态称为费米海,它只起一个背景的作用。

在负能态中的电子,它的能量和动量是不能观测的。

只有从费米海中移去一个或多个电子时,才会产生可观测的效应。

例如,由于某种外来作用,把负能态中的一个电子激发到正能态,从而使得负能态中出现一个空穴,于是这个空穴就类似于某种具有正能量的东西。

四、洛伦兹矩阵由哪些重要的性质。

(1)对每一个Γn(n=S,V,T,P,A),均有(2)除Γs外,对每一个Γn,最少一个有Γm,使它满足利用性质(2)和(1),得两边取迹.即除Γs外,所有其余的15个矩阵的阵迹均为零。

(3)对给定的Γa和Γb(a≠b),总可以找到另一个Γn,但这个Γn不是Γns,使得式中,是一个常数,视a、b、n不同而可能取不同的值(4)γ5矩阵满足五、为以后将狄拉克方程写成更方便的协变形式,引入四维坐标的协变和抗变矢量,第σ分量的方程式是什么,以及应满足什么条件。

高等量子力学喀兴林答案

高等量子力学喀兴林答案

高等量子力学喀兴林答案【篇一:量子力学】03 1309050325 吴富贤摘要:给出了不同学者关于量子力学态叠加原理的几种表述,分析比较了关于该原理的有关观点的争议,并对其中的原因进行了讨论,与此同时,也对量子力学在其它方面的应用进行了表述。

关键词:量子态;态叠加原理;量子力学基本问题;量子力学的应用。

一.引言:量子态的叠加原理是量子力学中一个重要的原理.但是在目前量子力学的一些专著和教科书中对这一原理的表述方式却是多种多样的,其中存在不少有争议的问题。

对一些有关的问题进行讨论,并提出一种新的关于这一原理的表述方式的建议。

同时量子力学是现代物理学的两大支柱之一,是20 世纪基础物理学取得的两大成就之一,是反映微观粒子运动规律的理论.量子力学态叠加原理(以下简称态叠加原理)是量子力学的一个基本原理,在量子力学理论体系中占有相当重要的地位.虽然量子力学诞生至今已近80年了,叠加原理也得到了一系列实验的证明,如电子衍射实验、中子干涉实验、电子共振俘获等,但时至今日,人们对态叠加原理的认识却仁者见仁、智者见智.本文对这个问题进行了比较、分析和讨论还对量子力学的应用和发展进行了一些研究。

二.正文:原理的表述在量子力学发展史上,尤其是现行的量子力学专著或教材里,不同的学者对态叠加原理进行了不同的描述.我们选择国内外3种比较典型的说法作一下简单介绍.(1)狄拉克的表述据说,狄拉克1930年在《量子力学原理》一书的初版里,首次系统地论述了量子力学里的态叠加原理.他在此书第一章“态叠加原理”里[4],先是正确地强调了态叠加原理的物理意义:“量子力学的叠加的一般原理,应用于任何一个动力学系统的态.”“把一个态表示成为一些其他态的叠加的结果,那是一种数学运算,总是可以允许的,??然而,这种运算是否有用,取决于所研究问题的特殊物理条件.” 可是,狄拉克接着是这样讲解“叠加过程的非经典本性”的:“我们考虑两个态a和b的叠加,这两个态的性质是??当观察处在态a的系统时,肯定得出一个特定的结果,比方说是a;而当观察处在态b的系统时,则肯定得出一个不同的结果,比方说是b.当观察处在叠加态的系统时??所得到的结果将有时是a,有时是b??而决不会既不是a,又不是b.”然而,狄拉克在这里讲的,不正是对于所有普通统计学都适用的规则吗?例如,一个年级有两个班,a班的年龄分布是集合{a},b班的年龄分布是另一个集合{b}.那么全年级的年龄分布不就是{a}与{b}这两个集合的和集吗?亦即是说,全年级任何一位同学的年龄,都决不会既不属于{a},又不属于{b}.这哪里是什么“非经典本性”呢?由于狄拉克在这里没有把握住量子力学里的态叠加原理的要领,在接下来的一句关于“由叠加而成的态的中间性质”的论断里,就难免出了点毛病[5,6].他自己也不得不为此加了一处脚注,承认他的结论没有普遍性,它的成立是“有一些限制”的.总而言之,在狄拉克书中的第一章里,还没有引入概率幅这个概念,因而不可能讲清楚量子力学里的态叠加原理.可以这样说,在这一章里,还没有进入到量子力学(2)朗道的表述(3)喀兴林的表述态叠加原理对态叠加原理的表述我们还可以列出许多.从这些不同表述中可以看出学者们关于以下几个方面的观点是一致的(1)关于态和态函数的表述基本上大多数人们都认为体系的态(运动状态或状态的简称)是指一个体系的每一种可能的运动方式,即在受到独立的、互不矛盾和完全的条件限制下而确定的每一种运动方式.与宏观体系的运动状态的确定是决定性的相对立,微观体系的运动状态的确定是非决定性的、统计性的,称微观体系的态为量子态.量子态由希尔伯特空间中的矢量表征,称为态矢量.希尔伯特空间又称为态矢量空间或态空间(2)态叠加原理的基本内容(3)量子叠加与经典、数学叠加的区别经典物理中也有叠加原理,例如波的叠加、矢量的叠加等,它们与量子力学里的态叠加原理形式上有相似之处,但实质内容不同.首先经典矢量叠加是物理量的叠加,遵循平行四边形法则;而态矢量无明显的物理意义,且完全由希尔伯特空间中的矢量方向决定,与矢量长度无关.经典波的叠加是两列或多列波的叠加,量子态叠加则是同一体系的两个或多个同时可能的运动状态的叠加.其次,量子态叠加也不同于数学上将体系的一个波函数按一个基函数完备组展开.后者要求基函数完备,但量子叠加不需要相叠加的波函数完备。

高等量子力学喀兴林答案

高等量子力学喀兴林答案

高等量子力学喀兴林答案【篇一:量子力学】03 1309050325 吴富贤摘要:给出了不同学者关于量子力学态叠加原理的几种表述,分析比较了关于该原理的有关观点的争议,并对其中的原因进行了讨论,与此同时,也对量子力学在其它方面的应用进行了表述。

关键词:量子态;态叠加原理;量子力学基本问题;量子力学的应用。

一.引言:量子态的叠加原理是量子力学中一个重要的原理.但是在目前量子力学的一些专著和教科书中对这一原理的表述方式却是多种多样的,其中存在不少有争议的问题。

对一些有关的问题进行讨论,并提出一种新的关于这一原理的表述方式的建议。

同时量子力学是现代物理学的两大支柱之一,是20 世纪基础物理学取得的两大成就之一,是反映微观粒子运动规律的理论.量子力学态叠加原理(以下简称态叠加原理)是量子力学的一个基本原理,在量子力学理论体系中占有相当重要的地位.虽然量子力学诞生至今已近80年了,叠加原理也得到了一系列实验的证明,如电子衍射实验、中子干涉实验、电子共振俘获等,但时至今日,人们对态叠加原理的认识却仁者见仁、智者见智.本文对这个问题进行了比较、分析和讨论还对量子力学的应用和发展进行了一些研究。

二.正文:原理的表述在量子力学发展史上,尤其是现行的量子力学专著或教材里,不同的学者对态叠加原理进行了不同的描述.我们选择国内外3种比较典型的说法作一下简单介绍.(1)狄拉克的表述据说,狄拉克1930年在《量子力学原理》一书的初版里,首次系统地论述了量子力学里的态叠加原理.他在此书第一章“态叠加原理”里[4],先是正确地强调了态叠加原理的物理意义:“量子力学的叠加的一般原理,应用于任何一个动力学系统的态.”“把一个态表示成为一些其他态的叠加的结果,那是一种数学运算,总是可以允许的,??然而,这种运算是否有用,取决于所研究问题的特殊物理条件.” 可是,狄拉克接着是这样讲解“叠加过程的非经典本性”的:“我们考虑两个态a和b的叠加,这两个态的性质是??当观察处在态a的系统时,肯定得出一个特定的结果,比方说是a;而当观察处在态b的系统时,则肯定得出一个不同的结果,比方说是b.当观察处在叠加态的系统时??所得到的结果将有时是a,有时是b??而决不会既不是a,又不是b.”然而,狄拉克在这里讲的,不正是对于所有普通统计学都适用的规则吗?例如,一个年级有两个班,a班的年龄分布是集合{a},b班的年龄分布是另一个集合{b}.那么全年级的年龄分布不就是{a}与{b}这两个集合的和集吗?亦即是说,全年级任何一位同学的年龄,都决不会既不属于{a},又不属于{b}.这哪里是什么“非经典本性”呢?由于狄拉克在这里没有把握住量子力学里的态叠加原理的要领,在接下来的一句关于“由叠加而成的态的中间性质”的论断里,就难免出了点毛病[5,6].他自己也不得不为此加了一处脚注,承认他的结论没有普遍性,它的成立是“有一些限制”的.总而言之,在狄拉克书中的第一章里,还没有引入概率幅这个概念,因而不可能讲清楚量子力学里的态叠加原理.可以这样说,在这一章里,还没有进入到量子力学(2)朗道的表述(3)喀兴林的表述态叠加原理对态叠加原理的表述我们还可以列出许多.从这些不同表述中可以看出学者们关于以下几个方面的观点是一致的(1)关于态和态函数的表述基本上大多数人们都认为体系的态(运动状态或状态的简称)是指一个体系的每一种可能的运动方式,即在受到独立的、互不矛盾和完全的条件限制下而确定的每一种运动方式.与宏观体系的运动状态的确定是决定性的相对立,微观体系的运动状态的确定是非决定性的、统计性的,称微观体系的态为量子态.量子态由希尔伯特空间中的矢量表征,称为态矢量.希尔伯特空间又称为态矢量空间或态空间(2)态叠加原理的基本内容(3)量子叠加与经典、数学叠加的区别经典物理中也有叠加原理,例如波的叠加、矢量的叠加等,它们与量子力学里的态叠加原理形式上有相似之处,但实质内容不同.首先经典矢量叠加是物理量的叠加,遵循平行四边形法则;而态矢量无明显的物理意义,且完全由希尔伯特空间中的矢量方向决定,与矢量长度无关.经典波的叠加是两列或多列波的叠加,量子态叠加则是同一体系的两个或多个同时可能的运动状态的叠加.其次,量子态叠加也不同于数学上将体系的一个波函数按一个基函数完备组展开.后者要求基函数完备,但量子叠加不需要相叠加的波函数完备。

高等量子力学习题和答案

高等量子力学习题和答案

高等量子力学习题和解答† 量子力学中的对称性1、 试证明:若体系在线性变换Qˆ下保持不变,则必有0]ˆ,ˆ[=Q H 。

这里H ˆ为体系的哈密顿算符,变换Qˆ不显含时间,且存在逆变换1ˆ-Q 。

进一步证明,若Q ˆ为幺正的,则体系可能有相应的守恒量存在。

解:设有线性变换Qˆ,与时间无关;存在逆变换1ˆ-Q 。

在变换 ˆ(,)'(,)(,)r t r t Qr t ψ→ψ=ψ 若体系在此变换下不变,即变换前后波函数满足同一运动方程 ˆ''ˆt ti Hi H ∂ψ=ψ∂ψ=ψ进而有11[,]0t t i Q HQ i Q HQ Q HQ H H Q --∂ψ=ψ⇒∂ψ=ψ⇒=⇒=2、 令坐标系xyz O -绕z 轴转θd 角,试写出几何转动算符)(θd R ze的矩阵表示。

解:'cos sin 'sin cos 'O xyz z d x x d y d y x d y d z zθθθθθ-=+=-+=考虑坐标系绕轴转角'1''x x yd d y xd y z z θθθ=+⎧⎪<<⇒=-+⎨⎪=⎩若用矩阵表示 '10'10'001x d x y d y z z θθ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭还可表示为 '()z e r R d r θ=10()10001z e d R d d θθθ⎛⎫⎪=-⎪ ⎪⎝⎭3、 设体系的状态可用标量函数描述,现将坐标系绕空间任意轴n转θd 角,在此转动下,态函数由),,(z y x ψ变为),,(),()',','(z y x d n U z y x ψθψ =。

试导出转动算符),(θd n U的表达式,并由此说明,若体系在转动),(θd n U下保持不变,则体系的轨道角动量为守恒量。

解:从波函数在坐标系旋转变换下的变化规律,可导出旋转变换算符()z e U d θ利用 (')()()z e r U d r θψ=ψ 及 (')()r Rr ψ=ψ 可得 ()1z e z iU d d L θθ=-通过连续作无穷多次无穷小转动可得到有限大小的转动算符()lim(1)z z i L n e z n i U L e nθθθ-→∞=-=绕任意轴n 转θ角的转动算符为()in Ln U eθθ-⋅=1U U U -+=⇒ 为幺正算符若(')()()z e r U d r θψ=ψ则必有1(')()()()()[,]z z e e z H r U d H r U d iH r d H L θθθ-==+若哈密顿量具有旋转对称性,就有[,]0z H L =→角动量守恒4、 设某微观粒子的状态需要用矢量函数描述,试证明该粒子具有内禀自旋1=S 。

高等量子力学练习题及答案解析三

高等量子力学练习题及答案解析三

3.1幺正算符也有本征矢量。

证明幺正算符的本征值都是绝对值是1的复数;幺正算符的两个本征矢量,若所属本征值不同亦必正交。

证明: 设算符U为幺正算符,ψ为其任意本征矢量,u 为对应的本征值。

即ψψu U =则ψψψψψψψψu u U U U U *+===因0≠ψψ,所以1=*u u 即 1=u即证得幺正算符的本征值都是绝对值是1的复数。

设算符U 为幺正算符的两个本征值为1u 、2u ,对应的矢量分别为1ψ、2ψ,且21u u ≠。

则111ψψu U = 11111ψψu U =- 222ψψu U = 22211ψψu U =- 因为幺正算符1-+=U U则有21212121ψψψψψψu u U U *+==2121211ψψψψu u UU *+== 所以01212121=⎪⎪⎭⎫ ⎝⎛-**ψψu u u u 因为012121≠-**u u u u ,故021=ψψ,即 1ψ和2ψ正交。

即证得幺正算符的两个本征矢量,若所属本征值不同亦必正交。

3.2 投影于某一子空间的投影算符P ,既然是厄米算符,它的本征值是什么?有无简并?本证子空间是什么?解:投影于某一子空间的投影算符∑==mi iP 1,设全空间是n 维的,且n m <。

则本征值方程ψλψψ==∑=mi i iP 1⑴其中λ为本征值,ψ为相应的本征态。

则ψλψλψ22==P P ⑵ 由幺正算符等幂性P P =2得ψψP P =2 ⑶ 由⑴、⑵和⑶式得λλ=2,所以1=λ或0=λ。

即求得投影算符的本征值是1或0。

当1=λ时,本征失量是i ,其中m i ,2,1=。

所以是简并的,本征子空间S 是由这m 个基矢构成的矢量空间。

当0=λ时,本征矢量是与i 正交的矢量。

所以也是简并的,本征子空间是S 空间的补空间。

#练习3.3 证明若算符的本征值谱中有零本征值,则这个算符肯定没有逆。

证明:假设算符A 有逆,则在值域中取一任意|φ>,则定义域有|ψ>存在即ψφφ-==AA 1已知A的全部本征值和相应的本征矢量:i i i a A ψφ= i=1,2,3…,∴()ψψφ--==A a AA算符A 存在零本征值,即00=⇒=φa a∴对于任意本征矢量()ψφa A -≠与()ψφ-=A a 矛盾∴假设不成立,即算符的本征值谱中有零本征值,这个算符肯定没有逆。

高中量子力学试题及答案

高中量子力学试题及答案

高中量子力学试题及答案1. 量子力学的基本原理是什么?答案:量子力学的基本原理包括波粒二象性、不确定性原理、量子态的叠加原理和量子纠缠等。

2. 描述海森堡不确定性原理。

答案:海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性的关系由公式ΔxΔp ≥ ħ/2表示,其中Δx是位置的不确定性,Δp是动量的不确定性,ħ是约化普朗克常数。

3. 什么是量子态的叠加原理?答案:量子态的叠加原理指的是一个量子系统可以同时处于多个可能状态的叠加,这些状态的线性组合构成了系统的完整描述。

4. 简述波函数的物理意义。

答案:波函数是量子力学中描述粒子状态的数学函数,它包含了关于粒子的所有可能信息,如位置、动量等。

波函数的绝对值的平方给出了粒子在特定位置被发现的概率密度。

5. 什么是量子纠缠?答案:量子纠缠是量子力学中的一种现象,指的是两个或多个量子系统之间存在一种特殊的关联,即使它们相隔很远,一个系统的状态改变会立即影响到另一个系统的状态。

6. 描述薛定谔的猫思想实验。

答案:薛定谔的猫思想实验是一个关于量子叠加状态的经典比喻,实验中,一个猫被放置在一个盒子里,盒子内有一个放射性原子、一个盖革计数器、一个锤子和一个毒气瓶。

如果原子衰变,盖革计数器会触发锤子打碎毒气瓶,猫就会死亡。

在没有观察之前,猫的状态是既死又活的叠加态,只有当盒子被打开观察时,猫的状态才会塌缩为确定的死或活。

7. 什么是量子隧穿效应?答案:量子隧穿效应是指粒子能够穿越一个经典物理中不可能穿越的势垒。

这种现象在量子力学中是可能的,因为粒子的波函数在势垒的另一侧并不完全为零,这意味着存在一定的概率粒子能够出现在势垒的另一侧。

8. 简述量子力学中的波函数坍缩。

答案:波函数坍缩是指在量子力学中,当一个量子系统被测量时,系统的波函数会从一个叠加态突然转变为一个特定的状态,这个过程是随机的,并且与测量过程有关。

9. 什么是泡利不相容原理?答案:泡利不相容原理指出,在同一个量子系统中,两个相同的费米子(如电子)不能处于同一个量子态。

考试题库之高等量子力学

考试题库之高等量子力学

1、请写出关于直积的五个定理并加以证明 答案:定理一:两个对角矩阵的直积仍是对角矩阵 证明:已知A 、B 为两个对角矩阵,有Aij = Aii δij , Bmn =Bmm δmn (A×B)im,jn = AijBmn = AiiBmm δij δmn = Cim;im δim,jn 所以.A×B 仍是对角矩阵 定理二:(A + B)×C = A×C + B×C 证明: ((A + B)×C)im,jn = (A + B)ijCmn = (Aij + Bij)Cmn= AijCmn + BijCmn = (A×C)im,jn + (B×C)im,jn, 所以 (A + B)×C = A×C + B×C. 定理三:如果A 和B 是幺正矩阵,则A×B 也是幺正的 证明:因为A 、B 都是幺正矩阵,所以AA += I ,BB += Iij kj kikA Aδ=+∑ ,mn ln lml B B δ=+∑∑∑∑∑∑∑=====⨯=⨯⨯++++*+klkljn im mn ij mlkjik kjml ik klnljk ml ik kl jn ml klik jn kl klim B BAA B A B A B A B A B A B A B A B A ,lnln**,,kl ,)()()(δδδ所以A×B 也是幺正矩阵 定理四:Tr (A×B )=TrA·TrB 证明:Tr(A×B) =∑⨯im,B A im im )(=∑immmii BA =∑∑immmii BA = TrA·TrB定理五:设A 、C 为同维矩阵,B 、D 为同维矩阵,则有(A ×B)(C ×D) = (AC)×(BD) 证明:∑⨯⨯=⨯⨯kljn kl klim jn im D C B A D C B A ,,,)()()))(((jnim mn ij klklml kj ik kj ml ik BD AC BD AC D B B A D C B A ,lnln ))()(()()(⨯====∑∑∑所以(A ×B)(C ×D) = (AC)×(BD)2、如果f 是厄米算符,而且对某一特定右矢A 有0ˆm =A f ,m 为正整数,则有0ˆ=A f 。

高等量子力学课后习题解析

高等量子力学课后习题解析
r2 i x 2 j y 2 k z 2 的内积表为 x1 , y1 , z1 和 x 2 , y 2 , z 2 的函数。
3. 验证所求的内积规则符合条件(9)~(12) 。 4. 用 (i , j ) = ij 验证所求出的内积规则。 1 证明: 在一个归一化的完全集里面的矢量集合里,任意的两个矢量正交,根据矢 量的正交 性定义,两个矢量 ψ 和 φ 的内积为零,即 , 0 。
重新用 Schmidt 方法求出一组基矢。 (完成人:何贤文 审核人:班卫华) 解:由空间中不满足正交归一条件的完全集{ 1 , 2 , 3 , 4 },求这个空间的一 组基矢{ 1 , 2 , 3 , 4 }. (1)首先取 1 为归一化的 1 : 1 1 0 1 1 0 0
归一化的 4 为
则找到一组基矢为 { 1 , 2 , 3 , 4 }.
在三维位形空间中, i , j , k 是在互相垂直的 x,y,z 三个轴上的
单位矢量。取三个归一化的矢量:
(高思泽)
i 1 1 2 (i j ) 2 1 3 ( j k) 2
在内积就是点乘积的定义下它们并不正交。现在改变正交的定义:定义这三个 矢量 1 , 2 , 3 互相正交。 1. 证明:定义一个归一化的完全集里面的矢量彼此互相正交,等于定有一 种内积规则。 2. 求出这个新的内积规则,即将任意两个矢量 r1 i x1 j y1 k z1 ,
a
综上所述,新定义的内积规则符合条件(9)—条件(12) ,所以仍为内积空间。 练习 1.8 在四维列矩阵空间中,给定四个不正交也不全归一的矢量: 1 0 1 , 0 0 1 1 2 , 0 0 1 1 3 , 1 0 1 1 4 1 1

高等教育出版社 量子力学教程第二版课后答案 周世勋 陈灏着

高等教育出版社 量子力学教程第二版课后答案 周世勋 陈灏着

高等教育出版社量子力学教程第二版课后答案周世勋陈灏着----84740a00-7166-11ec-942f-7cb59b590d7d高等教育出版社量子力学教程第二版课后答案周世勋陈灏着课后练习详细讲解量子力学第一章量子理论基础1.1根据黑体辐射公式推导出维恩位移定律:与最大能量密度λM对应的波长与温度T成反比,即λmt=b(常量);近似计算B的值,精确到两个有效数字。

解根据普朗克的黑体辐射公式dv,(1)−1.以及λv=c,(2)ρvdv=− ρvdλ(3)=−ρv(λ)ρv(λ)=⋅C这里的ρλ的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。

本主题关注λ取什么值时,ρλ达到最大值,因此,我们必须问ρλ是λ的一阶导数为零,从中相应的λ值被记录为λm,需要注意的是,还需要验证ρλyesλλλ的二阶导数是否在M处的值小于零。

如果小于零,则需要在λM之前获得的值,如下所示:hc1−5+⋅hc−λkt−11−eλkt=0⇒5(1−e,则上述方程为λkt5(1−e−x)=x这是一个超越方程。

首先,很容易知道方程有一个解:x=0,但经过验证,解一般;另一个解可以通过逐步逼近法或数值计算法得到:x=4.97。

经过验证,此解决方案正是所需的,因此把x以及三个物理常量代入到上式便知λmt=2.9×10−3米⋅K这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2接近0k时,钠的价电子能约为3eV。

找到它的德布罗意波长。

解根据德布罗意波粒二象性的关系,可知如果所考虑的粒子是非相对论性电子(E)如果我们考察的是相对性的光子,那么注意,本主题中考虑的钠价电子的动能仅为3eV,远小于电子质量与光速平方的乘积,即0.51×106ev,因此使用非相对论电子的能量-动量关系h2µeehc2µec2e1.24×10−62×0.5×1×10×3=0.71×10−9m=0.71nm在这里,利用了hc=1.24×10−6ev⋅Mµec2=0.51×106evhc2µece作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1
(1)对于氢原子,En
=
-
e2 2an2
, E1
=
-
e2 2a
, E2
=
e2 -
8a
1
8
E1的几率为 9,E2的几率为 9
1 æ e2 ö 8 æ e2 ö 3e2
\
E
=
9
´
çç è
-
2a
÷÷ ø
+
9
´
çç è
-
8a
÷÷ ø
=
18a
i
i
i
i
( ) ( ) ( ) - Ht
1 - Ht
1 - Ht
å Ck ( j + k ) j + k, j + k = ( j + 1)åCk j + k, j + k
k
k
å Ck (k -1) j + k, j + k = 0
k
\ Ck (k - 1) = 0,即C1 ¹ 0,Ck = 0(k ¹ 1)
\V+ jj = c j + 1, j + 1
7
2.1
11

11
1 1ö 6
11
,22
=-
3
çç è
2 1,-1, , 22
+ 1,0, ,22
÷÷ + ø
3
´
2 1,0, ,22
1 综上所述,j1 = 1, j2 = 2 时,耦合表象基矢对非耦合表象基矢的展开式为:
33
11
, = 1,1, ,
22
22
31 6 11 3 1 1 , = 1,0, , + 1,1, ,-
m=0 n=1 m!n!(m + n + 1)
[ [ ]] ( ) ¥ ¥
m+n
-1
令l = 1,则有F = å å
B(m), A(m), B
m=0 n=1 m!n!(m + n + 1)
[ [ ]] [ [ ]] [ [ ]] 1
=-
B(0), A(1), B
1 +
B(0),
A(2), B
+ 1 B(1), A(1), B
r (1)
\ y 为纠缠太。
4
1.5
1
11
非耦合表象:j1 = 1; m1 = 1,0,-1; j2 = , m2 = ,- 基矢为
2
22
11 1,1, ,
22
11 1,1, ,-
22
11 1,0, ,
22
11 1,0, ,-
22
11 1,-1, ,
22
11 1,-1, ,-
22
3
13
31 1 3 1
-
(tc
-
ta
)3
-
3(tb
-
ta
) (tb
-
tc
)
(tc
-
ta
)]}´
é ê
22
33
11
Þ ,- = 1,-1, ,-
22
22
现在利用m相同时j不同的态正交这个法则求m不同的态。
31 6 1 1 3 1 1 , = 1,0, ,- + 1,1, ,- Þ
22 3 2 2 3 2 2
11
3 11 6 11
, = - 1,0, ,- + 1,1, ,-
22
3 22 3 22
再将J- =J 1-+ J2-作用于上式得:
im ,
)x e-bxx
p2 =[a d(xb -(xa)
)]
T ®0
2T
对比 lim
a ®¥
a exp(iax2)=d (x) ip
m1
可得
F (tb, ta )=(2pi
)2 T
8
(2)
本题如果应用
K
(b,
a)
=
ò
+¥ -¥
dxc
K
(b,
c)
来确定 F(tb, ta )
则取 xb = xa = 0 ,
øè
2
1
­
÷ ÷ ø
+
2
­ + ¯ × ­+ ¯
1
1 21
1
1 æ1 0ö 1 æ1 1ö 1 æ3 1ö
=
2
çç è
0
0
÷÷ ø
+
4
ççè1
1÷÷ø = 4 ççè1
1÷÷ø
Q
r
2
(1)
=
1 16
æ çç è
3 1
1öæ 3 1÷÷øççè 1
1ö 1 æ 5
1÷÷ø
=
8
çç è
2

1
÷÷ ø
¹
22
22
31
11
1 1 31 2 11 1 1 1
Þ 3 , = 2 1,0, , + 1,1, ,- Þ , = 1,0, , + 1,1, ,-
22
22
2 2 22 3 22 3 2 2
5
再将J -
=
J
1-+
J
2
作用于上式得:
-
3 1 2æ
11
1 1ö 1
11
2 ,- = 22
3
çç è
2 1,-1, , 22
M
M
[ ] [ ] ( ) ( ) f n
0
dn f =
a
da n
a =0 = eaA A(n), B e-aA a =0 = A(n), B
[ ] [ ] [ ] [ ] [ ] \ f (a ) = A(0), B + A(1), B a + A(2), B a 2 + A(3), B a 3 + LL + A(n), B a n + LL
11
耦合表象:j1 - j2 £ j1 + j2 ; jmax = , jmin = ; j = 时,m = , ,- ,- ; j = 时,m = ,-
2
22
22 2 2 2
22
基矢为:
33 ,
22
31 ,
22
31 ,-
22
33 ,-
22
11 ,
22
11 ,-
22
Q J - jm =
( j - m + 1)( j + m)
2m
- ta) +
A]2
+
f f[
2m
(t
- ta )2
+
A(t
- ta) +
xa ]
=
f2 m
(t
-
ta
)2
+
2 Af
(t
-
ta
)
+
m 2
A2
+
fxa
代入 A = xb - xa - f T ,化简得 T 2m
Scl (b, a)
=
m 2T
( xb
-
xa )2
+
1 2
fT (xb
+
xa ) -
f 2 T3 24m
1,0, ,- ,- = ;1,-1, ,- ,- = 1;1,0, , , = - ;1,1, ,- , =
2 22 2 3
2 22 2
2 22 2 3 2 22 2 3
1 11 1
6 1 11 1 3
1,-1, ,- ,- = - ;1,0, ,- ,- =
2 22 2
3
2 22 2 3
6
1.6
j, m -1 ,由于j
=
j1
+
j2
=
3 时,m1
=
j1
= 1, m2
=
j2
=
1
2
2
33
11
1 13 3
即 , = 1,1, , ,CG系数为 1,1, , , = 1
22
22
2 22 2
33 将J - = J1- + J 2-作用于上式两边 : J - ,
= (J1- + J 2- )1,1, 1 , 1
令eF (l ) = e-lAe-lBel(A+B)
( ) [ ( )] 对l求导:F ' l eF (l ) = e-lABe-lBel(A+B) + e-lBe-lA - A + A + B el(A+B)
( ) F ' l e-lBe-lA = -e-lB Be-lA + e-lBe-lAB
( ) ( ) F ' l e-lB = e-lB - B + e-lABe-lA
- l m e-lB B(m), A(m), B e-lB
m=0 m!
[ [ ]] ¥ ¥
\ F'(l ) = å å
(- l )m+n
B(m), A(m), B
m=0 n=1 m!n!(m + n + 1)
[ [ ]] ( ) ( ) 积分得F l
¥¥
=åå
- l l m+n m+n+1
B(m), A(m), B
由[J + ,V+ ] = 0得
J +V+ jj = V+ J + jj = 0
相关文档
最新文档