5第三节 一般交流电路的分析
电工学课件--第三章 正弦交流电路
U • o I= U =U 0 ∠ R
• •
u =Um sinω t u Um i = = sinω = Im sinω t t R R
U =I R
U =I R
•
•
可见: 可见:电压与电流同相位 ui
i
u
•
IU
•
I
•
U
+−
2.功率关系
ui
i
⑴ 瞬时功率
•
u
IU
p=ui=UmImsin2ωt =UI(1-cos2ωt)
角频率ω: 单位时间里正弦量变化的角度 称为角频率。单位是弧度/秒 (rad/s). ω=2π/T=2πf 周期,频率,角频率从不同角度描 述了正弦量变化的快慢。三者只要知 道其中之一便可以求出另外两时值, 瞬时值中最大的称为最大值。Im、 U m 、E m 分别表示电流、电压和电动 势的最大值. 表示交流电的大小常用有效值的概 念。
单位是乏尔(Var) 单位是乏尔(Var)
第四节 RLC串联交流电路 串联交流电路 一.电压与电流关系
i R u L C
uR uL
u =uR +uL +uC
U =UR+UL+UC
• • • •
uC
以电流为参考相量, 以电流为参考相量, 相量图为: 相量图为:
•
UL UL+UC
φ
• • • •
•
U I
•
U
φ UR
UL-UC
UR
UC
2 可见: 可见: U = UR +(UL −UC)2
U L −UC X L − XC = arctg = arctg UR R
三相正弦交流电
上一页 下一页 返回
第二节 电源绕组和负载的连接
• 但是,当三相负载不对称时,各相电流的大小不一定相等,相位差 也不一定为120°。所以不对称三相负载的中线电流不等于零。但通 常中线电流比相电流小得多,所以中性线的截面积可小些。由于低压 供电系统中的三相负载经常变动(如照明电路中的灯具经常开关,单 相空调、冰箱的启动与停止),当中性线存在时,它能平衡各相电压 保证三相负载为三个互不影响的独立电路,此时各相负载的相电压等 于电源的相电压,不会因负载的变化而变化。但是当中性线断开后, 各相电压就不相等了。经实际测量证明,阻抗小的相电压低,阻抗大 的相电压高,这就可能烧坏接在相电压升高的这相中的电器。所以在 三相负载不对称的低压供电系统中,不允许在中性线上安装熔断器或 开关,以免中性线断开引起事故。另一方面我们也要力求三相负载平 衡以减小中性线的电流。如在三相照明电路中,应将单相负载平均分 接在三相上,而不是全部集中在某一相上或两相上。
• 根据基尔霍夫电压定律:
上一页 下一页 返回
第二节 电源绕组和负载的连接
• 线电压与相电压的相量图如图6-6示。 • 由图可见,线电压也是对称的,并且在相位上比相应的相电压超前
30°. • 至于线电压和相电压的关系,也可以从图6-6量图中得出。
上一页 下一页 返回
第二节 电源绕组和负载的连接
• 变压器的绕组接成三相四线制(有中性线的星形接法),可以给负载提 供两种电压,一种是相电压,一种是线电压。目前我国电力电网的低 压供电系统中的线电压为380V,相电压为220V,常写作“电源电压 380/220V"。
上一页 下一页 返回
第三章 单相交流电路的分析与计算
第二节
正弦量的相量表示法
若一个相量相对于另一个相量在相量图的逆时针位置上,则说明该 相量具有超前的相位;相对地,另一个相量就具有滞后的相位。 2)几个同频率正弦量的加减,可以借助于相量图用平行四边形法则 或三角形法则进行运算。
图3-9 相量图的几种表示形式
第二节
2.相量的运算 解:因为
正弦量的相量表示法
第五节
功率因数的提高
六、考核标准 单控照明电路的安装考核标准见表3⁃1。
表3-1 单控照明电路的安装考核标准
第五节
功率因数的提高
表3-1 单控照明电路的安装考核标准
一、实训目的 1)掌握照明电路中荧光灯电路的安装方法。 2)掌握双控开关的工作原理及连接方法。 3)掌握插座的连接方法 二、实训器材
第四节
交流电路分析
图3-21 电路性质分析
三、电路功率分析 在RLC串联电路中,电阻是耗能元件,电感与电容都是储能元件, 因此电路中既有有功功率,又有无功功率。
第四节
交流电路分析
第四节
交流电路分析
第四节
交流电路分析
图3-22 功率三角形
第四节
交流电路分析
解:借用例3-5的求解内容可得
第四节
口内中心弹簧片上的接线端子,中性线接入螺旋部分。 6)照明装置的接线必须牢固,接触良好。 一、实训目的
1)掌握照明电路中白炽灯以及单控开关的安装方法。 2)掌握单相电能表的连线。 二、实训器材
第五节
功率因数的提高
白炽灯、圆台、螺口平灯座、开关、熔断器、塑料铜芯导线、 塑料软线、木螺钉、螺钉、通用电工工具、接线端子(XT)及单相电 能表等。 三、实训内容 1)安装圆台、螺口平灯座、开关及熔断器等。 2)安装灯头,连接电路。
第四章-正弦交流电路的相量法
.
原理:
+.
I
.
U
IC
.
.
I1
IC
R
jL
j 1 C
12
.
U
.
I
.
IC
-
a)
.
b) I 1
图4-11 功率因数的提高
根据图4-11分析如下:
a)电路图 ; b)相量图
并联电容前,总电流
I
I1
,电压超前电流的相位差为
; 1
并联电容后,总电流
I
I1
IC
,电压超前电流的相位差为 2
因 2 1 故 cos 2 cos 1 首页
U
Z1
+
Z2
•
U2
-
1053.13 -
图4-2 例4-1图
首页
U 2 Z2I (1 j7)1036.87V 7.07 81.87 1036.87 V 70.7 45 V
U1 Z1I (5 j15)1036.87V 15.8171.57 1036.87 V 158.1108.44 V
Y Y
对比可得
Y 1 Z
•
•
当电压、电流关联参考方向时,相量关系式U Z I
也可表示为 U I 或 I YU
Y
首页
二、用复导纳分析并联电路
图4-6所示是多支路并联电路,根据相量形式的基尔霍
夫电流定律,总电流
.
.
.
.
I I1 I2 In
.
.
.
Y1 U1 Y2 U2 Yn Un
因并联电容前后电路消耗的有功功率是相等的,故
并联电容前
P UI1 cos 1
电工基础知识点笔记
—-—-【电工基础知识点笔记】----第一章电路的基本概念和基本定律第一节电路与电路模型一、电路的组成1:电路:是电流的通路,是由一些电气设备和元器件为完成特定功能按一定方式联接而成的。
电源:电路中提供电能、电信号的设备。
负载:使用电能的设备。
2:原理电路图:为了画电路图时方便,人们用一些图形符号来代表各种电气设备和元器件,并将其连接。
二、电路模型1:电磁特性:电阻:是一个限流元件.电感:是能够把电能转化为磁能而存储起来的元件。
电容:是一种容纳电荷的器件.2:理想元件:在一定的条件下突出其主要的电磁特性,忽略其次要特性的元件。
理想电路元件:经理想化后,成为只有某种单一电磁性能的元件,是实际元器件的近似。
3:N端元件:具有N个引出端钮的元件。
4:电路模型:任何一个实际电路都可以用一些电路元件的组合来表示,从而得到的电路。
三、电路、网络和系统1:电路:有理想元件组成的电路模型。
2:网络:较复杂的电路呈现的网状.3:系统:由若干个电路单元组成以实现某种功能的有机整体.4:信号:电路中反应信息特征的电流,电压。
5:激励:电路的输入信号.6:响应:电路的输出信号。
第二节电路的基本物理量一、电流1:电流形成:电荷的定向移动.2:电流定义:单位时间内通过导体横截面的电荷量。
3:电流方向:正电荷移动的方向.(国际规定)4:电流种类:直流电流:大小和方向都不随时间变化的电流。
【用I表示】周期电流:大小和方向均随时间周期变化的电流。
交流电流:当周期电流在一个周期内的平均值为零的电流。
【用i表示】5:电流公式:对于直流,若在时间t内通过导体横截面的电荷量为Q,则电流为6:安培定义:1s内通过导体横截面的电量为1C时,电流为1A。
7:参考方向:为了分析和计算电路的需要,可任选其中一个方向作为电流的参考方向,并用箭头标明。
【当电流实际方向与参考方向一致时,则电流为正值;反之亦然.】二.电压1:电压定义:电路中ab两点之间的电压表明单位正电荷由a点转移到b点时所获得或失去的能量。
三相负载的连接星形连接
首页
§5.4 对称三相电路的功率
三相交流电路中,三相负载消耗的总功率就等于各相负 载消耗的功率之和,即:
PP U P V P W
每相负载的功率
PP U P I P cos
U I 为负载的相电压, 为负载的相电流, 为同一 P P
相负载中相电压超前相电流的相位差,也即负载 的阻抗角
在对称三相电路中,各相负载的功率相同,三相负载的总功率:
(可以根据对称性直接写出)
不对称三相电路的计算
三相电路中,只要有一部分不对称就成为不对 称三相电路
不对称三相电路的特点: 三相电源认为总是对称的,输电线阻抗也是对 称的 不对称主要是因为负载的不对称,使三相电路 失去对称特点 由单相负载构成三相负载时,虽然设计时尽量 使它们均衡,但使用中仍然无法保证三相负载对 称,这就造成负载的不对称。尤其是电路发生故 障时,负载的不对称程度更加严重
IL IP
同理,对称三相电路的无功功率为:
Q 3U P I P sin 3U L I L sin
对称三相电路的视在功率为
S
P 2 Q 2 3U P I P 3U L I L
在变配 电所的 母线上 一般都 涂以黄、 绿、红 三种颜 色,分 别表示U 相、V相 和 W相
+ -
uU
+
uUV
端 端 (端 端 端 端端 端端
uWU
N
+
uW
-
uV
W
V
iB iC
V W
uVW
三相电源星形联接时,线电压与相电压之 间的关系
根据基尔霍夫定律可得:
uUV uU uV uVW uV uW uWU uW uU
第五章 交流调压电路与斩波电路
。
交流调压与斩波电路 压力检测方法及仪表
19
(2) 电感性负载的功率因数角为
arctan wL
R arctan 2.3 2.3 4
最小控制角为
min
4
故控制角的范围为 π/4≤α≤π。
最大电流发生在 αmin=φ=π/4处,负载电流为正弦波,其 有效值为
Io Uo R (wL)
交流调压与斩波电路 压力检测方法及仪表
1
•
基本方式:
交流电力 控制电路 只改变电压,电流 或控制电路的通 断,而不改变频率 的电路。
交流调压电路 相位控制
在每半个周波内通过对晶闸管开通相位 的控制,调节输出电压有效值的电路。
交流调功电路 通断控制
以交流电的周期为单位控制晶闸管的 通断,改变通态周期数和断态周期数的 比,调节输出功率平均值的电路。
2 1 2 2
阻抗角
9
交流调压与斩波电路 压力检测方法及仪表
因为ω t=α +θ 时,io=0。将此条件代入式
2U io [sin(wt ) sin( )e tan ] Z
可求得导通角θ 与控制角α 、负载阻抗角φ 之间的定量关系表达式为
tan
wt
sin( ) sin( )e
交流调压与斩波电路 压力检测方法及仪表
12
VT1
3) 当α <φ 时,导通角θ >π 。 电源接通后,在电源的正半周,若先触发VT1,
若采用窄脉冲触发:若触发脉冲的宽度小于a+θ -(a+π )=θ -π 时,
当VT1的电流下降为零关断时,VT2的门极脉冲已经消失,VT2无法导通。 到了下个周期,VT1又被触发导通重复上一周期的工作,
三相交流电路和电动机
一、三相交流电动势的产生
三相交流电动势由三相交流发电 机产生。
它的主要组成部分是定子和转子。
转子是转动的磁极,定子是在铁心槽
上放置三个几何尺寸与匝数相同的线
圈(称为定子绕组),它们排列在圆
周上的位置彼此相差120°,分别用 U1-U2,V1-V2,W1-W2表示。
图6-1 三相交流发电机原理示意图
1、旋转磁场的产生
三相异步电动机的定子绕组接成星形,形成对称三相(三 个绕组结构相同,空间互差120°)星形负载。将它们的首端 U1、V1、W1接到对称三相电源上,三个绕组中有对称三相电 流通过(相位依次相差120°),其波形如图6-16所示。
正弦电流通过三相绕组,根据电流的磁效应可知,每个绕组都要 产生一个按正弦规律变化的磁场。三相绕组就会产生一个合成磁场, 此合成磁场是一个旋转磁场。
电工基础 (第2版)
主编:刘志平、苏永昌
第六章 三相交流电路和电动机
本章主要介绍三相交流电压、三相星形与三角形联结、三 相电路的功率及三相异步电动机、单相异步电动机。
第一节 三相交流电源 第二节 三相负载的连接 第三节 三相电路的功率 **第四节 三相笼型异步电动机 **第五节 三相异步电动机的启动 **第六节 安全用电
U1、V1、W1表示各相绕组的首端, U2、V2、W2表示各 相绕组的末端。各相绕组的电动势参考方向规定为线圈的
末端指向始端。
一、三相交流电动势的产生
当原动机带动转子顺时针以角速
度ω 逆时针匀速转动,作切割磁力线 运动,因而产生感应电动势eU、eV、 eW 。由于三个绕组的结构相同,在空 间相差120°,因此eU、eV、eW 三个电 动势:振幅相同,频率相同,彼此间
的相位差为120°。
第3章(三相交流电路)
IN
I zA
I zC
Z3
ZA N'
IB
IC
ZB
I zB
相电流:各相负载的电流,正方向与相电压的极性一致。 线电流:端线中的电流,正方向从电源流向负载。
中线电流:中线中的电流,正方向从负载流向电源。
三相对称负载:各相负载的大小、性质完全相同。
(2)负载Y接三相电路的计算
LA UA N UB UC N LB LC – + UA –
三个最大值相等、角 频率相同、相位上互差 120°的正弦交流电。
(2) 三角形连接(Δ)
LA
CA
+ – +
–
U AB U
结论:电源Δ 形联结时 线电压U l 相电压Up
LB
UBC U BC
–
+ LC
第三节 三相电路中负载的连接
1. 三相负载
分类
负载
三相负载:需三相电源同时供电
三相电动机等
u eA eB eC
ωt
eA Em sin t eB Em sin( t 120 ) eC Em sin( t 120)
相量表示
0
T
E A E 0 E
UC
E 120 E ( 1 j 3 ) EB 120° 2 2 E 120 E ( 1 j 3 ) EC 2 2
第3章 三相交流电路
三相交流电源 三相电路负载的连接 三相电路的功率
0
引 言
单相交流电路:它的电源是一个交流电动势; 三相交流电路:它是由三个频率相同、幅值相等、 相位互差120°的电动势作为电源。
三相交流电路优点:
第五章三相交流电路
第三章 正弦交流电路的基本概念和基本定律第一节 正弦量一、填空题:(1) 和 均按正弦规律变化的电路,称为正弦交流电路。
正弦交流电路中__、 的大小和 都随时间而变化。
(2) 正弦电流瞬时表达式一般为 ,其中 叫做相位。
(3) 两个同频率的正弦量u =m U sin(ωt +ψu),i =m I sin(ωt +ψi )的相位差为 。
(4) 正弦量的三要素分别为 、 和 。
(5) 当正弦量的频率f =100H z 时,其周期和角频率分别为 、 。
(6) 频率反映了正弦量变化的 ,振幅反映了正弦量变化的 。
(7) 如图3-1-1所示,图a 中电压u 和电流i 的相位 ,图b 中电压u 和电流i的相位 。
图3-1-1(a)图3-1-1(b)(8) 设有正弦电流1=i 5sin(ωt +60°)A, i 2=5cos(ωt +30°)A,则i 1超前i 2 。
二、计算题:(1) 图3-1-2是交流电路中的一个元件,在所选参考方向下通过的电流为i =10sin(ωt )A,其中ω=2πrad /s ,试确定t 分别为0.25S ,ωt =3π/2时的电流的大小和方向。
3-1-2图(2)已知电路中a ,b 支路电压、电流的频率f =50H z ,uab,ab i 的最大值分别为300V 、5A ,它们的初相各为30°、-60°,试写出uab和ab i 的解析式,并求出当t =0.1S 时uab和ab i 的大小.(3)一个正弦电压的最大值为100mV ,频率为200H z ,这个电压达到零值后最少经过多长时间达到50mV ?(4)、试写出图3-1-3所示的正弦电压的解析式。
313--图(5)、已知i ()A t ︒-=70300sin 07.7π, u ()V t ︒+=300300sin 311π, i 比u 超前或滞后多少?i 达到零值时比u 早或迟多少时间?第二节 交流电的有效值一、填空题:(1)、一个交流电流i 和直流电流I 分别通过 电阻,在 时间内,它们产生__的热效应,则这个交流电的有效值 直流电的大小。
电工学-正弦交流电电子教案
2、 最大值和有效值 瞬时值和最大值
正弦量在任一瞬间的值称为瞬时值,用小写字母表示,
如 i 、u、e 等。
瞬时值中的最大的值称为幅值或最大值,用带下标m的 大写字母表示,如Im、Um、Em等。
有效值
在工程应用中,一般所讲的正弦交流电的大小,如交流电压 380V或220V,指的都是有效值。
有效值是用电流的热效应来规定的。
u CIm C sitn 90 U Csm itn 90
同频率的正弦量相加,得出的仍为同频率的正弦量,所以可
得出下面形式的电源电压: u u R u L u C U m si t n
相量关系
基尔霍夫电压定律的相量形式为:
U U RU LU C
+
RIjXLIjXCI
这样,电压电流的关系可表示为相量形式:
U jXCIjICjIC
瞬时功率
pu iU m Im si n tsi n t90
U m Im si n tco t sU m 2 Imsi2 ntUsIi2 nt
平均功率(有功功率)
电容的平均功率(有功功率):
P1T pd 1 t T UsIi2n tdt0 T0 T0
在我国的电力系统中,国 家规定动力和照明用电的标准 频率为50Hz,习惯上称为工频: 周期为 ___ 秒,
答案:0.02
3、角频率 :正弦交流电在单位时间内 变化的弧度(或角度)数 问:符号:____单位:____ 答案ω;弧度/秒(rad/s) 周期和频率的关系:
ω=2π/ T = 2πf
同相:相位相同(同时到达最大值),相位差为零。
i
二、波形图: O
t
三、相量图:用相量图的方法表示正弦量
相量法
电工基础——三相交流电路
第五章三相交流电路引言:三相交流电和单相交流电相比具有以下主要优点:1 .三相电机比单相电机设备利用率高,工作性能优良;2 .三相电比单相电用途更加广泛;3 .三相电在传输分配方面更加优越且节省材料。
由于上述原因,所以三相电得到了广泛的应用。
生活中的单相电常常是三相电中的一相。
第一节对称三相交流电源学习目标: 1. 熟悉三相交流电源、三相四线制、三相三线制电路的基本概念2 .掌握三相交流电源的星形联结和三角形联结的特点重点:三相交流电源的星形联结和三角形联结的特点难点:三相交流电源的三角形联结的特点一、三相电动势图 5-1 图 5-21 .单相电动势的产生:如图 5-1 所示,在两磁极中间,放一个线圈(绕组)。
让线圈以w 的速度顺时针旋转。
根据右手定则可知,线圈中产生感应电动势,其方向由U 1 ® U 2 。
合理设计磁极形状,使磁通按正弦规律分布,线圈两端便可得到单相交流电动势为2 .三单相电动势的产生:如图 5-2 所示,若定子中放三个线圈 ( 绕组 ) :U 1 ® U 2 ,V 1 ® V 2 ,W 1 ® W 2 ,由首端(起始端、相头)指向末端(相尾),三线圈空间位置各差120 o ,转子装有磁极并以w 的速度旋转,则在三个线圈中便产生三个单相电动势。
二、三相对称电源图 5-3 1 .供给三相电动势的电源称为三相电源,三个最大值相等,角频率相同而初相位互差时的三相电源则称为对称三相电源。
如图 5-3 所示,他们的参考方向是始端为正极性,末端为负极性。
2 .三相电源的表示式3 .相量表示式及相量图、波形图,如图 5-4 、 5-5 所示图 5-5图 5-44 .三相电源的特征:大小相等,频率相同,相位互差120º 。
对称三相电源的三个相电压瞬时值之和为零,即5 .相序:对称三相电压到达正(负)最大值的先后次序,U → V → W → U 为顺序,U → W → V → U 为逆序。
电子电工技术-三相交流电路
相电压和线电压关系,理解三相电源电压对称和三相负载对称
含义,理解三相三线制和三相四线制以及中性线作用。掌握三
相电路分析方法,相电压和线电压、相电流和线电流关系以及
计算三相功率。了解安全用电基本知识,理解保护接地与接零
意义和特点。
章目录 上一页 下一页
第4章 三相交流电路——三相电源
一、三相电源产生
章目录 节首页 上一页 下一页
第4章 三相交流电路——三相负载的联结
中性线电流
IN IA IB IC
(44 022 12011 120)A
[解] ⑴各相负载中流过的电流
IU
IV
UU URVU
RV
220 0 5 0
A
44
220 120 10 0
A
0A
22
120
A
29
19 A
IW
U W RW
220 120 20 0
(1)负载三相四线制联结三相电路计算
1)负载端的线电压=电源线电压
2)负载的相电压=电源相电压
U L 3U P
IL IP
4)中性线电流 I N IU IV IW
3)线电流=相电流
IU IV IW
U U ZUUV UZWV
ZW
负载Y联接带中性线时,可将各相分别看作单相电路计算。
章目录 节首页 上一页 下一页
章目录 节首页 上一页 下一页
第4章 三相交流电路——三相电源
二、三相电源星形联结
1. 联结方式
UU
U UV
UV
UW
U WU
U VW
相线(端线、火线) 中性线(零线、地线)
相电压 线电压
相电压:相线与中性线之间的电压 U U UV U W
中职教育-《电工基础》课件:第五章第三节 单一参数的交流电路(电子工业出版社).ppt
iR uiRRuURRm sUinmst inIRmtsint
R
R
• 上式表明,在正弦电压的作用下,电阻 中通过的电流也是一个同频率的正弦交流 电流,且与加在电阻两端的电压同相位。
• 电阻元件上的电压、电流最大值,有效 值之间的数量关系为
I Rm
U Rm R
IR
UR R
2、电路的功率
• 在任一瞬间,电阻中电流瞬时值与同一瞬间的 电阻两端电压的瞬时值的乘积,称为电阻获取的 瞬时功率,用PR表示,即
• 理论和实验证明:电容器感抗的大小 与所加信号频率成反比,与电容器的电容 成反比。用公式表示为
Xc
1
C
1
2fC
• 电容对交流电的阻碍作用,可以简单 概括为通交流,阻直流;通高频,阻低频。 因此,电感也被称为高通元件。
2、电流与电压的关系
理论分析证明:电流比电压超前90º, 即电压比电流滞后90º。
• 在纯电容交流电路中,电流与电压成 正比,与容抗成反比,即
IC
UC XC
• 容抗只是电压与电流最大值或有效值 的比值,而不是电压与电流瞬时值的比值, 因为u和i的相位不同。
2、电路的功率 • 电容元件上的瞬时功率等于电压瞬时 值与电流瞬时值的乘积,即
•
• 可见,电感的瞬时功率是以2倍于电压(或电 流)的频率关系按正弦规率变化。
• 交流电第二、四个四分之一周期,电压与电流方 向非关联,瞬时功率为负值,说明电感又将磁场 能转换为电能回馈给电源。
• 瞬时功率在一个周期内吸收的能量与释放的能量 相等。也就是说纯电感电路不消耗能量,它是一 种储能元件。
• 通常用瞬时功率的最大值来反映电感与电源 之间转换能量的规模,称为无功功率,用QL表示, 单位名称是乏,符号为Var,其计算式为
特种作业人员培训(电工基础)
R
R1
2
R
4
(1) 将混联电阻分解成若干个电阻的串联、并 联,根据串并联的特点进行计算,分别求 出它们的等效电阻。
图1- 三个电阻混联电路
(2) 用求出的等效电阻取代电路中的串、并联 电阻,得到混联电路的等效电路。
(3) 若等效电路中仍是混联电路,继续按照步 骤(2)化简,得到不含支路的等效电路。
(4) 根据欧姆定律、串联电路、并联电路的特 点列方程进行计算。
二、基尔霍夫定律 基尔霍夫电流定律也叫做基尔霍夫
第一定律它确定了电路中任一节点 (1) 基尔霍夫电流定律 所连的各支路电流之间的关系。
基尔霍夫电流定律指出:对于电路中的任一节点,流入节点 的电流之和比等于流出该节点的电流之和
如图1-5 电路中,对于节点A,I1、I2 是流入节点的, 而I3 是由节点流出的。由基尔霍夫电流定律可将三个 电流之间的关系表示为:
(2) 电阻的串联电路
定义:将两个以上的电阻,依次首位相联,使各电阻通过同一电流,这 种连接方式叫做电阻的串联。
I +
串联电路的总电压等于各电阻上 电压降之和
R1
U1
U
R2
U2
R3
U3
U1 IR1 U2 IR2 U3 IR3
图1- 三个电阻串联电路
U3 IR3
作用: (1) 串联电路可起到限流作用 (2) 串联电路可以起到分压作用 (3) 串联电路可起到开关作用
(3)信息的存储。
例如:手电筒电路
中间环节 电 源
电源:
其它形式的能量(信号 ) 电能 (电信号)
负载
负载: 电能(电信号) 其它形式的能量(信号 )
* 一般不希望中间环节产生能量或 信号的转换
单相正弦交流电路
二、正弦交流电的基本物理量
3、频率 交流电在1秒内完成周期性变化的次数叫做 交流电的频率,用字母f表示,单位名称是赫 兹,简称赫,单位符号为Hz。频率较大的单 位有千赫(kHz)和兆赫(MHz),它们之间 的关系为 1千赫=1000赫 1兆赫=1000千赫
二、正弦交流电的基本物理量
根据以上定义,周期和频率的关系为
二、正弦交流电的基本物理量
注意,初相的大小与时间起点的选择密切相 关,而相位差与时间起点的选择无关。根据两 个同频率交流电的相位差,可以确立两个交流 电的相位关系。
二、正弦交流电的基本物理量
如果Δφ=φ1-φ2>0,那么i1超前i2,或者说i2 滞后i1; 如果Δφ=φ1-φ2=0,那么就称这两个交流 电同相; 如果Δφ=φ1-φ2=180°,那么就称这两个 交流电反相。 如果Δφ=φ1-φ2=90°,那么就称这两个 交流电正交。
O
ωt
• 当线圈按逆时针方向以速度υ作等速旋转时,线 圈边分别切割磁力线,产生感应电动势,其大小 为: e=Emsinα= Emsinωt 。
• 上式是从线圈平面与中性面重合的时刻开始计时 的,如果线圈平面与中性面成一夹角φ时开始计时 的,那么,经过时间t,线圈平面与中性面的夹角 是ωt+ φ ,感应电动势的公式变为: e=Emsin(ωt+ φ)
二、正弦交流电的基本物理量
例如,正弦交流电压u1=10sin(314t+60°), u2=5sin(314t-45°)则u1与u2的相位差为 (314t+60°)-(314t-45°)=105° 即u1超前u2 105°电角度。 若正弦交流电流i1=20sin(314t+30°), i2=8sin(314t+70°) 则i1与i2的相位差为 (314t+30°)-(314t+70°)=-40° 即i1滞后i2 40°电角度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节举例说明如何像直流电路那样用节点法、网孔法、戴维南定理等分析正弦交流电路。
例5-10电路如图5-11a所示,试用节点法计算各支路电流,并作相量图。
解(1)做出相量模型:如图5-11b所示,图中标出各元件的复导纳
(2)计算节点电压:根据弥尔曼定理,得
各支路电流为
相量图如下图所示。
例ቤተ መጻሕፍቲ ባይዱ图所示电路中,已知 求各支路电流。
解选定各支路电流、、和网孔电流、的参考方向如图所示,选定绕行方向和网孔电流的参考方向一致。列出网孔方程为
节点法
其中
试用节点法求上题中各支路电流。
解以b点为参考节点,各支路电流参考方向如图所示
例5 相量模型如图所示。当XC为何值时,IC可以取得最大值?这个最大值是多少?
解 用戴维南定理求解。为此,可把(-jXC)看作负载支路,移开该支路后的电路如图a所示。