仪器分析概念及知识梳理
现代仪器分析知识点总结
现代仪器分析知识点总结一、仪器分析概述1. 仪器分析的定义和作用仪器分析是指利用各种仪器设备进行化学成分、结构、性质、质量和数量等方面的分析研究,以求解决物质的组成、结构、性质和变化等问题。
仪器分析具有操作简便、分析速度快、分析结果准确等优点,可以广泛应用于工业生产、科学研究、环境监测等领域。
2. 仪器分析的发展历史仪器分析的发展可以追溯到古代的天平和显微镜等基本仪器,随着仪器技术的不断发展,如今涌现出了各种复杂的分析仪器,包括质谱仪、红外光谱仪、核磁共振仪等。
仪器分析的发展历程反映了人类对于物质分析的需求和技术水平的提高。
3. 仪器分析方法的分类根据分析过程中所涉及的原理和方法,仪器分析可以分为物理方法和化学方法两大类。
物理方法主要包括光谱分析、热分析、电化学分析等,而化学方法则包括非分散能谱、质谱分析、光谱法等。
二、基本仪器分析方法1. 光谱分析光谱分析是利用物质对电磁辐射的吸收、发射或散射进行分析的一种方法。
其中,包括原子吸收光谱法、原子发射光谱法、荧光光谱法、紫外-可见吸收光谱法等。
2. 热分析热分析是利用物质在不同温度下的变化规律进行分析的方法。
常见的热分析方法有热重分析、差热分析、热膨胀分析等。
3. 电化学分析电化学分析是利用电化学方法进行分析的一种分析方法。
常见的电化学分析方法包括电位滴定法、极谱法、电导率法等。
4. 质谱分析质谱分析是利用物质的质谱特征进行分析的一种方法。
它主要包括质谱仪分析、飞行时间质谱等。
5. 核磁共振分析核磁共振分析是利用核磁共振现象进行分析的一种方法。
通常用于确定有机分子结构及氢、氮、氧、氟、磷、硫等元素的位置。
三、常见的分析仪器1. 红外光谱仪红外光谱仪是一种常用的分子结构分析仪器,主要用于有机分子、聚合物、无机物、生物分子等的结构分析。
2. 质谱仪质谱仪是一种非常重要的分析仪器,主要用于快速、准确地判断化合物的结构、精确地测定分子的质量、元素组成和同位素丰度。
仪器分析知识点总结大全
苯环或烯烃上的H被各种取代基取代,多产生红移。 5)pH值:红移或蓝移 6)溶剂效应:红移或蓝移
由n-*跃迁产生的吸收峰,随溶剂极性增加,形成 H 键的能力增加, 发生蓝移;由-*跃迁产生的吸收峰,随溶剂极性增加,激发态比基态
应时,可以试样作参比(不能加显色剂)。
第四章 原子发射光谱分析
4.1 概述 4.2 基本原理 4.3 AES 仪器 4.4 定性定量分析方法
关键词: 1)分析对象为大多数金属原子; 2)物质原子的外层电子受激发射产生特征谱线(线光谱); 3)谱线波长——定性分析;谱线强度——定量分析。
定义:AES是据每种原子或离子在热或电激发下,发射出特征的电磁 辐射而进行元素定性和定量分析的方法。
标准曲线法; 标准加入法; 内标法。
第二章 光学分析方法导论
光学分析方法: 利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射 强度等光学特性,进行物质的定性和定量分析的方法。
电磁辐射具有波动性和微粒性;E = hν = h c /λ 发射光谱
吸收光谱
线光谱: 由处于气相的单个原子发生电子能级跃迁所产生的锐线,线宽大约
定义,概念,名词解释 方法原理、特点 仪器 定性、定量分析 误差来源及消除
仪器分析方法及分类
仪器分析
光分析法
原子 光谱
分子 光谱
电化学分析法
电 电库 伏 导 位仑 安
色谱分析法
气相 色谱
液相 色谱
热分析法, 质谱分析法, 分析仪器联用技术
原 原原 子 子子 发 吸荧 射 收光
紫分 红 外子 外 可荧 见 光、
仪器分析知识点总结期末
仪器分析知识点总结期末引言仪器分析是一门应用化学和物理学原理的科学,涉及仪器、仪表、光学和电子学等多个学科,用于测定和分析物质样品的成分和性质。
仪器分析在各个领域都有广泛的应用,包括环境监测、制药、食品安全、医学诊断和天文学等。
本篇文章将对仪器分析的基本概念、常见的分析仪器和技术、质量控制以及未来发展方向等进行总结和分析。
一、仪器分析基础知识1. 仪器分析的基本原理仪器分析是利用物理、化学或生物学原理构建各种仪器和设备,用于检测和测定样品中的成分、结构和性质。
基本原理包括光谱学、电化学、分子光度法、色谱法、质谱法、X射线衍射法等。
在实际应用中,可以根据需要选择不同的分析原理和仪器进行样品分析。
2. 仪器分析的步骤仪器分析一般包括取样、制备、分析和数据处理等步骤。
取样是从样品中获取代表性的部分;制备是指针对样品的物理或化学处理,以适应分析仪器的要求;分析是使用仪器进行测定,获取样品的性质和组分信息;数据处理是指对分析结果进行统计分析、质量控制和报告撰写等。
3. 仪器分析的应用领域仪器分析在环境监测、医学诊断、食品安全、农业生产、材料检测、制药和化工等领域都有重要应用。
例如,质谱法在药物研发和医学诊断中有重要应用;光谱学在化学分析和环境监测中起到关键作用;色谱法在食品安全和环境保护中发挥作用。
二、常见的分析仪器和技术1. 分光光度计分光光度计是一种用于测定物质浓度的仪器,利用物质吸收或发射光的特性进行分析。
分光光度计包括紫外可见分光光度计、红外分光光度计和荧光光度计等,广泛应用于化学分析、生物医药和环境监测等领域。
2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,用于测定物质的分子结构和质量。
质谱仪主要有气相质谱仪和液相质谱仪两大类,可用于药物分析、环境监测和食品安全等领域。
3. 色谱仪色谱仪是一种用于分离和测定混合物中组分的仪器。
常见的色谱仪包括气相色谱仪和液相色谱仪,广泛应用于环境检测、食品安全和医学诊断等领域。
仪器分析期末知识点总结
仪器分析期末知识点总结仪器分析是现代化学分析的重要手段之一,它利用各种仪器设备来检测和分析物质的成分、结构、性质等信息。
仪器分析技术具有灵敏、准确、高效等优点,已经广泛应用于化学、环境、医药、食品等领域。
本文将从基本仪器分析原理、常用仪器、质谱、光谱分析、色谱分析等方面进行知识点总结,以便于同学们在期末复习时进行复习。
一、基本仪器分析原理1. 仪器分析的基本原理仪器分析是通过测量样品的物理性质,如质量、电子结构、核磁共振等,间接或直接地确定样品中的化学成分或结构。
一般包括以下几个基本原理:(1)光学原理:利用物质与光的相互作用,通过测量光的吸收、散射或发射等来分析物质的成分、性质。
(2)电化学原理:通过测量电流、电势、电荷量等来分析物质。
(3)质谱原理:利用质子、中子、电子等粒子与物质相互作用的规律,测定物质的成分、结构。
(4)色谱原理:利用物质在固、液、气相中的分配系数差异,通过色谱柱分离、检测来分析物质。
2. 仪器分析的基本步骤仪器分析一般包括样品的前处理、仪器的操作和测量、数据的处理与分析等步骤。
具体可以分为以下几个步骤:(1)样品的前处理:首先需要对样品进行前处理,包括样品的取样、样品的溶解、稀释、萃取等,以便于后续的仪器操作。
(2)仪器的操作和测量:根据仪器的不同,进行样品的操作和测量,包括光谱分析、质谱分析、色谱分析等。
(3)数据的处理与分析:对测得的数据进行处理、分析,得出结论和结果。
二、常用仪器1. 紫外可见分光光度计紫外可见分光光度计是一种广泛应用的光学仪器,可用于测量物质的吸收、散射等光学性质,对分析有机物、无机物、生物分子等具有重要意义。
其原理是利用物质对特定波长光的吸收程度来分析物质的成分、浓度等信息。
2. 红外光谱仪红外光谱仪是一种通过测量物质对红外辐射的吸收、散射来分析物质的结构、功能团、成分等信息的仪器。
其原理是利用物质分子在红外光波段的振动、转动运动,吸收特定频率的红外辐射,从而得到物质的光谱信息。
名词解释-仪器分析
适用范围有限
不同的仪器分析方法有不同的适用范围, 对于某些特定类型的样品或特定组分的测 定可能不适用。
对操作人员要求高
仪器分析需要操作人员具备较高的专业知 识和技能,能够正确使用和维护仪器,保 证分析结果的准确性和可靠性。
05 仪器分析的发展趋势
高通量和高灵敏度仪器的发展
总结词
随着科学技术的发展,仪器分析的高通量和 高灵敏度已成为重要的发展趋势。
红外光谱法是通过测量样品对红外光的吸收程度,来确定样品中分子的结构和组成。紫外-可见光谱法则是通过测量样品对紫 外-可见光的吸收和反射程度,来确定样品中分子的结构和组成。拉曼光谱法则是通过测量拉曼散射光的波长和强度,来确定 样品中分子的结构和组成。
电化学分析法
电化学分析法是利用电化学反应进行分析的方法。根据电化学反应过程中电流、电压、电导等参数的 变化,可以确定样品中物质的种类和浓度。电化学分析法包括电位分析法、伏安分析法、电导分析法 等。
详细描述
高灵敏度仪器能够检测更低浓度的物质,有 助于发现和诊断早期疾病,保护环境和食品 安全。高通量仪器能够在短时间内处理大量 样本,提高分析效率,满足大规模筛查和个 性化医疗的需求。
微型化与便携式仪器的发展
要点一
总结词
要点二
详细描述
仪器分析的微型化和便携化使得检测更为便捷,特别适用 于现场快速检测和移动医疗。
多技术联用仪器将电化学、光学、质谱等多种检测技术 集成在一个仪器中,充分发挥各种技术的优势,提高检 测的准确性和可靠性。这种仪器可以同时检测多种指标 ,提供更全面的信息,适用于复杂样品的分析和跨学科 的研究领域。
感谢您的观看
THANKS
VS
原子吸收光谱法是通过测量样品中原 子对特定波长光的吸收程度,来确定 样品中元素的含量。原子发射光谱法 则是通过测量样品中原子发射出的光 子能量和数量,来确定样品中元素的 种类和含量。
仪器分析知识点总结pdf
仪器分析知识点总结pdf一、概述仪器分析是一门研究各种仪器和方法在化学和生物分析中的应用的学科。
它包括仪器的原理、结构、工作原理、应用范围和使用方法等内容。
仪器分析是化学和生物分析的基础,是现代化学和生物技术的重要支撑和工具。
本文将从仪器分析的基本原理、常见仪器的应用和发展趋势等方面进行总结。
二、仪器分析的基本原理1. 仪器分析的基本原理是什么?仪器分析是利用现代仪器设备对物质的成分、结构、性质和含量等进行定量或定性分析的方法。
其基本原理是利用各种仪器的物理、化学或生物特性对目标物质进行分析,从而获得分析结果。
2. 仪器分析的分类根据分析原理和方法的不同,仪器分析可分为物理分析仪器、化学分析仪器和生物分析仪器三大类。
物理分析仪器包括光谱仪、色谱仪、质谱仪等;化学分析仪器包括滴定仪、离子色谱仪、气相色谱仪等;生物分析仪器包括酶标仪、PCR仪等。
三、常见仪器的应用1. 光谱仪光谱仪是仪器分析中常用的一种仪器,主要用于对物质的吸收、发射、散射光谱特性进行分析。
光谱仪可以分为紫外-可见-近红外光谱仪、红外光谱仪、拉曼光谱仪等。
其应用范围涉及分子结构分析、化合物鉴定、药物含量测定、环境监测等领域。
2. 色谱仪色谱仪是一种分离和分析化合物的仪器,常用于样品的分离和检测。
色谱仪主要分为气相色谱仪、液相色谱仪、超临界流体色谱仪等。
其应用范围包括化学品分析、环境监测、食品安全等方面。
3. 质谱仪质谱仪是一种对样品中分子进行碎裂和检测的仪器,常用于物质的质量、结构分析。
质谱仪主要包括飞行时间质谱仪、四级杆质谱仪、离子阱质谱仪等。
其应用范围主要涉及化合物鉴定、蛋白质序列分析、环境监测等。
4. 滴定仪滴定仪是一种常用于酸碱中和、沉淀析出、氧化还原等反应的仪器,可用于测定物质的含量和浓度。
其应用范围包括酸碱滴定、络合滴定、氧化还原滴定等。
5. 离子色谱仪离子色谱仪是一种用于分离和检测离子化合物的仪器,主要用于水样中离子含量的测定。
仪器分析 知识点总结
仪器分析知识点总结一、基本原理1. 仪器分析的基本原理仪器分析是通过利用物理、化学、生物等现代科学技术的原理,将样品中所含的各种化学成分,或隐性特征转化为测定结果的工作过程。
其基本原理是将样品与仪器设备相结合,通过检测样品的光学、电学、热学、声学等性质,从而分析出样品中所含的成分、结构和性质。
2. 仪器分析的应用范围仪器分析广泛应用于生产、科研、医疗、环保、食品安全等领域。
在食品安全领域,通过仪器分析可以检测食品中的化学污染物、毒素、添加剂等,确保食品安全。
在医疗领域,可以使用仪器分析对生物样品进行分析,诊断疾病。
在环保领域,可以利用仪器分析监测环境中的污染物含量,保护环境。
二、常见的仪器设备1. 红外光谱仪红外光谱仪是一种分析化学仪器,主要用于分析样品的结构和成分。
其原理是通过测量样品对红外辐射的吸收情况,从而对样品进行分析。
红外光谱仪可以用于有机物、无机物、生物大分子等样品的分析,广泛应用于化学、医学、生物等领域。
2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,可以用于分析样品中的各种化合物和元素。
其原理是通过对样品离子化、分子裂解和质谱分析,从而获得样品的成分和结构信息。
质谱仪广泛应用于化学、生物、环境等领域,可以用于检测样品中的有机物、无机物、生物大分子等。
3. 气相色谱仪气相色谱仪是一种用于分离和分析样品中化合物的仪器设备。
其原理是通过气相色谱柱对样品中的化合物进行分离,再通过检测器对分离后的化合物进行检测。
气相色谱仪可以用于分析样品中的有机物、小分子有机化合物、环境中的污染物等,是化学、环境等领域中常用的仪器设备。
4. 离子色谱仪离子色谱仪是一种用于离子分析的仪器设备,主要用于分析水样中的离子成分和浓度。
其原理是通过离子交换柱对水样中的离子进行分离,再通过检测器对分离后的离子进行检测。
离子色谱仪广泛应用于环境、食品安全、医疗等领域,可以对水样中的无机离子、有机离子进行分析。
三、样品处理技术1. 样品前处理样品前处理是仪器分析中一个重要的环节,其目的是提高仪器分析的准确度和可靠性。
仪器分析考试知识点总结
仪器分析考试知识点总结一、仪器分析的基本概念1. 仪器分析的定义和概念仪器分析是利用各种物理、化学、光学、电子等原理和方法,用各种仪器和设备对化学物质进行检测和分析的过程,以发现物质的性质、结构、组成和含量等信息。
2. 仪器分析的分类仪器分析可以分为物理分析、化学分析和光谱分析等不同的类别,不同的分析方法适用于不同类型的化学物质。
3. 仪器分析的原理仪器分析的原理主要包括化学反应原理、光学原理、电子学原理、物理原理等,不同的仪器在分析过程中会运用不同的原理。
二、基本仪器原理和基本技术1. 常用电子仪器的原理和技术常见的电子仪器如电子天平、电位计、电解质浓度计、电导率计等都是基于电子原理和技术进行工作的。
学习者需要了解这些仪器的原理和操作方法。
2. 常用光学仪器的原理和技术常见的光学仪器如分光光度计、荧光光度计、紫外-可见分光光度计等都是基于光学原理和技术进行工作的。
学习者需要了解这些仪器的原理和操作方法。
3. 常用物理仪器的原理和技术常见的物理仪器如质谱仪、核磁共振仪、X射线衍射仪等都是基于物理原理和技术进行工作的。
学习者需要了解这些仪器的原理和操作方法。
三、仪器分析的基本操作1. 样品的准备样品的准备是仪器分析的第一步,学习者需要学会如何准备不同类型的样品,包括液体样品、固体样品和气体样品等。
2. 仪器的调试仪器的调试是仪器分析的关键步骤,学习者需要学会如何合理地调试仪器,以保证分析的准确性和可靠性。
3. 数据的处理仪器分析得到的数据需要进行合理的处理和分析,学习者需要学会如何处理数据和制作数据报告。
四、仪器分析的常见问题和解决方法1. 仪器的故障和维修仪器在使用过程中可能会出现各种故障,学习者需要学会如何及时发现和解决这些故障。
2. 数据的异常和处理方法在数据分析过程中,可能会出现异常数据,学习者需要学会如何判断异常数据并进行合理的处理。
五、仪器分析的应用1. 仪器分析在化学、医药、环境和食品等领域的应用仪器分析可广泛应用于各种领域,包括化学、医药、环境和食品等。
仪器分析知识点总结大全
仪器分析知识点总结大全仪器分析是化学分析的重要分支,它利用特殊的仪器对物质进行定性、定量和结构分析。
以下是对常见仪器分析方法的知识点总结。
一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的一种方法。
其原理是:当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,使透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的原子浓度成正比。
原子吸收光谱仪主要由光源、原子化器、分光系统和检测系统组成。
优点:选择性好、灵敏度高、分析范围广、精密度好。
局限性:多元素同时测定有困难、对复杂样品分析干扰较严重。
(二)原子发射光谱法(AES)原子发射光谱法是依据原子或离子在一定条件下受激而发射出特征光谱来进行元素定性和定量分析的方法。
原理是:当原子或离子受到热能或电能激发时,核外电子会从基态跃迁到激发态,处于激发态的电子不稳定,会迅速返回基态,并以光的形式释放出能量,产生发射光谱。
其仪器包括激发光源、分光系统和检测系统。
优点:可同时测定多种元素、分析速度快、选择性好。
缺点:精密度较差、检测限较高。
(三)紫外可见分光光度法(UVVis)该方法是基于分子的紫外可见吸收光谱进行分析的。
原理是:分子中的价电子在不同能级之间跃迁,吸收特定波长的光,从而产生吸收光谱。
仪器主要由光源、单色器、吸收池、检测器和信号显示系统组成。
应用广泛,可用于定量分析、定性分析以及化合物结构研究。
(四)红外吸收光谱法(IR)红外吸收光谱法是利用物质对红外光区电磁辐射的选择性吸收来进行结构分析和定量分析的一种方法。
原理是:分子的振动和转动能级跃迁产生红外吸收。
仪器包括红外光源、样品室、单色器、检测器和记录仪。
常用于有机化合物的结构鉴定。
二、电化学分析法(一)电位分析法通过测量电极电位来确定物质浓度的方法。
包括直接电位法和电位滴定法。
仪器分析第知识点总结
仪器分析第知识点总结1. 仪器分析的原理仪器分析是利用各种科学仪器对物质进行测试分析,从而确定物质的成分和性质。
仪器分析的原理是基于物质的特定性质和相应的测试方法。
常见的仪器分析原理包括光谱分析、色谱分析、质谱分析、电化学分析等。
2. 仪器分析的分类仪器分析可以按照分析方法、使用仪器、测定目的等多种方式进行分类。
根据不同的分类方式,仪器分析可以分为以下几类:(1)按分析方法分类:包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。
(2)按使用仪器分类:包括光谱仪、色谱仪、质谱仪、电化学仪器等。
(3)按测定目的分类:包括定性分析和定量分析。
3. 仪器分析的常用技术(1)光谱分析:是利用物质吸收、发射、散射等光谱特性进行定性和定量分析的方法,包括紫外-可见吸收光谱、红外光谱等。
(2)色谱分析:是一种以物质在固定相和流动相中分配系数不同而分离出组分的方法,包括气相色谱、液相色谱等。
(3)质谱分析:是利用物质在质谱仪中被离子化并在电场作用下产生碎片进行分析的方法,包括质子、电子和质子化电子撞击等。
(4)电化学分析:是利用电化学方法进行分析的技术,包括电导率法、电动势法、极谱法等。
4. 仪器分析的应用仪器分析技术已广泛应用于化学、生物、环境、药物等领域,为各行各业的科研和生产提供了重要支持。
例如,在环境保护领域,仪器分析可用于检测大气、水体和土壤中的污染物;在药物研发领域,仪器分析可用于药物的成分分析和质量控制。
综上所述,仪器分析作为一种重要的化学分析手段,具有广泛的应用前景。
通过对仪器分析的原理、分类、常用技术和应用进行系统总结,有助于加深对仪器分析技术的理解,对于提高仪器分析的能力和水平具有积极的意义。
仪器分析知识点复习汇总
仪器分析知识点复习汇总仪器分析是化学分析中的一个重要分支,主要研究利用各种仪器设备进行样品分析和检测的方法和技术。
下面是仪器分析的一些知识点复习汇总:1.基本概念:仪器分析是利用仪器设备对样品进行分析和检测的方法。
仪器分析可以分为定性分析和定量分析两个方面。
2.仪器分类:仪器主要分为电化学仪器、光谱仪器、质谱仪器、色谱仪器、微量元素分析仪器等几个大类。
3.电化学仪器:电化学仪器包括电解池、电渗析仪、电导仪、计时电位计等,主要用于电化学分析和电化学过程研究。
4.光谱仪器:光谱仪器包括分光光度计、紫外可见分光光度计、荧光光谱仪、红外光谱仪等,主要用于分析和检测样品的光谱特性。
5.质谱仪器:质谱仪器包括质谱仪和气相色谱-质谱联用仪,可用于分析样品中的有机化合物的结构和组成。
6.色谱仪器:色谱仪器包括气相色谱仪、液相色谱仪、离子色谱仪等,主要用于分离和定性分析样品中的化合物。
7.微量元素分析仪器:微量元素分析仪器包括火焰原子吸收光谱仪、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪等,主要用于测定样品中的微量元素含量。
8.仪器分析的步骤:仪器分析通常包括样品的制备、测量条件的选择与优化、光谱或电位的测量、数据处理与结果分析等几个步骤。
9.仪器分析中的常见问题:仪器分析中常见的问题包括仪器的灵敏度、选择性、准确度和重现性等。
灵敏度指的是仪器检测样品中目标物质的能力,选择性指的是仪器只检测样品中的目标物质而不受其他物质的干扰,准确度指的是仪器检测结果与真实值之间的偏差,重现性指的是多次测量同一样品的结果之间的一致性。
10.仪器分析的应用:仪器分析广泛应用于环境监测、食品质量安全检测、医药检验等领域。
在环境监测中,仪器分析可以检测大气中的污染物、水中的有机污染物和无机污染物等。
在食品质量安全检测中,仪器分析可以检测食品中的农药残留、重金属含量等。
在医药检验中,仪器分析可以分析药物的纯度、含量等。
以上是仪器分析的一些基本知识点复习汇总。
仪器分析期末概念总结
仪器分析期末概念总结一、仪器分析的基本概念和原理仪器分析是指利用各种仪器设备进行物质或样品的定性、定量、结构、含量、纯度等方面的分析的一种方法。
仪器分析是现代分析化学的重要组成部分,具有灵敏、准确、可靠等特点。
仪器分析的原理主要涉及到仪器的结构、检测信号的产生、传感器的作用,以及物理化学过程的基础原理等。
在仪器分析中,有许多基本概念需要了解。
首先是仪器的精密度和准确度。
精密度是指在相同条件下,测量结果的一致性和重复性;准确度是指测量结果与真实值之间的接近程度。
仪器的精密度越高,能够提供更加一致和可靠的结果;而准确度则取决于仪器的校准和标定过程。
其次是仪器的探测极限。
探测极限是指仪器对于某一分析物质最低浓度的检测能力。
常用的探测极限包括检测极限和浓度极限,检测极限是指能够被仪器可靠检测到的最低浓度;浓度极限则是指仪器能够给出准确结果的最低浓度。
最后是仪器的线性范围和选择性。
线性范围是指在该范围内,仪器输出信号与输入浓度呈线性关系;而选择性是指仪器对于被测物质的专属性,即在样品中,仪器只检测感兴趣的物质,不受其他物质的干扰。
仪器的线性范围和选择性直接影响到结果的准确性和可靠性。
二、常用仪器的分类及应用常用的仪器可以根据测量原理和用途分为不同的类别。
首先是传统的光谱仪器,如紫外可见分光光度计、红外光谱仪、核磁共振仪等。
这些仪器能够通过测量样品的光吸收、发射或核磁共振信号来确定样品的组成和结构。
光谱仪器广泛应用于化学、生物、医学、环境等领域,如荧光光谱分析有机物、红外光谱分析有机小分子、核磁共振分析有机化合物结构等。
另一类仪器是质谱仪器,如气相色谱质谱联用仪、液相色谱质谱联用仪等。
质谱仪器通过测量样品中质子、电子、离子的能谱分布来确定样品的组成和结构。
质谱仪常用于分析有机物质、环境监测、药物检测等领域。
此外,电化学仪器也是常用的一类仪器,如电导仪、电位计、电解槽等。
电化学仪器可以通过测量电流、电压、电导等参数来确定样品的成分、浓度和电化学性质等。
仪器分析必考知识点总结
仪器分析必考知识点总结一、仪器分析的基本原理1. 分析化学的基本概念分析化学是研究样品中微量和痕量成分的定性和定量分析方法的一门科学,它是化学的一个重要分支。
在分析化学中,需要使用各种仪器和方法对样品进行分析,以确定其中各种成分的含量和性质。
2. 仪器分析的基本原理仪器分析是指利用各种仪器设备进行样品分析的过程。
它主要包括对样品进行前处理、采集数据、数据处理和结果判定等步骤。
仪器分析的基本原理是根据样品的性质选择适当的仪器和方法,进行定性和定量分析。
3. 仪器分析的应用范围仪器分析主要应用于化学、生物、环境等领域,用于对材料成分、结构、性质等进行分析。
它在科学研究、工程技术和产品质量控制等方面具有广泛的应用。
二、仪器分析的常用方法和技术1. 光谱分析技术光谱分析技术是一种利用物质与电磁辐射的相互作用来分析物质的技术。
主要包括紫外可见吸收光谱、红外光谱、拉曼光谱、荧光光谱等。
2. 色谱分析技术色谱分析技术是一种利用物质在固定相和流动相中的相互作用来分离和分析物质的技术。
主要包括气相色谱、液相色谱、超高效液相色谱等。
3. 质谱分析技术质谱分析技术是一种利用物质的质荷比对物质进行分析的技术。
主要包括质谱仪、飞行时间质谱仪、离子阱质谱仪等。
4. 电化学分析技术电化学分析技术是一种利用物质与电化学电极的相互作用来分析物质的技术。
主要包括电化学电位法、极谱法、循环伏安法等。
5. 热分析技术热分析技术是一种利用物质的热学性质来分析物质的技术。
主要包括热重分析、差示扫描量热分析、热膨胀分析等。
6. 激光分析技术激光分析技术是一种利用激光与物质相互作用来分析物质的技术。
主要包括激光诱导击穿光谱、激光诱导荧光光谱等。
三、仪器分析的操作流程和注意事项1. 样品的准备样品的准备是仪器分析的第一步,它包括样品采集、处理和预处理等。
在进行样品准备时,需要注意避免样品的污染和损坏,保证样品的代表性和可比性。
2. 仪器的选择根据样品的性质和分析的要求,选择适当的仪器和分析方法进行分析。
仪器分析专科知识点总结
仪器分析专科知识点总结一、基础仪器分析知识点:1. 仪器分析的概念:仪器分析是利用各种仪器设备来对化学样品进行分析的一种方法,它包括定性分析、定量分析和结构分析等内容。
2. 仪器分析的原理:仪器分析主要依靠物理、化学、光学、电磁等原理进行样品的测定和分析。
3. 仪器分析的分类:仪器分析根据原理和功能的不同可分为光谱仪器、色谱仪器、质谱仪器、电化学仪器、分子光谱仪器等。
4. 仪器分析的应用:仪器分析在化学研究、环境监测、生命科学、材料科学等领域都有广泛的应用,在药物研发、食品安全、环境保护等方面有着重要的作用。
二、光谱仪器分析知识点:1. 紫外-可见光分光光度计:紫外-可见光分光光度计是通过测定样品对紫外、可见光的吸收和透射来确定样品的组成和浓度的一种仪器。
2. 红外光谱仪:红外光谱仪是利用样品对红外光的吸收和散射来确定样品的结构和组成的一种仪器。
3. 核磁共振仪:核磁共振仪是通过测定样品在外加磁场下的核磁共振频率来确定样品的结构和组成的一种仪器。
4. 质谱仪:质谱仪是通过测定样品中离子的质量-电荷比来确定样品的组成和结构的一种仪器。
5. 光谱仪器的应用:光谱仪器在化学分析、药物研发、材料科学等领域都有着广泛的应用,在确定样品组分、结构、浓度、纯度等方面都有重要的作用。
三、色谱仪器分析知识点:1. 气相色谱仪:气相色谱仪是通过样品在气相载气流动相中的分离来确定样品的组分和浓度的一种仪器。
2. 液相色谱仪:液相色谱仪是通过样品在液相载液流动相中的分离来确定样品的组分和浓度的一种仪器。
3. 色谱质谱联用仪:色谱质谱联用仪是通过将色谱和质谱仪器联合使用来确定样品的组分和结构的一种仪器。
4. 色谱仪器的应用:色谱仪器在食品安全、环境监测、药物研发等领域都有着广泛的应用,在分离和分析样品中的组分、杂质、残留物等方面有重要的作用。
四、电化学仪器分析知识点:1. pH计:pH计是通过测定样品的pH值来确定样品的酸碱性质的一种仪器。
大学仪器分析知识点总结
大学仪器分析知识点总结在大学仪器分析课程中,学生将学习各种仪器和设备的原理、操作和应用,并且理解分析化学的基本原理和技术。
仪器分析是一门综合性的学科,涉及到化学、物理、电子技术、光学等多个学科。
本文将针对大学仪器分析课程中的知识点进行总结,包括仪器的分类、原理和应用,以及仪器分析中的常见技术和方法。
一、仪器分类及原理1. 光谱仪器光谱仪器是利用物质对光的吸收、发射或散射的性质来进行分析的仪器。
根据波长范围的不同,光谱仪器可以分为紫外-可见光谱仪、红外光谱仪、拉曼光谱仪、核磁共振光谱仪等。
紫外-可见光谱仪是利用物质对紫外、可见光的吸收来进行分析的仪器,适合于研究有机化合物的结构和测定溶液中各种化学物质的浓度。
红外光谱仪是利用物质对红外光的吸收来进行分析的仪器,适合于有机化合物的结构鉴定和无机物质的成分分析。
2. 质谱仪器质谱仪器是利用物质离子质量和相对丰度的比率来进行分析的仪器。
质谱仪器可以分为质子磁共振质谱仪、飞行时间质谱仪、四极杆质谱仪等。
质子磁共振质谱仪是利用物质在磁场中的核自旋共振现象来进行分析的仪器,适合于有机物质的结构鉴定和无机物质的成分分析。
飞行时间质谱仪是利用物质在电场中的离子飞行时间来进行分析的仪器,适合于分子的分子量测定和化合物的结构鉴定。
四极杆质谱仪是利用物质在四极杆中的离子稳定能力和穿透能力来进行分析的仪器,适合于化合物的结构鉴定和成分分析。
3. 色谱仪器色谱仪器是利用物质在固定相和流动相中的分配系数来进行分析的仪器。
色谱仪器可以分为气相色谱仪、液相色谱仪、超临界流体色谱仪等。
气相色谱仪是利用气体载气的气相分析技术,适合于石化产品、环境监测、化学品生产的在线检测等。
液相色谱仪是利用液体流动相的液相分析技术,适合于重金属、农药、植物激素等有机物的定量分析。
超临界流体色谱仪是利用超临界流体的分离原理进行色谱分析,适合于药物、酶、蛋白质、生物样品等的高效分析。
4. 电化学仪器电化学仪器是利用物质在电场中的氧化还原反应进行分析的仪器。
仪器分析章节知识点总结
仪器分析章节知识点总结一、仪器分析的基本原理仪器分析是利用物理化学性质以及仪器设备进行样品的检测和分析。
它的基本原理包括样品的前处理、仪器的分析原理和数据处理等。
1. 样品的前处理样品的前处理是仪器分析的第一步,它包括样品的采集、预处理、前处理和标定等。
样品的采集包括样品的收集、保存、取样和保存等。
样品的预处理主要是对样品进行处理,使其适合于仪器分析。
前处理主要是对样品进行分离、富集和纯化等。
样品的标定主要是对仪器进行标定,使其保持准确的分析结果。
2. 仪器的分析原理仪器的分析原理是仪器分析的核心内容,它主要包括原子吸收光谱、荧光光谱、质谱、色谱、电化学分析等各种仪器的分析原理。
这些原理主要是根据样品的化学性质、光学性质、电化学性质等来进行分析,从而获得样品的基本信息。
3. 数据处理数据处理是仪器分析的最后一步,它主要包括数据采集、数据处理和数据解释等。
数据采集主要是对样品的分析数据进行采集,数据处理主要是对数据进行处理,数据解释主要是对数据的结论进行解释。
二、常用仪器设备的原理和应用仪器分析包括各种仪器设备的应用,主要包括原子吸收光谱仪、质谱仪、色谱仪、荧光光谱仪、拉曼光谱仪、红外光谱仪等。
1. 原子吸收光谱仪原子吸收光谱仪是一种用于检测金属元素含量的仪器设备,它主要是通过吸收光谱的方式来检测样品中的金属元素含量。
原子吸收光谱仪主要包括火焰原子吸收光谱仪、电感耦合等离子体发射光谱仪、原子荧光光谱仪等。
2. 质谱仪质谱仪是一种用于检测样品中有机物质含量的仪器设备,它主要是通过样品的质谱图谱来进行分析。
质谱仪主要包括质子共振质谱仪、气相质谱仪、液相质谱仪等。
3. 色谱仪色谱仪是一种用于检测样品中化合物含量的仪器设备,它主要是通过样品的色谱图谱来进行分析。
色谱仪主要包括气相色谱仪、液相色谱仪等。
4. 荧光光谱仪荧光光谱仪是一种用于检测样品中发光物质含量的仪器设备,它主要是通过样品的荧光光谱图谱来进行分析。
仪器分析课程知识点总结
仪器分析课程知识点总结一、仪器分析的基本原理1. 仪器分析的概念和分类仪器分析是指利用各种仪器设备对化学物质进行分析的方法。
其主要分类包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。
2. 仪器分析的基本原理仪器分析的基本原理包括光谱原理、色谱原理、电化学原理、质谱原理、热分析原理等。
其中,光谱原理是利用物质与光的相互作用来进行分析,色谱原理是利用色谱柱对化合物进行分离和检测,电化学原理是利用电化学方法进行分析,质谱原理是利用质谱仪对化合物进行分析,热分析原理是利用热量变化对样品进行分析。
3. 仪器分析的基本步骤仪器分析的基本步骤包括样品的前处理、仪器的选择和使用、数据的处理和结果的解释。
其中,样品的前处理包括样品的制备、提取和预处理,仪器的选择和使用包括仪器的操作和参数的设置,数据的处理包括数据的采集和处理,结果的解释包括对分析结果的解释和判断。
二、光谱分析1. 紫外-可见光谱分析紫外-可见光谱分析是利用化合物对紫外和可见光的吸收特性进行分析的方法。
其原理是根据分子的电子跃迁能级差异来对化合物进行定性和定量分析。
2. 荧光光谱分析荧光光谱分析是利用化合物发射荧光信号的特性进行分析的方法。
其原理是激发分子到高能级态后发射特定波长的光信号,利用这一特性对化合物进行分析。
3. 红外光谱分析红外光谱分析是利用化合物对红外光的吸收特性进行分析的方法。
其原理是根据分子的振动和转动引起的电偶极矩变化来对化合物进行定性和定量分析。
4. 核磁共振光谱分析核磁共振光谱分析是利用化合物对核磁共振信号的特性进行分析的方法。
其原理是根据核磁共振现象来对化合物进行定性和定量分析。
5. 质谱分析质谱分析是利用化合物对质谱仪的质荷比进行分析的方法。
其原理是根据化合物在质谱仪中的质荷比特性来对化合物进行定性和定量分析。
6. X射线光谱分析X射线光谱分析是利用化合物对X射线的衍射特性进行分析的方法。
其原理是根据化合物对X射线的衍射角度和强度来对化合物进行定性和定量分析。
仪器分析知识点
仪器分析知识点1. 引言仪器分析是化学、生物学、物理学等科学领域中的一种重要分析方法,它依赖于各种精密仪器来测定样品的化学成分、结构、物理性质等。
本文将概述仪器分析的基本概念、常用技术和应用领域。
2. 基本概念2.1 分析仪器的定义分析仪器是指能够对物质进行定性和定量分析的设备,它们通过测量样品与某种物理量或化学反应的变化来获取信息。
2.2 分析方法的分类分析方法主要分为两类:一是定性分析,用于确定样品中存在哪些成分;二是定量分析,用于测定各组分的含量。
3. 常用技术3.1 光谱分析3.1.1 紫外-可见光谱法 (UV-Vis)紫外-可见光谱法是通过测量样品对紫外光和可见光的吸收来进行分析的方法。
3.1.2 红外光谱法 (IR)红外光谱法是通过测量分子振动模式对红外光的吸收来进行结构分析的方法。
3.1.3 核磁共振光谱法 (NMR)核磁共振光谱法是通过测量核磁共振信号来获取分子结构信息的方法。
3.2 色谱分析3.2.1 气相色谱法 (GC)气相色谱法是一种利用气体作为流动相的色谱分析技术,适用于挥发性和半挥发性物质的分离和分析。
3.2.2 高效液相色谱法 (HPLC)高效液相色谱法是一种使用液体作为流动相的色谱技术,适用于非挥发性或热不稳定物质的分析。
3.3 质谱分析质谱分析是通过测量样品分子或分子碎片的质荷比来进行鉴定和定量的方法。
4. 应用领域4.1 环境分析仪器分析在环境监测中用于检测空气、水和土壤中的污染物。
4.2 药物分析在制药工业中,仪器分析用于药物成分的鉴定、纯度检测和质量控制。
4.3 食品安全仪器分析技术用于检测食品中的添加剂、农药残留和微生物污染等。
5. 结论仪器分析是现代科学研究和工业生产中不可或缺的工具。
随着技术的不断进步,仪器分析的应用范围将不断扩大,对提高分析效率和准确性起到关键作用。
6. 参考文献[1] Skoog, D. A., West, D. M., & Holler, F. J. (2015). Fundamentals of Analytical Chemistry. Brooks Cole.[2] Miller, J. N., & Miller, J. C. (2018). Statistics and Chemometrics for Analytical Chemistry. Pearson Education Limited.请注意,本文为概述性文章,旨在提供仪器分析的基本知识和概念。
仪器分析重要知识点总结
仪器分析重要知识点总结一、基本原理1. 仪器分析的基本原理是什么?仪器分析的基本原理是通过分析仪器对样品进行一系列物理化学性质的测定,然后通过数据处理和分析得出样品的成分或性质。
根据所测定的物理化学性质不同,仪器分析可以分为光谱分析、色谱分析、电化学分析、质谱分析、热分析等。
2. 仪器分析的特点是什么?仪器分析具有高灵敏度、高精度、高选择性、高分辨率等特点。
而且,仪器分析方法还可以实现自动化、高通量和在线分析,大大提高了分析的效率和准确性。
3. 仪器分析的应用领域有哪些?仪器分析的应用领域非常广泛,主要包括环境监测、食品安全检测、药物质量分析、生物医学研究、地质勘探、材料分析等。
4. 仪器分析的分类有哪些?仪器分析根据测定的物理化学性质不同,可以分为光谱分析、色谱分析、电化学分析、质谱分析、热分析等。
二、常见的分析仪器1. 分光光度计分光光度计是一种常用的光谱分析仪器,它可以测定物质在不同波长光照射下的吸光度或透射率,进而测定样品中所含的物质的浓度。
分光光度计的应用非常广泛,包括药物分析、环境监测、食品安全检测等领域。
2. 气相色谱仪气相色谱仪是一种色谱分析仪器,它通过气相色谱柱对气体混合物进行分离和检测,并且可以对分离后的物质进行定性和定量分析。
气相色谱仪在食品安全检测、环境监测、医药行业等领域得到广泛应用。
3. 液相色谱仪液相色谱仪是一种色谱分析仪器,它通过液相色谱柱对溶液混合物进行分离和检测,并且可以对分离后的物质进行定性和定量分析。
液相色谱仪在食品安全检测、环境监测、药物分析等方面有着重要的应用价值。
4. 质谱仪质谱仪是一种质谱分析仪器,它通过将分子在电离后的质荷比进行分析,可以对样品中的化合物进行定性和定量分析。
质谱仪在生物医学研究、环境监测、化学合成等方面有着广泛的应用。
5. 电化学分析仪电化学分析仪是一种电化学分析仪器,它通过测定电流、电压等电化学参数来分析样品的化学性质。
电化学分析仪在化学合成、药物质量分析、环境监测等方面得到广泛应用。
仪器分析知识点总结各章
仪器分析知识点总结各章第一章仪器分析的基本概念和原理1.1 仪器分析的定义仪器分析是利用仪器设备对样品进行检测、分析和测量,以获取样品中特定组分的含量、性质和结构等信息的一种分析方法。
1.2 仪器分析的分类仪器分析按照分析方法的不同可以分为物理分析、化学分析和生物分析三大类,其中每类又分为多个不同的分支。
1.3 仪器分析的基本原理仪器分析的基本原理是根据目标分析物的性质和特点,选用合适的分析仪器进行检测和分析。
常用的仪器分析原理包括光谱分析原理、色谱分析原理、质谱分析原理等。
第二章光谱分析2.1 光谱分析的基本概念光谱分析是利用样品对电磁波的吸收、散射、发射或者透射特性进行分析的方法,分析样品中的成分、结构和性质。
2.2 原子吸收光谱分析原子吸收光谱分析(AAS)是利用原子对特定波长的光的吸收特性来测定样品中金属元素的含量的分析方法。
原子吸收光谱分析的原理是利用吸收特性和比例计算出样品中目标元素的含量。
2.3 紫外可见光谱分析紫外可见光谱分析(UV-Vis)是利用样品对紫外和可见光的吸收特性进行分析的方法,常用于测定有机物和某些无机物的含量和结构。
2.4 荧光光谱分析荧光光谱分析是利用样品对激发光的发射特性进行分析的方法,荧光光谱常用于生物分析、环境分析和材料科学等领域。
第三章色谱分析3.1 色谱分析的基本概念色谱分析是利用色谱仪器对样品中的组分进行分离、检测和定量测定的方法,主要包括气相色谱分析、液相色谱分析和超临界流体色谱分析等。
3.2 气相色谱分析气相色谱分析(GC)是将样品分离为各个成分,再通过气相色谱柱进行分离和检测的方法,主要用于分析有机物、气体和挥发性物质。
3.3 液相色谱分析液相色谱分析(HPLC)是将样品分离为各个成分,再通过液相色谱柱进行分离和检测的方法,主要用于分析生物化学物、药物和小分子有机化合物等。
3.4 色谱联用技术色谱联用技术是将不同色谱方法和检测手段结合起来,以达到更高的分离能力和检测灵敏度,常见的色谱联用技术包括气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仪器分析(1)仪器分析和化学分析;(2)标准曲线与线性范围;(3)灵敏度、精密度、准确度和检出限。
答:(1)仪器分析和化学分析:以物质的物理性质和物理化学性质(光、电、热、磁等)为基础的分析方法,这类方法一般需要特殊的仪器,又称为仪器分析法;化学分析是以物质化学反应为基础的分析方法。
(2)标准曲线与线性范围:标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线;标准曲线的直线部分所对应的被测物质浓度(或含量)的范围称为该方法的线性范围。
(3)灵敏度、精密度、准确度和检出限:物质单位浓度或单位质量的变化引起响应信号值变化的程度,称为方法的灵敏度;精密度是指使用同一方法,对同一试样进行多次测定所得测定结果的一致程度;试样含量的测定值与试样含量的真实值(或标准值)相符合的程度称为准确度;某一方法在给定的置信水平上可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。
(1)原子光谱和分子光谱;(2)原子发射光谱和原子吸收光谱;(3)统计权重和简并度;(4)分子振动光谱和分子转动光谱;(5)禁戒跃迁和亚稳态;(6)光谱项和光谱支项;(7)分子荧光、磷光和化学发光;(8)拉曼光谱。
答:(1)由原子的外层电子能级跃迁产生的光谱称为原子光谱;由分子的各能级跃迁产生的光谱称为分子光谱。
(3)由能级简并引起的概率权重称为统计权重;在磁场作用下,同一光谱支项会分裂成2J +1个不同的支能级,2J+1称为能级的简并度。
(4)由分子在振动能级间跃迁产生的光谱称为分子振动光谱;由分子在不同的转动能级间跃迁产生的光谱称为分子转动光谱。
(5)不符合光谱选择定则的跃迁叫禁戒跃迁;(6)用n、L、S、J四个量子数来表示的能量状态称为光谱项,符号为n 2S + 1 L;把J值不同的光谱项称为光谱支项,表示为n 2 S + 1 LJ。
(7)荧光和磷光都是光致发光,是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,再由激发态回到基态而产生的二次辐射。
荧光是由单重激发态向基态跃迁产生的光辐射,而磷光是单重激发态先过渡到三重激发态,再由三重激发态向基态跃迁而产生的光辐射。
化学发光是化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。
1.写出镁原子基态和第一电子激发态的光谱项。
解:光谱项分别为:基态31S;第一电子激发态31P和33P。
3、作为苯环的取代基,-NH3+不具有助色作用,-NH2却具有助色作用;-DH的助色作用明显小于-O-。
试说明原因。
答:助色团中至少要有一对非键电子n,这样才能与苯环上的л电子相互作用产生助色作用,由于-NH2中还有一对非键n电子,因此有助色作用,而形成-NH3+基团时,非键n电子消失了,则助色作用也就随之消失了。
由于氧负离子O-中的非键n电子比羟基中的氧原子多了一对,因此其助色作用更为显著。
7、化合物的分子式为C3H6O2,红外光谱如4-11所示。
解析改化合物的结构。
答:①由于化合物的分子式C3H6O2符合通式CnH2nO2,根据我们所学知识可初步判断此化合物为酸或者酯。
②由于谱带在1730cm-1处有一强吸收峰,此处落于C=O的1850~1600cm-1的振动区间,因此可判断改化合物含有C=O官能团。
1730cm-1处的吸收峰表明此物质为饱和酯峰。
③图表在1300~1000cm-1范围内也有一系列特征吸收峰,特别在1200cm-1处有一强吸收峰,符合C-O的振动范围,因此可判断改化合物含有C-O键。
④图谱中在2820,2720cm-1处含有吸收峰,符合-CH3,-CH2对称伸缩范围,因此可判断化合物中含有-CH3基团和-CH2基团。
综上所述,此化合物的结构式应为:COH O H 2 C CH31.解释下列名词:(1)振动弛豫;(2)内转化;(3)体系间窜跃;(4)荧光激发光谱;(5)荧光发射光谱;(6)重原子效应;(7)。
答:(1)振动弛豫是在同一电子能级中,分子由较高振动能级向该电子态的最低振动能级的非辐射跃迁。
(2)内转化是相同多重态的两个电子态之间的非辐射跃迁。
(3)体系间窜跃是指不同多重态的两个电子态间的非辐射跃迁。
(4)以不同波长的入射光激发荧光物质,并在荧光最强的波长处测量荧光强度,以激发波长为横坐标,荧光强度为纵坐标绘制关系曲线得到的光谱即为荧光激发光谱。
(5)固定激发光的波长和强度不变,测量不同波长下的荧光强度,绘制荧光强度随波长变化的关系曲线即得到荧光发射光谱。
(6)使用含有重原子的溶剂(如碘乙烷、溴乙烷)或在磷光物质中引入重原子取代基,都可以提高磷光物质的磷光强度,这种效应称为重原子效应。
(7)猝灭效应是指荧光物质分子与溶剂分子或溶质分子之间所发生的导致荧光强度下降的物理或化1.简述影响荧光效率的主要因素。
答:(1)分子结构的影响:发荧光的物质中都含有共轭双键的强吸收基团,共轭体系越大,荧光效率越高;分子的刚性平面结构利于荧光的产生;取代基对荧光物质的荧光特征和强度有很大影响,给电子取代基可使荧光增强,吸电子取代基使荧光减弱;重原子效应使荧光减弱。
(2)环境因素的影响:溶剂的极性对荧光物质的荧光强度产生影响,溶剂的极性越强,荧光强度越大;温度对溶液荧光强度影响明显,对于大多数荧光物质,升高温度会使非辐射跃迁引起的荧光的效率降低;溶液pH值对含有酸性或碱性取代基团的芳香族化合物的荧光性质有影响;表面活性剂的存在会使荧光效率增强;顺磁性物质如溶液中溶解氧的存在会使荧光效率降低。
2.如何区别荧光和磷光?其依据是什么?答:为了区别磷光和荧光,常采用一种叫磷光镜的机械切光装置,利用荧光和磷光寿命的差异消除荧光干扰或将磷光和荧光分辨开。
1.何谓共振线、灵敏线、最后线和分析线?它们之间有什么联系?答:以基态为跃迁低能级的光谱线称为共振线;灵敏线是指元素特征光谱中强度较大的谱线,通常是具有较低激发电位和较大跃迁概率的共振线;最后线是指试样中被测元素含量或浓度逐渐减小时而最后消失的谱线,最后线往往就是最灵敏线;分析线是分析过程中所使用的谱线,是元素的灵敏线。
2.解释下列名词:(1)原子线和离子线;(2)等离子体及ICP炬;(5)反射光栅和光栅常数;。
答:(1)原子线是原子被激发所发射的谱线;离子线是离子被激发所发射的谱线。
(2)近代物理学中,把电离度(a)大于0.1 %、其正负电荷相等的电离气体称为等离子体;ICP炬是指高频电能通过电感(感应线圈)耦合到等离子体所得到的外观上类似火焰的高频放电光源。
(5)在光学玻璃或金属高抛光表面上,准确地刻制出许多等宽、等距、平行的具有反射面的刻痕,称为反射光栅;光栅常数是相邻两刻痕间的距离,即为光栅刻痕密度b(mm(1)原子吸收线和原子发射线;(5)谱线的热变宽和压力变宽;(7)光谱通带;(9)特征浓度和特征质量;(10)共振原子荧光和非共振原子荧光。
答:(1)原子吸收线是基态原子吸收一定辐射能后被激发跃迁到不同的较高能态产生的光谱线;原子发射线是基态原子吸收一定的能量(光能、电能或辐射能)后被激发跃迁到较高的能态,然后从较高的能态跃迁回到基态时产生的光谱线。
(5)谱线的热变宽是由原子在空间作相对热运动引起的谱线变宽;压力变宽是由同种辐射原子间或辐射原子与其它粒子间相互碰撞产生的谱线变宽,与气体的压力有关,又称为压力变宽。
(7)光谱通带是指单色器出射光束波长区间的宽度(9)把能产生1%吸收或产生0.0044吸光度时所对应的被测定元素的质量浓度定义为元素的特征浓度;把能产生1%吸收或产生0.0044吸光度时所对应的被测定元素的质量定义为元素的特征质量。
(10)共振原子荧光是指气态基态原子吸收的辐射和发射的荧光波长相同时产生的荧光;原子吸收的辐射和发射的荧光波长不相同时产生的荧光称为非共振1.答:液接电位产生于具有不同电解质或浓度不同的同种电解质溶液界面之间,由于离子扩散通过界面的速率不同,有微小的电位差产生,这种电位差称为液接电位。
2.答:指示电极:在电化学测试过程中,溶液主体浓度不发生变化的电极参比电极:在测量过程中,具有恒定电位的电极2.答:由于k 无法测量,在实际测定中,溶液的phx 是通过与标准缓冲溶液的phs 相比较而确定的。
用电位法测定溶液的ph时,先用标准缓冲溶液定位,然后直接在ph 计上读出试液的phs 。
注意的事所选择的标准缓冲溶液的phx 尽量与未知液的接近,这样可以减小测量误差。
原子荧光3.试述热导池检测器及氢火焰电离检测器的工作原理。
答:热导池检测器是基于被分离组分与载气的导热系数不同进行检测的,当通过热导池池体的气体组成及浓度发生变化时,引起热敏元件温度的改变,由此产生的电阻值变化通过惠斯登电桥检测,其检测信号大小和组分浓度成正比。
氢火焰电离检测器是根据含碳有机物在氢火焰中发生电离的电理而进行检测的。
5.试述速率理论方程式中A、B/μ、Cμ三项的物理意义。
答:A:涡流扩散项,在填充色谱中,当组分随载气向柱出口迁移时,碰到填充物颗粒阻碍会不断改变流动方向,使组分在气相中形成紊乱的类似“涡流”的流动,因而引起色谱峰的变宽。
B/μ:分子扩散项,是由于色谱柱内沿轴向存在浓度剃度,使组分分子随载气迁移时自发地产生由高浓度向低浓度的扩散,从而使色谱峰变宽。
Cμ:传质阻力项。
1.简述ICP光源的工作原理及其分析性能。
答:其工作原理是:用高频火花引燃时,部分Ar工作气体被电离,产生的电子和氩离子在高频电磁场中被加速,它们与中性原子碰撞,使更多的工作气体电离,形成等离子体气体。
导电的等离子体气体在磁场作用下感生出的强大的感生电流产生大量的热能又将等离子体加热,使其温度达到1´104 K,形成ICP放电。
当雾化器产生的气溶胶被载气导入ICP炬中时,试样被蒸发、解离、电离和激发,产生原子发射光谱。
其分析性能是:激发温度高,一般在5000~8000 K,利于难激发元素的激发,对各元素有很高的灵敏度和很低的检出限,ICP炬放电稳定性很好,分析的精密度高,ICP光源的自吸效应小,可用于痕量组分元素的测定,但仪器价格贵,等离子工作气体的费用较高,对非金属元素的测定灵敏度较低。