课标十个核心概念
小学数学课标十个核心概念解读
小学数学课标十个核心概念解读在标准当中设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
从这10个核心概念中不难看出,核心概念不是指具体的内容本身,而是指内容本身所反映出来的基本思想、思维方法,也是学生在数学学习中应该具备的感悟、观念、意识、能力等.核心概念反映了一类课程内容的核心,是学生数学学习的目标,也是数学教学中的关键。
与《实验稿》相比,在这10个核心概念中,有4个是新增加的,它们分别是几何直观、运算能力、模型思想、创新意识;有3个是名称或内涵发生较大变化的,它们分别是数感、符号意识、数据分析观念;剩下的3个,既保持了原有名称,也基本保持了原有内涵。
(一)为什么要设计核心概念在这次课程标准修订过程中,有两件事情是重要的,一个就是希望课程的这些东西,形成一个整体,如何整体的把握课程需要反复强调.从知识技能,从过程方法,从情感态度价值观,几个方面来构架整个数学课程。
这是一个渗透在整个标准的研制过程中.第二件事,就是在研制的过程中,希望能够凸显出需要给予高度的重视的数学内容,因为它反应了数学最要紧的东西,最本质的东西,不仅应该把它当做目标,也应该把它和内容有机的结合起来.(二)核心概念的理解1、数感《标准》去掉了原来《实验稿》中对于数感描述中与运算有关的某些内容,将其独立为另一个核心概念:运算能力。
《标准》将数感定义为一种感悟,这既包括了感知、又包括了领悟,既有感性又有理性的思维。
《标准》将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果的估计。
数与数量,实际上就是建立起抽象的数和现实中的数量之间的关系.这既包括从数量到数的抽象过程中,对于数量之间共性的感悟;也包括在实际背景中提到一个数时,能将其与现实背景中的数量联系起来,并判断其是否合理。
数感是一种主动地、自觉地或自动化地理解数和运用数的态度与意识,即能用数学的视角去观察现实,能以数学的思维研究现实,能用数学的方法解决实际问题。
小学数学新课程标准中十个核心概念
小学数学新课程标准中十个核心概念及认识这十个核心概念是数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
它们之间是密切联系的,所以核心概念有一个承上启下的作用。
上面连着目标,下面联系着内容,是非常严重的,所以也把它称为核心概念。
1.数感数感是一种感悟,是对数量、对数量关系结果估计的感悟;学习数学是要会去思考问题,一个本质的问题就是要建立数学思想,而数学思想一个核心就是抽象,而对数的抽象认识,又是最基本的。
2.符号意识关于符号意识,注意到它在用词上,标准的修改稿和实验稿有一个区别,原来是叫符号感,现在把它称为叫符号意识。
因为符号感更多的是感知,是一个最基本的层次。
而符号意识对学生理解要求更高一些。
在标准里边它是这样来表述的,符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。
就是用符号来表示,表示什么,表示数,数量关系和变化规律,这是一层意思。
还有一层意思,就是知道使用符号可以进行运算和推理,另外可以获得一个结论,获得结论具有一般性。
所以标准上,大概用分号隔开是两层意思,一个是会表示,另外一个进行分开进行推理,得到一般性的结论。
符号意识有助于学生理解符号的使用,是数学表达和数学思考的严重形式。
符号所起的作用,从算术到代数过渡是非常关键的,所以帮助孩子从算术到代数过渡发展的过程中,培养学生的符号意识,是一个非常严重的载体。
3.空间观念空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。
4.几何直观几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把繁复的数学问题,变得扼要、形象,有助于探索解决问题的思路,预测结果。
5.数据分析观念数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。
课标核心概念之运算能力
课标核心概念之运算能力《课程标准》强调了10个学习内容的核心概念:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想,应用意识和创新意识。
这10个核心概念把学习的最本质、最核心的的东西凸显出来,它们应是教师关注的焦点。
接下来我主要从计算能力方面来谈谈我的认识。
计算是小学数学中一项重要的基础知识,贯穿于小学数学教学的全过程,学生的计算能力强弱与否,直接关系到他学习数学的兴趣和效果,因此,使学生学好计算,并形成一定的计算能力至关重要。
作为教师,我们如何改变多数小学生的计算能力很弱的现状呢?一、教学中,要使学生理解和掌握有关的计算基础知识,这是提高学生计算能力的前提小学生在计算过程中经常由于各个方面的原因,往往出现这样或那样的错误,很多家长甚至是老师完全归于孩子不认真,粗心大意所造成。
其实这只是原因之一。
实质很大程度上是孩子有关计算方面综合能力的欠缺。
比如运算法则、运算性质、运算定律、计算公式等基础知识没有掌握,或者不能够合理灵活的运用这些知识所造成。
即使孩子在计算中他虽然很细心很认真,但由于所需要的基本知识的欠缺而出现看似很简单的错误。
在教学中我们不能够急于求成,我们要帮助学生找出原因(如算理不明白、法则不懂、性质不清、定律不熟、公式没掌握等等),查漏补缺,扫清障碍,为进一步学好计算做好基础工作。
二、教学中,要培养学生计算兴趣,这是提高学生计算能力的关键。
爱因斯坦曾经说过:“兴趣是最好的老师”。
孔子也说:“知之者,不如好知者,好知者,不如乐之者”。
他们都谈到了兴趣的重要性。
在计算教学中,我们要激发学生的计算兴趣,要让他们爱上计算,乐于去计算。
只有这样,我们的计算教学才是成功的。
为此,我们在教学中要结合教学的内容,讲究训练形式多样化,寓教于乐,使枯燥的计算教学富有生机。
如:可以借用多媒体、卡片以及其他可以利用的学具、教具等,对学生进行视算、听算、抢算、游戏中计算、计算竞赛、自编计算等方式训练,充分去调动学生的积极性,使学生变被动为主动,由厌计算转变为爱计算和乐计算,逐渐形成一种持久的计算兴趣。
《课程标准》十个核心词的解读
关于《课程标准(2011版)》十个核心词的解读第一个改变是“双基”变“四基”。
原来是数学基础知识与基本技能,现在是基础知识、基本技能、基本思想和基本活动经验。
这样的改变意味着什么?第一意味着:我国数学教育优良传统得到肯定。
双基就是我国数学教育的优良传统,中国数学教育确实是有许多值得夸耀、值得向全人类推荐、推广的经验。
第二意味着:回归“结果”与“过程”并重的理念。
基础知识与基本技能隐含着结果,而基本思想需要在过程中渗透,基本活动经验也需要在教学过程中去积累,所以新增的这两点暗含着过程的意味。
第二个改变是六个核心词变为十个核心词。
核心词之一——数感一、对数感的认识什么是数感?11版课标是这样阐述的:数感主要是关于数与数量、数量关系、运算结果估计等方面的感悟。
建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
将数感表述为感悟,揭示了这一概念的两重属性:既有“感”,如感知,又有“悟”,如悟性、领悟。
曹培英老师的解释更通俗易懂,他说就如同球员的球感,篮球运动员有篮球感,足球运动员有足球感,歌手有乐感等一样,简单地说就是对数的理解和感觉。
11版课标将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果估计。
二、怎样培养数感?数感既然是对数的一种感悟,它就不会像知识、技能的习得那样立竿见影,它需要在教学中潜移默化,积累经验,经历一个逐步建立、发展的过程。
1.“数”出数感培养学生的数感在第一学段是重点,也就是一至三年级。
学龄儿童通过日常生活中有意、无意的数数活动,知道了用数可以表示多少,在数数的过程中,他们就积累了这样的经验:数数的顺序不会改变数的结果;数的过程中下一个数比前一个数多一;数数中的最后一个数不但代表这个数,也代表了这组物体的总数。
这些都是在培养学生的数感。
2.“读”出数感不仅是整数,分数也能读出数感。
如32,读作三分之二;读出数感,我的理解就是在读数的过程中理解数的意义。
十个核心概念是什么
十个核心概念是什么?怎么理解?有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
1、数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。
它有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
2、符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。
知道使用符号可以进行运算和推理,另外可以获得一个结论,获得结论具有一般性。
3、空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。
4、几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。
5、数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。
体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。
6、运算能力是指能够根据法则和运算进行正确的运算的能力。
培养运算能力有助于学生理解运算,寻求合理、简洁的运算途径解决问题。
7、推理能力是数学的基本思维方式,也是人们学习和生活当中,经常使用的一种思维方式,推理一般包括合情推理和演绎推理。
8、模型思想是使学生体会和理解数学与外物世界联系的基本途径,建立和求解模型的过程包括,从现实生活或具体情境中,抽象出数学问题,用数学符号,建立方程、不等式、函数等数学模型的数量关系和变化规律,然后求出结果,并讨论结果的意义。
这些内容的学习有助于学生初步的形成模型的思想,提高学习数学兴趣和应用意识。
9、应用意识说白了就是强调数学和现实的联系,数学和其他学科的联系,如何运用所学到的数学,去解决现实中和其他学科中的一些问题,当然也包括运用数学知识去解决另一个数学问题。
归纳小学数学高级教师职称评审答辩题
归纳小学数学高级教师职称评审答辩题.doc小学数学高级教师职称评审答辩题一、数学新课标中的四基、四能、十个核心概念数学新课标中的“四基”是指学生通过研究,获得必需的基础知识、基本技能、基本思想、基本活动经验;“四能”则是指发现问题和提出问题的能力、分析问题和解决问题的能力。
此外,数学课程标准修订提出了十个核心概念,包括数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,以及应用意识和创新意识。
此举旨在帮助学生更好地理解和应用数学知识。
二、小数的分类方法小数可以按照整数部分和小数部分来分类。
按照整数部分来分,小数可以分为纯小数和带小数。
按照小数部分来分,小数可以分为有限小数和无限小数。
三、数学活动水平的过程性目标动词数学课程标准》中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性目标动词。
这些动词旨在培养学生的数学思维和创造力,让他们更好地理解和应用数学知识。
四、分数与除法的关系分数与除法有着密切的关系。
在除法中,被除数相当于分数中的分子,除数相当于分数中的分母,除号相当于分数线,商相当于分数的值。
例如,m÷n=m/n(m、n都是整数,且n≠0)。
五、知识技能的目标动词数学课程标准》中使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词。
这些动词旨在帮助学生更好地掌握数学知识和技能,提高他们的数学水平。
六、质数、质因数和互质数的区别质数是一个数,如2和7都是质数;质因数是针对一个合数而言的,例如7是28的质因数;互质数则是指公约数只有1的两个数,例如5和7是互质数,8和9是互质数。
七、数学研究内容的四个领域数学课程标准》将数学研究内容分为四个领域,分别是数与代数、空间与图形、统计与概率、实践与综合应用。
这些领域涵盖了数学的各个方面,旨在帮助学生全面掌握数学知识。
八、判断能否被3整除的方法判断一个数能否被3整除的方法是,将这个数各数位上的数字之和相加,如果结果能被3整除,则该数也能被3整除。
数学课程标准中的十个核心概念
在《义务教育阶段数学课程标准(修订稿)》中十个核心概念的内涵在标准当中,设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
1、数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。
建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
2、符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。
知道使用符号可以进行运算和推理,另外可以获得一个结论,获得一个结论具有一般性。
符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要的形式。
3、空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。
4、几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。
几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。
5、数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。
体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。
一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。
6、运算能力是指能够根据法则和运算正确的进行运算的能力。
培养运算能力有助于学生理解运算的算力,寻求合理、简洁的运算途径解决问题。
7、推理是数学的基本思维方式,也是人们学习和生活当中,经常使用这样一种思维方式,推理一般包括合情推理和演绎推理。
演绎推理是从已知的事实出发,按照一些确定的规则,然后进行逻辑的推理,进行证明和计算,是这样一个过程。
新课标十大核心概念解读 PPT
(三)关于学生数感的培养
• 数感既然是对数的一种感悟,它就不会像 知识、技能的习得那样立竿见影,它需要 在教学中潜移默化,积累经验,经历一个 逐步建立、发展的过程。
• 重视低段学生对数的感觉的建立,并在数 感培养上处理好阶段性和发展性的关系。 • 紧密结合现实生活情境和实例,培养学生 的数感。 • 让学生多经历有关数的活动过程,逐步积 累数感经验。
(二)对数的感悟包括三个方面
• 数与数量:建立起抽象的数和现实中的数 量之间的关系。这既包括从数量到数的抽 象过程中,对于数量之间共性的感悟,也 包括在实际背景中提到一个数时,能将其 与现实背景中的数量联系起来,并判断其 合理性。
• 在小学低段,学生对数的感悟是从数数学 习辩认各组实物对象的多少开始建立的。 • 随着年级的增高,学生还会经历更多的对 数意义的感悟,并形成对数的各种表征方 式的理解。
2、体现在不同内容领域的核心概念。 包括几何直观、推理能力和模型思想。
3、超越课程内容,整个小学数学课程都应 特别注重培养学生的应用意识和创新意识。
• 因此,在进行相应内容的教学时,教师要 更多关注与哪些核心概念关系更为密切, 教学中应予以更多的关注。
核心概念的具体解读
一、数感
• 数感主要是指关于数与数量、数量关系、 运算结果估计等方面的感悟。建立数感有 助于学生理解现实生活中数的意义,理解 或表述具体情境中的数量关系。
• 数学内容的四个方面都以10个核心概念中 的一个或几个为统领,学生对这些核心概 念的体验与把握,是对这些内容的真正理 解和掌握的标志。
核心概念的分类:
1、体现在某一内容领域的核心概念。 • 数感、符号意识、运算能力主要体现在 “数与代数”领域; • 空间观念主要体现在“图形与几何”领域; • 数据分析观念主要体现在“统计与概率” 领域。
新课标十个核心词解析
义务教育数学课程标准(2011年版)中此次课标的最大改变是:“双基”变“四基”。
四基:数学的基础知识、基本技能、基本思想、基本活动经验“六个核心词”变“十个核心词”十个核心词:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识、创新意识其中:几何直观、运算能力、模型思想、创新意识是新加上去的。
下面我们一一对十个核心词进行讲解:一、数感数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。
建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
如同球员的球感,歌手的乐感一样……(姚明是大家都比较熟悉的,他在NBA赛场上,大家都看到他一个个漂亮的投球、一个个漂亮的动作,这都是跟他的球感分不开的;还有歌手,之所以成名,是因为他们具有较好的音乐细胞,具有较强的音乐感分不开的,如果一个人,五音不全,也就是说他缺少音乐感,你想说他要成为一个歌手那就是做白日梦一样,就是让他唱一首普通的歌曲都很难的。
)简单、通俗地说,数感就是数的感觉。
教学数数、数的基数意义与序数意义、数序与数的大小比较……都有助于形成数感。
数感培养实践的误区……误区之一:数感是与生俱来的,后天无法养成(龙生龙、凤生凤、老鼠生来挖地洞;猫生猫、狗生狗、小偷儿子三只手的思想)不可否认,某些数学家天生就有很强烈的数感,10岁的高斯毫不费劲地完成了等差数列(比如由1到100的自然数)求和,得益于他对计算方法的直接把握;12岁的帕斯加独立完成了三角形内角和定理的证明,一直为人们津津乐道。
瑞士著名的伯努利家族在三代人中产生了八位数学家,我国南北朝祖氏父子、清朝梅文鼎祖孙的数学成就闻名于世,但毕竟是凤毛麟角,屈指可数。
数感的形成固然有遗传因素和家族影响的作用,而更多是后天努力的结果。
解析几何创始人笛卡儿出身于法国贵族家庭,父亲是政府雇员;牛顿出身在英国农民家庭,还是遗腹子,全靠自己努力取得成功;概率论奠基者拉普拉斯的父母是法国农民;费马则是法国皮革商的儿子。
小学数学十大核心观念
小学数学十大核心观念篇一:小学数学10大核心概念之数感小学数学10大核心概念之数感《标准》中10个核心概念分别是数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
数感是人们的一种基本的数学素养,是理解数和运用数进行有效运算的能力,是自觉地运用数学的思考方法对具体问题进行分析处理的能力,它对数学教学和数学的运算运用起着重要的作用。
数感是建立在明确的数概念和有效地进行计算等数学活动的基础上,将数学与现实问题建立联系的桥梁。
那如何培养学生的数感呢?我认为,应紧密联系学生的生活实际,从学生已有的生活经验和学生所关心的事情入手进行数学教学,从而建立良好的数感。
具体做法如下:一、结合生活,积累数感数学来源于生活,数感的培养也离不开学生的生活。
教师在教学活动中要充分挖掘学生的生活资源,善于结合课堂教学内容,引导学生采撷“生活实例”,积极创设与学生生活环境、知识背景密切相关的学习情景,从室内扩展到室外,校内延伸到社会,让学生在现实生活背景中感受数的意义,体会数的作用,加深对数的认识,在认识数的过程中让学生说说自己身边的数,生活中用到的数,如何用数表示周围的事物等,使学生感到数学就在自己身边,从自己的生活实际中积累数感。
例如教学克、千克的认识时,可让学生寻找并掂量1克与1千克的物体,寻找哪些物体分别用“克”、“千克”作单位。
如一分硬币重1克,4包豆奶约重1千克等;再如认识大数时,我利用多媒体(利用统计图和录音机)进行教学,告诉学生我市有多少人,大约是我校学生数的多少倍;我省土地面积有多大,它的面积大约相当于多少个我市。
通过引导让学生观察体会大数的情景,培养学生感受周围世界那种数量化的意味,从而逐步感受数。
这些活动深受学生的喜爱,学生学得兴致盎然,在不知不觉中积累数感。
二、自主探索,体验数感著名数学家波利亚说过:“学习任何知识的最佳途径是自己发现,因为这种发现理解最深,也最容易掌握其中内在的规律、性质和联系。
关于《课程标准版》十个核心词的解读
关于《课程标准(2011版)》十个核心词两点暗含着过程的意味。
一、对数感的认识什么是数感?11系。
将数感表述为感悟,揭示了这一概念的两重属性:既有“感”,如感知,又有“悟”,如悟性、领悟。
曹培英老师的解释更通俗易懂,他说就如同球员的球感,篮球运动员有篮球感,足球运动就是对数的理解和感也代表了这组物体的总数。
32,读作三分之二;读3.“估”出数感4.“算”出数感数感可以“算出来”、“估出来”,已被认识并实践了多年,5.“用”出数感。
11行数学思考的重要形式。
因为我们看不到数1.2.3.1.(1)数字符号(2)运算符号(3)关系符号2.其次是让学生初步感悟符号表达的优势与作用出几何图形,根据几何图形想正是在这个意义上,2.操作——动作直观小学图形与几何教学中的动作直观主要有两类,即操作实验活动与画图。
3.想象形;二是直观西进行思考、想象。
一、1112用。
34.一11版课标是这样阐述概念的:数据分析观念包括:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析作出判断,体会数据中蕴含着信息;了解对于同样的数据可以有多种分析方法,需要根据问题的背景选择合适的方法;通过数据我们不妨把这这体现这可视为数据分析的“体验主要是指能够根3.近年来的若干教学误区(1).铺垫”:被遗弃的“精准性”教学技术。
(2)计算教学的与时俱进出现了部分异化4.合理选择算法正确计算本是“笔算”的内涵51知识基础。
2力。
3.循序渐进,45一、11版课标理的法则证明和计算。
1.推理能力的发展应贯穿在整个数学的学习过程中。
2.通过多样化的活动,培养学生的推理能力。
核心词之八——模型思想一、《2011版课标》是这样阐述的:这说明发现和函数等表示数学问题中的第二学段:通过一些具体问题,引导学生通过观察、分析抽象出更为一般的模式表达。
如用字母表示有关的运算律和运算性质,及数量关系。
2.使学生经历“问题情境—建立模型—求解验证”的数学活动过程一、《课标标准(一方面,(1)解决现实世界中的问题;(2二、应用意识的培养1.首先教材在这方面进行了突破。
新课标十大核心概念之“数据分析观念”解读
新课标十大核心概念之“数据分析观念”解读在对“数据分析观念”进行分析之前,我们首先要理解新、旧课标在“统计与概率”这一版块的要求与区别。
原课标的核心词:数感、符号感、空间观念、统计观念、应用意识、推理能力。
新课标核心词:数感、符号意识、运算能力、模型思想、空间观念、几何直观、推理能力、数据分析观念、应用意识、创新意识。
在“统计与概率”板块的核心词由“统计观念”改为“数据分析观念”。
“统计观念”(旧):强调的是从统计的角度思考问题,认识统计对决策的作用,能对数据处理的结果进行合理的质疑。
“数据分析观念”(新):改变过去这一概念含义较“泛”,体现统计与概率的本质意义不够鲜明的弱点,而将该部分内容聚焦于“数据分析”。
那么让我们来深入学习“数据分析观念”跟上教学改革的步伐。
(一)什么是“数据分析观念”?数据分析观念是学生在有关数据的活动过程中建立起来的对数据的某种“领悟”、由数据去作出推测的意识、以及对于其独特的思维方法和应用价值的体会和认识。
在课标当中,对于数据分析观念,有这样的描述:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。
体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。
一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律。
(二)为什么要学数据分析的观念?数据分析是统计学里的一个核心内容。
不论是统计还是概率,都要基于数据,基于对数据的分析;在进行预测的时,为了使预测更合理,也需要收集更多的数据。
数据分析观念是学生在义务教育阶段数学课程中最应培养的数学素养之一,是促进学生发展的重要方面。
通过数据分析的教学,使学生体会到统计时需要收集数据,应用数据分析,能解决日常生活中很多实际问题,从而感受统计的实际价值,发展学生的应用意识。
(三)培养数据分析观念的要求:一是过程性(或活动性)要求:让学生经历调查研究,收集、处理数据的过程,通过数据分析作出判断,并体会数据中蕴涵着信息二是方法性要求:了解对于同样的数据可以有多种分析方法,需要根据问题背景选择合适的数据分析方法三是体验性要求:通过数据分析体验随机性(四)怎样培养学生数据分析的观念?1、让学生经历数据分析过程,体会数据中蕴含的信息。
小学数学课标十个核心概念解读
小学数学课标十个核心概念解读在标准当中设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
从这10个核心概念中不难看出,核心概念不是指具体的内容本身,而是指内容本身所反映出来的基本思想、思维方法,也是学生在数学学习中应该具备的感悟、观念、意识、能力等。
核心概念反映了一类课程内容的核心,是学生数学学习的目标,也是数学教学中的关键。
与《实验稿》相比,在这10个核心概念中,有4个是新增加的,它们分别是几何直观、运算能力、模型思想、创新意识;有3个是名称或内涵发生较大变化的,它们分别是数感、符号意识、数据分析观念;剩下的3个,既保持了原有名称,也基本保持了原有内涵。
(一)为什么要设计核心概念在这次课程标准修订过程中,有两件事情是重要的,一个就是希望课程的这些东西,形成一个整体,如何整体的把握课程需要反复强调。
从知识技能,从过程方法,从情感态度价值观,几个方面来构架整个数学课程。
这是一个渗透在整个标准的研制过程中。
第二件事,就是在研制的过程中,希望能够凸显出需要给予高度的重视的数学内容,因为它反应了数学最要紧的东西,最本质的东西,不仅应该把它当做目标,也应该把它和内容有机的结合起来。
(二)核心概念的理解1、数感—《标准》去掉了原来《实验稿》中对于数感描述中与运算有关的某些内容,将其独立为另一个核心概念:运算能力。
《标准》将数感定义为一种感悟,这既包括了感知、又包括了领悟,既有感性又有理性的思维。
《标准》将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果的估计。
数与数量,实际上就是建立起抽象的数和现实中的数量之间的关系。
这既包括从数量到数的抽象过程中,对于数量之间共性的感悟;也包括在实际背景中提到一个数时,能将其与现实背景中的数量联系起来,并判断其是否合理。
数感是一种主动地、自觉地或自动化地理解数和运用数的态度与意识,即能用数学的视角去观察现实,能以数学的思维研究现实,能用数学的方法解决实际问题。
2022数学课程标准解读与学习心得:导读提纲,快速读懂新课标
2022数学课程标准解读与学习心得:导读提纲,快速读懂新课标1、四基:基础知识、基本技能、基本思想、基本活动经验。
2、四能:发现问题、提出问题、分析问题、解决问题。
3、十个核心词:数感、符号、意识、空间观念、几何直观、数据分析观、运算能力、推理能力、模型思想、应用意识、创新意识。
4、数学基本思想:数学产生和发展所必须依赖的那些思想,学习数学的人所应当具有的思维特征。
5、数学核心素养:是具有数学基本特征的关键能力、思维品质以及情感态度价值观综合体现;是数学教育与人的行为(思维做事)的终极目标;是学生在本人参与其中的教学活动中逐步形成和发展,是经验积累;是过程目标的拓展,是四基继承与发展;对学好数学教育具有一致性、发展性。
数学学科核心素养:数学课程要培养的学生核心素养,主要包括以下三个方面:会用数学的眼光观察现实世界;会用数学的思维思考现实世界;会用数学的语言表达现实世界。
数学核心素养三个基本特征:内涵一致性,内涵不变,每一个学过数学的人都应当具有的终极的;表现阶段性,不同学段有不同表现;表达的整体性,数学+教育特征,既表达学科思维,又表达认知心理。
6、数学学科课程内容:义务教育阶段数学课程内容由数与代数、图形与几何、统计与概率、综合与实践四个学习领域组成。
数与代数、图形与几何、统计与概率以数学核心内容和基本思想为主线循序渐进,每个学段的主题有所不同。
综合与实践以培养学生综合运用所学知识和方法解决实际问题的能力为目标,根据不同学段学生特点,以跨学科主题学习为主,适当采用主题式学习和项目式学习的方式,设计情境真实、较为复杂的问题,引导学生综合运用数学学科和跨学科的知识与方法解决问题。
7、数学学科教学建议:处理好核心素养与“四基”“四能”的关系;注重教学内容的结构化,注重教学内容与核心素养的关联;丰富教学方式,重视单元整体教学设计,强化情境设计与问题提出;进一步加强综合与实践。
8、会用数学的眼光观察现实世界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课标十个核心概念在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。
为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。
课程标准提出了‘数感’‘符号意识’等核心概念,为什么提出这些核心概念?首先,核心概念是课程目标的支点,起着沟通课程目标与具体数学内容之间联系的作用。
我们知道,课程标准设计了‘知识技能’‘数学思考’‘问题解决’‘情感态度’四个方面的培养目标,同时选择编排了大量的数学知识。
如数的知识、运算的知识、图形的知识、测量的知识、统计和概率的知识、解决问题的知识等。
这些知识又各有许多具体的内容,如数的知识就有整数、小数、分数,其中的整数知识有数字符号、计数方法、数的顺序、数之间的大小关系、用数表示和交流等。
再如测量的知识包括长度、面积、体积(容积)的意义,常用的长度单位、面积单位、体积(容积)单位,常用的测量工具和测量方法,基本图形的周长、面积、体积的计算公式等。
如何把比较宏观的培养目标与众多十分具体的数学知识有组织地联系起来?核心概念就起这方面的作用。
在中小学数学课程这个结构里,‘核心概念’介于课程目标与众多具体数学内容之间,是课程目标的落脚点。
课程目标通过有关的核心概念得到比较清楚的描述,也通过相关核心概念的教学和形成得以实现。
如,课程标准关于‘数学思考’方面的培养目标是如下表述的,这样的叙述指出了‘数学思考’的培养应该往什么方向去落实,也使‘数学思考’的培养目标具有可行性和可操作性。
---建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维与抽象思维。
----体会统计方法的意义,发展数据分析意识,感受随机现象。
----在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理的能力,清晰地表达自己的想法。
----学会独立思考,体会数学的基本思想和思维方式。
其次,核心概念起着统领众多具体数学内容,导向其教育价值的作用。
课程标准提出的核心概念,有些和‘数与代数’领域的内容联系密切,有些和‘图形与几何’领域的内容联系密切,有些和‘统计与概率’领域的联系密切,有些和‘综合与实践’领域的内容联系密切。
围绕每一个核心概念都有许多具体的数学内容,通过这些数学内容的教学才能在学生头脑里形成核心概念。
使学生形成必要的核心概念是数学教学的重要任务,也是有效的数学教学的归宿。
核心概念起着统领具体数学内容及其教学的作用,使众多数学知识之间不是隔裂的,每个数学知识不是孤立的,而是相互联系、相互作用、相互影响的。
课程标准提出核心概念,一方面指出了某个核心概念需要哪些数学知识,另方面指出了这些数学知识的教学应该形成核心概念,成为学生的意识与能力。
如‘数感’主要和‘数与代数’领域里的‘数的认识’‘数的运算’以及‘数量关系’有着联系,课程标准指出:‘数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。
’学生的数感是他们认数学习和计算学习中的智慧结晶,是他们经常接触并领悟常见数量关系的经验升化。
数感的形成使数的知识、运算的知识、数量关系的知识转化成个体的数学素养。
小学生的数感主要表现在:能够用数刻画客观对象的量的多少或大小,能够估计客观对象有多大、有多少;能够估计运算的结果大约是多少,能够评价笔算或计算器计算结果的合理性;能够用常见数量关系描述实际问题里的数学内容,能够体会到常见数量关系里的简单函数关系。
数感就这样把与‘认数’和‘计算’有关的教学内容有机组织起来了,教学数及其运算的知识应该归结到培养和形成数感的上面。
再如,课程标准指出‘符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。
’小学数学里有数字符号0~9,运算符号+、-、×、÷,关系符号>、<、=,字母符号h表示形体的高、s表示图形的面积(有时表示路程)、v表示立体的体积(有时表示速度)……,这些都是人们约定俗成、共同使用的符号。
人们学习数学、应用数学时,还可以使用个体的符号。
如用一横、一竖或者一个‘√’表示一个物体,用字母A、B、C分别表示某些对象等。
符号具有简单明了、使用方便等优点,学习数学离不开它。
小学数学初步培养学生的符号意识,让他们知道并使用人类已经共同使用的一些符号,用符号表示运算律、求积公式、常见数量关系;鼓励学生用自己设定的符号进行记录,开展统计活动,不仅方便交流与表达,还体会到符号的价值。
‘符号意识’就这样把用字母表示数(数量关系或运算规律)、对含有字母式子的运算、方程以及解决实际问题等数学内容组织起来,有效解决众多知识相互割裂、过于分散的现象,并且给于它们明确的教学方向。
又如,空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。
空间形式是数学的研究对象,客观世界存在着各种各样、大大小小的物体,物体在运动变化,物体之间有着相互联系。
这些内容反映在人的头脑里,形成的有关概念、模型,产生的想象、引发的形象思维,就是个体的空间观念。
小学数学教学许多基本的形体知识,学生应该形成初步的空间观念。
小学生的空间观念一般表现为:头脑里有常见平面图形和立体图形的数学模型,知道这些形体的名称、形状、结构特点,看到某个物体能够想到其数学模型和数学名称,想到某个模型或者听到某个名称,能够在身边找到相应的物体;从正面、侧面和上面观察某个简单的物体,能够用分别看到的图形表示这个物体的形状与结构;能够想象出简单几何体的表面展开图,能够根据表面展开图想象出几何体;能够把稍复杂的组合形体分解成若干简单形体;能够数学地描述物体的运动方式以及所在位置。
可见,核心概念不是指某一个或某几个具体的数学知识,而是许多相关数学知识的概括提升;核心概念不是另外教学的数学内容,而是蕴涵在相关数学知识的教学之中的上位概念。
正如课程标准修订组核心成员、东北师范大学教授马云鹏所说的:‘核心概念体现数学内容的本质。
核心概念本质上体现了数学的基本思想,反映了数学内容的本质特征以及数学思维方式。
数学内容的四个方面都以10个核心概念中的一个或几个为统领,学生对这些核心概念的体验与把握,是对这些内容的真正理解和掌握的标志。
课程标准(实验稿)提出六个核心概念,分别是‘数感’‘符号感’‘空间观念’‘统计观念’‘应用意识’‘推理能力’。
课程标准(2011)提出十个核心概念,分别是‘数感’‘符号意识’‘运算能力’‘空间观念’‘几何直观’‘数据分析观念’‘模型思想’‘推理能力’‘应用意识’‘创新意识’。
把课程标准修改前后的核心概念比一比,可以看到:新增加了四个——‘运算能力’‘几何直观’‘模型思想’‘创新意识’;较大改动了三个——‘数据分析意识’‘推理能力’‘应用意识’;另外三个——‘数感’‘符号意识’‘空间观念’的修改不大。
下面我们看一看新增加的和较大改动的七个核心概念。
1.运算能力。
运算能力主要是指能够根据法则和运算律正确地进行运算的能力。
培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
重视运算能力是我国小学数学教学的优秀传统,我国学生的运算能力受到世界瞩目。
有关运算的知识主要是四则计算的意义、法则,四则混合运算顺序,运算律和运算性质等。
有关运算教学的要求是学生获得重要的计算知识,能够正确、熟练、合理、灵活地应用运算知识,解决相应的问题,包括计算题和实际问题。
进入新课程,数学教学的内容发生了很大变化。
增加了许多十分有意义的数学知识,如图形的运动、图形的位置、数据统计活动、事件发生的可能性、探索规律和实践活动等。
有关计算的教学内容也有很大变动,一是精简了大数目的计算,整数加、减法一般不超过三位数的加或减,整数乘、除法只到三位数乘或除以两位数;二是重视口算、加强估算;三是使用计算器进行较繁琐的计算。
而且,用于计算教学的时间比过去少了。
所以,培养学生的运算能力是数学教学面临的一个课题。
学生的运算能力一般表现为:能够选择恰当的计算形式解决问题,做到可以口算就口算,需要笔算就笔数,不要精确得数就估算,遇到大数目的计算就使用计算器;追求计算结果正确,有及时检验得数的习惯,能够采用合适的方法进行验算并随时纠正计算错误;有简便运算的意识,能够根据具体情况,合理而灵活地利用运算律或运算性质,提高计算效率。
课程标准重新提出运算能力,是对数学教学的要求。
计算毕竟是数学内容的一部分,是常用的数学活动之一,是学习和应用其它数学知识不可缺少的工具。
既不能因为增加了许多其它数学内容而忽视计算教学,也不能以传统的计算教学来要求和衡量新课程的计算教学。
学生的计算应该达到适当的速度要求。
课程标准提出:20以内加减法和表内乘除法口算,8~10题/分;百以内加减法和一位数乘除两位数口算,3~4题/分;两位数和三位数加减法笔算,2~3题/分;一位数乘除两位数和三位数笔算,两位数乘两位数笔算,1~2题/分。
这些速度要求,是大多数学生经过适量练习就能够达到的,不会耗费过量的教学资源,而影响其它数学内容的教学。
这些速度要求,能够基本满足继续学习数学和解决实际问题的需要。
这些速度水平,一但形成,能够维持,不会有过大的衰退。
2. 几何直观。
几何直观主要是指利用图形描述和分析问题。
借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。
几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
几何直观可以看成‘数形结合’的手段与方法。
‘数形结合’是一种数学思想方法,指利用代数里的模型来抽象地表示几何图形的本质内容,利用几何图形来形象直观地表示代数里的关系。
数学是抽象的,儿童喜欢具体形象的思维,几何直观经常能够解决抽象与形象之间的矛盾。
数学教学往往会利用简单的图形来表示比较抽象的数学问题或数量关系,如用线段图表示相差关系和倍数关系,用线段图表示相遇问题的已知、未知和数量关系,用简单图形表示田地面积的变化等,这些都十分有助于学生理解题意、找到问题的解法。
几何直观是人们理解复杂的数学问题,探索其解法的手段,是人们解决问题时经常采用的策略。
课程标准提出几何直观,不仅教师要充分利用这个手段教学数学知识,还应该培养学生自己运用几何直观的习惯和能力。
要联系实例让学生体会什么是几何直观,感受几何直观对解决问题的积极作用;要指导学生画图,初步学会几何直观;要鼓励学生经常运用几何直观,逐步成为个体的解决问题策略之一。
3. 模型思想模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。
建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果并讨论结果的意义。