量子力学英文名词 ppt课件

合集下载

量子力学英文课件格里菲斯Charter10

量子力学英文课件格里菲斯Charter10

In molecular physics, this technique is known as the Born-Oppenheimer (玻恩-奥本海默)approximation.
In quantum mechanics, the essential content of the adiabatic approximation can be cast in the form of a theorem.
Here we assume that the spectrum is discrete and nondegenerate throughout the transition from Hi to Hf , so there is no ambiguity(歧义) about the
ordering of the states; these conditions can be relaxed, given a suitable procedure for “tracking” (跟踪)the eigenfunctions, but we’re not going to pursue that
A case in point is our discussion of the hydrogen molecule ion.
We began by assuming that the nuclei were at rest, a fixed distance R apart, and we solved for the motion of the electron.
and they are complete, so the general solution to the time-dependent Schrödinger equation

量子力学英文课件格里菲斯Chapter6

量子力学英文课件格里菲斯Chapter6

Writing n and En as power series in , we have
Here : En1 is the first-order correction to the nth eigenvalue, n1 is the first-order correction to the nth eigenfunction; En2 and n2 are the second-order corrections, and so on.
To first order (1),
To second order (2),
and so on. We’re done with , now — it was just a device to keep track of the different orders — so crank it up to 1.
The right side is a known function, so this amounts to an inhomogeneous differential equation for n1. Now, the unperturbed wave functions constitute a complete set, so n1 (like any other function) can be expressed as a linear combination of them:
but unless we are very lucky, we’re unlikely to be able to solve the Schrö dinger equation exactly, for this more complicated potential. Perturbation theory is a systematic procedure for obtaining approximate solutions to the perturbed problem by building on the known exact solutions to the unperturbed case.

量子力学英文课件格里菲斯Charter8

量子力学英文课件格里菲斯Charter8
It is particularly useful in calculating bound-state energies and tunneling rates through potential barriers.
The essential idea is as follows: Imagine a particle of energy E moving through a region where the potential V(x) is constant.
Suppose we have an infinite square well with a bumpy bottom (Figure 8.2):
Inside the well [assuming E > V(x) throughout] we have or, more conveniently, where
rather slowly in comparison to , so that over a region
containing many full wavelengths the potential is essentially constant.
Then it is reasonable to suppose that remains
F is the transmitted amplitude, and the tunneling probability is
In the tunneling region ( 0 x a ), the WKB approximation gives
But if the barrier is very high and/or very wide, then the coefficient of the exponentially increasing term (C) must be small, and the wave function looks something like Figure 8.4.

量子力学英文格里菲斯Chapter2PPT课件

量子力学英文格里菲斯Chapter2PPT课件
14
Once we have found the separable solutions, then, we can immediately construct a much more general solution, of the form
It so happens that every solution to the (time dependent) Schrödinger equation can be written in this form — it is simply a matter of finding the right constants (c1, c2, c3, c4, …)so as to fit the initial conditions for the problem at hand.
4
Now the left side is a function of t alone, and the right side is a function of x alone.
5
The only way this can be possibly be true is if both sides are in fact constant, we shall call the separation constant E. Then
But before we get to that we would like to consider further the question:
7
What’s so great about separable solution ?
可分离的解(即 (x,t)=(x) f(t) )为何如此重要?
After all, most solutions to the (time-dependent)

复旦量子力学讲义qmapter-PPT精品

复旦量子力学讲义qmapter-PPT精品
2020/5/29
§3.2 Dirac equation
➢4 anti-commute matrices α and β 4×4 matrices
2020/5/29
§3.2 Dirac equation
2020/5/29
§3.2 Dirac equation
➢Conservation law of the probability flux
† , jkc†k
2020/5/29
§3.3 solutions of the free particle
2020/5/29
§3.3 solutions of the free particle
2020/5/29
§3.3 solutions of the free particle
2020/5/29
2020/5/29
§3.2 Dirac equation
2020/5/29
§3.2 Dirac equation
2020/5/29
§3.2 Dirac equation
2020/5/29
§3.2 Dirac equation
➢The condition for α and β
1) They must follow the relation
equation
2020/5/29
§3.1 Klein – Gordon equation
➢Lorentz transormation time, space are of the same weight
➢K – G equation
2020/5/29
§3.1 Klein – Gordon equation
2020/5/29

量子力学英文名词

量子力学英文名词

物理学名词中英文对照
斯特藩-玻耳 Stefan-Boltzmann law 兹曼定律 斯特藩常量 Stefan constant 维恩位移定律 Wien displacement law 瑞利-金斯公式 Rayleigh-Jens formula 普朗克辐射公式 Planck radiation formula 普朗克常量 Planck constant
附 录
5
物理学
第五版
物理学
第五版
物理学名词中英文对照
能带 基态 激发态 弗兰克赫兹实验 德布罗意波 德布罗意波长
energy band ground state excitation state Franck-Hertz experiment De Broglie wave De Broglie wavelength


4
物理学
第五版
物理学
第五版
物理学名词中英文对照
普丰得系 玻尔量子 化条件 玻尔氢原子 玻尔频率条件 玻尔半径 能级
Pfund series Bohr quantization condition Bohr hydrogen atom Bohr frequency condition Bohr radius energy level


3
物理学
第五版
物理学
第五版
物理学名词中英文对照
康普顿效应 康普顿散射 康普顿波长 反冲电子 莱曼系 帕邢系 布拉开系
Compton effect Compton scattering Compton wavelength recoil electron Lyman series Paschen series Brackett series

量子力学英文介绍

量子力学英文介绍

量子力学英文介绍Quantum mechanics, also known as quantum physics, is a branch of theoretical physics that describes the behavior of matter and energy at the smallest scales, including subatomic particles like electrons and photons. It is an incredibly complex and counterintuitive theory, but also one of the most successful scientific theories ever developed.Step 1: The Beginnings of Quantum MechanicsQuantum mechanics originated in the early 20th century, primarily through the work of physicists Max Planck, Albert Einstein, Niels Bohr, Werner Heisenberg, and ErwinSchrödinger. Their investigations into the behavior of light and matter led them to develop a new set of mathematical equations that governed the behavior of subatomic particles.Step 2: The Weirdness of Quantum MechanicsQuantum mechanics has a number of strange and seemingly paradoxical features that make it hard to wrap one's head around. For example, particles at the quantum level do not have a definite location until they are measured, and they can exist in multiple states at once. Quantum mechanics also introduced the concept of entanglement, in which particles can become "entangled" so that a measurement of one particle can instantly affect the state of the other, even if they are separated by vast distances.Step 3: Applications of Quantum MechanicsDespite its weirdness, quantum mechanics has a wide range of practical applications. One of the most notable is the development of the transistor, which is a crucialcomponent in modern electronic devices like computers and smartphones. Quantum mechanics also plays a role in materials science, cryptography, and quantum computing, which has the potential to revolutionize computation.Step 4: Current Research in Quantum MechanicsQuantum mechanics continues to be an active area of research and discovery. Areas of current interest include quantum entanglement and teleportation, the development of more efficient quantum algorithms, and exploring the possibilities of quantum computing. Researchers are also investigating the relationship between quantum mechanics and general relativity, the other pillar of modern physics.In conclusion, quantum mechanics is a fascinating and important theory that has revolutionized our understanding of the universe. It has many practical applications and continues to inspire new discoveries and innovations. While its weirdness and complexity can be daunting, it is well worth the effort to understand and appreciate this amazing theory.。

量子力学英文课件格里菲斯Charter9

量子力学英文课件格里菲斯Charter9

It is the time dependence that concerns us here. So when we write (t), we simply mean the state of the system at time t.
In the absence of any perturbation, each component evolves with its characteristic exponential factor:
From Eqs.[9.6] and [9.7], we find
Inview of Eq.[9.1], the first two terms on the left cancel the last two terms on the right and hence
(1) To isolate dca /dt, we use the standard trick: Take the inner product with a, and exploit the orthogonality of a and b (Eq.[9.2]), from Eq.[9.8] we have :
The purpose of this chapter is to develop timedependent perturbation theory, and study its most important application : the emission or absorption of radiation by an atom -- a process known in the old Bohr theory as a quantum jump.
If, for example, the particle started out in the state a, so that ca(0)=1 and cb(0)=0. At some later time t1 we find that ca(t1)=0, cb(t1)=1, we shall report that the system underwent a transition from a to b. We solve for ca(t) and cb(t) by demanding that (t) satisfy the time-dependent Schrö dinger equation,

(完整版)量子力学英语词汇

(完整版)量子力学英语词汇

1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equation 动量表象momentum representation角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical particles塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。

量子力学英文课件格里菲斯chapter0

量子力学英文课件格里菲斯chapter0

1925—1927年是物理学急剧变革的年代!
1925年:7月海森伯发表创建量子力学的第一篇论文 9月玻恩、约当认识到需要一种矩阵力学 11月玻恩、约当、海森伯给出矩阵力学 11月狄拉克提出量子代数 1926年:1月薛定谔发表第一篇波动力学论文 7月玻恩发表第一篇量子力学统计解释论文 8月狄拉克提出波函数与粒子统计性质的关系 1927年:3月海森伯测不准关系提出 5月泡利矩阵提出 9月玻尔提出互补原理
Part I Theory
Chap.1 The Wave Function Chap.2 The Time-Independent Schrodinger Equation Chap.3 Formalism Chap.4 Quantum Mechanics in Three Dimensions Chap.5 Identical Particles
(但我们所“做”的和我们所讲的这些故事,就像“舍赫拉查德的传说”一样变化多端, 令人难以置信)
Tales of Scheherazade
Queen Scheherazade (舍赫拉查德 ) tells her stories to King Shahryar (山鲁亚尔 ) !
One Thousand and One Nights
Why should we study the Quantum Mechanics ? What is the Quantum Mechanics ? How to study Quantum Mechanics ?
实验
Comparison of Rayleigh-Jeans law with Wien's law and Planck's law, for a body of 8 mK temperature. /wiki/Rayleigh-Jeans_law

量子力学英文课件格里菲斯Chapter5

量子力学英文课件格里菲斯Chapter5

Moreover, if a system starts out in such a state, it will remain in such a state !
The new law (symmetrization requirement) is that:
for identical particles the wave function is not merely allowed, but required to satisfy Eq.[5.14] , with the plus sign for bosons and the minus sign for fermions.
The statistical interpretation carries over in the obvious way:
Hale Waihona Puke is the probability of finding particle 1 in the volume d3r1 and particle 2 in the volume d3r2 . Evidently must be normalized in such a way that
and E is the total energy of the system.
Suppose particle 1 is in the (one-particle) state a(r), and particle 2 is in the state b(r).
In that case, (r1,r2) is a simple product:
Quantum mechanics neatly accommodates the existence of particles that are indistinguishable in principle : We simply construct a wave function that is noncommittal as to which particle is in which state. There are actually two ways to do it:

量子力学学习课件第三章英文版

量子力学学习课件第三章英文版
(1) hermitian? In this case: As is the usual polar coordinate:
On the interval
(2) The eigenvalue equation, The general solution is By using periodic boundary condition
Therefore, the set of all square-integrable functions, on a specified interval,
constitutes a (much smaller) vector space.
Mathematicians call it L2(a,b), while physicists call it Hilbert space.
the addition and the inner product
The inner product of two vectors, which generalizes the dot product in three dimensions, is defined by
2. Linear transformations
In an N-dimensional space, the vector is represented by a N-number of its components, with respect to a specified orthonormal basis:
We can define operations on vectors:
Some important concepts
On state
we measure an observable Q.

量子力学原理_[英文版](P.A.M.Dirac[著])PPT模板

量子力学原理_[英文版](P.A.M.Dirac[著])PPT模板
§37电子的自 旋
0 2
§35角动量
0 5
§38在有心力 场中的运动
0 3
§36角动量的 性质
0 6
§39氢原子的 能级
第6章初等应用
§40选择定则 §41氢原子的塞曼效应
07
第7章微扰理论
第7章微扰理 论
§42概述
§47反常塞
01
曼 效 应 06
§43微扰引 起的能级 02 变 化
§46与时
02
第2章动力学变量与可观察量

与第
可 观 察 量
章 动 力 学


2
§7线 性算符
§10可 观察量
§8共 轭关系
§11可观 察量的函

§9本征值 与本征矢

§12普遍 的物理解

第2章动力学变量 与可观察量
§13对易性与相容性
03
第3章表象理论
第3章表象理 论
1 §14基矢量
与散射
§62对光子 的应用
§63光子与 原子间的相
互作用能
§59玻色子 系集
§60玻色子 与振子之间
的联系
§61玻色子 的发射与吸

第10章辐射理论
§65费米子系集
11
第11章电子的相对论性理论
第11章电子的相对论性理论
A
§66粒子 的相对论
性处理
B
§67电子 的波方程
C
§68洛伦 兹变换下 的不变性
量子力学原 理:[英文 版 ] ( P. A . M . D i r ac[著])
演讲人 2 0 2 X - 11 - 11
01
第1章叠加原理
第1章叠加 原理

量子力学英语词汇

量子力学英语词汇

量子力学专业英语词汇1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性。

量子力学英文课件格里菲斯Chapter3

量子力学英文课件格里菲斯Chapter3

Technically, a Hilbert space is a complete inner product space, and the collection of square-integrable functions is only one example of a Hilbert space. In quantum mechanics, then,
Outline
In the last two chapters, we have stumbled on a number of interesting properties of simple quantum systems. Some of these are ―accidental‖ features of specific potentials (the even spacing of energy levels for the harmonic oscillator, for example), but others seem to be more general, and it would be nice to prove them once and for all (the uncertainty principle, for instance, and the orthogonality of stationary states).
A set of functions, { fn }, is orthonormal if they are normalized and mutually orthogonal:
Finally, a set of functions is complete if any other function g(x) (in Hilbert space) can be expressed as a linear combination of them:

量子力学英文课件格里菲斯Chapter7

量子力学英文课件格里菲斯Chapter7

Example 2. Suppose we’re looking for the ground state energy of the delta function potential:
Again, we already know the exact answer (Eq.[2.109]): Eg= m2/2ħ2. (i) As before, we’ll use a gaussian trial wave function with a parameter b (Eq.[7.2]). We’ve already determined the normalization and calculated T; all we need is
Of course, we already know the exact answer, in this case (Eq.[2.49]): Eg = (1/2)ħ; but this makes it a good test of the method. (i) We might pick as our “trial”(尝试) wave function the gaussian,
where A is determined normalization:
On the one hand, according to the theorem:
On the other hand, the Hamiltonian H of the onedimensional infinite square well is
(ii) Evidently
(iii) and we know that this exceeds Eg for all b. Minimizing it,

量子力学英文课件格里菲斯Chapter4

量子力学英文课件格里菲斯Chapter4

Outside the well the wave function is zero; inside the well the radial equation says
where
Our problem is to solve this equation, subject to the boundary condition : u(a)=0. The case l = 0 is easy:
In other words, exp[im(+2)]=exp[im], or exp(i2m) =1. From this it follows that m must be an integer :
(ii). The equation [4.20]
may not be so familiar. The solution is
批注本地保存成功开通会员云端永久保存去开通
Outline
The generalization to three dimensions is straight forward. Schrödinger’s equation says
where the Hamiltonian operator H is obtained from the classical energy
contains an extra piece, centrifugal term, (ħ2/2m)[l(l+1)/r2].
It tends to throw the particle outward (away from the origin), just like the centrifugal (pseudo-) force in classical mechanics.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
number
康普顿效应 康普顿散射 康普顿波长 反冲电子 莱曼系 帕邢系 布拉开系
Compton effect Compton scattering Compton wavelength recoil electron Lyman series Paschen series Brackett series
普丰得系 玻尔量子 化条件 玻尔氢原子 玻尔频率条件
玻尔半径 能级
Pfund series Bohr quantization condition Bohr hydrogen atom Bohr frequency condition Bohr radius energy level
能带 基态 激发态 弗兰克赫兹实验 德布罗意波 德布罗意波长
energy band ground state excitation state Franck-Hertz experiment
量子力学ห้องสมุดไป่ตู้文名词
量子理论 量子力学 量子化 黑体 黑体辐射 黑洞
quantum theory quantum mechanics quantization black body black-body radiation black hole
斯特藩-玻耳 Stefan-Boltzmann law 兹曼定律 斯特藩常量 Stefan constant 维恩位移定律 Wien displacement law 瑞利-金斯公式 Rayleigh-Jens formula 普朗克辐射公式 Planck radiation formula 普朗克常量 Planck constant
概率密度 概率波 归一化条件 薛定谔方程 定态 定态薛定谔方程
probability density probability wave normalizing condition Schrödinger equation stationary state stationary Schrödinger equation
能量子 光电效应 光电子 光电流 遏止电势差 红限 波粒二象性
energy quantum photoelectric effect photo electron photocurrent cutoff potential difference red-limit wave-particle dualism
De Broglie wave De Broglie wavelength
德布罗意公式 物质波 戴维孙-革末实验
不确定关系 波函数
De Broglie formula matter wave Davisson Germer experiment uncertainty relation wave function
势阱
potential well
对应原理 correspondence principle
隧道效应 tunneling effect
能量量子化 energy quantization
主量子数 principal quantum number
角动量量子化 angular quantization
角量子数 angle quantum number 空间量子化 space quantization 磁量子数 magnetic quantum number 电子自旋 electron spin 自旋量子数 spin quantum number 自旋磁量子数 spin magnetic quantum
相关文档
最新文档