数学分析课件:20-2含参量的反常积分的一致收敛

合集下载

数学分析课件一致收敛函数列与函数项级数的性质

数学分析课件一致收敛函数列与函数项级数的性质
详细描述
对于一致收敛的函数列或函数项级数 ,在每个点的某个邻域内,函数列或 级数的每一项都是有界的。这意味着 在每个点的附近,函数列或级数的变 化范围是有限的。
性质三:局部连续性
总结词
局部连续性是指一致收敛的函数列或函 数项级数在每个点的邻域内都是连续的 。
VS
详细描述
对于一致收敛的函数列或函数项级数,在 每个点的某个邻域内,函数列或级数的每 一项都是连续的。这意味着在每个点的附 近,函数列或级数的值是平滑变化的,没 有突然的跳跃或断点。
03
一致收敛函数列与函数项 级数的应用
应用一:微积分学中的一致收敛概念
要点一
总结词
要点二
详细描述
理解一致收敛在微积分学中的重要性
一致收敛是数学分析中的一个重要概念,它描述了函数列 或函数项级数在某个区间上的收敛性质。在微积分学中, 一致收敛的概念对于研究函数的极限行为、连续性、可微 性和积分等性质至关重要。通过理解一致收敛,可以更好 地理解函数列和级数的收敛性质,从而更好地应用微积分 学中的相关定理和性质。
应用二:实数完备性的证明
总结词
利用一致收敛证明实数完备性
详细描述
实数完备性是实数理论中的重要性质,它表 明实数具有某些理想的完备性。利用一致收 敛的性质,可以证明实数完备性的一些重要 定理,如确界定理、区间套定理和闭区间套 定理等。这些定理在实数理论中起着至关重 要的作用,为实数性质的研究提供了重要的 理论支持。
05
一致收敛函数列与函数项 级数的扩展知识
扩展知识一:一致收敛的判定定理
01
柯西准则
对于任意给定的正数$varepsilon$,存在正整数$N$,使得当
$n,m>N$时,对所有的$x$,有$|f_n(x)-f_m(x)|<varepsilon$。

§2 含参量反常积分 一、含参量反常积分及其一致收敛的定义

§2   含参量反常积分 一、含参量反常积分及其一致收敛的定义
c
f ( x, y )dy
在[a, b) 上不一致收敛.
暨南大学数学分析精品课程
证明: 用反证法.
假设原积分在[a, b) 上一致收敛, 则对 0, M c, 当 A, A M 时对一切 x [a, b) 恒有

A
A
f ( x, y )dy .
A A
由假设 f 在[a, b] [ A, A] 上连续,所以 f ( x, y )dy 是 x 的连续函数 . 在上面不等式中令 x b , 得到当 A A M 时,
暨南大学数学分析精品课程
二、一致收敛性的判别法 定理19.7 (一致收敛的柯西准则)
设二元函数 z f ( x, y ) 定义在无界区域 R {( x, y ) a x b ,c y } 上. 反常积分
c
f ( x, y )dy 在[a, b] 上一致收敛
的充要条件是 : 对任给正数 , 总存在某一实数 M M ( ) c, 使得当
c d
都收敛 , 则 I I ( x) 是 [a, b] 上的函数. 含参量无 界函数反常积分在[a, b] 上一致收敛的定义为: 若对 0, 总存在某正数 ( ) d c, 使得当 0 时 , 对一切 x [a, b], 都有

d
d
f ( x, y )dy

A
A
f (b, y )dy .
暨南大学数学分析精品课程

而 是任给的,因此
c
f ( x, y )dy 在x b 处收
c
敛, 这与假设矛盾. 所以积分 [a, b) 上不一致收敛.
f ( x, y)dy 在

数学分析课件:20-2含参量的反常积分的一致收敛

数学分析课件:20-2含参量的反常积分的一致收敛
2008/06/10
§20.2 含参量的反常积分的 一致收敛
本节研究形如
c f ( x, y)dy
d
f ( x, y)dy,
(d 为瑕点)
c
的含参变量广义积分的连续性、可微性与 可积性.
只对无穷限积分讨论,无界函数的情况可 类似处理.
一、含参量反常积分的定义
设f ( x, y)定义在无界区域 R [a,b][c,)上,
收敛于0,
则含参量反常积分
f ( x, y)g( x, y)dy
c
在[a, b]上一致收敛 .
5. Abel 判别法

(i) f ( x, y)dy 在[a,b]上一致收敛; c
(ii) x [a,b],函数g( x, y)为y的单调函数, 且对参量x, g( x, y)在[a,b]上一致有界 ,
含参量反常积分 f ( x, y)dy在[a,b]上一致 c
收敛的充要条件是:
对任一趋向于 的递增数列{An }(其中A1 c), 函数项级数
n1
An1 An
f ( x, y)dy
un ( x)
n1
在[a, b]上一致收敛 .
证 只证明必要性
3. Weierstrass判别法
设有函数g( y), 使得 f ( x, y) g( y),a x b,c y .
若 g( y)dy 收敛, 则 f ( x, y)dy 在[a, b]上
c
c
一致收敛.
4. Dirichlet 判别法
N
若 (i) N c,含参量正常积分 c f ( x, y)dy
对参数x在[a , b]上一致有界 ,
(ii) x [a,b],函数g( x, y)关于y是单调递减

含参量反常积分一致收敛性的判别法资料

含参量反常积分一致收敛性的判别法资料

含参量反常积分一致收敛的判别法王 明 星(德州学院数学科学学院,山东德州 253023)摘 要: 含参量反常积分是研究和表达函数特别是非初等函数的有力工具.本文通过对含参量反常积分一致收敛性的分析和研究,总结出了判别含参量反常积分一致收敛的几种简单而有效的方法和定理(柯西准则,M 判别法,确界法,狄利克雷判别法等),从而方便了含参量反常积分一致收敛性的学习和掌握.关键词: 含参量反常积分; 一致收敛; 判别法含参量反常积分包括含参量无穷限反常积分和含参量无界函数反常积分,两种反常积分一致收敛性的判别法是相似的,所以我们下面仅仅讨论含参量无穷限反常积分一致收敛性的判别法.1 含参量无穷限反常积分一致收敛的概念1.1 含参量无穷限反常积分设函数(,)f x y 定义在无界区域(){},,R x y a x b c y =|≤≤≤<+∞上,若对每一个固定的[],x a b ∈,反常积分(,)cf x y dy +∞⎰都收敛,则它的值是x 在[],a b 上取值的函数,当记这个函数为()I x 时,则有()(,)cI x f x y dy +∞=⎰,[],x a b ∈称(,)cf x y dy +∞⎰为定义在[],a b 上的含参量无穷限反常积分.1.2 含参量无穷限反常积分收敛若含参量无穷限反常积分(,)cf x y dy +∞⎰与函数()I x 对每一个固定的[],x a b ∈,任给的正数ε,总存在某一实数N c >,使得M N >时,都有(,)()Mcf x y dy I x ε-<⎰,即(,)Mf x y dy ε+∞<⎰,则称含参量无穷限反常积分(,)cf x y dy +∞⎰在[],a b 上收敛于()I x .1.3 含参量无穷限反常积分一致收敛若含参量无穷限反常积分(,)cf x y dy +∞⎰与函数()I x 对任给的正数ε,存在某一实数N c >,使得M N >时,对一切[],x a b ∈,都有 (,)()Mcf x y dy I x ε-<⎰即(,)Mf x y dy ε+∞<⎰,则称含参量无穷限反常积分(,)cf x y dy +∞⎰在[],a b 上一致收敛于()I x .1.4 含参量无穷限反常积分非一致收敛若含参量无穷限反常积分(,)cf x y dy +∞⎰与函数()I x ,总存在正数0ε,对任意给定的实数N c >,总存在M N >及[]0,x a b ∈,使得 000(,)()Mcf x y dy I x ε-≥⎰,即00(,)Mf x y dy ε+∞≥⎰,则称含参量无穷限反常积分(,)cf x y dy +∞⎰在[],a b 上非一致收敛于()I x .2 含参量无穷限反常积分一致收敛的判别法2.1 用定义法证明含参量反常积分一致收敛性和非一致收敛性用定义证一致收敛的关键在于寻找只与ε有关的共同的0A ,方法常常是采取适当放大的方法.例1 证明 无穷积分dx ye xy ⎰+∞-0在区间[),a +∞()0a >一致收敛,而在()0,+∞上非一致收敛.证明 Ay Ayt Axy e dt e xy t dx ye y -+∞-+∞-==+∞∈∀⎰⎰令),,0(,对0ε∀>,取yA ε1ln0=,则0A A >∀,有0A y xy Ay Aye dx e e ε+∞---=<<⎰,因此,dx ye Axy ⎰+∞-在(0,+∞)是收敛的.根据定义4,要想证明dx yeAxy⎰+∞-在),0(+∞∈y 是非一致收敛的,只需取0ε=e 21,,0>∀A 取),0(21,2''+∞∈=>=Ay A A A ,则01''''ε>==--+∞-⎰e e dx e y y A Axy . 但dx ye Axy ⎰+∞-在),[+∞a 一致收敛(其中0a >),,取aA ε1ln0=,当0A A >时,对一切[)+∞∈,a y ,有ε=<=--+∞-⎰a A AyAxy e e dx ye 0. 所以,dx ye Axy ⎰+∞-在),[+∞∈a y (其中0>a )上一致收敛.2.2 用柯西准则证明含参量无穷限反常积分一致收敛性和非一致收敛性定理1(柯西准则)反常积分dx y x f a⎰+∞),(在区间[]()d c y I ,∈一致收敛0ε⇔∀>,00A ∃>,10A A ∀>与20A A >,y I ∀∈,ε<⎰21),(A A dx y x f .例2 证明 若(),f x y 在[][),,a b c ⨯+∞上连续,又(),cf x y dy +∞⎰在[),a b 上收敛,但在x b =处发散,则(),cf x y dy +∞⎰在[),a b 上不一致收敛.证 用反证法.假若积分在[),a b 上一致收敛,则对于任给0ε>,总存在M c >,当1A ,2A M >时对一切[),x a b ∈恒有()21,A A f x y dy ε<⎰.由假设(),f x y 在[][]12,,a b A A ⨯上连续,所以()21,A A f x y dy ⎰是x 的连续函数.在上面不等式中令x b →,得到当21A A M >>时,()21,A A f b y dy ε≤⎰.而ε是任给的,因此(),cf x y dy +∞⎰在x b =处收敛,这与假设矛盾.所以积分(),cf x y dy +∞⎰在[),a b 上不一致收敛.2.3 用魏尔斯特拉斯判别法证明含参量无穷限反常积分的一致收敛性定理2(魏尔斯特拉斯判别法)设有函数()g y ,使得()(),f x y g y ≤,a x b ≤≤,c y ≤<+∞若()cg y dy +∞⎰收敛,则反常积分(,)cf x y dy +∞⎰在区间[],a b 一致收敛.例3 证明含参量反常积分()320cos a u tetdt +∞-+⎰,0a >在[)0,u ∈+∞上一致收敛.证 对于任何()[)[),0,0,u t ∈+∞⨯+∞,有()322cos a u tat et e -+-≤而20at e dt +∞-⎰在0a >时收敛,故由维尔斯特拉斯判别法知()320cos a u tetdt +∞-+⎰在[)0,u ∈+∞上一致收敛.使用维尔斯特拉斯判别法,关键在于将被积函数的绝对值(,)f x u 适当地放大,以找出函数()F x (优函数),使()(,)(),f x u F x x a u I ≤∀≥∀∈且()⎰+∞adx x F收敛,则()⎰+∞adx u x f ,关于u 在I 上一致收敛.2.4 利用变上限积分的有界性判定含参量无穷限反常积分的一致收敛性维尔斯特拉斯判别法是判别某些反常积分一致收敛性的很简便的判别法,但这种方法有一定的局限性:凡能用维尔斯特拉斯判别法判别无穷积分是一致收敛,此无穷积分必然是绝对收敛;如果反常积分是一致收敛,同时又是条件收敛,那么就不能用维尔斯特拉斯判别法来判别.对于这种情况,有如下定理定理3 若函数),(y x f 在区间)0(),,(>∈+∞<≤a I y x a D 连续,且dt y t f y x F xa⎰=),(),(在D 有界,即,),(,0D y x C ∈∀>∃都有C dt y t f y x F xa≤=⎰),(),(,则当0>λ时,反常积分dx xy x f a⎰+∞λ),(在区间I 一致收敛.分析 )i dt y t f y x F xa⎰=),(),(在D 有界)ii 1xλ在0>λ时是单调递减的,明显的满足狄利克雷判别法的条件.证 )i 由已知dt y t f y x F xa⎰=),(),(在D 有界,即(),,C O x y D ∃>∀∈,都有C dt y t f y x F xa≤=⎰),(),(.)ii 对每一个y I ∈,1x λ关于x 是单调递减且当x →+∞时,对参变量y,1x λ一致收敛于0,则由狄利克雷判别法可知含参量反常积分dx x y x f a⎰+∞λ),( 在区间I 一致收敛.例4 证明反常积分dx xxe xy sin 0⎰+∞- 在区间),0[+∞一致收敛.证 由题可知tdt e y x F xyt sin ),(1⎰-=,)0,1(),(+∞<≤+∞<≤∈∀y x D y x 从而有)(01)1(2),(2+∞→→++≤-y e yy y x F y, 而1sin yt e tdt -⎰是定积分,必然有界.即存在C ,(),x y D ∀∈有sin xyt e tdt C -≤⎰ 又10λ=>,则由定理3可知反常积分dx xxe xy sin 0⎰+∞- 在区间),0[+∞一致收敛.2.5 用确界法证明含参量无穷限反常积分的一致收敛性和非一致收敛性在知道反常积分dx y x f a⎰+∞),(关于y 在区间I 上的收敛值()y ϕ时,可应用下述定理定理4 含参量反常积分dx y x f a⎰+∞),(关于y 在区间I 上一致收敛于()y ϕ的充要条件是0)(),(sup lim =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-⎰∈+∞→ξξφa Iy y dx y x f . (1)证 [必要性] 若dx y x f a⎰+∞),(关于y 在区间I 上一致收敛于()y ϕ,则对任给的正数ε,存在不依赖于x 的正整数N ,当n N >时,有()(),af x y dx y ϕε+∞-<⎰,y I ∀∈.由上确界的定义,亦有()()sup,y Iaf x y dx y ϕε+∞∈-≤⎰.这就证明了(1)式成立.[充分性] 由假设,对任给的0ε>,存在正整数N ,使得当n N >时,有()()sup,y Iaf x y dx y ϕε+∞∈-<⎰ (2)因为对一切y I ∈,总有()()()(),sup ,y Iaaf x y dx y f x y dx y ϕϕ+∞+∞∈-≤-⎰⎰.故由(2)式得()(),af x y dx y ϕε+∞-<⎰.于是dx y x f a⎰+∞),(关于y 在区间I 上一致收敛于()y ϕ.例 5 证明反常积分dx yx y⎰+∞+0221关于y 在)0(),,[>+∞c c 上的一致收敛性和),0(+∞内的非一致收敛性.解 显然dx yx y⎰+∞+0221关于y 在),0(+∞内收敛于2π (事实上22lim 1AA y dx x y →∞+⎰=()0lim arctan AA xy →∞∣=()lim arctan arctan 0A Ay →∞-=2π). ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+⎰≥+∞→ξξπ02221sup lim dx y x y c y =⎭⎬⎫⎩⎨⎧-≥+∞→ξπξy c y arctan 2sup lim=0)arctan 2(lim =-+∞→ξπξc ,而⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+⎰>+∞→ξξπ022021sup lim dx y x y y =⎭⎬⎫⎩⎨⎧->+∞→ξπξy y arctan 2sup lim 0=22limππξ=+∞→.由定理4,得dx yx y⎰+∞+0221 关于y 在),[+∞c ,()0c >上一致收敛于2π,在),0(+∞内非一致收敛. 定理 5 含参量反常积分dx y x f a⎰+∞),(关于y 在区间I 上一致收敛于)(y φ的充要条件是:对任意{}[):,+∞∈a n ξ{}),2,1(:,lim =∈⊂+∞=∞→n I y I y n n n n ξ,都有 0)(),(lim=-⎰+∞→nan nn y dx yx f ξφ.例6 试证dx y x y⎰+∞+12)(关于y 在),0(+∞内非一致收敛. 证明 显然dx y x y⎰+∞+12)( 关于y 在),0(+∞内收敛于yy+1.取),,2,1(, ===n n y n n n ξ那么就有),,2,1)(,0(,lim =+∞∈+∞=+∞→n y n n n ξ但是2121lim lim 1)(lim12==+=+-+∞→∞→∞→⎰n n n n n n n n n n y y y y dx y x y nξξ由定理5,()dx y x y⎰+∞+12关于y 在()+∞,0内非一致收敛.2.6 用狄利克雷判别法证明含参量无穷限反常积分的一致收敛性定理6 (狄利克雷判别法)设 )i 对一切实数0>N ,含参变量反常积分()⎰Ncdx y x f ,对参变量y 在[]b a ,上一致有界,即存在正数M ,对一切c N >及一切[]b a y ,∈,都有()M dx y x f Nc≤⎰,;)ii 对每一个[]b a y ,∈,函数()y x g ,关于x 是单调递减且当+∞→x 时,对参变量y ,()y x g ,一致地收敛于0,则含参变量反常积分()()dx y x g y x f c,,⎰+∞在[]b a ,上一致收敛.例7 对于()0,1a ∀∈,讨论含参量反常积分sin 10a x xdx x +∞+⎰的一致收敛性.解 )i 对于0A ∀>,都有sin 2Axdx ≤⎰.)ii 因为()()'12101010a x a x x x x x -=+-⎡⎤⎣⎦++⎛⎫ ⎪⎝⎭,当101ax a>-时,'010x x <+⎛⎫ ⎪⎝⎭,即10ax x +在10,1a a ⎛⎫+∞ ⎪-⎝⎭上单调递减,并且lim 010ax x x →+∞=+.因此由狄利克雷判别法可知,含参量反常积分101sin 10a a ax xdx x +∞-+⎰对()0,1a ∀∈是一致收敛的.而在100,1a a ⎡⎤⎢⎥-⎣⎦上是定积分,必收敛,则对()0,1a ∀∈是一致收敛的. 所以含参量反常积分sin 10a x xdx x +∞+⎰对()0,1a ∀∈是一致收敛的.2.7 用阿贝尔判别法证明含参量无穷限反常积分的一致收敛性定理7 (阿贝尔判别法)设)i ()dx y x f c⎰+∞,在[]b a ,上一致收敛;)ii 对每一个[]b a y ,∈,函数()y x g ,为x 的单调函数,且对参变量y ,()y x g ,在[]b a ,上一致有界,则含参变量反常积分()()⎰+∞cdx y x g y x f ,,在[]b a ,上一致收敛.例8 证明含参变量反常积分dx xxe xy sin 0⎰+∞- 在[]d ,0上一致收敛.证明 由于反常积分dx x x⎰+∞sin 收敛,(当然,对于参变量y ,它在[]d ,0一致收敛),函数()xy e y x g -=,对每一个[]d x ,0∈单调,且对任何d y ≤≤0,0≥x ,都有()1,≤=-xy e y x g ,故由阿贝尔判别法即得含参变量反常积分dx xxe xy⎰+∞-0sin在[]d ,0上一致收敛.推论 1 设函数(,)f x y 定义在无界区域[)[],,a c d +∞⨯上,且对y 的偏导数(,)y f x y 存在.若下列条件满足1)对每一个[],y c d ∈,反常积分(),af x y dx +∞⎰收敛;2)存在常数0M >,使得对任意0b >及所有的[],y c d ∈,恒有 (),by af x y dx M ≤⎰,即(),by af x y dx ⎰关于b 及[],y c d ∈一致有界.则含参量反常积分(),af x y dx +∞⎰在[],c d 上一致收敛.证明 由于[],c d 为有限闭区间.根据有限覆盖定理,对任给的0ε>,一定存在有限个点011n n c y y y y d -=<<⋅⋅⋅<<=,使得[][]11,,n i i i c d y y -==且1i i y y ε--<.由于反常积分(),af x y dx +∞⎰收敛,于是对任给的()1,2,,i y i n =⋅⋅⋅,都存在()0,i A y ε,使得对任给的()10,,i A A A y ε>有()1,,1,2,,A i Af x y dx i n ε<=⋅⋅⋅⎰(3)另一方面,对任意的[],y c d ∈,一定存在一点i y ,使得i y y ε-<.令(){}00max ,,1,2,,i A A y i n ε==⋅⋅⋅,则0A 只与ε有关.同时对任意的10,A A A >,式(3)必然成立.于是根据微分学中值定理及式(3)有()1,A Af x y dx⎰()()()()1,,,A iiAf x y f x y f x y dx =-+⎰()()()()11,,,A A i i A Af x y f x y dx f x y dx ≤-+⎰⎰()()()11,,A A y i i AAf x y y dx f x y dx ξ=-+⎰⎰()()()1,,21AA y y i aaf x dx f x dx y y M ξξεε⎛⎫≤+-+≤+⎪⎝⎭⎰⎰即含参量反常积分(),af x y dx +∞⎰在[],c d 上一致收敛.如果将推论1中的条件1)变弱,则条件2)会变强.得如下推论推论 2 设函数(,)f x y 定义在无界区域[)[],,a c d +∞⨯上,且关于[],y c d ∈可微.若满足如下条件1)存在一点[]0,y c d ∈,使得反常积分()0,af x y dx +∞⎰收敛;2)反常积分(),y af x y dx +∞⎰于[],y c d ∈一致收敛. 则含参量反常积分(),af x y dx +∞⎰在[],c d 上一致收敛.例9 判断含参量反常积分22cos2xe xydx α+∞-⎰在(),y ∈-∞+∞范围上的一致收敛性,其中0α>.解 由于对固定的y R ∈,当x →+∞时,222222cos 2cos 20x x x x exy xy eαα-=→,于是对固定的y R ∈,广义积分22cos2xe xydx α+∞-⎰收敛.另一方面,考虑积分()22,2sin 2xy f x y dx xe xydx α+∞+∞-=-⎰⎰,这里()22,cos 2xf x y e xy α-=.由于当x →+∞时,()222232,sup sin 20x x y x x xexy eαα-∈-∞+∞⋅=→.从而有(),y af x y dx +∞⎰在(),y ∈-∞+∞上一致收敛,由推论2知,22cos2xe xydx α+∞-⎰在(),y ∈-∞+∞范围上的一致收敛.总之,判断含参量无穷限反常积分一致收敛性的判别法多种多样,关键在于理解它们各自应用的范围及其相互联系,以达到灵活应用.参考文献:[1]贺自树.一致收敛教学的探讨[J].重庆师范学院学报(自然科学版),1998(15):66-78.[2]刘玉琏.数学分析讲义[M].北京:高等教育出版社,1992.[3]华东师范大学数学系编. 数学分析第三版下册[M].北京:高等教育出版社,2001. [4]吕通庆.一致连续与一致收敛[M].北京:人民教育出版社,1982.[5]刘玉琏.数学分析讲义练习题选解[M]. 北京:高等教育出社,1994(414). [6]钱吉林.数学分析题解精粹[M].北京;崇文书局,2003(643).[7]徐晶.一种反常积分与正项级数收敛的判别法[J].邯郸师范学院学报,2005,8(3):25-34.[8]温朝晖,李天胜,朱存斌.无穷积分敛散性的一个新的判别法[I].大学数学,2005,21(2).[9]张永锋.含参量反常积分的局部一致收敛与连续性[J].咸阳师范学院学报,2006,21(6):59-70.[10]吴良森,毛羽辉,韩士安.数学分析学习指导书下册[M].北京:高等教育出版社,2009,9(2).[11]孙清华等.数学分析内容、方法与技巧下[M].武汉:华中科技大学出版社,2003,5(1):74-97.Criterions about the Convergence of Parameter ImproperIntegrationWang Mingxing(College of Mathematical Sciences in Dezhou , Shandong Dezhou 253023) Abstract: The convergence of parameter improper integral is to study and expression in particular non-primary function of a powerful tool.Based on the uniform convergence of parameter improper integral analysis and research, summarized several simple and effective method and the theorem of the discriminant of uniform convergence of parameter improper integral(Cauchy criterion, M criterion, Bound method, Dirichlet criterion and so on), So as to convenient to learn and master for uniform convergence of parameter improper integral.key words: Improper Integration;Uniform Convergence;criterion。

§19.2.含参量反常积分

§19.2.含参量反常积分

在 (, ) 上一致收敛.
证 因为,有
cos xy 1 | | 2 1 x 1 x2
并且反常积分
所以
y


0
1 dx 2 1 x
收敛


0
cos xy dx 在 (, ) 上一致收敛. 2 1 x
2015年11月23日星期一 13
yx 练习2、试证 e sinxdx(0 c y )一致收敛 . 0
f ( x , y )dy
都收敛, 由反常积分收敛的定义,
即 0, N ( , x) c, 使得 M N ,
M c
M
lim
|

M
f ( x , y )dy I ( x )
c
f ( x , y )dy I ( x ) |
如果存在一个与 x I无关的
其中 N 与 x 有关.
A


0
sin xy dy在 ( 0, ) 内 不 一 致 收 敛 . y
2015年11月23日星期一
首页

练习1 试 证

0
xe xy dy
(1)在[ , )上 一 致 收 敛 (其 中 0); (2) 在(0, )内 不 一 致 收 敛 .
证: (1)
设含参量反常积分 两个条件之一,则
c
f ( x,y ) g( x,y )dy ( x I )满足如下 f ( x,y ) g( x,y ) dy 在I上一致收敛:
c
⑴(Abel判别法) ; f ( x, y)dy在I上一致收敛
c
g( x, y)对x I关于y单调,且在 I上一致有界 .

一致收敛性及其判别法含参量反常积分的性质

一致收敛性及其判别法含参量反常积分的性质
[a,b][c,)上 连 续 , 若

I(x)c f(x,y)dy
在[a,b]上 一 致 收 敛 I(x), 在[则 a,b]上 可积,且
b
b
adcx f(x ,y )d y c da y f(x ,y )d x
定理 19.12 设f(x, y)在 [a, )[c, )上 连 .若 续
|

six ny dy||

siu ndu|
Ay
Ax u
所以 sin xy dy 在[,)一致收敛. 0y
定1理 9.8 设含参量反 f常 (x,y积 )dy分 c
在[a,b]一致收敛
对任 一 的趋 递 {A 于 n 增 }(其 数 A 1中 c), 列
adcx f(x ,y )d y cday f(x ,y )d x
例4 计算积分
I e ps xb i n s xa id n x ,x (p 0 ,b a )
0
x

sinbxsinax
b
cosxydy
x
a
I e p x s i n b x s i n a x d x e p x
狄利克雷判别法 设
⑴ 存在 M > 0, 对一切 N > c , 及一切 x ∈[ a, b ]
都有
N
|c f(x, y)dy|M
⑵ 对每一个固定的 x ∈[ a, b ],函数 g ( x, y ) 关于 y
单调递减且当 y时,对参量 x , g ( x, y ) 一致
地收敛于 0 , 则
22 2
由数学归纳法易证
于是
d n dx

含参变量反常积分

含参变量反常积分

|e
x
sin x | e
0 x
而积分
所以


0
e0 x dx 收敛,


0
e x sin x dx 在 [0 ,) (0 0) 内一致收敛
狄利克雷判别法;
若 (i) N c, 含参量反常积分 f ( x, y)dy 对参数x在[a, b] c
sin ydy 关于 x [0,) 不一致收敛.
在上式两端对 y 求导,得
d ( y ) f ( x, y ) dx dy a
定理证毕。
含参量反常积分的性质
• 连续性
设f ( x, y)在[a, b] [c,)上连续, 含参量反常积分
I ( x)
c
f ( x, y)dy 在[a, b]上一致收敛, 则I ( x)在[a, b]上连续.

A2
A1
f ( x, y )dy .
一致收敛的充要条件; 含参量反常积分
c
f ( x, y)dy 在 [a, b] 上一致收敛的充要
条件是:对任一趋于 的递增数列 An (其中 A1 c ),函数
项级数

n 1

An1
An
f ( x, y )dy un ( x) 在 [a, b] 一致收敛.



M
f ( x, y )dy ,
则称含参量反常积分 c f ( x, y)dy 在 [a, b] 上一致收敛于 I ( x) .
3 、 含参量反常积分一致收敛的判别方法
一致收敛的柯西准则: 含参量反常积分
c
f ( x, y)dy 在 [a, b] 上一致收敛的充要

高等数学随堂讲义含参量反常积分

高等数学随堂讲义含参量反常积分

(A) sup xJ
A f ( x, y)dy
0 ( A ).
注2 由定义, ( x)
f ( x, y)dy在 I 上不一致收敛
c
的充要条件是
使得
0 0, M c, A M及 x0 J ,
A
f ( x0 ,
y)dy
0
.
§2 含参量反常积分 一致收敛性 一致收敛性的判别
性质
含参量无界函数的反常积分
含参量无界函数的反常积分
魏尔斯特拉斯 M 判别法
设有函数 g(y), 使得
f ( x, y) g( y) , (x,y) I [c, ) .
若 g( y)dy 收敛, 则 f ( x, y)dy 在 I 上一致收敛.
c
c

由于
c
g(
y)dy
收敛,
N
c,A1 ,
A2
N,
因此
A2 g( y)dy . A1
是 x 的连续函数. 在上面不等式中令 x b , 得到当
A A M 时,
A
A f (b, y)dy .
而 是任给的, 因此 f ( x, y)dy 在 x b 处收敛, c
这与假设矛盾. 所以积分 f ( x, y)dy 在 [a, b) 上 c
不一致收敛.
§2 含参量反常积分 一致收敛性 一致收敛性的判别
1 1 x2
,
及反常积分
0
1
dx x2
收敛,
故由魏尔斯特拉斯M判
别法, 含参量反常积分(10)在 (, ) 上一致收敛.
§2 含参量反常积分 一致收敛性 一致收敛性的判别
性质
含参量无界函数的反常积分
例4 证明含参量反常积分

含参量积分一致收敛及其应用

含参量积分一致收敛及其应用

含参量积分一致收敛及其应用1 引言无限区间上的积分或无界函数这两类积分叫作广义积分, 又名反常积分. 在讨论定积分时有两个最基本的限制:积分区间的有穷性和被积函数的有界性。

但在许多实际问题中往往需要突破这些限制,这两个约束条件限制了定积分的应用,因为许多理论和实际中往往不满足这两个条件. 因此,就需要研究无穷区间或者无界函数的积分问题,而将这两个约束条件取消,就得到了定积分的两种形式的推广:将函数的积分从积分区间有界扩展到了积分区间无界的无穷积分和被积函数有界扩展到了无界函数的瑕积分, 这两种积分就是通常所说的反常积分或广义积分.广义积分是伴随数学的发展而发展起来的近代数学,作为数学的一类基本命题,它是高等数学中的一个重要概念,它的出现为物理学解决了许多计算上的难题,也为其他科学的发展起到了促进作用,应用十分广泛. 但是,反常积分涉及到一个所谓的收敛性问题,由于反常积分的重要性,所以,对反常敛散性的探讨,也就显得十分必要了. 在一致收敛意义下,极限与积分、求导与积分、积分与积分都是可以交换顺序. 于是判断含参广义积分的一致收敛性变得尤为重要.1. 含参量的广义积分和一元函数的定积分一样,可以将含参变量的广义积分进行推广,形成含参量的广义积分。

从形式上讲,含参量的广义积分也应有两种形式:无穷限形式的广义积分和无界函数的广义积分,由于二者之间可以相互转化,我们仅以无穷限广义积分为例讨论其性质。

1.1无穷限广义积分的定义定义1:设f (x , y ) 为定义在D =[a , +∞)⨯I (I 为某区间,有界或无界)的二元函数,形如⎰+∞af (x , y ) dx 的积分称为含参变量y 的广义积分。

从定义形式决定研究内容:广义积分是否存在-----收敛性问题与一元函数广义积分相区别的是:由于含参量积分的结果不再是一个单纯的数值,而是一个函数,这就决定了含参量广义积分的收敛性问题中,不仅要有收敛性而且还必须讨论收敛性与参量之关系,由此形成一致收敛性。

含参变量的反常积分

含参变量的反常积分

条件是: 对任一趋于 的递增数列{ An } (其中A1
c), 函数项级数
n1
An1 An
f ( x , y)dy
un ( x)
n1
(7)
在 J 上一致收敛,
其中 un( x)
An1 An
f ( x, y)dy.
前页 后页 返回
证 必要性 由(1)在 J 上一致收敛, 故 0, M c,
或称含参量反常积分.
前页 后页 返回
定义1 若含参量反常积分(1)与函数 I(x)对 0 ,
N c, 使得当 M N 时, 对一切 x J, 都有
M
c f ( x, y)dy I( x) ,

M f ( x, y)dy ,
则称含参量反常积分(1)在 J上一致收敛于I(x), 或简 单地说含参量积分(1)在 J 上一致收敛.
因此, 含参量积分在 (0, ) 上非一致收敛.
而对于任何正数 , 有
( A) sup xexydy e A 0 ( A ), x[ ,) A
因此, 该含参量积分在 [ , ) 上一致收敛.
前页 后页 返回
二.含参量反常积分一致收敛性的判别
定理19.7 (一致收敛的柯西准则) 含参量反常积分(1)
在[a, b]上一致收敛的充要条件是: 0,N c,
使得当 A1, A2 N 时, 对一切的 x [a, b], 都有
A2 f ( x, y)dy . A1
(3)
前页 后页 返回
证 必要性
若I( x) f ( x, y)dy 在 J 上一致收敛, 则 c 0, N c, A N 及 x J , 有
使得当 A A M时,对一切 x J, 总有

含参变量反常积分

含参变量反常积分

(ii) x [a,b],函数g( x, y)为y的单调函数, 且对参量x,
g( x, y)在[a,b]上一致有界, 则含参量反常积分

c f ( x, y)g( x, y)dy
在[a, b]上一致收敛.
二、一致收敛积分的性质
1. 连续性定理
设 f (x, y) 在 {(x, y) | a x , c y d} 上连续,
解 因为 | e x sin x | e0x
而积分 e0 x dx 收敛, 0
所以 e x sin x dx 在 [0,) (0 0) 内一致收敛 0
狄利克雷判别法;
若 (i) N c,含参量反常积分 N f (x, y)dy c
d


f (x, y) dx
f (x, y) dx
dy a
a y
证明 因为 f y (x, y) 在 [a, ; c, d] 连续,由连续性定理

( y) a
f y (x, y) dx 在
[c, d ]连续,
沿区间 [c, y] (c y d) 积分 ( y) ,由积分顺序交
证 (1)用分段处理的方法.
A 1, y 0 , 令 yx t 得

| eyx2 sin ydx |
| sin y

et2 dt |
A
y yA
|
sin
y
|

et2 dt

| sin y |
y0
2
y
因为 lim sin y 0 y y0
则 0, 0 ,当 0 y 时,有
y)dy
在[a, b]上一

含参量反常积分的一致收敛性判别法

含参量反常积分的一致收敛性判别法

3. 含参量的反常积分一致收敛性判别法 Weierstrass 判别法 设函数(,)f x t 定义在{}(,):,D x t a x t T =≤<+∞∈⊂R中,若(a ) 对于每个A a >,(,)f x t 在[,]x a A ∈上为R-可积的;(b ) 存在()x ϕ,使得()ax dx ϕ+∞⎰收敛,且(,)(),[,)f x t x x a ϕ≤∈+∞;则反常积分(,)af x t dx +∞⎰关于t T ∈绝对一致收敛,亦即,反常积分(,)af x t dx +∞⎰关于t T ∈一致收敛.我们称定理中的()x ϕ为(,)f x t 的优函数.Abel 判别法 设函数(,)f x t 、(,)g x t 定义在{}(,):,D x t a x t T =≤<+∞∈⊂R中,若(a ) 若反常积分(,)af x t dx +∞⎰关于t T ∈一致收敛;(b ) (,)g x t 是x 的单调函数,且存在常数0L >(与[,)x a ∈+∞、t T ∈无关),使得(,)g x t L ≤;则反常积分(,)(,)af x tg x t dx +∞⎰关于t T ∈一致收敛.Dirichlet 判别法 设函数(,)f x t 、(,)g x t 定义在{}(,):,D x t a x t T =≤<+∞∈⊂R中,若(a ) 对于每个A a >,(,)f x t 在[,]x a A ∈上为R-可积的,且积分(,)Aaf x t dx ⎰关于t T ∈一致有界,亦即,0M∃>(与A 、t 无关),使得(,)Aaf x t dx M ≤⎰;(b ) (,)g x t 是x 的单调函数,且lim (,)0x g x t →+∞=关于t T ∈一致成立;则反常积分(,)(,)af x tg x t dx +∞⎰关于t T ∈一致收敛.补充例9 试证反常积分 ()20sin u xex dx α+∞-+⎰,0α>为常数,关于[)0,u ∈+∞一致收敛.证 0α>,由()2sin u xx ex e αα-+-≤, [),0,x u ∀∈+∞, (*)而11xxedx eαααα+∞+∞--=-=⎰收敛,故由Weierstrass 判别法知反常积分()20sin u xex dx α+∞-+⎰关于 [)0,u ∈+∞ 一致收敛;补充例10 试证反常积分 ()20sin u xex du α+∞-+⎰,0α≥为常数,关于[)0,x ∈+∞一致收敛.证 0α≥,由()22sin sin u xxu x AAex du ex e duαα+∞+∞-+--=⎰⎰,作变量代换t x u =,上式右边成为2sin x t xAe xe dt xα+∞--⎰. ? (**)注意到00sin sin lim lim 0x x x x e x x e x x xαα--→+→+== 与222t txAedt e dt π+∞+∞--<=⎰⎰,积分22t e dt π+∞-=⎰是著名的欧拉积分,我们将在下面计算它.于是,对于(**),0ε∀>,0δ∃>,当()0,x δ∈时,有sin 2x e x x αεπ-<;进而,0A ∀>,()0,x δ∈,有()222sin sin 2u xuxxAAex du ex e du ααεπεπ+∞+∞-+--=<⋅=⎰⎰;显然,0x=上述不等式也成立,因此,对于0A ∀>、[)0,x δ∈时,()2sin u xAex du αε+∞-+<⎰.另一方面,[),x δ∀∈+∞,由()()222sin u xu uex ee ααδδ-+-+-≤≤与2u edu δ+∞-⎰收敛(欧拉型积分),故由Weierstrass 判别法,知反常积分()20sin u xex du α+∞-+⎰在[),x δ∀∈+∞中一致收敛. 联合关于[)0,x δ∈与[),x δ∈+∞的结果,补充例10得证.补充例11 试证反常积分sin x uxe dx x+∞-⎰ 关于[)0,u ∈+∞一致收敛. 证 由sin xdx x+∞⎰收敛,因此关于[)0,u ∈+∞一致收敛; 另一方面,(),x u g x u e -= 关于[)0,x ∈+∞单调递减,且在()[)[),0,0,x u ∈+∞⨯+∞中一致有界01x u e -≤≤,Abel 判别法便证明了例11.补充例12 试证反常积分sin 0sin 2x xe dx xλ+∞⎰ 关于()0,λ∈+∞一致收敛.证 由 ()1,gx x λλ=当x →+∞时单调递减且()1,0g x x λλ=→;另一方面, sin sin sin 0sin 22sin cos 2AAAxxt ex dx ex x dx t e dt ==⎰⎰⎰sin sin 2sin 16A A A e e e =⋅-+≤;Dirichlet 判别法证明了补充例12 .补充例13 设p -∞<<+∞,考虑反常积分 11sin px I dx x=⎰,试证 (1) 当 1p -∞<< 绝对收敛、当12p ≤<非绝对收敛、当2p ≤<+∞发散;(2) 当(]0,2p δ∈- 一致收敛,其中0δ>、 当 ()0,2p ∈ 非一致收敛.证 (1) 将有限区间[]0,1x ∈上的函数1sinpx x 的积分化为无限区间上的积分比较方便.① 当1p -∞<< 时,令 1t x =,21dx dt t=-,[](]0,1,1x t ∈→∈+∞,故1122011sin sin 1sin 1p p p t t x I dx dt dt x t t t+∞-+∞-===⎰⎰⎰. 于是,2211sin 1pptI dt dt t t+∞+∞--=≤⎰⎰,因此当1p <时,有21p ->,故积分211pdt t+∞-⎰的收敛性保证了反常积分I绝对收敛;因此,当 1p -∞<< 时,积分绝对收敛;② 当12p ≤<,则021p <-≤,积分21sin ptdt t+∞-⎰发散,这是因为 22sin sin 1cos 21cos 2222pt t t tt t t t t--≥==-, [)1,t ∈+∞, 112dt t+∞⎰发散,而1cos 22tdt t+∞⎰收敛;另一方面,由1sin cos1cos 2At dt A =-≤⎰,21pt-单调递减趋向于零,因此由Dirichlet 判别法知,积分I 当12p ≤<时积分I收敛;综合,当 12p ≤< 时,积分I非绝对收敛;③ 当2p ≤<+∞,对于2p =,积分211sin sin ptdt t dt t+∞+∞-=⎰⎰发散;对于2p >,积分21sin p I t t dt +∞-=⎰,故对于每个n ∈N ,有 23222211222sin sin n n p p n n tt dt t t dt πππππππππππ+∞+---⎧⎫=++++++⎨⎬⎩⎭⎰⎰⎰⎰⎰⎰ ,且()()2222222sin 2sin 22n n p p p nntt dt n t dt n ππππππππ++--->=⎰⎰()()22222sin 22sin 22n p p n tt dt n y n y dy πππππππππ---=-+-+⎰⎰ ()2222sin p n y y dy ππππ-=-+⎰()22sin p n u u du ππ-=--⎰,由()()()()2220002sin 2cos 22p p p n u u du n u n πππππ---<-<-=⎰得到()()22222sin 0p p n n u u du πππ---<--<⎰,故23222211222sin sin n n p p n n tt dt t t dt πππππππππππ+∞+---⎧⎫=++++++⎨⎬⎩⎭⎰⎰⎰⎰⎰⎰()()()()222221sin 22222222p p p p p t t dt n n πππππ----->-+--+-⎰()2111sin sin cos 1cos1p tt dt t dt t πππε-=>=-=->⎰⎰,?当2p ≤<+∞时,积分发散.(2) ① 对于0δ>,在(],2p δ∈-∞-中,由22p p δδ≤-⇒-≥,得2110pt t δ-<≤与 1tδ 单调递减趋于零;而积分1sin cos1cos 2At dt A =-≤⎰一致有界,故据Dirichlet 判别法,得到积分 11sin px Idx x=⎰在 (],2p δ∈-∞-上一致收敛;② 最后,积分 12011sinsin p p t x I dx dt x t +∞-==⎰⎰ 在 (),2p ∈-∞ 非一致收敛.我们用反证法,设积分在区间(),2-∞上一致收敛,则对01ε=,()001A A a ε∃=>=,s.t. 0'''A A A ∀>> 时,有''02'sin 1A p A tdt t ε-<=⎰, (),2p ∀∈-∞. 但这不可能,因为若取'2A k π=、()''21A k π=+,则当k 充分大时,有()()()()2121022222sin 121sin 2121k k ppp kkt dt t dt t k k ππππεππ++---=>≥=++⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰,当2p -→时,上式右边()22221pk π-→+⎡⎤⎣⎦,得到012ε=>的矛盾.补充习题1、讨论积分0sin ln xI xdx xλ+∞=⎰的收敛性,其中λ为实数. 2、讨论积分sin 0sin 2x xI e dx xλ+∞=⎰ 的收敛性,其中0λ>. 3、讨论积分0x I x e dx α+∞-=⎰在[)0,αα∈+∞上的一致收敛性,其中00α>. 4、讨论积分0sin cos xI x dx xα+∞=⎰在[)0,αα∈+∞上的一致收敛性,其中01α>. 5、讨论积分110p I x dx -=⎰ 在[)0,p p ∈+∞上的一致收敛性,其中00p >.6、讨论积分110ln p I x x dx -=⎰ 在[)0,p p ∈+∞上的一致收敛性,其中00p >.。

含参量反常积分一致收敛的判别法.

含参量反常积分一致收敛的判别法.

题目含参量反常积分一致收敛的判别法学生姓名学号系别数学系年级2010级专业数学与应用数学指导教师职称完成日期摘要含参变量的反常积分是研究和表达函数的的有力工具。

要更好的研究含参量反常积分所表达的函数,关键问题在于判断他的一致收敛性。

本文通过研究判断含参量反常积分一致收敛的判别法,以帮助研究含参量反常积分所表达的函数。

关键词:含参量反常积分;一致收敛;判别法AbstractImproper integral with variable is the study and expression tool function. To better function of parameter improper integral expression of the key problem lies in the judgment, the uniform convergence of his. Through the study of judging function discriminant method of parameter improper integral converges uniformly to help the study of parameter improper integral expression.Key words: Improper integral with variable;uniform convergence; discriminant analysis目录1引言 (1)2基本概念 (1)2.1含参量反常积分 (1)2.2含参量反常积分一致收敛 (2)3含参量反常积分一致收敛的判别方法 (2)3.1定义法 (2)3.2柯西准则法 (3)3.3变上限积分的有界性法 (3)3.4确界法 (4)3.5微分法 (5)3.6级数判别法 (6)3.7维尔斯特拉斯判别法(简称M判别法) (6)3.8狄里克莱判别法 (8)3.9阿贝尔判别法 (8)4结束语 (1)参考文献 (10)致谢 (11)含参量反常积分一致收敛的判别法柯美蓉(闽江学院数学系;福建福州350108)1.引言含参量反常积分是微积分学中一类重要的积分,是研究和表达函数,特别是非初等函数的有力工具.为了讨论含参变量反常积分的连续性、可微性和可积性,我们需要引进含参变量反常积分的一致收敛性的概念,它和函数项级数的一致收敛性的意义是相当的.现行的数学分析教材[1-3、5]给出的含参量反常积分的一致收敛的判别法主要是一致收敛定义、柯西准则、维尔斯特拉斯判别法、狄里克莱判别法及阿贝尔判别法,它们都有一定的局限性,不适用于每种含参量反常积分的一致收敛性的判别.为了更好的判别含参量反常积分的一致收敛性,本文研究、归纳了判别含参量反常积分的一致收敛性的九种方法:一致收敛定义、柯西准则法、变上限积分的有界法、确界法、微分法、级数辨别法、魏尔斯特拉斯M判别法、狄克雷判别法和阿贝尔判别法,并且给出了典型例子以说明每种判别法的特点,以便于人们的研究、理解.2.基本概念2.1 含参量反常积分设函数),(y x f 定义在无界区域},),{(I y x a y x R ∈+∞<≤=上,其中I 为区间[]d c ,,反常积分dx y x f a⎰+∞),(都收敛,则它的值是 y 在[]d c ,上取值的函数,当记这个函数为)(y Φ时,则有I y dx y x f y a∈=Φ⎰+∞,),()(, (2-1)称dx y x f a⎰+∞),(式为定义在I 上的含参量y 的无穷限反常积分,或简称含参量反常积分[1].2.2 含参量反常积分一致收敛若含参量反常积分dx y x f a⎰+∞),(与函数)(x Φ对任给的正数,存在某一实数a N >,使得当N M >时,对一切[]d c y ,∈都有ε<Φ-⎰May dx y x f )(),(, (2-2)即ε<⎰+∞Mdx y x f ),(, (2-3)则称含参量反常积分dx y x f a⎰+∞),(在I 上一致收敛于)(y Φ,或者简单的说含参量积分dx y x f a⎰+∞),(在I 上一致收敛.3.含参量反常积分一致收敛的判别方法3.1 定义法定义判别法:根据以上2.2 关于含参量反常积分一致收敛的定义进行判别. 例3-1 证明:含参量反常积分dy xe xy ⎰+∞-0在()+∞,0内不一致收敛,但是在[)+∞,α上一致收敛(其中0>α)[2].分析 由含参量反常积分一致收敛定义可知,含参量反常积分()dy y x f ⎰+∞0,在()+∞,0上不一致收敛指:存在00>ε对任何实数00>A ,总存在0A A >和()+∞∈,0x ,st()0,ε≥⎰+∞Ady y x f . (3-1)4.结束语含参量反常积分是很重要的积分,研究它的连续性、可微性和可积性的关键在于研究它的一致收敛性.本文介绍一致收敛定义、柯西准则法、变上限积分的有界法、确界法、微分法、级数辨别法、魏尔斯特拉斯M判别法、狄克雷判别法和阿贝尔判别法这九种判别方法,这些方法适用于不同含参量反常积分一致收敛的判定,每个判别法都有它的优点,同时也存在着一定的局限,选用恰当的方法能使判定过程变得方便、简单.然而,含参量反常积分一致收敛的判别法不只有这九种,还有很多方法等着人们去发现,去探讨,去挖掘.参考文献[1] 华东师范大学数学系.数学分析(第四版)[M].北京:高等教育出版社,2010.6.[2] 洪毅.数学分析[M].广州:华南理工大学出版社,2002.3.[3] 罗俊,汪名杰,高敏.数学分析习题与解析[M].北京:兵器工业出版社,2008.9.[4] 赵文强.关于含参量广义积分一致收敛性的教学研究[J].重庆工商大学学报:自然科学版,2011.28(5): 460-461.[5] 裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1993.5.[6]张永峰.含参量反常积分局部一致收敛于连续[J].咸阳师范学院学报,2006,21( 6) : 59-60.[7]张振祺.含参量反常积分局部一致收敛的判别法[J].榆林学院学报,2010,20( 6) : 1-3.[8]张国才王恕达含参量积分的局部收敛性(I )[J]。

含参量反常积分的一致收敛性的判别方法

含参量反常积分的一致收敛性的判别方法

含参量反常积分的一致收敛性的判别方法一、定义首先,我们来回顾一下含参量反常积分的定义。

设函数$f(x,t)$定义在区间$[a,b]$上的一个闭区间$[c,d]$,则含参量反常积分可以表示为:$$\int_a^b f(x,t)dx$$其中,函数$f(x,t)$称为被积函数,参数$t$称为参数。

参数$t$取值在闭区间$[c,d]$上。

1.依据一致收敛的定义如果对任意给定的$\epsilon>0$,存在正数$\delta$,当$,x-a,<\delta$且$t\in[c,d]$时,$,f(x,t)-f(a,t),<\epsilon$,则函数$f(x,t)$在区间$[a,b]$上关于$x$一致收敛。

这是最常用的判别方法之一2.莱布尼茨定理对于含参量反常积分,如果被积函数$f(x,t)$在闭区间$[c,d]$上关于$t$是逐点收敛的,并且对所有$x\in[a,b]$,极限$\lim_{t\to\infty}f(x,t)$存在,则函数$f(x,t)$在区间$[a,b]$上一致收敛。

3.狄利克雷判别法狄利克雷判别法主要用于判别含参变量正交级数的一致收敛性,但同样适用于含参量反常积分。

如果被积函数$f(x,t)$和其导数$f'(x,t)$在$[a,b]$上对于$t$关于$x$一致有界,并且在区间$[c,d]$上关于$x$一致收敛,则函数$f(x,t)$在区间$[a,b]$上一致收敛。

4.魏尔斯特拉斯判别法魏尔斯特拉斯判别法是判别含参量反常积分收敛性的重要方法之一、如果被积函数$f(x,t)$在闭区间$[c,d]$上对于$t$关于$x$一致有界,并且对于任意给定的$x\in[a,b]$,被积函数$f(x,t)$对于参数$t$在闭区间$[c,d]$上关于$x$一致收敛,则函数$f(x,t)$在区间$[a,b]$上一致收敛。

5.独立变量法独立变量法是一种常用的判别方法。

对于含参量反常积分$\int_a^bf(x,t)dx$,将被积函数$f(x,t)$视为关于$x$的函数,并对其进行研究。

§2 含参量反常积分 一、含参量反常积分及其一致收敛的定义47页PPT

§2 含参量反常积分 一、含参量反常积分及其一致收敛的定义47页PPT
§2 含参量反常积分 一、含参量反常积分 及其一致收敛的定义
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
谢谢!

61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿

§2 含参量反常积分 一、含参量反常积分及其一致收敛的定义47页PPT

§2 含参量反常积分 一、含参量反常积分及其一致收敛的定义47页PPT
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
§2 含参量反常积分 一、含参量反常 积分及其一致收敛的定义
1、纪律是管理关系的形式。——阿法 ቤተ መጻሕፍቲ ባይዱ西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如对 x [a,b], 反常积分 f ( x, y)dy 都收敛, c
则可得如下函数:
I( x) c f ( x, y)dy, x [a,b].
称为定义在[a,b]上含参量x的无穷限反常积分 ,
简称为 含参量反常积分.
如何判断含参变量反常积分的连续性、 可微性与可积性?
求 I( x);
可用广义牛—莱公式,或通过分部积 分法和换元积分法去计算完成。
收敛于0,
则含参量反常积分
f ( x, y)g( x, y)dy
c
在[a, b]上一致收敛 .
5. Abel 判别法

(i) f ( x, y)dy 在[a,b]上一致收敛; c
(ii) x [a,b],函数g( x, y)为y的单调函数, 且对参量x, g( x, y)在[a,b]上一致有界 ,
c
一致收敛于I( x).
M
M f ( x, y)dy c f ( x, y)dy I( x)
等价于说:
F ( x, M ) M f ( x, y)dy uni I ( x),(M ) c
记:(M ) sup |f ( x, y) Nhomakorabeay |,
由定义知:
x[a ,b] M
定理1. 积分 f ( x, y)dy 在[a,b]上一致收敛 c
函数项级数
在函数项级数一致收敛的情况下, 可以 考虑和函数的分析性质.
二、含参量反常积分的一致收敛性
1. 定义 对于含参量反常积分
I( x) c f ( x, y)dy, x [a,b].
若 0,N 0,M N ,x [a,b], 都有
M f ( x, y)dy , 则称含参量反常积分 f ( x, y)dy 在[a,b]上
若 g( y)dy 收敛, 则 f ( x, y)dy 在[a, b]上
c
c
一致收敛.
4. Dirichlet 判别法
N
若 (i) N c,含参量正常积分 c f ( x, y)dy
对参数x在[a , b]上一致有界 ,
(ii) x [a,b],函数g( x, y)关于y是单调递减
且当y 时对参量x, g( x, y)一致地
2008/06/10
§20.2 含参量的反常积分的 一致收敛
本节研究形如
c f ( x, y)dy
d
f ( x, y)dy,
(d 为瑕点)
c
的含参变量广义积分的连续性、可微性与 可积性.
只对无穷限积分讨论,无界函数的情况可 类似处理.
一、含参量反常积分的定义
设f ( x, y)定义在无界区域 R [a,b][c,)上,
含参量反常积分 f ( x, y)dy在[a,b]上一致 c
收敛的充要条件是:
对任一趋向于 的递增数列{An }(其中A1 c), 函数项级数
n1
An1 An
f ( x, y)dy
un ( x)
n1
在[a, b]上一致收敛 .
证 只证明必要性
3. Weierstrass判别法
设有函数g( y), 使得 f ( x, y) g( y),a x b,c y .
于I( x) lim (M ) 0. M
2. 一致收敛的判别方法
(1) 柯西收敛原理
含参量反常积分 f ( x, y)dy在[a,b]上一致 c
收敛的充要条件是:
0,M c,A1, A2 M,x [a,b],都有
A2 f ( x, y)dy . A1
(2) 与函数项级数关系定理
则含参量反常积分
f ( x, y)g( x, y)dy
c
在[a, b]上一致收敛 .
相关文档
最新文档