高三数学教案 圆的极坐标方程公式

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的认识
•圆的定义:
圆是一种几何图形。

当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。

在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

相关定义:
1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。

这个定点叫做圆的圆
心。

图形一周的长度,就是圆的周长。

2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。

3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。

直径所在的直线是
圆的对称轴。

4 连接圆上任意两点的线段叫做弦。

最长的弦是直径,直径是过圆心的弦。

5 圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,优弧是用三
个字母表示。

小于半圆的弧称为劣弧,劣弧用两个字母表示。

半圆既不是优弧,也不是劣弧。

优弧是大于180度的弧,劣弧是小于180度的弧。

6 由两条半径和一段弧围成的图形叫做扇形。

7 由弦和它所对的一段弧围成的图形叫做弓形。

8 顶点在圆心上的角叫做圆心角。

9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

10 圆周长度与圆的直径长度的比值叫做圆周率。

它是一个无限不循环小数,通常
用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。

11圆周角等于相同弧所对的圆心角的一半。

12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。

圆的集合定义:
圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。

•圆的字母表示:
以点O为圆心的圆记作“⊙O”,读作O”。

圆—⊙;
半径—r或R(在环形圆中外环半径表示的字母);
弧—⌒;
直径—d ;
扇形弧长—L ;
周长—C ;
面积—S。

圆的性质:
(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

(2)有关圆周角和圆心角的性质和定理
①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

直径所对的圆周角是直角。

90度的圆周角所对的弦是直径。

圆心角计算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。

即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

(3)有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。

外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。

④两相切圆的连心线过切点。

(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ 于X,Y,则M为XY之中点。

(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。

(5)弦切角的度数等于它所夹的弧的度数的一半。

(6)圆内角的度数等于这个角所对的弧的度数之和的一半。

(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。

(8)周长相等,圆面积比长方形、正方形、三角形的面积大。

•点、线、圆与圆的位置关系:
点和圆位置关系
①P在圆O外,则PO>r。

②P在圆O上,则PO=r。

③P在圆O内,则0≤PO<r。

反过来也是如此。

直线和圆位置关系
①直线和圆无公共点,称相离。

AB与圆O相离,d>r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。

AB与⊙O相交,d<r。

③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共
点叫做切点。

AB与⊙O相切,d=r。

(d为圆心到直线的距离)
圆和圆位置关系
①无公共点,一圆在另一圆之外叫外离,在之内叫内含。

②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

③有两个公共点的叫相交。

两圆圆心之间的距离叫做圆心距。

设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P>R+r;外切
P=R+r;内含P<R-r;
内切P=R-r;相交R-r<P<R+r。

•圆的计算公式:
1.圆的周长C=2πr=或C=πd
2.圆的面积S=πr2
3.扇形弧长L=圆心角(弧度制)×r = n°πr/180°(n为圆心角)
4.扇形面积S=nπr2/360=Lr/2(L为扇形的弧长)
5.圆的直径d=2r
6.圆锥侧面积S=πrl(l为母线长)
7.圆锥底面半径r=n°/360°L(L为母线长)(r为底面半径)
圆的方程:
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的
圆的标准方程是
(x-a)2+(y-b)2=r2。

特别地,以原点为圆心,半径为r(r>0)的圆的标准方程为x2+y2=r2。

2、圆的一般方程:方程x2+y2+Dx+Ey+F=0可变形为(x+D/2)2+(y+E/2)2=
(D2+E2-4F)/4.故有:
①当D2+E2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以(√D2+E2-4F)/2为半
径的圆;
②当D2+E2-4F=0时,方程表示一个点(-D/2,-E/2);
③当D2+E2-4F<0时,方程不表示任何图形。

3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是x=a+r*cos
θ, y=b+r*sinθ, (其中θ为参数)
圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为(x-a1)(x-a2)+(y-b1)(y-b2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。

经过圆x2+y2=r2上一点M(a0,b0)的切线方程为a0·x+b0·y=r2
在圆(x2+y2=r2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为a0·x+b0·y=r2。

•圆的历史:
圆形,是一个看来简单,实际上是十分奇妙的形状。

古代人最早是从太阳、阴历十五的月亮得到圆的概念的。

在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。

到了陶器时代,许多陶器都是圆的。

圆的陶器是将泥土放在一个转盘上制成的。

当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。

古代人还发现搬运圆的木头时滚着走比较省劲。

后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。

约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。

大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。

会作圆,但不一定就懂得圆的性质。

古代埃及人就认为:圆,是神赐给人的神圣图形。

一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。

意思是说:圆有一个圆心,圆心到圆周的长都相等。


个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。

任意一个圆的周长与它直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。

它是一个无限不循环小数,π=3.1415926535……但在实际运用中一般只取它的近似值,即π≈3.14.如果用C表示圆的周长:C=πd或C=2πr.《周髀算经》上说"周三径一",把圆周率看成3,但是这只是一个近似值。

美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。

魏晋时期的刘徽于公元263年给《九章算术》作注时,发现"周三径一"只是圆内接正六边形周长和直径的比值。

他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。

他算到圆内接正3072边形的圆周率,π= 3927/1250。

刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。

祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。

在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。

现在有了电子计算机,圆周率已经算到了小数点后六十万亿位小数了。

相关文档
最新文档