九年级数学中考复习题(数与式)
新课标九年级数学中考复习强效提升分数精华版 数与式
《数与式》专题检测 姓名一、细心选一选:(每题4分,计40分)1.5-的相反数是( ) A .5B .5-C .15D .15-2.国家游泳中心——“水立方”是2008年北京奥运会标志性建筑物之一,其工程占地面积为62828平方米,将62828用科学记数法表示是(保留三个有效数字) ( )A .362.810⨯B .46.2810⨯C .46.282810⨯D .50.6282810⨯3.任意给定一个非零数,按下列程序计算,最后输出的结果是( )A.m B.m2C.m +1 D.m -14.下列各式计算正确的是( )A .53232a a a =+B . ()()xy xy xy 332=÷C .()53282b b = D . 65632x x x =∙5.把23x x c ++分解因式得23(1)(2)x x c x x ++=++,则c 的值为( ) A .2B .3C .2-D .3-6.若使分式2xx -有意义,则x 的取值范围是( ) A .2x ≠B .2x ≠-C .2x >-D .2x <7.为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x 棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )A .3002030060 1.2x x -=B .300300201.2x x-= C .300300201.260x x x -=+ D .300300201.260x x =-8.若b a y b a x +=-=,,则xy 的值为 ( )A .a 2B .b 2C .b a +D .b a - 9.若2(a 与1b -互为相反数,则1b a-的值为( ) AB1C1D.110)A .点PB .点QC .点MD .点N二、认真填一填:(每题4分,计32分)11.北京时间2008年5月12日14时28分,四川省汶川县发生了8.0级地震.一时间,全国人民“众志成城、抗震救灾”,体现出了前所未有的民族大团结. 截至6月5 日12:00时,四川省财政厅共收到抗震救灾捐款约为43 800 000 000元,用科学记数法表示捐款数 为 元.12.计算:211)2-⎛⎫-= ⎪⎝⎭.13.函数1y x =-中,自变量x 的取值范围是 . 14.分解因式:3x 2-27= . 15.让我们轻松一下,做一个数字游戏: 第一步:取一个自然数n 1=5 ,计算n 12+1得a 1; 第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2; 第三步:算出a 2的各位数字之和得n 3,再计算n 23+1得a 3; …………依此类推,则a 2008=_______________.16.有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +1, a ⊕(b +1)= n -2,现在已知1⊕1 = 2,那么2008⊕2008 = .17.当m = 时,关于x 的分式方程213x mx +=--无解.18.如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a b c ,,;A B N E F ,,,,五点在同一直线上,则c = (用含有a b ,的代数式表示). 三、用心做一做:(计48分)19.计算:12)3()1()21(020081+-----π(6分)20.已知a(6分)21.(2010 福建泉州南安)已知12=+x y ,求代数式)4()1(22x y y --+的值.22.先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值.(8分)23.阅读材料,解答下列问题.例:当0a >时,如6a =则66a ==,故此时a 的绝对值是它本身.a DCB AMc N E FbG H当0a =时,0a =,故此时a 的绝对值是零.当0a <时,如6a =-则66(6)a =-==--,故此时a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即0000a a a a a a >⎧⎪==⎨⎪-<⎩当当当这种分析方法涌透了数学的分类讨论思想.问:(1(2a 的大小关系.(10分)24.有一道题:“先化简再求值:22x 12X 1)x 1x 1x 1-+÷+--(,其中x=,小明做题时把“x=,但他的计算结果也是正确,请你通过计算解释这是怎么回事?(10分)答 案一、细心选一选:1-5:ABCDA 6-10:AADCC 二、认真填一填: 11.104.3810⨯ 12.313.x ≤3且x ≠1 14.3(x +3)(x -3)15.本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.由题目得,a 1=26;n 2=8,a 2=65;n 3=11,a 3=122;看不出什么规律,那就继续:n 4=5,a 4=26;…;这样就发现规律:每三个为一个循环,2008÷3=669……1;即a 2008= a 1=26.答案为2616.-2005 17.-618三、用心做一做:19.原式=3232112=+-- 20.解:∵02≥-a ,∴2a ≤0,而2a ≥0,∴a =0, ∴原式=282-=-21.分析:要拼一个长为(a +2b)、宽为(a +b)的大长方形,就是看各需A 、B 、C 类各多少张,把(a +2b) 与(a +b)相乘得2223b ab a ++.答案:3张.22.解:224226926a a a a a --÷++++2(2)(2)2(3)2(3)2a a a a a +-+=++- 242633a a a a ++=-+++ 23a =+ 注意:你喜欢a 的值不可以取a=2或a=-3. 23.答案:(1)写出类似例的文字描述0000aa a a a >⎧⎪==⎨⎪-<⎩当当当(2a =本题考查了二次根式的性质及数学的分类思想,可以模仿例题 当0a >时,令a=9,则9=,当0a =时,令a=00=,当0a <时,如9a =-9=,很容易得出答案.24.解:22x 12x 1)x 1x 1x 1-+÷+--( =x 12x]x 1(x+1)(x 1)-++-[(x+1)(x 1)-× =2(x 1)2x -+ =21x +∵当x=2x 的值均为2008, ∴小明虽然把x 值抄错,但结果也是正确的.。
2023年九年级中考数学第一复习试卷:数与式 试卷(含解析)
2023年中考数学第一复习试卷:数与式一、选择题1. (2020秋•镇原县期末)下列说法中,正确的是( ) A.x 2﹣3x 的项是x 2,3x B.3ba +是单项式C.,πa,a 2+1都是整式D.3a 2bc ﹣2 是二次二项式2. (2021·贵州铜仁)2的相反数是( ) A.2B.-2C.12D.12-3. (2020秋•福田区校级)在代数式x 2+5,-a,x 2-3x+2,π,x5,x 21x 1++中,整式有( ) A.3个 B.4个 C.5个 D.6个 4. (2020秋•涪城区校级期末)若a+2b =3,则多项式2a+4b-1的值为( ) A.3 B.4 C.5 D.65. (2020秋•抚顺县期末)若x 2﹣3x ﹣2=0,则2x 2﹣6x+2020的值为( ) A.2021 B.2022 C.2023 D.20246. (2020秋•荔湾区校级月考)若关于x,y 的多项式kxy 2-kxy-3xy 2+xy+x+y-k 是二次多项式,则k 的值是( ) A.3 B.-3 C.1 D.-1 7. (2020秋•汝阳县期末)无论x 取任何实数,下列一定是二次根式的是( )A.2x --B.xC.2x 2+D.2x 2-8. (2020秋•绥中县期末)已知xy =3,x ﹣y =﹣2,则代数式x 2y ﹣xy 2的值是( ) A.6 B.﹣1 C.﹣5 D.﹣69. (2020秋•会宁县期末)观察下列各算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式的规律,你认为22020的末位数字应该是( ) A.2 B.4 C.6 D.8 10. (2020秋•福田区期末)观察下列等式:(1)13=12;(2)13+23=32;(3)13+23+33=62;(4)13+23+33+43=102;根据此规律,第10个等式的右边应该是a 2,则a 的值是( ) A.45 B.54 C.55 D.65 二、填空题11. (2022·贵州黔东南)若()225240x y x y +-+++=,则x-y 的值是________.12. (2020•浙江自主招生)分解因式:2x 2+7xy-15y 2-3x+11y-2= .13. (2020•成都模拟)已知实数a,b 互为相反数,且|a+2b|=1,b <0,则b = .14. (2020•吉安模拟)如图,有一个正三角形图片高为2厘米,A 是三角形的一个顶点,现在A 与数轴的原点O 重合,将图片沿数轴负方向滚动一周,点A 恰好与数轴上点A ′重合,则点A ′对应的实数是 .15. (2020秋•沙坪坝区校级月考)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.16. (2020秋•顺城区期末)有一数值转换器,原理如图所示,如果开始输入x的值为1,则第一次输出的结果是4,第二次输出的结果是5,……;那么2021次输出的结果是.三、解答题17. (2020秋•长春期末)已知多项式A=2m2-4mn+2n2,B=m2+mn-3n2,求:(1)3A+B;(2)A-3B.18. (2020秋•达州期中)有理数a,b,c在数轴上的位置如图所示:(1)用“>”或“<”填空:b-c 0,a+b 0,c-a 0.(2)化简:|a+b|-|a+c|+|b-c|-|a|.19. (2020•河北模拟)对于题目:实数a,b,c的大小如图中数轴所示,化简:|a-c|-|a-b|+|c-b|+2c.张皓程的解法如图所示:(1)张皓程从第步开始出错.(2)请你写出正确的解答过程.20. (2020春•江阴市期中)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9).请你分析一下a、b的值,并写出正确的因式分解过程.21. (2020秋•内江期中)仔细观察,探索规律:(1)(a-b)(a+b)=a2-b2;(a-b)(a2+ab+b2)=a3-b3;(a-b)(a3+a2b+ab2+b3)=a4-b4.(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=①(其中n为正整数,且n≥2).②(2-1)(2+1)=;③(2-1)(22+2+1)=;④(2-1)(23+22+2+1)=;⑤(2n-1+2n-2+…+2+1)=;(2)根据上述规律,求22019+22018+22017+…+2+1的个位数字是多少?(3)根据上述规律,求29-28+27-…+23-22+2的值?答案一、选择题1. 【答案】故选:C.2. 【答案】B 2的相反数是-2.故选:B.3. 【答案】解:整式有x2+5,-a,x2-3x+2,π,共4个;故选:B.4. 【答案】解:∵a+2b=3,∴2a+4b-1=2(a+2b)-1=2×3-1=6-1=5.故选:C.5. 【答案】解:∵x2﹣3x﹣2=0,∴x2﹣3x=2,∴2x2﹣6x+2020=2(x2﹣3x)+2020=2×2+2020=2024,故选:D.6. 【答案】解:kxy2-kxy-3xy2+xy+x+y-k=(k-3)kxy2+(1-k)xy+x+y-k,∵关于x,y的多项式kxy2-kxy-3xy2+xy+x+y-k是二次多项式,∴k-3=0,∴k=3.故选:A.7. 【答案】故选:C.8. 【答案】解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,故选:D.9. 【答案】解:2n的个位数字是2,4,8,6四个一循环,所以2020÷4=505,则22020的末位数字是6.故选:C.10. 【答案】解:观察下列等式:(1)13=12;(2)13+23=32;(3)13+23+33=62;(4)13+23+33+43=102;…∴第十个等式为:13+23+…+93+103=(1+2+3+4+…+9+10)2=552;故选:C.二、填空题11. 【答案】912. 【答案】解:∵2x2+7xy-15y2=(x+5y)(2x-3y),∴可设2x2+7xy-15y2-3x+11y-2=(x+5y+a)(2x-3y+b),a、b为待定系数,∴2a+b=-3,5b-3a=11,ab=-2,解得a=-2,b=1,∴原式=(x+5y-2)(2x-3y+1).故答案为:(x+5y-2)(2x-3y+1).13. 【答案】解:∵实数a,b互为相反数,∴a+b=0,∴|a+2b|=|a+b+b|=|b|=1,∵b<0,∴b=﹣1.故答案为:﹣1.14. 【答案】故答案为:-4315. 【答案】解:由图可得:a<0<b,且|a|>|b|,∴ab<0,﹣a>b,a﹣b<0,∴正确的有:①③;故答案为:①③.16. 【答案】故答案为:10.三、解答题17. 【答案】解:(1)∵A=2m2-4mn+2n2,B=m2+mn-3n2,∴3A+B=3(2m2-4mn+2n2)+(m2+mn-3n2)=6m2-12mn+6n2+m2+mn-3n2=7m2-11mn+3n2;(2)∵A=2m2-4mn+2n2,B=m2+mn-3n2,∴A-3B=(2m2-4mn+2n2)-3(m2+mn-3n2)=2m2-4mn+2n2-3m2-3mn+9n2=-m2-7mn+11n2.18. 【答案】解:(1)由数轴可得,a<0<b<c,且|b|<|a|<|c|,∴b-c<0,a+b<0,c-a>0, 故答案为:<,<,>;(2)∵b-c<0,a+b<0,a+c>0,∴|a+b|-|a+c|+|b-c|-|a|=-a-b-(a+c)+(-b+c)-(-a)=-a-b-a-c-b+c+a=-a-2b.19. 【答案】解:(1)因为c<0<a<b,且|b|>|a|>|c|,所以a-c>0,a-b<0,c-b<0,所以|a-c|-|a-b|+|c-b|+2c=(a-c)+(a-b)-(c-b)+2c所以是第①步出错,原因是去绝对值符号时,负数没有变号;故答案为:①;(2)因为c<0<a<b,且|b|>|a|>|c|,所以a-c>0,a-b<0,c-b<0,|a-c|-|a-b|+|c-b|+2c=(a-c)+(a-b)-(c-b)+2c=a-c+a-b-c+b+2c=2a.20. 【答案】解:∵甲看错了b,所以a正确,∵(x+2)(x+4)=x2+6x+8,∴a=6,∵因为乙看错了a,所以b正确∵(x+1)(x+9)=x2+10x+9,∴b=9,∴x2+6x+9=(x+3)2.21. 【答案】解:(1)由上式的规律可得,a n-b n,①故答案为:a n-b n;由题干中提供的等式的规律可得,②(2+1)(2-1)=22-1;故答案为:22-1;③(2-1)(22+2+1)=23-1,故答案为:23-1;④(2-1)(23+22+2+1)=24-1故答案为:24-1;⑤(2n-1+2n-2+…+2+1)=(2-1)(2n-1+2n-2+…+2+1)=2n-1,故答案为:2n-1;(2)22019+22018+22017+…+2+1=(2-1)(22019+22018+22017+…+2+1)=22020-1,又∵21=2,22=4,23=8,24=16,25=32,……∴22020的个位数字为6,∴22020-1的个位数字为6-1=5,答:22019+22018+22017+…+2+1的个位数字是5.(3)(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=2n-1,取a=2,b=-1,n=10,∴(2-1)(29-28+27-…+23-22+2-1)=210-1∴29-28+27-…+23-22+2=210=1024.。
中考数学数与式专题训练50题(含答案)
中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。
九年级数学中考专题复习数与式 试题
卜人入州八九几市潮王学校实数的有关概念◆【根底知识回忆】 1.12-的倒数为〔〕 A .12B .2C .2-D .1-2.某在一次扶贫助残活动中,一共捐款2580000元.将2580000元用科学记数法表示为〔〕 A .72.5810⨯元B .70.25810⨯元C .62.5810⨯元D .625.810⨯元 80 m 记为80 m ,那么向西走60 m 记为〔〕A .-60 mB .︱-60︱mC .-〔-60〕mD .601m 4.2-的相反数是〔〕A .2B .2-C .12D .12-5.-2的绝对值是__________. 【参考答案】1.C2.C3.A4.A ◆【应考知识点】 知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 大纲要求:1.使学生复习稳固有理数、实数的有关概念.2.理解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,理解数的绝对值的几何意义.3.会求一个数的相反数和绝对值,会比较实数的大小.4.画数轴,理解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小.考察重点:1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在中,以非负数a 2、|a|、a (a≥0)之和为零作为条件,解决有关问题.◆【复习目的】理解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,理解数的绝对值的几何意义.注意:〔1〕近似数、有效数字.如0.030是2个有效数字〔3,0〕,准确到千分位;4×105是3个有效数字,准确到千位;万是3个有效数字〔3,1,4〕准确到百位. 〔2〕绝对值2x =的解为2±=x ;而22=-,但少局部同学写成22±=-.〔3〕在中,以非负数a 2、|a|、(a ≥0)之和为零作为条件,解决有关问题.◆【应考重点例举】 1.有理数的意义⑴数轴的三要素为、和.数轴上的点与构成一一对应.⑵实数a 的相反数为________.假设a ,b 互为相反数,那么b a +=. ⑶非零实数a 的倒数为______.假设a ,b 互为倒数,那么ab =.⑷绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸科学记数法:把一个数表示成的形式,其中1≤a <10的数,n 是整数.⑹一般地,一个近似数,四舍五入到哪一位,就说这个近似数准确到哪一位.这时,从左边第一个不是的数起,到止,所有的数字都叫做这个数的有效数字. 2.数的开方c ba⑴任何正数a a 叫_______________.没有平方根,0的算术平方根为______. ⑵任何一个实数a 都有立方根,记为.⑶=2a ⎩⎨⎧<≥=)0( )0( a a a .3.实数的分类和统称实数. ◆【典型例题及解析】 例1在实数-23,04,2π,-0.1010010001…〔每两个1之间依次多1个0〕,sin30°这8个实数中,无理数有〔〕A .1个B .2个C .3个D .4个【答案】C【解析】对实数分类,不能只为外表形式迷惑,而应从最后结果去判断.首先明确无理数的概念,即“无限不循环小数叫做无理数〞.=2是有理数,关键在于这个形式上带根号的数的最终结果是不是无限不循环小数.同样,用三角符号表示的数也不一定就是无理数,如sin30°、tan45°等.而-0.1010010001…尽管有规律,•但它是无限不循环小数,是无理数.2π2π,-0.1010010001…这三个数是无理数,其他五个数都是有理数,应选C.例2〔1〕a 、b 互为相反数,c 、d 互为倒数,e 〔a+b 〕+12cd -2e 0的值; 〔2〕实数a ,b ,c 在数轴上的对应点如下列图,化简【答案】解:〔1〕依题意,有a+b=0,cd=1,e≠0 a+b 〕+12cd -2e 0=0+12-2=-32. 〔2〕由图知a>0,b<c<0,且│b│>│a│, ∴a+b<0,b -c<0,-│b-c│=a-a -b -│c│-〔c -b 〕=a -a -b+c -c+b=0.【解析】相反数、倒数、绝对值都是主要的概念,解答时应从概念蕴含着的数学关系式入手.含有绝对值的代数式的化简,首先要确定绝对值符号内的数或者式的值是正、负还是零,然后再根据绝对值的意义把绝对值的符号去掉,第〔2〕•题是数形结合的题目,解题的关键在于通过观察数轴,弄清数轴上各点所表示的正负性及各实数之间的大小关系,从而才能正确地去掉绝对值符号,到达化简的目的. 例3今年6月,举行了第五届泛珠三角区域经贸洽谈会.据估算,本届大会合同HY 总额达2260亿元.将2260用科学记数法表示为〔结果保存2个有效数字〕〔〕A .32.310⨯ B .32.210⨯C .32.2610⨯D .40.2310⨯【答案】A【解析】准确把握概念.把一个数写成a×10n的形式〔其中1≤│a│<10,n 为整数〕,•这种记数法叫做科学记数法.一个近似数,四舍五入到哪一位,就说这个近似数准确到哪一位.这时,从左边第一个不是0的数字起,到准确的数位止,所有的数字,都叫做这个数的有效数字.根据题意,可知答案为A. 例4假设m n n m -=-,且4m =,3n =,那么2()m n +=.【答案】49或者1;【解析】根据绝对值的定义来进展解答.│a│=(1)(0)(0)aa a a a >⎧⎪=⎨⎪-<⎩.由题意︱m -n ︱=n -m 知道,n>m.而︱m ︱=4,︱n ︱=3故m=±4,n=±m=-4,n=3或者m=-4,n=-3.故〔m+n 〕2=1或者49.例5x 、y +〔y 2-6y+9〕=0,假设axy -3x=y ,那么实数a 的值是〔〕A .14B .-14C .74D .-74〔y -3〕2=0∴3x+4=0,y -3=0∴x=-43,y=3.∵axy-3x=y ,∴-43×3a-3×〔-43〕=3∴a=14∴选A【解析】假设几个非负数之和等于零,那么每个非负数均等于零.这是非负数具有的一个重要性质.此题y -3〕2均为非负数,它们的和为零,只有3x+4=0,且y -3=0,由此可求得x ,y 的值,将其代入axy -3x=y 中,即求得a 的值. ◆【09年中考题分类汇编】 一、选择题1.〔2021年〕-5的相反数是〔〕A .15B .15-C .-5D.52.(2021年)12-的倒数为〔〕 A .12B .2C .2-D .1-3.(2021年)4-的绝对值是〔〕A .4-B .14-C .4D .144.〔2021年〕2021年重点建立工程方案〔草案〕显示,港珠澳大桥工程估算总HY726亿元,用科学记数法表示正确的选项是〔〕A .107.2610⨯元 B .972.610⨯元 C .110.72610⨯元D .117.2610⨯元5.〔2021年内蒙古〕国家体育场“鸟巢〞建筑面积达25.8万平方米,将25.8万平方米用科学记数法〔四舍五入保存2个有效数字〕表示约为〔〕A .42610⨯平方米B .42.610⨯平方米C .52.610⨯平方米D .62.610⨯平方米6.〔2021年〕假设向东走80 m 记为80 m ,那么向西走60 m 记为〔〕A .-60 mB .︱-60︱mC .-〔-60〕mD .601m 7.〔2021年〕在数轴上表示2-的点离点的间隔等于〔〕A .2B .2-C .2±D .48.〔2021年襄樊〕A 为数轴上表示1-的点,将A 点沿数轴向左挪动2个单位长度到B 点,那么B 点所表示的数为〔〕A .3-B .3C .1D .1或者3-9.〔2021年〕假设+20%表示增加20%,那么-6%表示().A .增加14%B .增加6%C .减少6%D .减少26% 10.〔2021年内蒙古〕27的立方根是〔〕A .3B .3-C .9D .9-11.〔2021年〕36的算术平方根是〔〕.A.6B.±6C.6D.±6 二、填空题1.〔2021年〕-2的绝对值是__________.2.〔2021年〕15-的相反数是;立方等于8-的数是.3.(2021年)13-=_________;0(=_________;14-的相反数是_________.4.〔2021年〕假设()2240a c -++-=,那么=+-c b a .5.(2021年)宝岛HY 的面积约为36000平方公里,用科学记数法表示约 为平方公里.6.〔2021年〕有着丰富的旅游资源,如五、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2021年全旅游总收入73亿元,这个数据用科学记数法可表示为. 【参考答案】 选择题1. D2. C3. C4. A5. D 【解析】此题考察科学记数法和有效数字,将一个数用科学记数法表示为()10110na a ⨯≤<的形式,其中a 的有效数字就是10na ⨯的有效数字,且n 等于这个数的整数位数减1。
九年级中考数学总复习阶段测评(1)数与式
阶段测评一 数与式 (时间:45分钟 满分:100分)一、选择题(本大题共12小题,每小题3分,共36分)1.某商店出售的一种袋装大米,在包装袋上标有25(kg)±0.25(kg),表明这种大米一袋重( )A .25.25 kgB .24.75 kgC .25 kgD .(24.75~25.25) kg2.-711的倒数是( ) A .711 B .-711 C .117 D .-1173.下列各数中,绝对值最小的数是( )A .-5B .12C .-1D .2 4.分式x +5x -2的值是0,则x 的值为( ) A .2 B .5 C .-2 D .-55.实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是( )A .|a |<1B .ab >0C .a +b >0D .1-a >16.下列运算正确的是( )A .3a +2a =5a 2B .-8a 2÷4a =2aC .(-2a 2)3=-8a 6D .4a 3·3a 2=12a 67.《三国演义》《红楼梦》《水浒传》《西游记》是我国古典长篇小说四大名著.其中2016年光明日报出版社出版的《红楼梦》有350万字,则“350万”用科学记数法表示为( )A .3.5×106B .0.35×107C .3.5×102D .350×1048.某商品打7折后价格为 a 元,则原价为( )A.a 元 B .107a 元 C .30%a 元 D .710a 元 9.下列等式成立的是( D )A .16 =±4B .3-8 =2C .-a 1a=-a D .-64 =-8 10.若m -2 +n 2+2n +1=0,则m n 等于( )A .12B .-12C .2D .-2 11.下列计算正确的是( )A .310 -25 =5B .711 ·⎝⎛⎭⎫117÷111 =11 C .(75 -15 )÷3 =25D .13 18 -389=2 12.已知x 2+3xy +y 2=0(x ≠0,y ≠0),则分式y x +x y的值等于( ) A .13 B .-13C .3D .-3 二、填空题(本大题共6小题,每小题3分,共18分)13.使x -13在实数范围内有意义的x 的取值范围是____. 14.计算m m 2-1 -11-m 2 的结果是____. 15.分解因式:x 3y -2x 2y -3xy =___.16.若a +b =4,a -b =1,则(a +1)2-(b -1)2的值为____.17.如果单项式3x m y 与-5x 3y n 是同类项,那么m +n =___.18.如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,…,按这样的方法拼成的第(n +1)个正方形比第n 个正方形多___个小正方形.三、解答题(本大题共5小题,共46分)19.(10分)计算:(1)9 -25÷23-|-1|×3-125 -⎝⎛⎭⎫13 -1;(2)-12 021+|2 -2|+(-2 021)0+2sin 45°+⎝⎛⎭⎫12 -2.20.(6分)先化简,再求值:(2x +3y )2-(2x +y )(2x -y )-2y (3x +5y ),其中x =2 ,y =62 -1.21.(8分)先化简,再求值:⎝ ⎛⎭⎪⎫1a +1-a +2a 2-1·a 2-2a +1a 2+4a +4 ·(a +2),其中a =2.22.(10分)对于二次三项式a 2+6a +9,可以用公式法将它分解成(a +3)2的形式,但对于二次三项式a 2+6a +8,就不能直接应用完全平方式了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a2+6a+8=a2+6a+9-9+8=(a+3)2-1=[(a+3)+1][(a+3)-1]=(a+4)(a+2).请仿照上面的做法,将下列各式因式分解:(1)x2-6x-16;(2)x2+2ax-3a2.23.(12分)观察下列等式:1 1×2=1-12,1 2×3=12-13,1 3×4=13-14,1 4×5=14-15,……(1)第5个等式是________________________,第n个等式是________________________;(2)从计算结果中找规律,利用规律计算:1 1×2+12×3+13×4+14×5+…+12 020×2 021;(3)计算:1 1×3+13×5+15×7+…+1(2n-1)(2n+1).答案一、选择题(本大题共12小题,每小题3分,共36分)DDBDD CABDA BD二、填空题(本大题共6小题,每小题3分,共18分)13.使x-13在实数范围内有意义的x的取值范围是__x≥1__.14.计算m m 2-1 -11-m 2 的结果是__1m -1 __. 15.分解因式:x 3y -2x 2y -3xy =__xy (x +1)(x -3)__.16.若a +b =4,a -b =1,则(a +1)2-(b -1)2的值为__12__.17.如果单项式3x m y 与-5x 3y n 是同类项,那么m +n =__4__.18.如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,…,按这样的方法拼成的第(n +1)个正方形比第n 个正方形多__(2n +3)__个小正方形.三、解答题(本大题共5小题,共46分)19.(10分)计算:(1)解:原式=3-22-1×(-5)-3=3-4+5-3=1;(2)解:原式=-1+2-2 +1+2×22+4=6. 20.解:原式=4x 2+12xy +9y 2-4x 2+y 2-6xy -10y 2=6xy .当x =2 ,y =62 -1时,原式=6×2 ×⎝⎛⎭⎫62-1 =63 -62 .21.解:原式=a +2a +1 -a +2(a +1)(a -1) ·(a -1)2(a +2)2 ·(a +2)=a +2a +1 -a -1a +1 =3a +1. 当a =2时,原式=32+1=1.22.解:(1)x 2-6x -16=x 2-6x +9-9-16=(x -3)2-25=(x -3+5)(x -3-5)=(x +2)(x -8);(2)x 2+2ax -3a 2=x 2+2ax +a 2-a 2-3a 2=(x +a )2-(2a )2=(x +a +2a )(x +a -2a )=(x +3a )(x -a ).23.(12分)观察下列等式:11×2=1-12 ,12×3 =12 -13, 13×4 =13 -14 , 14×5 =14 -15 , ……(1)第5个等式是________________________,第n 个等式是________________________;(2)从计算结果中找规律,利用规律计算:11×2 +12×3 +13×4 +14×5 +…+12 020×2 021; (3)计算:11×3 +13×5 +15×7 +…+1(2n -1)(2n +1). 解:(1)15×6 =15 -16 ;1n (n +1) =1n -1n +1; (2)原式=⎝⎛⎭⎫1-12 +⎝⎛⎭⎫12-13 +⎝⎛⎭⎫13-14 +…+⎝⎛⎭⎫12 020-12 021 =1-12 +12 -13 +13 -14 +…+12 020 -12 021=1-12 021 =2 0202 021; (3)原式=12 (1-13 +13 -15 +…+12n -1 -12n +1 )=12 (1-12n +1 )=n 2n +1.。
初三中考数学数与式
第一部分 中考基础复习第一章 数与式第1讲 实数A 级 基础题1.(2015年广东梅州)12的相反数是( )A .2B .-2 C.12 D .-122.(2015年广东佛山)-3的倒数是( )A .-13 B.13C .3D .-33.(2015年广东广州)四个数-3.14,0,1,2中为负数的是( ) A .-3.14 B .0 C .1 D .24.(2015年内蒙古呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .-3 ℃B .15 ℃C .-10 ℃D .-1 ℃5.(2015年广东汕尾)今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为( )A .1.21×106B .12.1×105C .0.121×107D .1.21×1056.(2015年湖南永州)在数轴上表示数-1和2014的两点分别为A 和B ,则A ,B 两点间的距离为( )A .2013B .2014C .2015D .20167.(2015年黑龙江绥化)在实数0,π,227, 2 ,-9中,无理数的个数有( )A .1个B .2个C .3个D .4个 8.(2015年山东威海)已知实数a ,b 在数轴上的位置如图1-1-2,下列结论错误的是( )图1-1-2A.||a <1<||b B .1 <-a <b C .1 < ||a <b D .-b <a <-1 9.(2015年湖北武汉)计算:-10+(+6)=________.10.(2015年吉林长春)比较大小:2__________1.(填“>”“=”或“<”) 11.(2015年江苏镇江)已知一个数的绝对值是4,则这个数是__________. 12.计算:(1)(2015年广东梅州)计算:8+|2 2-3|-⎝⎛⎭⎫13-1-(2015+2)°. (2)(2015年广东佛山)计算:9+20150+(-2)3+2 3×sin60°.B 级 中等题13.(2015年山东青岛)某种计算机完成一次基本运算的时间约为0.000 000 001 s ,将0.000 000 001 s 用科学记数法表示为( )A .0.1×10-8 sB .0.1×10-9 sC .1×10-8 sD .1×10-9 s 14.(2015年山东菏泽)如图1-1-3,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )图1-1-3A .点MB .点NC .点PD .点Q 15.(2015年重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成.在图1-1-4中,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是( )图1-1-4A .32B .29C .28D .2616.(2015年贵州遵义)按一定规律排列的一列数依次为:45,48,411,414,…,按此规律,这列数中的第10个数与第16个数的积是__________.C 级 拔尖题17.(2015年湖南娄底)下列数据是按一定规律排列的(如图1-1-5),则第7行的第一个数为__________.图1-1-5第2讲 代数式A 级 基础题1.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.122.(2015年吉林)购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需要钱数为( )A .(a +b )元B .3(a +b )元C .(3a +b )元D .(a +3b )元3.(2015年四川自贡)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( )A .a -10%元/米2B .a ·10%元/米2C .a (1-10%)元/米2D .a (1+10%)元/米24.(2015年福建厦门)某商店举办促销活动,促销的方法是将原价x 元的衣服以⎝⎛⎭⎫45x -10元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.(2015年海南)某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 6.(2015年重庆)如图1-2-4所示的图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第④个图形中小圆圈的个数为( )图1-2-4A .21个B .24个C .27个D .30个7.(2015年湖南株洲)如果手机通话每分钟收费m 元,那么通话a 分钟,收费________元.8.(2014年江苏苏州)若a -2b =3,则9-2a +4b 的值为________. 9.(2015年湖南益阳)如图1-2-5是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有________根小棒.图1-2-510.(2015年四川内江)如图1-2-6是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒.(用含n 的代数式表示)图1-2-611.已知a=3,b=|-2|,c=12,求代数式a2+b-4c的值.12.已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求|| a+b2m2+1+4m-3cd的值.B级中等题13.按如图1-2-7所示的程序计算,若开始输入n的值为1,则最后输出的结果是()图1-2-7A.3 B.15 C.42 D.6314.(2015年黑龙江绥化)如图1-2-8,填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=________.图1-2-815.(2015年江苏淮安)将连续正整数按如下规律排列(如图1-2-9):图1-2-9若正整数565位于第a 行,第b 列,则a +b =________. 16.(2014年四川达州)《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图1-2-10.图1-2-10由图易得:12+122+123+…+12n =________.C 级 拔尖题17.(2014年安徽)观察下列关于自然数的等式: 32-4×12=5;① 52-4×22=9;② 72-4×32=13;③ ……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.(列代数式)第3讲 整式与分式 第1课时 整式A 级 基础题1.(2015年浙江台州)单项式2a 的系数是( ) A .2 B .2a C .1 D .a2.(2015年广东珠海)计算-3a 2×a 3的结果为( ) A .-3a 5 B .3a 6 C .-3a 6 D .3a 53.(2015年四川巴中)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1 4.(2015年湖南邵阳)已知a +b =3,ab =2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .65.(2015年广东佛山)若(x +2)(x -1)=x 4+mx +n ,则m +n =( ) A .1 B .-2 C .-1 D .26.(2015年广东深圳)下列说法错误的是( )A .a ·a =a 2B .2a +a =3aC .(a 3)2=a 5D .a 3÷a -1=a 47.(2015年浙江金华)已知a +b =3,a -b =5,则代数式a 2-b 2=________. 8.(2015年广东珠海)填空:x 2+10x +________=(x +________)2. 9.(2015年四川绵阳)计算:a (a 2÷a )-a 2=________.10.(2015年山东菏泽)若x 2+x +m =(x -3)(x +n )对x 恒成立,则n =__________. 11.(2015年广东梅州)已知a +b =-2,求代数式(a -1)2+b (2a +b )+2a 的值.12.(2015年北京)已知2a 2+3a -6=0.求代数式3a ()2a +1-()2a +1()2a -1的值.B 级 中等题13.(2015年山东临沂)观察下列关于x 的单项式,探究其规律: x,3x 2,5x 3,7x 4,9x 5,11x 6,…,按照上述规律,第2015个单项式是( ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 201514.(2015年安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是____________.15.(2014年浙江宁波)一个大正方形和四个全等的小正方形按图1-3-2(1)(2)两种方式摆放,则图(2)的大正方形中未被小正方形覆盖部分的面积是________.(用a,b的代数式表示)图1-3-216.(2015年河北)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1(1)求所捂住的二次三项式;(2)若x=6+1,求所捂住的二次三项式的值.C级拔尖题17.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问:用这三种方案调价的结果是否一样,最后是不是都恢复了原价?第2课时 因式分解A 级 基础题1.(2014年海南)下列式子从左到右变形是因式分解的是( ) A .a 2+4a -21=a (a +4)-21 B .a 2+4a -21=(a -3)(a +7) C .(a -3)(a +7)=a 2+4a -21 D .a 2+4a -21=(a +2)2-25 2.(2015年湖北武汉)把a 2-2a 分解因式,正确的是( ) A .a (a -2) B .a (a +2) C .a (a 2-2) D .a (2-a ) 3.(2014年辽宁葫芦岛)计算:552-152=( ) A .40 B .1600 C .2400 D .28004.(2015年浙江台州)把多项式2x 2-8分解因式,结果正确的是( ) A .2()x 2-8 B .2()x -22C .2()x +2()x -2D .2x ⎝⎛⎭⎫x -4x 5.(2015年贵州毕节)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2 D .4x 2-y 2=(4x +y )(4x -y )6.(2015年广西贺州)把多项式4x 2y -4xy 2-x 3分解因式的结果是( ) A .4xy (x -y )-x 3 B .-x (x -2y )2C .x (4xy -4y 2-x 2)D .-x (-4xy +4y 2+x 2) 7.(2015年山东枣庄)如图1-3-3,边长为a ,b 的矩形的周长为14,面积为10,则a 2b+ab 2的值为( )图1-3-3A .140B .70C .35D .248.(2015年广东梅州)分解因式:m 3-m =________. 9.(2015年广东广州)分解因式:2mx -6my =________. 10.(2015年广东深圳)分解因式:3a 2-3b 2________.11.(2015年山东东营)分解因式:4+12(x -y )+9(x -y )2=________. 12.已知ab =-3,a +b =2.求代数式a 3b +ab 3的值.B 级 中等题13.(2015年湖南衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为________. 14.(2015年湖北孝感)分解因式:(a -b )2-4b 2__________. 15.(2015年甘肃平凉)分解因式:x 3y -2x 2y +xy =________.16.(2015年湖南株洲)分解因式:x 2()x -2-16()x -2=____________________.C 级 拔尖题17.分解因式:x 2-y 2-3x -3y .第3课时 分式A 级 基础题1.(2015年浙江丽水)分式-11-x可变形为( )A .-1x -1 B.11+x C .-11+x D.1x -12.(2015年浙江金华)要使分式xx +4有意义,则x 的取值应满足( )A .x =-4B .x ≠4C .x >-4D .x ≠-43.(2015年湖南)若分式3-xx +1的值为0,则x 的值为( )A .3或-1B .0C .3D .-14.(2014年内蒙古赤峰)化简a 2b -ab 2b -a的结果正确的是( )A .abB .-abC .a 2-b 2D .b 2-a 25.(2015年山东济南)化简 m 2m -3-9m -3 的结果是( )A .m +3B .m -3 C.m -3m +3 D.m +3m -36.(2015年湖南益阳)下列等式成立的是( ) A.1a +2b =3a +b B.22a +b =1a +b C.ab ab -b 2=a a -b D.a -a +b =-a a +b7.(2015年广东珠海)若分式3x -5有意义,则x 应满足________.8.(2015年江苏镇江)当x =__________时,分式x +1x -2的值为0.9.(2015年吉林)计算:x x -y ·x 2-y 2x=________.10.(2015年贵州六盘水)已知c 4=b 5=a6≠0,则b +c a 的值为________.11.(2015年广东佛山)计算:2x -2-8x 2-4.12.(2015年广东广州)已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.B 级 中等题 13.(2015年山东临沂)计算:a a +2-4a 2+2a = ______________.14.(2015年湖南邵阳)先化简⎝⎛⎭⎫1x -2-2x ·x 2-2x 2,再从0,1,2中选取一个合适的x 的值代入求值.15.(2015年湖北襄阳)先化简,再求值:⎝ ⎛⎭⎪⎫5x +3yx 2-y 2+2x y 2-x 2÷1x 2y -xy 2,其中x =3+2,y =3- 2.16.(2015年贵州黔东南州)先化简,再求值:m -33m 2-6m ÷⎝⎛⎭⎫m +2-5m -2,其中m 是方程x 2+2x -3=0的根.C 级 拔尖题 17.(2015年广东梅州)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a=______,b =______;计算:m =11×3+13×5+15×7+…+119×21=________.第4讲 二次根式A 级 基础题1.(2015年重庆)计算3 2-2的值是( )A .2B .3 C. 2 D .2 22.(2015年安徽)计算8×2的结果是( )A.10 B .4 C. 6 D .23.(2015年江苏无锡)函数y =x -4中自变量x 的取值范围是( )A .x >4B .x ≥4C .x ≤4D .x ≠44.(2015年四川凉山州)下列根式中,不能与3合并的是( ) A.13 B.33C.23D.12 5.(2015年江苏淮安)下列式子为最简二次根式的是( )A. 3B. 4C.8D.126.(2015年湖北潜江)下列各式计算正确的是( )A.2+3= 5 B .4 3-3 3=1 C .2 3×3 3=6 3 D.27÷3=37.(2015年湖南衡阳)计算8-2=________.8.(2015年江苏南京)计算5×153的结果是________. 9.(2015年江苏泰州)计算:18-2 12等于________. 10.(2015年湖北荆门)当1<a <2时,代数式()a -22+||1-a 的值是________.11.(2014年广东佛山)计算:8÷2-1+327×[2+(-2)3].12.(2014年湖北荆门)计算:24×13-4×18×(1-2)0.B 级 中等题13.(2014年安徽)设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .814.(2014年山东济宁)如果ab>0,a+b<0,那么下面各式:①ab=ab;②ab·ba=1;③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③15.(2015年四川攀枝花)若y=x-3+3-x+2,则x y=________.16.(2014年山东德州)若y=x-4+4-x2-2,则(x+y)y=________.C级拔尖题17.(2015年山西)阅读与计算:阅读以下材料,并完成相应的任务.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰好是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用:斐波那契数列中的第n个数可以用15⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.第一章基础题强化提高测试时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.-15的相反数是( )A .15B .-15 C.115 D .-1152.用科学记数法表示316 000 000为( )A .3.16×107B .3.16×108C .31.6×107D .31.6×1063.下列二次根式中的最简二次根式是( ) A.30 B.12 C.8 D.124.下列运算正确的是( )A .a 2+a 3=a 5 B.()-a 32=a 6C .ab 2·3a 2b =3a 2b 2D .-2a 6÷a 2=-2a 35.下列计算正确的是( )A .ab ·ab =2abB .(2a )3=2a 3C .3 a -a =3(a ≥0) D.a ·b =ab (a ≥0,b ≥0)6.下列运算正确的是( )A.2+3= 5 B .3x 2y -x 2y =3C.a 2+b 2a +b=a +b D.()a 2b 3=a 6b 3 二、填空题(本大题共4小题,每小题5分,共20分)7.若分式1x -5有意义,则实数x 的取值范围是________. 8.81的平方根是________.9.若a 2-3b =5,则6b -2a 2+2015=________.10.化简:2(8-2)=________.三、解答题(本大题共5小题,每小题10分,共50分)11.分解因式:m 3n -4mn .12.化简:1x +3+6x 2-9.13.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.14.计算:|-3|+2sin45°+tan60°-⎝⎛⎭⎫-13-1-12+(π-3)0.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab,其中a ,b 满足a +1+|b -3|=0.第一部分 中考基础复习第一章 数与式第1讲 实数【演练·巩固提升】1.D 2.A 3.A 4.C 5.A 6.C 7.B 8.A9.-4 10.> 11.±412.解:(1)原式=2 2+3-2 2-3-1=-1.(2)原式=3+1-8+2 3×32=-4+3=-1. 13.D 14.C 15.B 16.110017.22 解析:由排列的规律可得,第n -1行结束的时候排了1+2+3+…+n -1=12n (n -1)个数.所以第n 行的第1个数为12n (n -1)+1.所以n =7时,第7行的第1个数为22. 第2讲 代数式【演练·巩固提升】1.B 2.D 3.C 4.B 5.A6.B 7.am 8.3 9.5n +1 10.2n (n +1)11.解:当a =3,b =|-2|=2,c =12时,a 2+b -4c =3+2-2=3. 12.解:根据题意,可知:a +b =0,①cd =1,②|m |=2,即m =±2.③把①②代入原式,可得原式=0+4m -3×1=4m -3.当m =2时,4m -3=2×4-3=5;当m =-2时,4m -3=-2×4-3=-11.所以,原式的值是5或-11.13.C 解析:把n =1代入,得n (n +1)=2<15,把n =2代入,得n (n +1)=6<15,把n =6代入,得n (n +1)=42>15,则最后输出的结果为42.14.110 解析:根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积加上1的和,可得6+4=a,6+3=c ,ac +1=b ,可得a =10,c =9,b =91,所以a +b +c =10+9+91=110.15.147 解析:∵565÷4=141……1,∴正整数565位于第142行,即a =142.∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,∴正整数565位于第五列,即b =5.∴a +b =142+5=147.16.2n -12n 解析:取n 天后剩下12n ,所以n 天共取走1-12n ,即12+122+123+…+12n =1-12n=2n -12n . 17.解:(1)4 17(2)第n 个等式为(2n +1)2-4n 2=4n +1.证明如下:左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1=右边.∴(2n +1)2-4n 2=4n +1.第3讲 整式与分式第1课时 整式【演练·巩固提升】1.A 2.A 3.A 4.C 5.C 6.C7.15 8.25 5 9.0 10.411.解:原式=a 2-2a +1+2ab +b 2+2a =()a +b 2+1,当a +b =-2时,()a +b 2+1=()-22+1=3.12.解:原式=6a 2+3a -(4a 2-1)=6a 2-4a 2+3a +1=2a 2+3a +1.因为2a 2+3a -6=0,所以2a 2+3a =6,所以原式=7.13.C 解析:先看x 的指数,第一个指数是1,第二个指数是2,第2015个单项式的指数是2015;再看系数,系数是连续的奇数,所以第2015个奇数为4029,所以第2015个单项式为4029x 2015.14.xy =z 解析:∵a m a n =a m +n ,21×22=23,22×23=25,23×25=28,25×28=213,故答案为xy =z .15.ab 解析:设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得⎩⎪⎨⎪⎧ x 1+2x 2=a ,x 1-2x 2=b ,解得⎩⎨⎧ x 1=a +b 2,x 2=a -b 4.图②的大正方形中未被小正方形覆盖部分的面积=⎝⎛⎭⎫a +b 22-4×⎝⎛⎭⎫a -b 42=ab .16.解:(1)设所捂的二次三项式为A ,则A =x 2-5x +1+3x =x 2-2x +1.(2)若x =6+1,则A =()x -12=()6+1-12=6.17.解:方案(1)的调价结果为(1+10%)(1-10%)a =0.99a ;方案(2)的调价结果为(1-10%)(1+10%)a =0.99a ;方案(3)的调价结果为(1+20%)(1-20%)a =0.96a .由此可以得到方案(1)(2)的调价结果是一样的,方案(3)的调价结果与(1)(2)不一样.最后都没有恢复原价. 第2课时 因式分解【演练·巩固提升】1.B 2.A 3.D 4.C 5.B 6.B 7.B8.m ()m +1()m -1 9.2m ()x -3y10.3()a +b ()a -b 11.(3x -3y +2)212.解:∵a +b =2,∴(a +b )2=4.∴a 2+2ab +b 2=4.又∵ab =-3,a 2+2ab +b 2=4,∴a 2+b 2=10.∴a 3b +ab 3=ab (a 2+b 2)=-30.13.-3 14.(a +b )(a -3b ) 15.xy (x -1)216.(x -2)(x -4)(x +4)17.解:原式=(x +y )(x -y )-3(x +y )=(x +y )(x -y -3)第3课时 分式【演练·巩固提升】1.D 2.D 3.C 4.B 5.A 6.C 7.x ≠5 8.-1 9.x +y10.32 解析:由题意,可设a =6k ,b =5k ,c =4k ,则b +c a =5k +4k 6k =32. 11.解:原式=2()x +2-8()x +2()x -2=2()x -2()x +2()x -2=2x +2. 12.解:(1)A =x 2+2x +1x 2-1-x x -1=()x +12()x +1()x -1-x x -1=x +1x -1-x x -1=1x -1. (2)解x -1≥0,得x ≥1.解x -3<0,得x <3.∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x <3. ∵x 为整数,∴x =1,2.当x =1时,分式无意义;当x =2时,A =12-1=1. 13.a -2a 解析:原式=a a +2-4a (a +2)=a 2a (a +2)-4a (a +2)=a 2-4a (a +2)=(a +2)(a -2)a (a +2)=a -2a. 14.解:原式=⎣⎢⎡⎦⎥⎤x x (x -2)-2(x -2)x (x -2)·x (x -2)2=x -2(x -2)x (x -2)·x (x -2)2=x -2x +42=-x +42, 由于x ≠0,且x ≠2,因此只能取x =1.所以当x =1时,原式的值为-x +42=-1+42=32. 15.解:原式=⎝ ⎛⎭⎪⎫5x +3y x 2-y 2-2x x 2-y 2÷1xy (x -y )=3(x +y )(x +y )(x -y )·xy (x -y ) =3xy .把x =3+2,y =3-2代入,可得:原式=3(3+2)(3-2)=3.16.解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2=m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3). ∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1.当m =-3时,原式无意义;当m =1时,原式=13m (m +3)=13×1×(1+3)=112. 17.12 -12 1021. 解析:∵1()2n -1()2n +1=12()2n -1-12()2n +1 =a 2n -1+b 2n +1, ∴a =12,b =-12. ∴m =11×3+13×5+15×7+…+119×21=⎝⎛⎭⎫12-16+⎝⎛⎭⎫16-110+…+⎝⎛⎭⎫138-142=1021. 第4讲 二次根式【演练·巩固提升】1.D 2.B 3.B 4.C 5.A 6.D 7.2 8.5 9.2 210.1 解析:原式=||a -2+||1-a =2-a +a -1=1.11.解:原式=2 2÷12+3×(2-2 2)=4 2+6-6 2 =6-2 2.12.解:(1)原式=24×13-4×24×1=2 2-2= 2. 13.D 14.B15.9 解析:由题意,得x -3≥0,且3-x ≥0,得x =3,故y =2.∴x y =9. 16.14解析:由题意,得x -4≥0,且4-x ≥0. 解得x ≥4,且x ≤4.所以x =4.所以y =-2.所以(x +y )y =(4-2)-2=14. 17.解:第1个数:当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤1+52-1-52 =15×5=1. 第2个数:当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52-1-52⎝ ⎛⎭⎪⎫1+52+1-52 =15×5×1=1. 第一章基础题强化提高测试1.A 2.B 3.A 4.B 5.D 6.D7.x ≠5 8.±3 9.2005 10.211.解:原式=mn ()m 2-4= mn (m +2)(m -2).12.解:原式=x -3(x +3)(x -3)+6(x +3)(x -3)=x -3+6(x +3)(x -3)=x +3(x +3)(x -3)=1x -3. 13.解:原式=4a 2-b 2+b 2-2ab =2a (2a -b ). 当a =-2,b =1时,原式=2×(-2)×[2×(-2)-1]=20.14.解:原式=3+2×22+3-(-3)-2 3+1 =3+1+3+3-2 3+1=5.15.解:原式=⎣⎢⎡⎦⎥⎤(a +b )(a -b )(a -b )2-a a -b ·a (a -b )b 2 =⎝ ⎛⎭⎪⎫a +b a -b -a a -b ·a (a -b )b2=b a -b ·a (a -b )b 2=a b . ∵a +1+|b -3|=0,∴a +1=0,b -3=0.解得a =-1,b = 3.∴原式=-13=-33.。
北师大版九年级数学中考复习试题及答案全套
北师大版九年级数学中考复习试题及答案全套(共9套)《数与式》综合检测卷 (时间:90分钟 满分:100分)一、选择题(每小题2分,共24分)1.下列各数:π3,sin 30°,-3,4,其中无理数的个数有( B )A .1个B .2个C .3个D .4个2.某种药品说明书上标明保存温度是(20±3) ℃,则该药品最合适保存的温度范围是 ( C )A .17℃~20℃B .20℃~23℃C .17℃~23℃D .17℃~24℃3.下列运算中,正确的是( D ) A .a 2+a 2=2a 4 B .(a -b )2=a 2-b 2 C .(-x 6)·(-x )2=x 8D .(-2a 2b )3÷4a 5=-2ab 3 4.中国的“天眼”绝对是我们中国人的骄傲,它可以一眼看穿130亿光年以外,换句话来说就是它可以接收到130亿光年之外的电磁信号,几乎已经可以达到我们人类现在所了解到的宇宙的极限边缘.数据130亿(精确到亿位)正确的表示是( B )A .1.3×1010B .1.30×1010C .0.13×1011D .130×1085.设n 为正整数,且n <65<n +1,则n 的值为( D ) A .5 B .6 C .7D .86.如果ab >0,a +b <0,那么下面各式:①a b =ab;②a b ·ba=1;③ab ÷ab=-b ,其中正确的是( B )A .①②B .②③C .①③D .①②③7.若最简二次根式3a -12a +5b 与a -2b +8是同类二次根式,则a 、b 的值为( A )A .a =1,b =1B .a =2,b =-1C .a =-2,b =1D .a =-1,b =18.整数n 满足n <26<n +1,则n 的值为( A ) A .4 B .5 C .6D .79.实数a 、b 在数轴上的位置如图所示,且|a |>|b |,则化简a 2-|a +b |的结果为( C )A .2a +bB .-2a +bC .bD .2a -b10.如图1,把一个长为2m ,宽为2n (m >n )的矩形两次对折后展开,再用剪刀沿图中折痕剪开,把它分成四块完全相同的小矩形,最后按如图2那样拼成一个正方形,则中间空的部分的面积是( C )A .2mB .(m +n )2C .(m -n )2D .m 2-n 211.把所有正偶数从小到大排列,并按如下规律分组:第一组:2,4;第二组:6,8,10,12;第三组:14,16,18,20,22,24;第四组:26,28,30,32,34,36,38,40……则现有等式A m =(i ,j )表示正偶数m 是第i 组第j 个数(从左到右数),如A 10=(2,3),则A 2020=( B )A .(31,63)B .(32,18)C .(33,16)D .(34,2)12.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1、E 1、E 2、C 2、E 3、E 4、C 3、…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A 2020B 2020C 2020D 2020的边长是( D )A .⎝⎛⎭⎫122019B .⎝⎛⎭⎫122020C .⎝⎛⎭⎫332020D .⎝⎛⎭⎫332019二、填空题(每小题2分,共16分) 13.若分式x +1x -1有意义,则x 的取值范围为__x ≥-1且x ≠1__. 14.计算:2(2-3)+6=__2__.15.将多项式m 2n -2mn +n 分解因式的结果是__n (m -1)2__. 16.若y =x -4+4-x 2-2,则(x +y )y =__14__.17.中国清代学者华衡芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,说明了所谓“代数”,就是用符号来代表数的一种方法.若实数a 用代数式表示为13+12n ,实数b 用代数式表示为12n -13,则a -b 的值为__23__.18.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出输出的结果为12,…,则第2020次输出的结果为__3__.19.若x 2-3x +1=0,则x 2x 4+x 2+1的值为__18__.20.庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=12+122+123+…+12n +….图1 图2图2也是一种无限分割:在△ABC 中,∠C =90°,∠B =30°,过点C 作CC 1⊥AB 于点C 1,再过点C 1作C 1C 2⊥BC 于点C 2,又过点C 2作C 2C 3⊥AB 于点C 3,如此无限继续下去,则可将△ABC 分割成△ACC 1、△CC 1C 2、△C 1C 2C 3、△C 2C 3C 4、…、△C n -2C n -1C n 、….假设AC =2,这些三角形的面积和可以得到一个等式是=2⎣⎡⎦⎤1+34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -1+⎝⎛⎭⎫34n +…__.三、解答题(共60分) 21.(8分)计算: (1)⎝⎛⎭⎫46-412+38÷22; 解:(1)原式=(46-22+62)÷22=(46+42)÷22=23+2. (2)⎝⎛⎭⎫-12-2-|3-2|+(2-1.414)0-3tan 30°-(-2)2.解:原式=4-(2-3)+1-3×33-2=4-2+3+1-3-2=1. 22.(5分)已知x =1-2,y =1+2,求x 2+y 2-xy -2x +2y 的值.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2)(1+2)=-1,∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-22)2-2×(-22)+(-1)=7+4 2.23.(5分)已知实数a 、b 、c 满足|a +6|+b -2+(c -3)2=0,求-abc 的值. 解:∵|a +6|+b -2+(c -3)2=0,∴a +6=0,b -2=0,c -3=0,∴a =-6,b =2,c =3,∴-abc =-(-6)×2×3=36=6.24.(5 分)化简:⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷⎝⎛⎭⎫1-4x . 解:原式=⎣⎢⎡⎦⎥⎤x +2x (x -2)-x -1(x -2)2÷x -4x =x 2-4-(x 2-x )x (x -2)2·x x -4=x -4x (x -2)2·x x -4=1x 2-4x +4. 25.(5分)先化简,再求值:a 4-b 4a 2-2ab +b 2×b -aa 2+b 2,其中a =2019,b =2020.[:学科网] 解:原式=(a 2+b 2)(a +b )(a -b )(a -b )2·-(a -b )a 2+b 2=-(a +b )=-a -b .当a =2019,b =2020时,原式=-2019-2020=-4039.26.(5分)先化简,再求值:a -2a 2-1÷⎝⎛⎭⎪⎫a -1-2a -1a +1,其中a 是方程x 2-x =6的根. 解:原式=a -2a 2-1÷(a +1)(a -1)-(2a -1)a +1=a -2a 2-1÷a 2-2a a +1=1a 2-a .∵a 是方程x 2-x =6的根,∴a 2-a =6,∴原式=16.27.(6分)先化简,再求值:a 2-6ab +9b 2a 2-2ab ÷⎝⎛⎭⎫5b 2a -2b -a -2b -1a ,其中a 、b 满足⎩⎪⎨⎪⎧a +b =4,a -b =2. 解:原式=(a -3b )2a (a -2b )÷⎣⎢⎡⎦⎥⎤5b 2a -2b -(a -2b )(a +2b )a -2b -1a =(a -3b )2a (a -2b )÷9b 2-a 2a -2b -1a =(a -3b )2a (a -2b )·a -2b(3b -a )(3b +a )-1a =-(a -3b )a ()3b +a -1a =-(a -3b )a (3b +a )-3b +a a (3b +a )=-2a a (3b +a )=-2a +3b .解⎩⎪⎨⎪⎧ a +b =4,a -b =2,得⎩⎪⎨⎪⎧a =3,b =1.∴当a =3,b =1时,原式=-23+3×1=-13.28.(6分)先化简,再求值:x 2+x x 2-2x +1÷⎝⎛⎭⎫2x -1-1x ,其中整数x 满足-2<x ≤2. 解:原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2×x (x -1)x +1=x 2x -1.其中⎩⎪⎨⎪⎧x 2-2x +1≠0,x (x -1)≠0,x +1≠0,即x ≠-1、0、1.又∵-2<x ≤2,且x 为整数,∴x =2.将x =2代入x 2x -1中,得原式=222-1=4. 29.(7分)如果一个正整数能表示为两个连续奇数的平方差,那么我们称这个正整数为“和谐数”,如8=32-12,16=52-32,24=72-52,因此,8,16,24这三个数都是“和谐数”.(1)在32,75,80这三个数中,是和谐数的是__32,80__;(2)若200为和谐数,即200可以写成两个连续奇数的平方差,则这两个连续奇数的和为__100__;(3)小鑫通过观察发现以上求出的“和谐数”均为8的倍数,设两个连续奇数为2n -1和2n +1(其中n 取正整数),请你通过运算验证“和谐数是8的倍数”这个结论是否正确.证明:∵(2n +1)2-(2n -1)2=4n 2+4n +1-(4n 2-4n +1)=4n 2+4n +1-4n 2+4n -1=8n ,∴“和谐数是8的倍数”这个结论是正确的.30.(8分)观察下列等式:第一个等式:a 1=21+3×2+2×22=12+1-122+1; 第二个等式:a 2=221+3×22+2×(22)2=122+1-123+1; 第三个等式:a 3=231+3×23+2×(23)2=123+1-124+1; 第四个等式:a 4=241+3×24+2×(24)2=124+1-125+1.按上述规律,回答下列问题:(1)请写出第六个等式:a 6=__261+3×26+2×(26)2__=__126+1-127+1__; (2)用含n 的代数式表示第n 个等式:a n =__2n1+3×2+2×(2)__=__12+1-12++1;(3)a 1+a 2+a 3+a 4+a 5+a 6=__1443__(得出最简结果);(4)计算:a 1+a 2+…+a n . 解:原式=12+1-122+1+122+1-123+1+…+12n+1-12n +1+1=12+1-12n +1+1=2n +1-23(2n +1+1).《函数的图象与性质》综合检测卷 (时间:90分钟 满分:100分)一、选择题(每小题3分,共30分) 1.函数y =x +2x -3的自变量的取值范围是( C ) A .x ≠3B .x ≥-2C .x ≥-2且x ≠3D .x ≥32.一辆复兴号高铁从青州站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,复兴号到达下一个高铁站停下,乘客上、下车后,复兴号又匀加速行驶,一段时间后再次开始匀速行驶,可以近似地刻画出这辆复兴号高铁在这段时间内的速度变化情况的是( D )3.已知二次函数y =-(x -h)2+4(h 为常数),在自变量x 的值满足1≤x ≤4的情况下,与其对应的函数值y 的最大值为0,则h 的值为( A )A .-1和6B .2和6C .-1和3D .2和34.若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( C ) A .(2,2)B .(-2,-2)C .(2,2)或(-2,-2)D .(-2,2)或(2,-2)5.一次函数y =kx -k 与反比例函数y =kx在同一直角坐标系内的图象大致是( C )6.如图,A 、B 两点在双曲线y =4x上,分别经过A 、B 两点向坐标轴作垂线段,已知S阴影=1,则S 1+S 2=( D )A .3B .4C .5D .67.抛物线y =x 2-4x +3的图象向右平移2个单位长度后所得新抛物线的顶点坐标为( A )A .(4,-1)B .(0,-3)C .(-2,-3)D .(-2,-1)8.设A (-2,y 1)、B (1,y 2)、C (2,y 3)是抛物线y =-(x +1)2+m 上的三点,则y 1、y 2、y 3的大小关系为( A )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 1>y 39.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①a +b +c <0;②a -b +c <0;③b +2a <0;④abc >0.其中所有正确结论的序号是( C )A .③④B .②③C .①④D .①②③10.如图,矩形ABCD 的顶点A 在第一象限,AB ∥x 轴,AD ∥y 轴,且对角线的交点与原点O 重合.在边AB 从小于AD 到大于AD 的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A 的反比例函数y =kx(k ≠0)中k 的值的变化情况是( C )A .一直增大B .一直减小C .先增大后减小D .先减小后增大二、填空题(每小题3分,共18分)11.一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,则k ·b 的值是__2或-7__.12.若抛物线y =x 2+bx +c 与x 轴只有一个交点,且过点A (m ,n ),B (m +6,n ),则n =__9__.13.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是__m >1__.14.如图,直线x =2与反比例函数y =2x 和y =-1x 的图象分别交于A 、B 两点,若点P是y 轴上任意一点,则△P AB 的面积是__1.5__15.如图,点A 在双曲线y =6x 上,过点A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当OA =4时,则△ABC 周长为16.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8 m ,两侧距地面4 m 高处各有一盏灯,两灯间的水平距离为6 m ,则这个门洞的高度为__9.1__m.(精确到0.1 m)三、解答题(共52分)17.(6分)已知一次函数的图象与x 轴、y 轴分别交于点A (-2,0)、B (0,3).(1)求这个一次函数的解析式;(2)过点B 的另外一条直线l 与x 轴交于点C (c,0),若点A 、B 、C 构成面积不大于6的三角形,求c 的取值范围.解:(1)设一次函数解析式为y =kx +b ,把A (-2,0)、B (0,3)代入,得⎩⎪⎨⎪⎧-2k +b =0,b =3,解得⎩⎪⎨⎪⎧k =32,b =3,所以一次函数解析式为y =32x +3.(2)根据题意得12·3·|c +2|≤6,即|c +2|≤4,所以-6≤c ≤2且c ≠-2.18.(6分)在平面直角坐标系中,已知点A (4,0),点B (0,3),点P 从点A 出发,以每秒1个单位的速度在x 轴上向右平移,点Q 从B 点出发,以每秒2个单位的速度沿直线y =3向右平移,又P 、Q 两点同时出发,设运动时间为t 秒.(1)当t 为何值时,四边形OBPQ 的面积为8; (2)连接AQ ,当△APQ 是直角三角形时,求Q 的坐标.解:(1)设运动时间为t 秒,BQ =2t ,OP =4+t ,则S =12(3t +4)×3=8,解得t =49.(2)当∠QAP =90°时,Q (4,3);当∠QP A =90°时,Q (8,3);当∠AQP =90°时,不存在Q 点的坐标,故Q 点坐标为(4,3)、(8,3).19.(6分)如图1所示,在A 、B 两地之间有汽车站C 站,客车由A 地驶往C 站,货车由B 地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C 站的距离y 1、y 2(千米)与行驶时间x (小时)之间的函数关系图象.(1)填空:A 、B 两地相距__420__千米;(2)求两小时后,货车离C 站的路程y 2与行驶时间x 之间的函数关系式; (3)客、货两车何时相遇?解:(2)由图可知货车的速度为60÷2=30(千米/时),货车到达A 地一共需要2+360÷30=14(小时).设y 2=kx +b ,代入点(2,0)、(14,360),得⎩⎪⎨⎪⎧ 2k +b =0,14k +b =360,解得⎩⎪⎨⎪⎧k =30,b =-60,所以y 2=30x -60.(3)设y 1=mx +n ,代入点(6,0)、(0,360),得⎩⎪⎨⎪⎧ 6m +n =0,n =360,解得⎩⎪⎨⎪⎧m =-60,n =360,所以y 1=-60x +360.由y 1=y 2,得-60x +360=30x -60,解得x =143.故客、货两车经过143小时相遇.20.(6分)已知某市2017年企业用水量x (吨)与该月应缴的水费y (元)之间的函数关系如图.(1)当x ≥50时,求y 关于x 的函数关系式;(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量; (3)为贯彻省委发展战略,鼓励企业节约用水,该市自2019年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x 超过80吨,则除按2018年收费标准收取水费外,超过80吨部分每吨另加收x20元,若某企业2019年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y 关于x 的函数关系式y =kx +b .∵直线y =kx +b 经过点(50,200),(60,260),∴⎩⎪⎨⎪⎧ 50k +b =200,60k +b =260,解得⎩⎪⎨⎪⎧k =6,b =-100,∴y 关于x 的函数关系式是y =6x -100.(2)由图可知,当y =620时,x >50,∴6x -100=620,解得x =120.故该企业2018年10月份的用水量为120吨.(3)由题意得6x -100+x20(x -80)=600,化简,得x 2+40x -14 000=0,解得x 1=100,x 2=-140(不合题意,舍去).故这个企业2019年3月份的用水量是100吨.21.(6分)如图,已知抛物线y =ax 2+32x +c (a ≠0)与y 轴交于A (0,4),与x 轴交于B 、C两点,点C 坐标为(8,0),连接AB 、AC .(1)求抛物线的解析式;(2)判断△ABC 的形状,并说明理由.解:(1)∵抛物线y =ax 2+32x +c 与y 轴交于A (0,4),与x 轴交于B 、C 两点,点C 坐标为(8,0),∴⎩⎪⎨⎪⎧c =4,64a +12+c =0,解得⎩⎪⎨⎪⎧a =-14,c =4,∴抛物线的解析式为y =-14x 2+32x +4.(2)△ABC 为直角三角形,理由如下:当y =0时,即-14x 2+32x +4=0,解得x 1=8,x 2=-2,∴点B 的坐标为(-2,0).在Rt △ABO 中,AB 2=BO 2+AO 2=22+42=20.在Rt △ACO 中,AC 2=CO 2+AO 2=82+42=80.∵BC =OB +OC =2+8=10,∴在△ABC 中,AB 2+AC 2=20+80=102=BC 2,∴△ABC 是直角三角形.22.(7分)如图,已知A ⎝⎛⎭⎫-4,12,B (-1,2)是一次函数y =kx +b 与反比例函数y =mx (m ≠0,m <0)图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC 、PD ,若△PCA 和△PDB 面积相等,求点P 的坐标.解:(1)当-4<x <-1时,一次函数图象在反比例函数图象上方,故一次函数的值大于反比例函数的值.(2)设一次函数的解析式为y =kx +b .∵y =kx +b 的图象过点⎝⎛⎭⎫-4,12,(-1,2), ∴⎩⎪⎨⎪⎧-4k +b =12,-k +b =2,解得⎩⎨⎧k =12,b =52,故一次函数的解析式为y =12x +52.反比例函数y =mx图象过点(-1,2),则m =-1×2=-2.(3)连接PC 、PD ,设P ⎝⎛⎭⎫x ,12x +52.由△PCA 和△PDB 面积相等,得12×12×(x +4)=12×|-1|×⎝⎛⎭⎫2-12x -52,解得x =-52,则y =12x +52=54,∴点P 的坐标是⎝⎛⎭⎫-52,54. 23.(7分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y =-10x +500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?解:(1)当x =20时,y =-10x +500=-10×20+500=300,300×(12-10)=600,即政府这个月为他承担的总差价为600元.(2)依题意,得w =(x -10)(-10x +500)=-10x 2+600x -5000=-10×(x -30)2+4000.∵a =-10<0,∴当x =30时,w 有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000元.(3)由题意,得-10x 2+600x -5000=3000,解得x 1=20,x 2=40.∵a =-10<0,抛物线开口向下,∴结合图象可知:当20≤x ≤40时,w ≥3000.又∵x ≤25,∴当20≤x ≤25时,w ≥3000.设政府每个月为他承担的总差价为p 元,则p =(12-10)×(-10x +500)=-20x +1000.∵k =-20<0.∴p 随x 的增大而减小,∴当x =25时,p 有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.24.(8分)如图,已知抛物线y =-14x 2-12x +2与x 轴交于A 、B 两点,与y 轴交于点C .(1)求点A 、B 、C 的坐标;(2)点E 是此抛物线上的点,点F 是其对称轴上的点,求以A 、B 、E 、F 为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M ,使得△ACM 是等腰三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)令y =0,得-14x 2-12x +2=0,∴x 2+2x -8=0,解得x =-4或2,∴点A 坐标为(2,0),点B 坐标为(-4,0).令x =0,得y =2,∴点C 坐标为(0,2).(2)①AB 为平行四边形的边时,∵AB =EF =6,对称轴x =-1,∴点E 的横坐标为-7或5,∴点E 坐标为⎝⎛⎭⎫-7,-274或⎝⎛⎭⎫5,-274,此时点F ⎝⎛⎭⎫-1,-274,∴以A 、B 、E 、F 为顶点的平行四边形的面积为6×274=812;②当点E 在抛物线顶点时,点E ⎝⎛⎭⎫-1,94,设对称轴与x 轴交点为M ,令EM 与FM 相等,则四边形AEBF 是菱形,此时以A 、B 、E 、F 为顶点的平行四边形的面积为12×6×92=272.(3)如图所示,①当C 为顶点时,CM 1=CA ,CM 2=CA ,作M 1N ⊥OC 于点N .在Rt △CM 1N 中,CN =CM 21-M 1N 2=7,∴点M 1坐标为(-1,2+7),点M 2坐标为(-1,2-7);②当M 3为顶点时,∵直线AC 解析式为y =-x +2,线段AC 的垂直平分线为y =x ,∴点M 3坐标为(-1,-1);③以点A 为顶点的等腰三角形不存在.综上所述,点M 坐标为(-1,-1)或(-1,2+7)或(-1,2-7).《方程(组)与不等式(组)》综合检测卷 (时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.已知实数a 、b ,若a >b ,则下列结论错误的是( D ) A .a -7>b -7 B .6+a >b +6 C .a 5>b 5D .-3a >-3b2.已知x =2是方程2x +m -4=0的解,则m 的值为( C ) A .8 B .-8 C .0D .23.不等式组⎩⎪⎨⎪⎧x +1>0,1-13x >0的解集在数轴上表示正确的是( A )4.已知⎩⎪⎨⎪⎧ x =-1,y =2是二元一次方程组⎩⎪⎨⎪⎧3x +2y =m ,nx -y =1的解,则m -n 的值是( D )A .1B .2C .3D .45.一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是( C )A .4B .5C .6D .76.关于x 的方程m 2x 2-8mx +12=0至少有一个正整数解,且m 是整数,则满足条件的m 的值的个数是( B )A .5个B .4个C .3个D .2个7.为加快环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同.设现在平均每天植树x 棵,则列出的方程为( A )A .400x =300x -30B .400x -30=300xC .400x +30=300xD .400x =300x +308.大学生嘉嘉假期去图书馆做志愿者服务,并与图书馆达成如下协议:做满30天,图书馆将支付给他一套名著和生活费600元,但他在做到20天时,由于学校有临时任务,只能终止服务,图书馆只付出一套名著和300元,设这套名著的价格为x 元,则下面所列方程正确的是( B )A .x +60020=x +30030B .x +60030=x +30020C .x -60030=x -30020D .x -60020=x -300309.若解分式方程x -1x +4=mx +4时产生增根,则m =( D )A .1B .0C .-4D .-510.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( B )A .29人B .30人C .31人D .32人二、填空题(每小题3分,共18分)11.如果不等式(a -3)x <b 的解集是x <ba -3,那么a 的取值范围是__a >3__.12.方程x x -2 = 12-x的根x =__-1__.13.对于实数a 、b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4]__3或-3__. 14.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm ,长与宽的比为3∶2,则该行李箱的长的最大值为__78__cm.15.若方程x 2+2x -13=0的两根分别为m 、n ,则mn (m +n )=__26__.16.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为__80__元.三、解答题(共52分) 17.(6分)解方程(组):(1)⎩⎪⎨⎪⎧x -y =4, ①3x +y =16; ②解:(1)①+②,得4x =20,即x =5.将x =5代入①,得y =1,故⎩⎪⎨⎪⎧x =5,y =1.(2)(x -5)(x +4)=10;解:去括号、移项、整理,得x 2-x -30=0,解得x 1=-5,x 2=6. (3)1x -2-3=x -12-x. 解:去分母,得1-3(x -2)=-(x -1),整理,得-2x +6=0,解得x =3.经检验,x =3是原分式方程的根.18.(4分)解不等式组:⎩⎪⎨⎪⎧3x >x -6,x -12≤x +16,并把它的解集在数轴(如图)上表示出来.解:⎩⎨⎧3x >x -6,①x -12≤x +16,②由①,得x >-3.由②,得x ≤2.∴原不等式组的解集为-3<x ≤2.19.(6分)已知关于x 的方程2x 2+kx -1=0 (1)求证:方程有两个不相等的实数根;(2)若方程的一根是-1,求另外一个根及k 的值.(1)证明:b 2-4ac =k 2+8>0,即方程2x 2+kx -1=0有两个不相等的实数根.(2)解:把x =-1代入原方程,得2-k -1=0,所以k =1,即原方程为2x 2+x -1=0,解得x 1=-1,x 2=12,即另外一根为12.20.(6分)百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接五一劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?解:设每件童装应降价x 元.由题意,得(100-60-x )(20+2x )=1200,解得x 1=10,x 2=20.∵尽量减少库存,∴x =20,∴100-20=80(元),故每件童装应定价为80元.21.(7分)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元;(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问:每支售价至少是多少元?解:(1)设第一次每支铅笔进价为x 元.根据题意,得600x -60054x =30,解得x =4.经检验,x =4是原分式方程的解,故第一次每支铅笔的进价是4元.(2)设售价为y 元.根据题意,列不等式为6004×(y -4)+6004×54×(y -5)≥420,解得y ≥6.故每支售价至少是6元.22.(7分)阅读材料:我们知道:若几个非负数相加得零,则这些数必同时为零. 例如:①若(a -1)2+(b +5)2=0,则(a -1)2=0,(b +5)2=0,∴a =1,b =-5. ②若m 2-4m +n 2+6n +13=0,求m 、n 的值.解:∵m 2-4m +n 2+6n +13=(m 2-4m +4)+(n 2+6n +9)=0(将13拆成4和9,等式左边就出现了两个完全平方式),∴(m -2)2+(n +3)2=0, ∴(m -2)2=0,(n +3)2=0, ∴m =2,n =-3.根据你的观察,探究下面的问题:(1)已知x 2+2xy +2y 2-6y +9=0,求x y 的值;(2)已知a 、b (a ≠b )是等腰三角形的边长,且满足2a 2+b 2-8a -6b +17=0,求三角形的周长.解:(1)∵x 2+2xy +2y 2-6y +9=x 2+2xy +y 2+y 2-6y +9=(x +y )2+(y -3)2=0,∴x +y =0,y -3=0,∴y =3,x =-y =-3,∴x y =(-3)3=-27.(2)∵2a 2+b 2-8a -6b +17=2a 2-8a +8+b 2-6b +9=2(a 2-4a +4)+(b 2-6b +9)=2(a -2)2+(b -3)2=0,∴a -2=0,b -3=0,∴a =2,b =3.∴当a 为腰时,周长为7;当b 为腰时,周长为8.∴三角形的周长为7或8.23.(8分)如果方程x 2+px +q =0的两个根是x 1、x 2,那么x 1+x 2=-p ,x 1·x 2=q .请根据以上结论,解决下列问题:(1)已知关于x 的方程x 2+mx +n =0 (n ≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;(2)已知a 、b 满足a 2-15a -5=0,b 2-15b -5=0,求a b +ba的值;(3)已知a 、b 、c 均为实数,且a +b +c =0,abc =16,求正数c 的最小值.解:(1)设x 2+mx +n =0 (n ≠0)的两根为x 1、x 2.∴x 1+x 2=-m ,x 1·x 2=n .∴1x 1+1x 2=x 1+x 2x 1x 2=-m n ,1x 1·1x 2=1n .∴所求一元二次方程为x 2+m n x +1n=0,即nx 2+mx +1=0. (2)①当a ≠b 时,由题意知a 、b 是一元二次方程x 2-15x -5=0的两根,∴a +b =15,ab =-5.∴a b +b a =a 2+b 2ab =(a +b )2-2ab ab =152-2×(-5)-5=-47.②当a =b 时,a b +ba =1+1=2.综上,a b +ba=-47或2.(3)∵a +b +c =0,abc =16,∴a +b =-c ,ab =16c .∴a 、b 是方程x 2+cx +16c =0的两根,∴Δ=c 2-4×16c≥0.∵c >0,∴c 3≥64,∴c ≥4,∴c 的最小值为4.24.(8分)某小区准备新建60个停车位,以解决小区停车难的问题.已知新建2个地上停车位和3个地下停车位共需1.7万元;新建4个地上停车位和2个地下停车位共需1.4万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过14万元而不超过15万元,问共有几种建造方案? (3)对(2)中的几种建造方案,哪一种方案的投资最少?并求出最少投资金额.解:(1)设新建一个地上停车位需x 万元,新建一个地下停车位需y 万元.由题意,得⎩⎪⎨⎪⎧ 2x +3y =1.7,4x +2y =1.4,解得⎩⎪⎨⎪⎧x =0.1,y =0.5.故新建一个地上停车位需0.1万元,新建一个地下停车位需0.5万元.(2)设新建m 个地上停车位,由题意,得14<0.1m+0.5(60-m )≤15,解得37.5≤m <40,因为m 为整数,所以m =38或39,对应的60-m =22或21,故一共有2种建造方案.(3)当m =38时,投资0.1×38+0.5×22=14.8(万元),当m =39时,投资0.1×39+0.5×21=14.4(万元),故当地上建39个车位,地下建21个车位时,投资最少,金额为14.4万元.《图形及其变化》综合检测卷(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列美丽的图案中,既是轴对称图形又是中心对称图形的有(C)A.1个B.2个C.3个D.4个2.如图是某几何体的三视图,该几何体是(B)A.圆锥B.圆柱C.棱柱D.正方体3.一个正方体的每个面上都写有一个汉字,如图,在该正方体中,和“超”相对的字是(C)A.沉B.信C.自D.着4.如图是由4个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形不可能是(C)5.如图,将△ABC沿BC方向平移2 cm得到△DEF,若△ABC的周长为16 cm,则四边形ABFD的周长为(C)A.16 cm B.18 cmC.20 cm D.22 cm6.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是( C )A .(2,10)B .(-2,0)C .(2,10)或(-2,0)D .(10,2)或(-2,0)7.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标为( C )A .(3,1)B .(3,3)C .(4,4)D .(4,1)8.如图,在△ABC 中,AB =AC ,∠ABC =70°,以B 为圆心,任意长为半径画弧分别交AB 、BC 于点E 、F ,再分别以点E 、F 为圆心、以大于12EF 长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则∠BDC 为( B )A .65°B .75°C .80°D .85°9.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为( B )A .35B .45C .23D .3210.如图,△AOB 为等腰三角形,AO =AB ,顶点A 的坐标为(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A ′O ′B ,点A 的对应点A ′在x 轴上,则点O ′的坐标为( C )A .⎝⎛⎭⎫203,103B .⎝⎛⎭⎫163,435 C .⎝⎛⎭⎫203,435D .⎝⎛⎭⎫163,43二、填空题(每小题3分,共18分)11.在平面直角坐标系中,点A 的坐标是(2,-3),作点A 关于x 轴的对称点,得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是__(-2,3)__.12.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为__12__.13.如图,矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE =OD ,则AP 的长为__245__.14.如图,已知Rt △ABC 中,∠ACB =90°,AC =6,BC =4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF =__5__.15.如图,将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC的中点E的对应点为F,则∠EAF的度数是__60°__.16.如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2020的直角顶点的坐标为__(8076,0)__.三、解答题(共52分)17.(6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为__(2,7)__,点C的坐标为__(6,5)__;(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1,若M为△ABC内的一点,其坐标为(a,b),则平移后点M1的坐标为__(a-7,b)__;(3)以原点O为位似中心,将△ABC缩小,使变换后的△A2B2C2与△ABC对应边的比为1∶2,请在网格内画出一个△A2B2C2,则点A2的坐标为__(1,3.5)__.18.(6分)如图,已知四边形ABCD是平行四边形.(1)用直尺和圆规作出对角线AC的垂直平分线,分别交AD、BC于E、F;(保留作图痕迹,不写作法)(2)在(1)作出的图形中,连接CE、AF,若AB=4,BC=8,且AB⊥AC,求四边形AECF 的周长.解:(1)如图所示:(2)根据作图,易知四边形AECF 是菱形,∴AF =FC ,∴∠F AC =∠FCA .∵AB ⊥AC ,∴∠BAC =90°,∴∠BAF +∠F AC =90°,∠B +∠FCA =90°,∴∠B =∠BAF ,∴AF =BF ,∴BF =FC .∴四边形AECF 的周长=4FC =2BC =16.19.(6分)如图,小明家窗外有一堵围墙AB ,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C 射进房间的地板F 处,中午太阳光恰好能从窗户的最低点D 射进房间的地板E 处,小明测得窗子距地面的高度OD =0.8 m ,窗高CD =1.2 m ,并测得OE =0.8 m ,OF =3 m ,求围墙AB 的高度.解:延长OD .∵DO ⊥BF ,∴∠DOE =90°.∵OD =0.8 m ,OE =0.8 m ,∴∠DEB =45°.∵AB ⊥BF ,∴∠BAE =45°,∴AB =BE ,设AB =EB =x m .∵AB ⊥BF ,CO ⊥BF ,∴AB ∥CO ,∴△ABF ∽△COF ,∴AB BF =CO OF ,即x x +(3-0.8)=1.2+0.83,解得x =4.4.经检验,x =4.4是原方程的解.故围墙AB 的高度是4.4 m.20.(6分)如图,菱形OABC 的顶点A 的坐标为(2,0),∠COA =60°,将菱形OABC 绕坐标原点O 逆时针旋转120°得到菱形ODEF .(1)直接写出点F 的坐标;(2)求线段OB 的长及图中阴影部分的面积.解:(1)(-2,0).(2)连接OE 、OB 、AC ,OB 与AC 相交于点H .∵菱形OABC 中,OA =2,∠COA =60°,∴∠BOC =∠BOA =30°,OB ⊥AC ,∴OB =2OH =2OA ·cos ∠BOA =2×2×32=23,CH =AH =OA ·sin ∠BOA =2×12=1.∵将菱形OABC 绕坐标原点O 逆时针旋转120°得到菱形ODEF ,∴∠BOE=120°.S 阴影=S 扇形OBE -2S △OBC =120π×(23)2360-2×12×23×1=4π-2 3.21.(7分)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求A 与A 1,B 与B 1,C 与C 1相对应)(2)作出△ABC 绕点C 顺时针方向旋转90°后得到的△A 2B 2C ;(3)在(2)的条件下直接写出点B 旋转到B 2所经过的路径的长.(结果保留π)解:(1)△A 1B 1C 1如图所示. (2)△A 2B 2C 如图所示. (3)根据勾股定理,BC =12+42=17,所以点B 旋转到B 2所经过的路径的长=π217.22.(7分)如图,点O 为平面直角坐标系的原点,点A 在x 轴的正半轴上,正方形OABC 的边长是3,点D 在AB 上,且AD =1.将△OAD 绕着点O 逆时针旋转得到△OCE .(1)求证:OE ⊥OD ;(2)在x 轴上找一点P ,使得PD +PE 的值最小,求出点P 的坐标.(1)证明:∵将△OAD 绕着点O 逆时针旋转得到△OCE ,∴∠AOD =∠COE .∵四边形OABC 是正方形,∴∠AOC =90°,∴∠AOD +∠COD =∠COE +∠COD =90°,即∠DOE =90°,∴OE ⊥OD .(2)解:∵OA =3,AD =1,∴D (3,1).作点D 关于x 轴对称的点F ,连接EF 交x 轴于点P ,此时,PD +PE 的值最小.∵D (3,1),∴F (3,-1).∵将△OAD 绕着点O 逆时针旋转90°得到△OCE ,∴E (-1,3).设直线EF 的解析式为y =kx +b ,∴⎩⎪⎨⎪⎧ 3=-k +b ,-1=3k +b ,∴⎩⎪⎨⎪⎧k =-1,b =2,∴直线EF 的解析式为y =-x +2.当y =0时,x =2,∴P (2,0).23.(7分)如图,一伞状图形,已知∠AOB =120°,点P 是∠AOB 平分线上一点,且OP =2,∠MPN =60°,PM 与OB 交与点F ,PN 与OA 交于点E .(1)如图1,当PN 与PO 重合时,探索PE 、PF 的数量关系;(2)如图2,将∠MPN 在(1)的情形下绕点P 逆时针旋转α(0<α<60°),继续探索PE 、PF 的数量关系,并求四边形OEPF 的面积.解:(1)∵∠AOB =120°,OP 平分∠AOB ,∴∠POF =60°.∵∠MPN =60°,∴△PEF 是等边三角形,∴PE =PF .(2)过点P 作PQ ⊥OA ,PH ⊥OB .∵OP 平分∠AOB ,∴PQ =PH ,∠PQO =∠PHO =90°.∵∠AOB =120°,∴∠QPH =60°=∠MPN ,∴∠QPE +∠EPH =∠FPH +∠EPH ,∴∠QPE =∠HPF .在△QPE 和△HPF 中,⎩⎪⎨⎪⎧∠EQP =∠FHP ,PQ =PH ,∠QPE =∠HPF ,∴△QPE ≌△HPF ,∴PE =PF ,S 四边形OEPF =S 四边形OQPH .∵PQ⊥O A ,PH ⊥OB ,OP 平分∠AOB ,∴∠QPO =30°,∴OQ =1,QP =3,∴S △OPQ =32,∴S 四边形OEPF =2S △OPQ =3.24.(7分)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为22的正方形AEFG 按图1位置放置,AD 与AE 在同一直线上,AB 与AG 在同一直线上.(1)小明发现DG ⊥BE ,请你帮他说明理由;(2)如图2,小明将正方形ABCD 绕点A 逆时针旋转,当点B 恰好落在线段DG 上时,请你帮他求出此时BE 的长;(3)如图3,小明将正方形ABCD 绕点A 继续逆时针旋转,使线段DG 与线段BE 相交,交点为H ,写出△GHE与△BHD 面积之和的最大值,并简要说明理由.解:(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB.延长EB交DG于点H.在△ADG中,∵∠AGD+∠ADG =90°,∴∠AEB+∠ADG=90°,∴∠DHE=90°,∴DG⊥BE.(2)∵AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG =∠BAE,∴△ADG≌△ABE(SAS),∴DG=BE.过点A作AM⊥DG交DG于点M,则∠AMD=∠AMG =90°.∵BD为正方形ABCD的对角线,∴∠MDA=45°.在Rt△AMD中,∵∠MDA=45°,AD=2,∴DM=AM= 2.在Rt△AMG中,根据勾股定理,得GM=AG2-AM2=6,∴DG=DM+GM=2+6,∴BE=DG=2+ 6.(3)△GHE和△BHD面积之和的最大值为6.理由如下:∵对于△GHE,点H在以EG为直径的圆上,∴当点H与点A重合时,△GHE的面积最大.∵对于△BHD,点H在以BD为直径的圆上,∴当点H与点A重合时,△BHD的面积最大,∴△GHE和△BHD面积之和的最大值为2+4=6.《三角形》综合检测卷(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列长度的三条线段,可以组成三角形的是(B)A.10、5、4B.3、4、2C.1、11、8D.5、3、82.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是(C)A.10B.9C.8D.63.如图,已知∠ABC=∠BAD.下列条件中,不能作为判定△ABC≌△BAD的条件的是(D)A.∠C=∠D B.∠BAC=∠ABDC.BC=AD D.AC=BD。
中考数学数与式专题训练50题含答案
中考数学数与式专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.下列四个数中,是无理数的是( )A B .1π3 C .52 D .3.142.﹣2的相反数为( )A .0B .﹣1C .﹣2D .23a 的取值范围是( )A .1a ≥-B .0a ≠C .1a >-D .0a > 4.下列多项式相乘,能用平方差公式计算的是( )A .()()22x x ++B .()()x y x y -+-C .()()22x y x y -+D .()()x y x y --+ 5.计算(﹣20)+17的结果是( )A .﹣3B .3C .﹣2017D .20176﹣5的结果为( )A .5B .5C .6D .17.下列计算正确的是( )A .336a a a +=B .336a a a ⋅=C .()325a a =D .33()ab ab =8.当 x =-3 )A .3B .-3C .±3 D9.点P (2a +1,4)与P '(1,3b -1)关于原点对称,则2a +b =( )A .3B .-2C .-3D .210.科学家使用某技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.用科学记数法表示数据0.00000000022,其结果是( ) A .90.2210-⨯ B .102.210-⨯ C .112210-⨯ D .80.2210-⨯ 11.下列运算不能运用平方差公式的是( )A .(23)(23)m m +-B .(23)(23)m m -+-C .(23)(23)m m ---D .(23)(23)m m -+-- 12.下面四个数中,最大的数是( )A .4-B .1-C .0D .513.下列计算正确的是( )A .2323()n n x x +=B .233262)((())a a a +=C .23236))((()a b a b +=+D .22[(])n n x x -=14.计算2a 2·3a 3的结果为( )A .6a 5B .-6a 5C .6a 6D .-6a 6 15.下列计算正确的是( )AB .2=C 2D 32 16.在式子“322(1)--中”的“○”内填入下列运算符号,计算后结果最大的是( ) A .+B .-C .×D .÷ 17.计算()()()()()()x c b c b c x a x b a b x b b a x a ---++------所得的结果是( ) A .x c - B .x a - C .1x a - D .1-x b18.下列各数中,是有理数的是( )A .面积为3的正方形的边长B .体积为8的正方体的棱长C .两直角边分别为2和3的直角三角形的斜边长D .长为3,宽为2的长方形的对角线长19.下列各题中的两项是同类项的是( )A .23x y 和-23x y ;B .22a b 和20.2ab ;C .11abc 和9bc ;D .26和2x .二、填空题20.要使式子2x x -有意义,则x 的取值范围______. 21.已知,2253a b ab a b +==+=,,______________.22.比较大小: 1.5-____34-(用<,>,= 填空).23.如果一个数的立方根是6,则它相反数的立方根是______,它倒数的立方根是____.24.苏州公共自行车自2010年起步至今,平均每天用车量都在10万人次以上,在全国公共自行车行业排名前五名.根据测算,日均10万多人骑行公共自行车出行,意味着苏州每年因此减少碳排放6865.65吨,相当于种树近22.7万棵,对数据6865.65吨按精确到0.1吨的要求取近似值可表示为___吨.25.已知:3a b +=,则代数式22(1)(1)484a b a ab b ab ++----=__________. 26.116-的相反数是______,倒数是______,绝对值是______.27.下列代数式中的哪些是单项式,哪些是多项式,哪些是整式?3x y z ++,4xy ,1a ,22m n ,x 2+x +1x ,0,212x x -,m ,﹣2.01×105 整式集合:{_______________ …}单项式集合:{__________ …}多项式集合:{_______________…}.28m =_____. 29.若4m n -=,则228m n n --=______.30x 的取值范围是____________.31x 的取值范围为_____.32.若1139273m m ⨯⨯=,则m=__________.33_______4(填“>”“<”或“=”).34.计算:(22=_____.35.计算:(1)-5+7-15-4+2=_______________;(2)-0.5+4.3-9.6-1.8=_____________;(3)111113266--+=____________. 36.已知a 与b 互为相反数,c 、d 互为倒数,x 的绝对值是2,y 不能作除数,则()201122012010122()a b cd y x+-++的值等于_____. 37.已知关于x 的多式225x x k -+的一个因式是3x +,则k 的值是__.38.()()2312x x n x ax ++=++,则a 的取值____39.23(2)x y y ⎛⎫-⋅- ⎪⎝⎭=_____________.三、解答题40)2 41.解答下列问题.(1)|1(.(2)已知:2(5)49x +=,求x 的值.42.若36xy =,且5x y -=.(1)求()()22x y -+的值;(2)求22x xy y x y -+++的值.43.计算:11021|27(2022)----. 44.如图,点A 、B 、C 、D 分别表示四个高铁车站的位置.(1)用含a 、b 的代数式表示B 、D 两站之间的距离是 ;(最后结果需化简)(2)若已知B 、D 两站之间的距离是80km ,求A 、B 两站之间的距离.45.已知有理数a ,b ,c 在数轴上所对应的点分别为点A ,B ,C ,且a b =-,()2130a c ++-=.(1)求a ,b ,c 的值;(2)若将数轴折叠,使点A 与点C 重合.数轴上M ,N 两点经过上述折叠后重合,且M ,N 两点之间的距离为2022,则M 表示的数为______,N 表示的数为______.(点M 在点N 的左侧)(3)若点P 为数轴上一动点,其对应的数为x ,当点P 在点B 与点C 之间时,化简式子:31124x x x +--+-(写出化简过程).46.如图,a ,b ,c 是数轴上三个点A 、B 、C 所对应的实数.(1)将a ,b ,c ,0由大到小排列(用“>”连接)__________________;(2)a b -______0;b c -______0(填写“>”,“=”,“<”)(3)试化简:a b --47.算一算:(1)()()2228233m m m m ⋅⋅-; (2)()()53253a b ⎡⎤⋅⎢⎥⎣⎦; (3)()()453t t t -⋅-⋅-;(4)已知24m n a a ==,,求32m n a +的值;(5)已知2328162x ⨯⨯=,求x 的值.48.计算:(1)(﹣8)+10﹣(﹣2)+(﹣1)(2)()2721149353⎛⎫÷--⨯- ⎪⎝⎭ . 49.已知有A 、B 两种不同规格的货车共50辆,现计划分两趟把甲种货物306吨和乙种货物230吨运往某地,先用50辆货车共同运输甲种货物,再开回共同运输乙种货物.其中每辆车的最大..装载量如表:(1)装货时按此要求安排A 、B 两种货车的辆数,共有几种方案.(2)使用A 型车每辆费用为600元,使用B 型车每辆费用800元.在上述方案中,哪个方案运费最省最省的运费是多少元?(3)在(2)的方案下,现决定对货车司机发共2100元的安全奖,已知每辆A 型车奖金为m 元,每辆B 型车奖金为n 元,38m n <<,且m ,n 均为整数.则m =___________,n =____________.参考答案:1.B【分析】根据无理数的三种形式:①开方开不尽的数,①无限不循环小数,①化简后含有π的数,结合所给数据进行判断即可.【详解】A 3=是整数,不是无理数,故A 不符合题意;B 、1π3是无理数,故B 符合题意; C 、52是分数,不是无理数,故C 不符合题意; D 、3.14是有限小数,不是无理数,故D 不符合题意;故选:B .【点睛】本题考查了无理数的定义,解答本题的关键是熟悉无限不循环小数是无理数. 2.D【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【详解】解:﹣2的相反数为2故选D【点睛】本题考查了相反数的定义,理解相反数的定义是解题的关键.3.A【分析】根据二次根式有意义:被开方数为非负数可得出x 的取值范围.【详解】解:①①10a +≥ ,解得:1a ≥-.故选:A .【点睛】本题考查了二次根式有意义的条件,要求同学们掌握二次根式有意义则被开方数为非负数.4.C【分析】根据平方差公式:两个数的和乘两个数的差,等于两个数的平方差,字母表示为:(a +b )(a −b )=22a b -,找出整式中的a 和b ,进行判定即可.【详解】解:A 、(x +2)(x +2)=()2+2x ,不符合平方差公式的特点,故选项A 错误; B 、(−x +y )(x −y )=()2x y --,不符合平方差公式的特点,故选项B 错误;C、(2x−y)(2x+y)=224x y,符合平方差公式的特点,故选项C正确;D、(−x−y)(x+y)=()2-不符合平方差公式的特点,故选项D错误.x y+故选:C.【点睛】此题考查了平方差公式,注意抓住整式的特点,灵活变形是解题关键.5.A【分析】原式利用异号两数相加的法则计算即可得到结果.【详解】解:原式=-(20-17)=-3故选A.【点睛】本题考查了有理数的加法,熟练掌握加法法则是解本题关键.6.D【分析】根据二次根式的乘法法则即可得.【详解】解:原式5,65=-,=,1故选:D.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则是解题关键.7.B【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方等知识点进行判定即可.【详解】解:A. 333+=,选项计算错误,不符合题意;2a a aB. 336⋅=,选项计算正确,符合题意;a a aC.()326a a=,选项计算错误,不符合题意;D. 333ab a b=,选项计算错误,不符合题意;()故选:B.【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、积的乘方的运算,熟练掌握运算法则是解本题的关键.8.A【分析】把x=-3代入二次根式进行化简即可求解.【详解】解:当x =-33==.故选A.【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键.9.C【分析】根据平面直角坐标系中任意一点(),P x y ,关于原点的对称点是(),x y --可得到a b ,的值,再代入2a b +中可得到答案.【详解】解:点P (2a +1,4)与P '(1,3b -1)关于原点对称,则211a +=-,314b -=-,解得1a =-,1b ,23a b +=-,故选C .【点睛】此题主要考查了坐标系中的点关于原点对称的坐标特点,根据关于原点对称点的坐标特点求出a b ,的值是解答本题的关键.10.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:100.00000000022 2.210-=⨯.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要确定a 的值以及n 的值.11.B【分析】依据平方差公式的特点进行判断即可.【详解】解:A 、(23)(23)m m +-符合平方差公式;B 、2(23)(23)(23)(23)(23)m m m m m -+-=---=--,不符合平方差公式; C 、(23)(23)(23)(23)m m m m ---=-+-符合平方差公式;D 、(23)(23)m m -+--符合平方差公式.故选B .【点睛】此题考查完全平方公式,平方差公式,解题关键在于掌握计算公式.12.D【分析】根据正数都大于0,负数都小于0,两个负数比较大小,绝对值大的反而小进行求解即可.【详解】①-4<-1<0<5,①最大的数是5,故选D.【点睛】本题考查了有理数大小的比较,熟练掌握有理数大小比较的方法是解题的关键.13.D【分析】根据幂的乘方法则,合并同类项法则依次分析各项即可.【详解】解:A、(x2n)3=x6n,故本选项错误;B.(a2)3+(a3)2=a6+a6=2a6,(a6)2=a12,故本选项错误;C.(a2)3+(b2)3=a6+b6≠(a+b)6,故本选项错误;D.[(-x)2]n=x2n,本选项正确.故选D.【点睛】本题考查了幂的乘方法则,合并同类项法,解答本题的关键是熟练掌握幂的乘方法则:幂的乘方,底数不变,指数相乘;合并同类项法则:把同类项的系数相加,字母和字母的指数不变.14.A【分析】根据单项式乘单项式的运算法则进行运算即可.【详解】原式=6a5.故选A.【点睛】本题考查了单项式乘单项式的知识,属于基础题.15.D【分析】根据二次根式的运算法则可以对各个选项的正误作出判断.【详解】AB、=C=D3322=÷=,选项正确.故选D.【点睛】本题考查二次根式的运算,熟练掌握二次根式的运算法则是解题关键.16.A【分析】分别按各选项求出结果,然后比较即可.【详解】解:①328-=-,()211-=①-8+1=-7,-8-1=-9,-8×1=-8,-8÷1=-8,①-7>-8=-8>-9,①计算结果最大的是-7.故选:A.【点睛】本题主要考查了有理数的乘方和混合运算,掌握n a表示n个a相乘是解题的关键.17.C【分析】通过分式的加法法则,即可求解.【详解】原式=()()()()()() ()()()()()()()()() x c a b b c x a x b b cx a x b a b x a x b a b x a x b a b ------+----------=2()()()()()()()()() ax bx ac bc bx ab cx ac bx cx b bc x a x b a b x a x b a b x a x b a b --+--+--++----------=2+()()()()ax bx ac bc bx ab cx ac bx cx b bcx a x b a b--+--+---+---=2+()()()()ax bx ac bc bx ab cx ac bx cx b bcx a x b a b--+--+---+---=2+ ()()() ax ab bx bx a x b a b-----=()() ()()() a x b b x b x a x b a b------=()() ()()()a b x bx a x b a b-----=1 () x a -.故选C.【点睛】本题主要考查分式的加法法则,掌握分式的通分和约分,是解题的关键. 18.A【详解】A选项:面积为3B选项:体积为8,是有理数,此选项正确;C 、两直角边分别为2和3=,是无理数,此选项错误;D 、长为3,宽为2误.故选A.19.A【分析】同类项是指所含字母相同并且相同字母的指数也分别相等的项,根据同类项的定义判断并选出正确答案.【详解】23x y 和-23x y 是同类项,A 正确;22a b 和20.2ab 不是同类项,B 错误;11abc 和9bc 不是同类项,C 错误; 26和2x 不是同类项,D 错误;正确答案选A.【点睛】本题主要考查学生对同类项的定义的掌握,能够熟练的判断出两个式子是否是同类项是解答本题的关键.20.2x ≠【分析】根据分式的分母不为零,即20x -≠即可解答. 【详解】2x x -有意义, ∴20x -≠ 2x ∴≠【点睛】本题考查了分式有意义的条件,熟练掌握方式有意义的条件即“当分母不为零时,分式有意义”是解本题的关键.21.19【分析】根据完全平方公式将5a b +=两边平方,已知3ab =,由此即可求解.【详解】解:5a b +=两边平方得,22()5a b +=,即22225a ab b ++=,①3ab =,①22252252319a b ab +=-=-⨯=,故答案是:19.【点睛】本题主要考查的完全平方公式的应用,理解和掌握完全平方公式及其配方法是解题的关键.22.<【分析】直接根据有理数大小比较方法:正数大于0,负数小于0,正数大于负数,两个负数绝对值大的反而小,判断即可.【详解】解: 1.5-<34-, 故答案为:<.【点睛】本题考查了有理数的大小比较,熟练掌握有理数的大小比较方法是解本题的关键.23. -6 16【分析】根据立方根的概念求解.【详解】如果一个数的立方根是6,则这个数为216∴6=-16=. 故答案为:6-,16. 【点睛】本题考查了求一个数的立方根,熟练掌握概念是解题的关键.24.6865.7.【详解】试题分析:求近似值,在一般情况下,无特殊要求就用“四舍五入”, 对数据6865.65吨按精确到0.1吨的要求取近似值可表示为 6865.7吨.考点:近似值.25.-32【分析】先根据多项式乘以多项式展开,根据完全平方公式凑完全平方公式,再将3a b +=整体代入求解即可.【详解】解:22(1)(1)484a b a ab b ab ++----=()214ab a b a b ab +++-+- ()241a b a b =+-++当3a b +=时,原式23431=-⨯+43632=-=-故答案为:32-【点睛】本题考查了多项式的乘法,完全平方公式,整体代入是解题的关键.26. 116##76 67- 116##76 【分析】依据相反数、倒数、绝对值的定义求解,要区分清楚这三个容易混淆的概念,求带分数的倒数时,应先把带分数化成假分数后再求倒数. 【详解】-=-17166, ①116-的相反数是116,倒数是67-,绝对值是116. 故答案为:①116,①67-,①116. 【点睛】此题考查了相反数、绝对值和倒数的性质,要求掌握相反数、绝对值和倒数的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.27. 3x y z ++,4xy ,22m n ,0,m ,﹣2.01×105… 4xy ,22m n ,0,m ,﹣2.01×105 (3)x y z ++ 【分析】根据整式、单项式、多项式的定义判断后选出即可.【详解】解:整式集合:{3x y z ++,4xy ,22m n ,0,m ,﹣2.01×105 …}; 单项式集合:{ 4xy ,22m n ,0,m ,﹣2.01×105 …}; 多项式集合:{3x y z ++ …}. 故答案为:3x y z ++,4xy ,22m n ,0,m ,﹣2.01×105…;4xy ,22m n ,0,m ,﹣2.01×105 …;3x y z ++ 【点睛】本题考查了对单项式,多项式,整式的定义的理解和运用,注意:整式包括多项式和单项式,数与字母的积是单项式,单个的数与单个的字母也是单项式,若干个单项式的和组成的代数式叫做多项式.28.1【分析】根据同类二次根式的被开方数相同可得出关于m 的方程,解出即可.【详解】解:①①13m m +=-,解得:1m =.故答案为:1【点睛】本题考查了同类二次根式的知识,一元一次方程,注意掌握同类二次根式化为最简二次根式后被开方数相同且根指数均为2.29.16【分析】将原式化简然后整体代入即可解决问题.【详解】解:①4m n -=,①228m n n --=)8()m m n n n -+-(=)8m n n +-4(=4()m n -=4×4=16.故答案为:16.【点睛】本题考查了因式分解的应用,解决本题的关键是掌握提公因式法分解因式. 30.x≥0且x≠2.【详解】试题分析:根据题意得:x≥0且x ﹣2≠0,解得:x≥0且x≠2.考点: 二次根式有意义的条件;分式有意义的条件.31.x≥﹣4【详解】分析:根据二次根式有意义的条件:被开方数为非负数,列不等式求解. 详解:根据题意得x+4≥0解得x≥-4.故答案为x≥-4.点睛:此题主要考查了二次根式有意义的条件,关键是明确二次根式的被开方数为非负数,比较简单,是常考题型.32.2【分析】把左边先逆用幂的乘方法则变形,再根据同底数幂的乘法计算,然胡两边比较即可求出m 的值.【详解】解:①1139273m m ⨯⨯=,①23113333m m ⨯⨯=,①511133m +=,①5m+1=11,①m=2.故答案为:2.【点睛】本题考查了同底数幂的乘法、以及幂的乘方法则,熟练掌握运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘. 33.<【分析】先求出328=,3464=,根据2864<即可得出答案.【详解】解:①328=,3464=, 又①2864<,4<.故答案为:<.【点睛】本题主要考查了立方根,以及实数的大小比较,关键是掌握实数的大小比较方法.34.6-【分析】直接利用完全平方公式以及二次根式的混合运算法则化简得出答案.【详解】解:原式=4+2﹣=6﹣.故答案为:6﹣.【点睛】本题主要考查完全平方公式以及二次根式的混合运算,掌握相关知识和运算法则是解题的关键.35. -15 -7.6 56 【详解】试题分析:进行有理数的加减混合运算时,可先统一成加法,再运用加法交换律,结合律进行运算.(1)-5+7-15-4+2=-5+7+(-15)+(-4)+2=-5+(-15)+[7+(-4)+2]=-15; (2)-0.5+4.3-9.6-1.8=(-0.5-1.8+4.3)-9.6=-7.6;(3)111113266--+=11115132666⎛⎫-+-+= ⎪⎝⎭ 36. 2.5-或 1.5-【分析】根据相反数、倒数、绝对值的定义得到a+b=0,cd=1,x=±2,y=0,再分别代入所求的代数式中,然后先算乘方,再算加减运算.【详解】解:①a 与 b 互为相反数,c 、d 互为倒数,x 的绝对值是2的相反数的负倒数,y 不能作除数,①a+b=0,cd=1,x=±2,y=0①当a+b=0,cd=1,x=2,y=0时,原式=2011201020121202102⨯-⨯++ =2×0-2×1+12+0=0-2+2-0= 1.5-;当a+b=0,cd=1,x=-2,y=0时,原式=20112010201212021-02⨯-⨯+ =2×0-2×1-12+0 =0-2-12-0= 2.5-;故答案为 2.5-或 1.5-【点睛】本题考查了有理数混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.掌握互为相反数的两个数和为0,互为倒数的两数的积为1是解题的关键. 37.33-【分析】设另一个因式为(2)x n -,根据多项式乘以多项式展开,左右两边对比得到等量关系求解即可;【详解】设另一个因式为(2)x n -,则2(2)(3)2(6)3x n x x n x n -+=+--,即()2225263x x k x n x n -+=+--, ∴653n k n -=-⎧⎨=-⎩, 解得1133n k =⎧⎨=-⎩, 故答案为:33-.【点睛】本题主要考查了多项式乘以多项式的应用,准确计算是解题的关键. 38.7【分析】将原式左侧进行展开后,先根据3n 求出n 的值,然后利用a=n+3即可求解.【详解】将原式左端进行展开,()223312x n x n x ax +++=++①3n=12①n=4①a=3+4=7故答案为7.【点睛】本题考查了因式分解,本题的关键是将等式的左端展开,然后进行比对. 39.-8x 2y【分析】根据幂的乘方与积的乘方计算即可【详解】原式=232(8)x y y ⨯-=-8x 2y【点睛】此题考查幂的乘方与积的乘方,掌握运算法则是解题关键40.85--【分析】直接利用二次根式的性质和立方根的性质分别化简得出答案.【详解】解:7125=-+--735=-+-85=--【点睛】此题主要考查了实数运算,正确化简各数是解题关键.41.(1)7(2)122,12x x ==-【分析】(1)先逐项化简,再算加减即可;(2)利用平方根化简,再进行计算即可.【详解】(1)解:原式=(61)(2)+--+,=612+=7;(2)解:由原式得5757x x +=+=-,12212x x ==-,.【点睛】本题考查了实数的混合运算和平方根的运算,解决此题的关键是熟练的运用运算法则进行求解.42.(1)42(2)74或48【分析】(1)将原式变形为()24xy x y +--,再代入求解即可;(2)利用()()224x y x x y y +=-+先求出x y +的值,再将原式变形为()()2x y xy x y -+++,代入即可求解.(1) ()()22x y -+224xy x y =+--()24xy x y =+--,①36xy =,5x y -=,①原式()243625442xy x y =+--=+⨯-=,即结果为42;(2)①()()224x y x x y y +=-+,36xy =,5x y -=,①()222543616913x y +=+⨯==,①x y +的值为13±,22x xy y x y -+++ 222x xy y x y xy =-++++()()2x y xy x y =-+++,当13x y +=时,原式()()225361374x y xy x y =-+++=++=;当13x y +=-时,原式()()225361348x y xy x y =-+++=+-=;即结果为74或者48.【点睛】本题主要考查了多项式乘多项式及完全平方公式,掌握多项式乘多项式的运算法则及完全平方公式是解题的关键.43.0【分析】先根据绝对值的意义,分数指数幂,负整数指数幂和零指数幂的运算法则进行化简,然后再根据实数混合运算法则进行运算即可.【详解】解:原式11121-0=【点睛】本题主要考查了实数的混合运算,熟练掌握绝对值的意义,分数指数幂,负整数指数幂和零指数幂的运算法则,是解题的关键.44.(1)2a-3b (2)90km【详解】试题分析: (1)根据两点间的距离列出代数式即可;(2)根据两点间的距离列出AB 的代数式进行解答即可.试题解析:(1)用含a 、b 的代数式表示B. D 两站之间的距离是a −2b +a −b =2a −3b ;故答案为2a −3b ;(2)由题意可知:2a −3b =80kmAB =(5a −8b −70)−(a −2b )=4a −6b −70=160−70=90,①A 、B 两站之间的距离是90km.45.(1)1a =-,1b =,3c =.(2)-1010,1012.(3)12【分析】(1)根据偶次方的非负性,绝对值的非负性由非负数和为0可得方程,进而求出a 、c 、b ,(2)先找到对折点,再根据M ,N 两点之间的距离为2022,可得它们到对折点的距离为1011以及点M 在点N 的左侧可得答案;(3)根据点P 的位置得出13x <<,再化简绝对值,进行整式运算即可解答.【详解】(1)解:根据题意得:10a +=,30c -=,解得:①1a =-,3c =,又①a b =-,①1b =,综上所述:1a =-,1b =,3c =.(2)解:①1a =-,3c =,将数轴折叠,使点A 与点C 重合. 故对折点所表示的数为-1+3=12, ①M ,N 对折点所表示的数也是1,①M ,N 两点之间的距离为2022,点M 在点N 的左侧,故点M 表示的数为1-1011=-1010,点M 表示的数为1+1011=1012,故答案为:-1010,1012.(3)解:①当点P 在点B 与点C 之间时,1b =,3c =.①13x <<,①10x ->,10x +>,40x -<, ①31124x x x +--+-=3(1)(1)2(4)x x x +----=33+12+8x x x +--,=12.【点睛】本题考查了偶次方的非负性,绝对值的非负性,数轴上的点之间的距离、绝对值的化简、整式加减等知识,数形结合是解题的关键.46.(1)0c a b >>>(2)>,<(3)2b【分析】(1)数轴上,越往左数字越小,越往右数字越大,据此即可作答;(2)根据(1)中的结果,结合不等式的性质即可作答;(3)根据(2)中的结果去绝对值和根号,即可得解.【详解】(1)根据数轴上各数的位置,有:0c a b >>>,故答案为:0c a b >>>;(2)在(1)中有0c a b >>>,①a b >,c b >,①0a b ->,0c b ->,①0b c -<,故答案为:>,<;(3)①0a b ->,0c b ->,①a b --()()()a b a c c b =--++--a b a c c b =-+++-+2b =,故答案为:2b .【点睛】本题考查了利用数轴比较实数的大小,不等式的性质,求一个数的立方根以及二次根式的性质等知识,根据数据得到0c a b >>>,再根据不等式的性质得到0a b ->,0c b ->,是解答本题的关键.不等式的基本性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若a b >,那么a m b m ±±>;①不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a b >,且0m >,那么am bm >或a b m m>;①不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若a b >,且0m <,那么am bm <或a b m m<. 47.(1)102m(2)7530a b(3)12t(4)128(5)6【分析】)(1)运用同底数幂乘法公式和幂的乘方公式运算,再合并即可;(2)运用幂的乘方和积的乘方公式运算即可;(3)先确定符号,再用同底数幂乘法公式运算即可;(4)逆用同底数幂乘法公式和幂的乘方公式,再整体代入即可;(5)将等式两边转化成同底数幂,再让指数相等得到一个一元一次方程,解之即可. (1)解:原式1046101010332m m m m m m ⋅===--;(2)原式()()()5551561567530a b a b a b =⋅=⋅=; (3)原式34512t t t t =⋅⋅=;(4)①24m n a a ==,,①()()3232323224816128m n m n m n a a a a a +=⋅=⋅⨯=⨯==; (5)①2328162x ⨯⨯=,即()34232222x⨯⨯=, ①352322x +=,①3523x +=,解得:6x =.【点睛】本题考查了同底数幂乘法公式,积的乘方公式,幂的乘方公式,灵活掌握这三个公式正逆用是解题的关键.48.(1)3;(2)﹣113. 【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)原式=﹣8+10+2﹣1=3;(2)原式=79×157﹣163=﹣113. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.49.(1)三种方案(2)A 种货车30辆,B 种货车20辆时费用最省,费用为34000(元)(3)40 45【分析】(1)设安排A 种货车x 辆,则安排B 种货车()50x -辆,列出不等式组,求整数解即可;(2)根据三种方案判断即可;(3)根据二元一次方程,求整数解即可.【详解】(1)解:设安排A 种货车x 辆,则安排B 种货车()50x -辆,()()75503063750230x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:28x 30≤≤,因为x 为整数,所以可以取28,29,30,共三种方案.(2)使用A 种货车费用600元,B 种货车800元,600800<,∴在上述方案中,安排A 种货车最多时最省费用,即当A 种货车30辆,B 种货车20辆时费用最省,费用为:306002080034000⨯+⨯=(元);(3)在(2)的方案下,由题意得:30202100m n +=,210020270303n n m -∴==-, 38m n <<,303820210030202100n n n ⨯+<⎧∴⎨+>⎩, 解得:4248n <<,经验算,只有当45n =时,m =27045403-⨯=为整数,其余n 的取值不符合要求, 此次奖金发放的具体方案为:每辆A 种货车奖金为40元,每辆B 种货车奖金为45元.【点睛】本题考查一元一次不等式(组)的应用,二元一次方程的整数解问题,解题的关键是理解题意,学会利用参数根据不等式(组)解决问题.。
人教版中考数学复习-- 数与式(训练)(附答案)
第一章数与式时间:45分钟满分:80分一、选择题(每题4分,共32分)1.-2的相反数是()A.2 B.-2 C.12D.-122.据报道,超过515 000 000名观众通过中国中央广播电视总台收看了2022年北京冬奥会开幕式,将515 000 000用科学记数法表示为()A.0.515×109B.5.15×108C.51.5×107D.515×1063.实数-3,12,0,2中,最大的数是()A.-3 B.12C.0 D. 24.下列运算正确的是()A.a2·a3=a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(ab3)2=a2b65.如图,数轴上点P表示的数为x,则在该数轴上表示数1-2x的点可能是()(第5题)A.点A B.点B C.点C D.点D6.估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间7.已知m为方程x2+3x-2 022=0的根,那么m3+2m2-2 025m+2 022的值为()A.-2 022 B.0C.2 022 D.4 0448.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )(第8题)A .a 2-b 2=(a -b )2B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-b 2=(a +b )(a -b )二、填空题(每题4分,共16分)9.若要使代数式x x -4有意义,则x 的取值范围为________. 10. 因式分解:a 3-9a =__________________.11.对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2 g ,记作+2 g ,那么低于标准质量3 g ,应记作________g.12.下面的解题过程中,第①步出现错误,但最后所求的值是正确的,则被污染的x 的值是________. 先化简,再求值:3-x x -4+1,其中x =★. 解:原式=3-x x -4·(x -4)+(x -4) ① =3-x +x -4=-1.三、解答题(共32分)13.(10分)计算:(1)⎝ ⎛⎭⎪⎫120+|1-2|-8;3(2)-14+⎝ ⎛⎭⎪⎫13-1×12-4cos 30°.14.(10分)(1)先化简,再求值:(m m -3+1m -3)÷m 2-1m 2-6m +9,其中m =2+1;(2) 先化简⎝ ⎛⎭⎪⎫x -x x +1·x +1x 2+4x +4÷ x 2-2x x 2-4,再从-2≤x ≤2中选一个合适的整数代入并求值.15.(12分)欣欣文具店出售的文具盒定价为每个20元,钢笔定价为每支5元.为了促销,该文具店制定了两种优惠方案.方案一:每买一个文具盒赠送一支钢笔;方案二:按总价的8折付款.某班欲购买x个文具盒和8支钢笔奖励给数学竞赛获奖的学生,且x≤8.(1)用含x的代数式分别表示两种方案所需的钱数;(2)当x=5时,哪种优惠方案更省钱?5 参考答案一、1.A 2.B 3.D 4.D 5.C 6.B 7.B 8.D二、9. x >4 10. a (a +3)(a -3) 11. -312.5 点拨:3-x x -4+1=3-x +x -4x -4=14-x. 由题意可知14-x =-1,可得x =5,检验:当x =5时,4-x ≠0, ∴图中被污染的x 的值是5.三、13.解:(1)原式=1-1+2-2 2 =- 2.(2) 原式=-1+3×23-4×32=43-1.14.解:(1)原式=m +1m -3÷(m +1)(m -1)(m -3)2=m +1m -3×(m -3)2(m +1)(m -1)=m -3m -1. 当 m =2+1时,原式=2+1-32+1-1=2-2 2=1- 2. (2)原式=⎣⎢⎡⎦⎥⎤x (x +1)x +1-x x +1·x +1(x +2)2·(x +2)(x -2)x (x -2) =x 2x +1·x +1(x +2)2·(x +2)(x -2)x (x -2)=x x +2. ∵-2≤x ≤2,且x 为整数,∴x =-2,-1,0,1,2.∵要使分式有意义,即分母x +1≠0,x +2≠0,x (x -2)≠0,∴x ≠-1,-2,2,0.∴应选x =1.当x=1时,原式=11+2=13.15.解:(1)方案一所需的钱数为20x+5(8-x)=15x+40(元).方案二所需的钱数为(20x+5×8)×80%=(20x+40)×80%=16x+32(元).(2)由(1)可知当x=5时,方案一所需的钱数为15x+40=15×5+40=115(元).方案二所需的钱数为16x+32=16×5+32=112(元).∵112<115,∴方案二更省钱.。
中考数学数与式真题训练50题含答案
中考数学数与式真题训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列式子中,正确的是( ) A .-57>-79B .-14<-13C .-23<-710 D .37<142 A .-7B .7C .±7D .无意义3.2221121p p p p p p --⋅+-+的结果是( ) A .p B .1pC .11p p -+ D .11p p +- 4.据报道,2021年某市有关部门将在市区完成150万平方米老住宅小区综合整治工作,150万(即1500000)用科学记数法可表示为( ) A .71.510⨯B .61.510⨯C .51.510⨯D ..41510⨯5.今年某市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为( ) A .50.2410⨯B .42.410⨯C .32.410⨯D .32410⨯6.下列各式中,x 可以取一切实数的是( )A B .2C D .x x- 7.某种细胞的直径是0.0067毫米,数字0.0067用科学记数法表示为( ) A .36.710⨯B .36.710-⨯C .36.710-⨯D .36.710--⨯8.下列运算正确的是( ) A .a 3+a 2=2a 5 B .a 3•(a 2)3=a 9C .a 8÷a 4=a 2D .(a +b )(b -a )=a 2-b 29.下列各式:−15a 2b 2,12x −1, -25,1x,2x y-,a 2-2ab 中单项式的个数有( )A .4个B .3个C .2个D .1个10.下列说法正确的是( )①0是绝对值最小的有理数;①相反数大于本身的数是负数①数轴上原点两侧的数互为相反数;①两个数比较,绝对值大的反而小A .①①B .①①C .①①D .①①11.下列各式从左到右的变形中,是因式分解的为( ) A .21234a b a ab =⋅B .222469(23)x xy y x y -+=-C .22(21)xy xy y y xy x -+-=--+D .2(3)(3)9x x x +-=-12.已知有理数a 、b 、c 满足||||||1a b c a b c++=,则||abc abc =( ) A .3B .3-C .1D .1-130a =,则实数a 在数轴上的对应点一定在( ) A .原点左侧 B .原点右侧C .原点或原点左侧D .原点成原点右侧14.若多项式26x mx +-因式分解成()()32x x +-,则m 的值为( ) A .1B .1-C .5D .5-15.下列各式计算正确的是( ) A .235a a a ⋅=B .32632639x y x y ⎛⎫-=- ⎪⎝⎭C .3162-⎛⎫-= ⎪⎝⎭D .()222x y x y -=-16.已知有理数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .0c a ->B .a b <C .0a b +>D .c b c b -=-17.下列运算正确的是( ) A .236x x x ⋅=B .()32628x x -=-C .632x x x ÷=D .235x x x +=18是同类二次根式的是( )AB CD19.估计2的运算结果应在下列哪两个数之间 ( ). A .4.5和5.0B .5.0和5.5C .5.5和6.0D .6.0和6.520.下列说法:①如果一个实数的立方根等于它本身,这个数只有0或1;①2a 的算术平根是a ;①8-的立方根是2-;①带根号的数都是无理数;其中,不正确的有( ) A .1个B .2个C .3个D .4个二、填空题 21.若代数式12022x -有意义,则实数x 的取值范围是______.22.若2230x y -=,且5x y +=,则x y -=___________.23.计算:________________.24.0.7096精确到千分位,则0.7096≈__________.25.3649的算术平方根是________________________________.26.函数=y 中自变量x 的取值范围是___________;当x =________时,代数式21x x --的值等于0. 27.如图,半径为3π的圆在数轴上滚动,开始在数轴上点A (称圆与数轴相切)处,向左侧动一周至点B ,若A 所对应的数是3,则点B 所对应的数是__________.281的相反数是_____.29.无锡地表水较丰富,外来水源补给充足.市区储量为6349万立方米,用科学记数法表示为 立方米.3002=__.31.下列数字﹣112,1.2,π,0,3.14,37,﹣111113中,有理数有______个.32.若a 是相反数等于本身的数,b 是最大的负整数,数轴上表示实数c 的点与表示1-的点相距2个单位,则23a b c -+的值是__________.33.计算:(x 2)5=_______.34.若a b <<,且a ,b 是两个连续的整数,则a b +的值为_________.3536a =_____________.37|=_____.38___________(只填写一个即可). 39.化简aa 3-的结果为___________40.比较大小:﹣5_____ 2,﹣45_____﹣56 .三、解答题41.化简:5x 2﹣3y ﹣3(x 2﹣2y ).421=1-,求3x yx y+-的值. 解:根据算术平方根的定义,1=,得2(2)1x y -=,所以21x y -=①……第一步 根据立方根的定义,1-,得121y -=-①……第二步 由①①解得1,1x y ==……第三步 把1,1x y ==代入3x y x y+-中,得30x yx y +=-……第四步 (1)以上解题过程存在错误,请指出错在哪些步骤,并说明错误的原因; (2)把正确解答过程写出来.43.在数轴上把下列各数表示出来,并用“<”连接各数. 5,1-22,|﹣4|,﹣(﹣1),﹣(+3)44.(1)已知2245A x y xy =-,2234B x y xy =-,求2A B -.(2)化简求值:22111122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中1x =,23y =-.45.计算:(1)1212π-⎛⎫+-⎪⎝⎭;(2)()()()111x x x x -+--. 46.已知:210a =,25b =,280c =.求-22c b a +的值. 47.计算下列各题: (1)()3212282⎛⎫-+-÷-⨯ ⎪⎝⎭(2)1311664124⎛⎫-⨯-+-÷ ⎪⎝⎭48.计算或化简:(1)222(5)(3)(7)312(3)555-⨯-+-⨯-⨯-(2)221581()()(2)(14)4696--+÷-+-⨯-(3)x 2+5y -4x 2-3y -1 (4) 7x +4(x 2-2)-2(2x 2-x +3)49.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“()()222a a b b a b -+-”,小丽使“做减法”,列式为“224a b -”. (1)请你把上述两式都分解因式;(2)当63.5a m =、18.25b m =时,求这块草坪的面积.(小明) (小丽)50.已知1x =,求代数式229x x -+的值.参考答案:1.A【分析】根据正数大于负数,两个负数绝对值大的反而小,逐个判断即可求解【详解】解:5545 7763 -==77499963-==5779∴->-故A正确1134412-==1143312-==1143∴->-故B错误22203330-==7721101030-==27310∴->-故C错误312728=17428=3174∴>故D错误故选:A【点睛】本题考查有理数的大小比较,熟记有理数的大小比较法则是解决本题的关键2.A【分析】根据开立方与立方互为逆运算的关系,求解即可.,故本题答案应为:A.【点睛】开立方与立方互为逆运算的关系是本题的考点,熟练掌握其关系是解题的关键.3.A【分析】先将式子中的分子和分母进行因式分解,再进行约分即可. 【详解】2221121p p p p p p --⋅+-+ ()()()()211111p p p p p p --+=⋅+- p =, 故选:A .【点睛】本题主要考查了分式的计算,准确将式子中的分子、分母进行因式分解是解答本题的关键. 4.B【分析】根据科学记数法:把一个数写成10n a ⨯的形式,其中110a ≤<,n 为整数,由此问题可求解.【详解】解:把150万(即1500000)用科学记数法可表示为61.510⨯; 故选B .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键. 5.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将24000用科学记数法表示为:42.410⨯,故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.C【分析】根据二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0,逐一判断即可.【详解】解:A .x≥0,故本选项不符合题意;B . 2中,-x≥0,解得x≤0,故本选项不符合题意;C .x 可以取一切实数,故本选项符合题意;D.xx-中,x≠0,解得x≠0,故本选项不符合题意.故选C.【点睛】此题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0是解决此题的关键.7.B【分析】根据科学记数法的表示即可求解.【详解】0.0067=36.710-⨯故选B.【点睛】此题主要考查科学记数法的表示,解题的关键是熟知负指数幂的应用.8.B【分析】根据合并同类项、同底数幂乘法、幂的乘方、积的乘方、平方差公式求解判断即可.【详解】解:A.a3+a2≠2a5,故错误,不符合题意;B.a3•(a2)3=a3•a6=a9,故正确,符合题意;C.a8÷a4=a4,故错误,不符合题意;D.(a+b)(b-a)=b2-a2,故错误,不符合题意;故选:B.【点睛】本题主要考查了合并同类项、同底数幂乘法、幂的乘方、积的乘方、平方差公式,熟记相关运算法则是解题的关键.9.C【分析】根据单项式的定义,结合选项找出单项式即可.【详解】解:−15a2b2,-25是单项式,共有2个故选C【点睛】本题考查了单项式的定义:数或字母的积组成的式子叫做单项式,注意单独的一个数或字母也是单项式.10.C【分析】利用有理数的定义,数轴绝对值判定即可.【详解】解:①0是绝对值最小的有理数,此①正确,①相反数大于本身的数是负数,此①正确,①数轴上到原点的距离相等且在原点两侧的数互为相反数,故①不正确, ①两个负数比较,绝对值大的反而小.故①不正确, 综上,①①的说法正确, 故选:C .【点睛】本题主要考查了有理数、数轴、相反数,解题的关键是熟记有理数的定义. 11.C【分析】根据因式分解的定义:把一个多项式化成几个整式的积的形式,逐一进行判定即可.【详解】解:A 、左边不是多项式,因此不是因式分解,故此选项不符合题意; B 、左边与右边不相等,因此不是因式分解,故此选项不符合题意;C 、提取公因式y -后,将多项式化成了两个整式积的形式,是因式分解,故此选项符合题意;D 、左边是积的形式,右边是多项式,因此不是因式分解,故此选项不符合题意; 故选C .【点睛】此题考查了因式分解的概念,正确理解因式分解是将一个多项式化成几个整式积的形式是解答此题的关键. 12.D【分析】此题首先根据已知条件和绝对值的意义得到a ,b ,c 的符号关系,在进一步求解即可.【详解】解:根据绝对值的意义知:一个非零数的绝对值除以这个数等于1或-1, 又||||||1a b c a b c++=,则a ,b ,c 中必有两个1和一个-1, 即a ,b ,c 中两正一负, ①abc <0, 则||abcabc =−1; 故选:D .【点睛】本题主要考查了绝对值的性质应用,掌握绝对值的性质和有理数的乘、除法法则是解决此题的关键. 13.C【分析】根据二次根式的性质,知-a≥0,即a≤0,根据数轴表示数的方法即可求解.【详解】解:0a =,a a =-, ①a≤0,故实数a 在数轴上的对应点一定在原点或原点左侧. 故选:C .【点睛】此题主要考查了二次根式的性质,实数与数轴,解题的关键是熟练运用二次根式的性质,本题属于基础题型. 14.A【分析】运用多项式乘多项式的乘法法则解决此题.【详解】解:()()22322366x x x x x x x +-=-+-=+-.由题意得,()()2632x mx x x +-=+-,①2266x x x mx +-=+-, ①1m =. 故选:A .【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键. 15.A【分析】根据各自的运算公式计算判断即可. 【详解】①235a a a ⋅=, ①A 正确;①326328327x y x y ⎛⎫-=- ⎪⎝⎭,①B 不正确; ①3182-⎛⎫-=- ⎪⎝⎭, ①C 不正确;①()2222x y x xy y -=-+, ①D 不正确;故选A .【点睛】本题考查了同底数幂的乘法,积的乘方,负整数指数幂,完全平方公式,熟练掌握各公式是解题的关键.16.A【分析】根据有理数a ,b ,c 在数轴上的位置,可得0c a b <<<,c a >b >,可对A,B 选项进行判断,根据有理数的加减法法则可判断C,D .【详解】解:根据题意可得0c a b <<<,c a >b >, A. 0c a ->,故该选项正确,符合题意;, B. a b >,故该选项不正确,不符合题意;C. 0a b +<,故该选项不正确,不符合题意;D. 0c b <<,0b -<()0c b c b ∴-=+-< ∴c b b c -=-,故该选项不正确,不符合题意;故选A【点睛】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小;也考查了数轴的认识,以及有理数的加法运算和绝对值的意义.17.B【分析】根据同底数幂乘法、除法、幂的乘方及合并同类项法则逐一计算即可得答案.【详解】A.x 2·x 3=x 2+3=x 5,故该选项计算错误,不符合题意,B.()32628x x -=-,故该选项计算正确,符合题意, C.x 6÷x 3=x 6-3=x 3,故该选项计算错误,不符合题意,D.x 2与x 3不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查同底数幂乘法、除法、幂的乘方及合并同类项,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;熟练掌握运算法则是解题关键.18.B故选B.19.B【分析】先进行二次根式的运算,再估算大小.【详解】解:222==+,≈,3 1.732∴+≈,2 5.464<<,5.0 5.464 5.5故选B.【点睛】此题考查无理数的估算,二次根式的混合运算,先运算,再进行估算即可.20.C【分析】分别根据实数、立方根和算术平方根的定义对各小题进行逐一判断即可.【详解】解:①如果一个实数的立方根等于它本身,这个数有0或1或-1,所以①不正确;①a2的算术平方根是|a|,故①不正确;①-8的立方根是-2,故①正确;,不是无理数,故①不正确;所以不正确的有3个.故选:C.【点睛】本题考查了实数、立方根和算术平方根,熟知算术平方根的定义、立方根的定义及实数的分类是解答此题的关键.21.2022x≠【分析】根据分式有意义的条件:分母≠0即可得出结论.x-≠【详解】解:由题意可得20220x≠解得:2022x≠.故答案为:2022【点睛】此题考查的是分式有意义的条件,掌握分式有意义的条件:分母≠0是解决此题的关键.22.6【分析】根据平方差公式即可求出答案.【详解】解:①x 2-y 2=30,且x +y =5,①(x -y )(x +y )=30,①x -y =6,故答案为:6.【点睛】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 23.-x 2y . 【详解】试题解析:21(2)2x xy x y ⋅-=- 考点:单项式乘以单项式.24.0.710【分析】把万分位上的数字6四舍五入即可.【详解】解:0.7096精确到千分位,则0.70960.710≈故答案为:0.710.【点睛】此题考查的是求一个数的近似数,掌握四舍五入法是解决此题的关键. 25. 67-5 【分析】根据算术平方根的定义和立方根的定义即可得出结论.【详解】解:①2636()749=,3(5)125-=-;①3649的算术平方根是675-. 故答案为:67;-5. 【点睛】此题考查的是求一个数的平方根、算术平方根和立方根,掌握平方根的定义、算术平方根的定义和立方根的定义是解决此题的关键.26. 3x ≤ 2【分析】①根据二次根式有意义的条件得出不等式,运算即可;①根据分式的值为零的条件得出不等式,运算即可.【详解】①由题意得:3-x ≥0,解得:3x ≤;①由题意得:x-2=0且x-1≠0,解得:2x =;故答案为:3x ≤;2【点睛】本题考查了二次根式有意义的条件和分式的值为零的条件,掌握知识点是解题关键.27.-3【分析】先求出圆的周长,再用点A 表示的数减去圆周长即可求出B 所对应的数【详解】解:①半径为3π,①圆周长=326ππ⋅= ①A 所对应的数是3,且由A 向左侧动一周至B ,①3-6=-3,①点B 所对应的数是-3故答案为:-3【点睛】本题考查了数轴表示数及有理数的减法,数轴上的数右边的总比左边的大28.【分析】根据只有符号不同的两个数叫做互为相反数解答.1的相反数是1故答案为:1【点睛】本题考查了相反数,是基础题,熟记概念是解题的关键.29.6.349×710【详解】试题解析:将6349万用科学记数法表示为:6.349×107.考点:科学记数法—表示较大的数.30.-4【分析】首先根据5次方根和零指数幂的运算法则计算,然后根据有理数的加减运算法则求解即可.【详解】解:原式31=--4=-.故答案为:4-.【点睛】此题考查了5次方根和零指数幂的运算,解题的关键是熟练掌握5次方根和零指数幂的运算法则.31.6【分析】有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.【详解】解:﹣112,1.2,0,3.14,37,﹣111113是有理数, π不是有理数,故答案为6.【点睛】本题考查了有理数的定义,熟练掌握有理数的定义是解答本题的关键. 32.-28或0【分析】根据相反数,有理数的大小比较,数轴的性质得到a ,b ,c 的值,再代入计算.【详解】解:a 是相反数等于本身的数,b 是最大的负整数,数轴上表示实数c 的点与表示1-的点相距2个单位,①a =0,b =-1,c =-3或1,当c =-3时,23a b c -+=()()23013--+-=28-;当c =1时,23a b c -+=()23011--+=0,故答案为:-28或0.【点睛】本题考查了代数式求值,解题的关键是根据相反数,有理数的大小比较,数轴的性质得到各字母的值.33.x 10【分析】幂的乘方,底数不变,指数相乘,据此计算即可.【详解】解:(x 2)5=x 2×5=x 10.故答案为:x 10.【点睛】本题主要考查了幂的乘方,熟记幂的运算法则是解答本题的关键.34.9a ,b 是两个连续的整数,即可求得,a b 的值,从而求解.【详解】解:①a b <,且a ,b 是两个连续的整数,45<<,①4,5a b ==,∴9a b +=,故答案为:9.35.-1.8【分析】根据根式的性质即可得到答案.【点睛】本题考查的知识点是根式性质,解题的关键是熟练的掌握根式性质.36.-3【分析】根据同类二次根式的定义可得238103a a -=-,由此求解即可【详解】解:①①238103a a -=-,①260+-=a a①3a =-或2a =,①两个根式都是最简根式,①2a =当a =3时,二次根式有意义且符合题意,故答案为-3.【点睛】本题考查了同类二次根式的定义和解一元二次方程,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式37【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:||【点睛】本题考查绝对值的意义,解题关键是掌握负数的绝对值是它的相反数. 38.2或3..【详解】,,①2,3.故答案为2或3.【点睛】本题主要考查了估算无理数的大小,正确找出符合题意的整数是解题的关键.39.【详解】分析:根据二次根式乘法,可化简二次根式.详解:原式=故选答案为:点睛:本题考查了二次根式的性质与化简,利用了二次根式的乘法.40. < >【分析】根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.【详解】解:﹣5<2, ①424530=<525630=, ①﹣45>﹣56. 故答案为:<,>.【点睛】本题考查了有理数的大小比较,用到的知识点是:正数>0,负数<0,正数>负数;两个负数中绝对值大的反而小.41.2x 2+3y .【分析】先去括号,然后合并同类项即可得出答案.【详解】原式=5x 2﹣3y ﹣3x 2+6y=(5x 2﹣3x 2)+(6y ﹣3y )=2x 2+3y .【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键. 42.(1)错误在第一步和第四步,理由见解析;(2)当1,1x y ==时,3x y x y +-无解当0,1x y ==时,31x y x y+=-- 【分析】(1)根据算术平方根的定义可知错误步骤及原因;(2)可由算术平方根和立方根的定义求出x,y 的值代入求解即可,其中x 的值有两个.【详解】解:(1)错误在第一步和第四步第一步错误原因:①1的平方根是1±,①21x y -=±第四步错误原因:当1,1x y ==时,3x y x y+-无解(21=,得2(2)1x y -=,所以21x y -=±,1=-,得121y -=-,21121x y y -=⎧⎨-=-⎩,解得11x y =⎧⎨=⎩ 21121x y y -=-⎧⎨-=-⎩,解得01x y =⎧⎨=⎩①当1,1x y ==时,3x y x y +-无解 当0,1x y ==时,31x y x y+=-- 【点睛】本题考查了平方根和立方根,正确理解平方根和立方根的定义和性质是解题的关键.43.数轴见详解,1(3)2(1)452-+<-<--<-<. 【分析】将各数表示在数轴上,再用“<”连接即可.【详解】解:如图所示:①用“<”连接各数为:1(3)2(1)452-+<-<--<-<; 【点睛】此题考查了有理数大小比较,以及数轴,将各数正确表示在数轴上是解本题的关键.44.(1)2256-x y xy ;(2)22x y -+,149- 【分析】(1)根据整式的加减计算法则进行求解即可;(2)先去括号,然后根据整式的加减计算法则进行化简,最后代值计算即可.【详解】解:(1)①2245A x y xy =-,2234B x y xy =-,①()()2222224534A B x y xy x y xy -=---222210348x y xy x y xy --+=2265x y xy -=;(2)2211112()()2323x x y x y --+-+ 22121122323x x y x y =-+-+ 22x y =-+,当1x =,23y =-时, 原式2221()3=-⨯+- 429=-+ 149=-. 【点睛】本题主要考查了整式的加减计算,整式的化简求值,含乘方的有理数混合计算,解题的关键在于能够熟练掌握相关计算法则.45.(1)0;(2)1x -.【分析】根据零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则准确计算即可;【详解】(1)120112302π-⎛⎫+-=+-= ⎪⎝⎭;(2)()()()111x x x x -+--=2211x x x x --+=-;【点睛】本题考查实数的运算,整式的运算;熟练掌握零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则是解题的关键.46.32【分析】利用同底数幂的除法法则,同底数幂的乘法法则,幂的乘方的法则对式子进行整理,再代入相应的值运算即可.【详解】解:当210a =,25b =,280c =时,()2222222222280510802510180102532c b ac b ac b a -+÷⨯÷⨯=÷⨯=÷⨯=⨯⨯===.【点睛】本题考查的是同底数幂的除法,同底数幂的乘法,幂的乘方,熟练掌握相对应的运算法则是解决本题的关键.47.(1)-3.5;(2)-12【分析】(1)根据有理数混合运算的法则,先算乘方,后算乘除,最后算加减,对每一项分别计算,然后求值即可;(2)根据有理数混合运算的法则,除一个数等于乘一个数的倒数,利用乘法交换律先计算-6和4的积,然后利用乘法分配律分别计算即可.【详解】(1)解:原式=114882⎛⎫⎛⎫-+-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=﹣4+12=﹣3.5 (2)原式=131131642441821264126412⎛⎫⎛⎫-⨯⨯-+-=-⨯-+-=-+=- ⎪ ⎪⎝⎭⎝⎭【点睛】本题考查了有理数的混合运算,乘法的交换律和分配律,解决本题的关键是熟练掌握整式混合运算的法则.48.(1)34; (2) -63;(3)-3x 2+2y-1; (4) 9x-14.【分析】(1)逆用乘法分配律进行计算即可;(2)先把除法化为乘法, 再用乘法分配律进行计算即可;(3)合并同类项即可;(4)去括号,合并同类项即可.【详解】(1)222(5)(3)(7)312(3)555-⨯-+-⨯-⨯- =2225373123555⨯-⨯+⨯ =()2357125⨯-+ =34.(2)221581()()(2)(14)4696--+÷-+-⨯-=158()36(14)4694--+⨯+⨯- =-9-30+32-56=-63(3)x 2+5y -4x 2-3y -1=-3x 2+2y-1(4)7x +4(x 2-2)-2(2x 2-x +3)=7x+4x 2-8-4x 2+2x-6=9x-14.【点睛】本题考查了有理数的混合运算,掌握相关法则是解题关键,合理运用运算定律能起到简便计算的目的.49.(1)()()22a b a b -+(2)2700【分析】(1)把()()222a a b b a b -+-用提取公因式法分解,把224a b -用平方差公式分解;(2)把63.5a m =、18.25b m =代入()()22a b a b -+计算即可.【详解】(1)()()222a a b b a b -+-=()()22a b a b -+;224a b -=()()22a b a b -+;(2)把63.5a m =、18.25b m =代入()()22a b a b -+,原式=()()63.5218.2563.5218.25-⨯+⨯=()()63.536.563.536.5-+=27100⨯=2700【点睛】本题主要考查了学生对“代数式应用”知识点的掌握情况,解答本题的关键是由割补思想列代数式求解,然后通过题意列出式子,代入已知数值得到答案,解答本题时要注意:割补思想及代数式应用.50.11.【分析】先将代数式配方,然后再把1x =代入要求的代数式中进行求解即可.【详解】解: ()222918x x x -+=-+当1x =时,原式)21183811=-+=+=. 【点睛】本题主要考查了代数式求值,解题的关键在于能够熟练掌握完全平方公式和二次根式的混合计算法则.。
中考数学数与式专题知识训练50题含答案
中考数学数与式专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)__一、单选题1.下列说法正确的是( )A .最小的有理数是0B .任何有理数都可以用数轴上的点表示C .绝对值等于它的相反数的数都是负数D .整数是正整数和负整数的统称 2.5的相反数是( )A .5-B .5C .15D .|5| 3.单项式22xy -的系数和次数分别为( )A .2,2B .2,3C .-2,2D .-2,3 4.下列计算正确的是( )A .3a 2﹣6a 2=﹣3B .(﹣2a )•(﹣a )=2a 2C .10a 10÷2a 2=5a 5D .﹣(a 3)2=a 65.火星具有和地球相近的环境,与地球最近时候的距离约55000000km ,将数字55000000用科学记数法表示为( )A .555010⨯B .65510⨯C .75.510⨯D .80.5510⨯ 6.2019年3月25日,为加强中法两国友好关系,两国签署价值300亿美元的“空中客车”飞机大单,其中300亿用科学记数法表示为( )A .3×108B .300×108C .0.3×1011D .3×1010 7.下列各式计算正确的是( )A 2=-B =C =D .2=8.下列各式的值最小的是( )A .13-B .22-C .40-⨯D .|5|-9.5的相反数是( )A .-5B .5C .±5D .1510.下列二次根式是最简二次根式的是( )AB C D 11.高州市投入环保资金3730000万元,3730000万元用科学记数法表示为( )万元A .537.310⨯B .63.7310⨯C .70.37310⨯D .437310⨯ 12.下列说法中错误的是( )①0既不是正数,也不是负数; ①0是自然数,也是整数,也是有理数;①数轴上原点两侧的数互为相反数; ①两个数比较,绝对值大的反而小.A .①①B .①①C .①①D .①①①13.下列运算正确的是( )A .a ab --b b a -=1 B .m n m n a b a b --=- C .11b b a a a +-= D .2221a b a b a b a b+-=--- 14.下列计算正确的是( )A .4a 3·2a 2=8a 6B .2x 4·3x 4=6x 8C .3x 2·4x 2=12x 2D .(2ab 2)·(-3abc)=-6a 2b 315.函数y =) A .2x ≥- B .21x C .1x > D .2x ≥-且1x ≠ 16.6-的相反数是( )A .16-B .6--C .6D .1617.下列各数中比-1小1的数是( )A .-1B .-2C .1D .-318.已知b>0,化简-1]∞(,的结果是( )A .-B .C .-D .19 )A .3与4之间B .5与6之间C .6与7之间D .28与30之间 20.如果a 是负数,那么2a 的算术平方根是( ).A .aB .a -C .a ±D .二、填空题21x 的取值范围是__________.22.当x =__________________.23.若|x|=5,则x ﹣3的值为_____.24.上海世博会预计约有69 000 000人次参观,69 000 000用科学记数法表示为_________.25.计算:222a b a b b a+=--____________. 26.用科学记数法表示:0.000832-=________.27.计算:a2•a3=_____.2823x =-,则x 的范围是_____________.29.对于任意不相等的两个数a ,b ,定义一种运算①如下:a ①b 3①2==4①8=________. 30.若4a b =+,则222a ab b -+的值是______________.31.“KN95”口罩能过滤空气中95%的直径约为0.0000003m 的非油性颗粒,数据0.0000003用科学记数法表示为____________.32.已知x 、y 均为实数,且5x y +=,2211x y +=,则xy =______. 33.若分式22x 有意义,则x 的取值范围是________.34.计算:02(3)π-+-=______________.35=b+2,那么a b =_____.36______________________=____________37_______,π=_______38.计算:(2a b -)3·(2b a -)2=____________(结果用幂的形式表示)39100,...,==根据其变化规律,解答问题:若1.02102,则x =____________.三、解答题40.计算:x 2•x 3+(﹣x )5+(x 2)3.41.张师傅承揽了某栋公寓楼的装修任务,他准备铺地时,发现这栋公寓楼户型结构相同,但地面卫生间和客厅的宽分别有几个类型,他将房子地面结构图按下图进行表示(单位:米).(1)请你用含x ,y 的式子,帮张师傅把地面的总面积表示出来;(单位:平方米) (2)已知 4.5x =,2y =这类型的房子有五户,铺地砖的费用为80元/平方米,请求出这个类型的房子铺地砖的总费用.42.已知2a +2的立方根是-2,a +b +4的算术平方根是3,c(1)求a ,b ,c 的值.(2)求22a ab c -+的平方根.43.计算:(1)(22 44.计算:032243.45.在等式2y ax bx c =++中,当1x =时,0y =;当=1x -时,=2y -:当2x =时,7y =.(1)求a ,b ,c 的值;(2)求当3x =-时,y 的值.46.计算:()()2242x y y x y x x ⎡⎤-+--÷⎣⎦.47.在ABCD 中,120BAD ∠=︒,DE 平分ADC ∠交射线AB 于点E ,线段BE 绕点E 顺针旋转60°得到线段EP ,连接AC ,PC .(1)如图1,当点E 在线段AB 上时,①PBC ∠的大小为______;①判断APC △的形状并说明理由;(2)当4BC =,2BE =时,直接写出AC 的长.48.已知:243M a ab =+-,269N a ab =-+.(1)化简:M N +;(2)若()2210a b ++-=,求M N +的值.49.操作题(1)如图①所示是一个长为2a ,宽为2b 的矩形,若把此图沿图中虚线用剪刀均分为四块小长方形,然后按图①的形状拼成一个正方形,请问:这两个图形的 不变.图①中阴影部分的面积用含a 、b 的代数式表示为_________________;(2)由(1)的探索中,可得到的结论是:在周长一定的矩形中,___________时,面积最大;(3)若一矩形的周长为36 cm ,则当边长为多少时,该图形的面积最大?最大面积是多少?参考答案:1.B【详解】分析:利用有理数的概念、数轴上点与有理数的关系、相反数的求法、整数等知识对各选项进行判断;解:A 选项有理数包括了正数、0、负数,所以没有最小的有理数,故是错误的; B 选项数轴上的点与有理数是一一对应的关系,故是正确的;C 选项绝对值等于它的相反数的数有0和负数,故是错误的;D 选项整数包括了正整数、0和负整数,故是错误的;故选B .2.A【分析】直接利用互为相反数的定义得出答案.【详解】解:5的相反数是:-5.故选:A .【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.3.D【分析】单项式的系数包括系数前面的符号,次数指所有未知数的次数之和.根据以上规律直接可以读出结果.【详解】单项式22xy -的系数为-2,次数包括x 和y 的次数之和,总共为3,所以单项式22xy -的系数和次数分别为-2,3,故选D【点睛】此题重点考察学生对单项式系数和次数的把握,抓住次数包括所有未知数的次数是解题的关键.4.B【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A ,由合并同类项法则可得3a 2﹣6a 2=﹣3a 2,不正确;选项B ,单项式乘单项式的运算可得(﹣2a )•(﹣a )=2a 2,正确;选项C ,根据整式的除法可得10a 10÷2a 2=5a 8,不正确;选项D ,根据幂的乘方可得﹣(a 3)2=﹣a 6,不正确.故答案选B .考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.5.C【分析】直接根据科学记数法表示即可.【详解】755000000 5.510=⨯,故选C【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:300亿=3000000000=3×1010.故选D .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.C【分析】先对各选项进行计算后再进行判断.【详解】A 22=-=||,故计算错误;BC =D选项:2故选C.【点睛】考查了二次根式的加法、化简,解题关键是熟记加法法则和二次根式的性质. 8.B【分析】原式各项计算得到结果,比较即可.【详解】A 、原式=-2,B 、原式=-4,C 、原式=0,D 、原式=5,①-4<-2<0<5,则各式的值最小为-4,故选B .【点睛】此题考查了有理数的大小比较,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.9.A【分析】根据相反数的定义即可求解.【详解】解:5的相反数是-5,故选A .【点睛】本题考查了相反数的定义(只有符号不同的两个数叫做互为相反数),是一个基础的题目.10.B【分析】根据最简二次根式的定义:被开方数不含能开方开的尽的因数或因式,被开方数不含分母,进行判断即可.【详解】A ==不符合题意;BC =,被开方数含分母,不是最简二次根式,不符合题意;D a ,被开方数中含能开得尽方的因式,不是最简二次根式,不符合题意; 故选:B .【点睛】本题考查最简二次根式的定义,熟练掌握概念是解题的关键.11.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,看小数点移动了多少位,n 的绝对值与小数点移动的位数相同.小数点向左移动时,n 是正整数;小数点向右移动时,n 是负整数.【详解】解:63730000 3.7310=⨯,故选:B .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.解题关键是正确确定a 的值以及n 的值.12.B【分析】根据相反数,绝对值的定义进行判断.【详解】解:①0既不是正数,也不是负数正确,不符合题意.①0是自然数,也是整数,也是有理数正确,不符合题意.①数轴上原点两侧的数互为相反数,说法不正确,符合题意.①两个数比较,绝对值大的反而小,说法不正确,符合题意.①说法不正确的是①①,故选B .【点睛】主要考查相反数,绝对值的定义,只有符号不同的两个数互为相反数,0的相反数是0;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 13.D【分析】根据分式的加减运算法则逐项判断即可的解. 【详解】根据分式的减法法则,可知:a b a b a b a b b a a b a b a b +-=+=-----,A 错误; 由异分母的分式相加减,可知m n bm an bm an a b ab ab ab --=-=,B 错误; 由同分母分式的加减,可知11b b a a a+-=-,C 错误; 由分式的加减法法则,先因式分解再通分,可得:2222()1()()()()()()a b a b a b a b a b a b a b a b a b a b a b a b a b++++-=-==--+-+-+--,D 正确. 故选D .【点睛】本题考查分式的加减运算,熟知分式的加减运算法则是解题的关键.14.B【详解】A. ① 4a 3·2a 2=8a 5 ,故不正确;B. ① 2x 4·3x 4=6x 8 ,故正确;C. ① 3x 2·4x 2=12x 4 ,故不正确;D. ① (2ab 2)·(-3abc)=-6a 2b 3c ,故不正确;故选B.15.D【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】解:根据题意得:2010xx+≥⎧⎨-≠⎩,解得:x≥-2且1x≠.故选D.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.C【分析】只有符号不同的两个数是互为相反数,根据定义解答.【详解】6-的相反数是6,故选择:C.【点睛】本题考查相反数的定义及求一个数的相反数,熟记定义是解题的关键.17.B【分析】根据有理数的减法,即可解答.【详解】−1−1=−2,故选B.【点睛】此题考查有理数的减法,解题关键在于结合题意列式计算.18.C【分析】首先根据二次根式有意义的条件,判断a≤0,再根据二次根式的性质进行化简.【详解】①b>0,30a b-≥,①0.a≤①原式==-故选C.【点睛】考查二次根式有意义的条件以及二次根式的化简,得到a≤0是解题的关键. 19.B【分析】直接利用估算无理数的方法得出接近无理数的整数进而得出答案.【详解】25<①56<<,5与6之间.故选:B .【点睛】此题主要考查了估算无理数的大小,正确掌握二次根式的性质是解题关键. 20.B【详解】当a a a ==-.故选B.21.x≥-5【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【详解】解:根据题意得:x+5≥0,解得x≥-5.【点睛】主要考查了二次根式的意义和性质.a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22. 6 0【分析】根据被开方数为非负数可得.【详解】①当0a =0)a ≥的最小值为0,①当60x -=,即6x =0.故答案为:6, 0.【点睛】本题考查了二次根式的定义,解题的关键是利用二次根式的被开方数是非负数解题.23.﹣8或2【分析】由|x|=5可求出x 的值,再代入x ﹣3计算即可.【详解】解:①|x|=5,①x =5或﹣5,当x =5时,x ﹣3=2,当x =﹣5时,x ﹣3=﹣8,综上,x﹣3的值为﹣8或2.故答案为:﹣8或2.【点睛】本题考查了绝对值的意义,正确求出x的值是解题的关键.24.76.910⨯【详解】解:69000000=6.9×107.故答案为:76.910⨯25.1【分析】变异分母为同分母【详解】解:222a ba b b a+=--221222a b a ba b a b a b--==---故答案为:126.48.3210--⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:40.0008328.3210--=-⨯故答案为:48.3210--⨯【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.27.a5.【详解】【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【详解】a2•a3=a2+3=a5,故答案为a5.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数的幂的乘法的运算法则是解题的关键.28.32 x≥【分析】根据二次根式的性质可得230x-≥,解不等式即可求解.【详解】根据题意,得2x-3≥0,解得:x 32≥. 【点睛】本题考查了二次根式的性质,掌握二次根式的性质是解题的关键.29. 【分析】根据定义新运算公式和二次根式的乘法公式计算即可.【详解】解:根据题意可得===故答案为: 【点睛】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键.30.16【分析】根据已知条件可得出a b -的值;因为2222a ab b a b ,带入即可得出答案.【详解】解:由4a b =+,可得:4a b -=;①2222a ab b a b , 将4a b -=可得:()22224162=-==-+a b a ab b ;故答案为:16.【点睛】本题考查代数式求值,结合利用完全平方公式因式分解,观察已知条件与要求的式子之间的联系是此类题目解题关键,平时也要多积累经验.31.7310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:70.0000003310,故答案是:7310-⨯.【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<, n 为由原数左边起第一个不为零的数字前面的0的个数所决定.32.7【分析】根据5x y +=可得出2()25x y +=,再展开,将2211x y +=代入,即可求出xy 的值.【详解】解:①5x y +=①2()25x y +=,①22225x y xy ++=,将2211x y +=代入上式,得:11225xy +=①7xy =.故答案为:7.【点睛】本题考查完全平方公式和代数式求值.利用整体代入的思想是解题的关键. 33.2x ≠-【分析】根据分母不等于0,即可求出答案.【详解】解:①分式22x 有意义,①20x +≠,①2x ≠-;故答案为:2x ≠-.【点睛】本题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于0.34.3【详解】【分析】先分别进行绝对值化简、0次幂的计算,然后再进行加法计算即可得.【详解】()02π3-+-=2+1=3,故答案为3.【点睛】本题考查了实数的运算,熟知任何非0数的0次幂为1是解题的关键.35.19 【分析】根据二次根式中的被开方数必须是非负数可得关于a 的不等式组,进一步即可求出a 的值,进而可得b 的值,然后代入所求式子计算即可.【详解】解:由题意,得:3030a a -≥⎧⎨-≥⎩,解得a =3,则b +2=0,解得:b =﹣2. 所以ab =3-2=19. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件、一元一次不等式组的解法和负整数指数幂的运算,属于基本题型,熟练掌握二次根式的被开方数非负和负整数指数幂的运算法则是解题关键.36. 0 15 6-【分析】根据算术平方根的定义及性质和立方根的定义及性质直接求解即可得到答案.【详解】解:①200=,0=;①()215225±=,算术平方根非负,15;①()36216-=-,6-;故答案为:0;15;6-.【点睛】本题考查算术平方根和立方根,熟练掌握算术平方根的定义及性质,立方根的定义及性质是解决问题的关键.37. 2± 4π-4=,进而求得4的平方根,根据4π<,化简绝对值即可.【详解】解:4=,①4的平方根是2±,①4π<①4ππ=-故答案为:2±,4π-【点睛】本题考查了求一个数的算术平方根,平方根,化简绝对值,掌握算术平方根和平方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.38.()52a b -【分析】把2a b -看成底数, ()()222=2b a a b --,再根据同底数幂乘法法则计算即可.【详解】(2a b -)3·(2b a -)2=()52a b -,故答案为: ()52a b -.【点睛】本题主要考查同底数幂乘法法则,解决本题的关键是要熟练掌握同底数幂乘法法则. 39.10404【分析】根据已知运算规律计算即可;【详解】 1.02=102=,100 1.02=⨯==①10404x =;故答案是:10404.【点睛】本题主要考查了二次根式计算和数字规律,准确计算是解题的关键.40.6x【分析】直接利用同底数幂的乘法法则和幂的乘方运算法则计算得出答案.【详解】解:x 2•x 3+(﹣x )5+(x 2)3=x 5﹣x 5+x 6=x 6.【点睛】本题考查了整式的运算,掌握乘方、同底数幂的乘法、幂的乘方是解题的关键. 41.(1)18+2y +6x ;(2)这个类型的房子铺地砖的总费用为18000元.【分析】(1)将四个长方形的面积相加即可得到答案;(2)将x =4.5,y =2代入(1),再乘以80即可得到总费用.【详解】解:(1)地面总面积=3×(2+2)+2y +(6-3)×2+6x=(18+2y +6x )平方米;(2)铺21m 地砖的平均费用为80元,当x =4.5,y =2,(18+2×2+6×4.5)×80=(18+4+27)×80=3920(元)①这个类型的房子铺地砖的总费用为3920元.【点睛】此题考查了列代数式,已知字母的值求代数式的值,正确掌握求几何图形的面积是解题的关键.42.(1)a=-5,b=10,c=3;(2)a2-ab+2c的平方根为±9.【分析】(1)直接利用立方根以及算术平方根的定义得出a,b,c的值;(2)利用(1)中所求,代入求出答案.(1)解:①2a+2的立方根是-2,①2a+2=-8,①2a=-10,①a=-5,①a+b+4的算术平方根是3,①a+b+4=9,-5+b+4=9,b=10,①c,①c=3;(2)22-+a ab c解:①a=-5,b=10,c=3,①a2-ab+2c= (-5)2- (-5)×10+2×3=81,①a2-ab+2c的平方根为.【点睛】此题主要考查了估算无理数的大小以及平方根、算术平方根和立方根,正确把握相关定义是解题关键.43.(1)(2)1122【详解】试题分析:(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用完全平方式和二次根式的乘法计算,再合并即可.试题解析:(1)原式=(2)原式=8+2+1-11-44.7【分析】根据乘方,二次根式和零指数幂的运算法则化简,然后再计算即可.【详解】解:原式821=-+7=.【点睛】本题主要考查了乘方,二次根式和零指数幂的运算法则,熟练掌握运算法则是解题的关键.45.(1)213a b c =⎧⎪=⎨⎪=-⎩(2)12【分析】(1)根据题设条件,得到关于a ,b ,c 的三元一次方程组,利用加减消元法解之即可,(2)结合(1)的结果,得到关于x 和y 的等式,把3x =-代入,计算求值即可.【详解】(1)根据题意得:02427a b c a b c a b c ++=⎧⎪-+=-⎨⎪++=⎩①②③,①+①得:1a c +=-①①+①×2得:21a c +=①,①-①得:2a =,把2a =代入①得:21c +=-,解得:3c =-,把2a =,3c =-代入①得:230b +-=,解得:1b =,方程组的解为:213a b c =⎧⎪=⎨⎪=-⎩;(2)根据题意得:223y x x =+-,把3x =-代入得:22(3)3312y =⨯---=,即y 的值为12.【点睛】本题考查了解三元一次方程组,解题的关键:(1)正确掌握加减消元法,(2)正确掌握代入法.46.122x - 【分析】先根据完全平方公式和单项式乘以多项式进行运算,合并同类项,再利用多项式除以单项式即可.【详解】()()2242x y y x y x x ⎡⎤-+--÷⎣⎦()2222242x xy y xy y x x =-++--÷ ()242x x x =-÷122x =-. 【点睛】本题考查了整式的混合运算以及完全平方公式的应用,能灵活运用运算法则进行化简是解此题的关键.47.(1)①120︒;①APC △为等边三角形;理由见解析(2)【分析】(1)①利用平行四边形的性质证明60,ABC ∠=︒再利用旋转的性质证明BEP △是等边三角形,可得60,PBE 从而可得答案;①先证明18060120,AEP 再证明,AE AD =可得,AE BC 证明,PBC PEA ≌ 可得,,PC PA BPC EPA 证明60,APC BPE 从而可得结论;(2)需要分①当点E 在线段AB 上时,过A 作AF BC ⊥于F ,和①当点E 在线段AB 的延长线上时,两种情况讨论.同样的思路和方法,根据平行四边形对边相等可得4BC AD ==,邻角互补得60,ABC ∠=︒所以30BAF ∠=︒,132BFAB 或1,再两次应用勾股定理即可解答.(1)①①ABCD ,①,AD BC ∥ 而120BAD ∠=︒,18012060,ABC ADC由旋转的性质可得:,60,EB EP BEP①BEP △是等边三角形,①60,PBE①6060120.PBC PBE ABC①APC △为等边三角形.理由如下:①60,BEP①18060120,AEP①60,ADC DE 平分,ADC ∠①30,ADE CDE①18030,AED BAD ADE ADE ①,AE AD = 而,AD BC =①,AE BC①PBE △为等边三角形,①,60PE PB BPE①120,AEP PBC①,PBC PEA ≌①,,PC PA BPC EPA①60,APC EPA EPC BPC EPC BPE ①APC △为等边三角形.(2)①当点E 在线段AB 上时,如图,过A 作AF BC ⊥于F , ①4,2,AE AD BC BE ====①6,AB =①60,ABC ∠=︒①30,BAF①13,2BFAB 22226333,AF AB BF ①431,CF①222827AC AF CF .①当点E 在线段AB 的延长线上时,如图,过A 作AF BC ⊥于F ,方法同①得4AEBC AD ,60ABF ∠=︒, ①422AB AE EB ,30BAF ∠=︒, ①112BF AB ==,413FC BC BF , ①2223AF AB BF , ①2223323AC AF FC .综上所述:AC 的长是【点睛】本题考查的是旋转的性质,等边三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,勾股定理的应用,含30︒的直角三角形的性质,二次根式的化简,熟悉基本几何图形的性质是解本题的关键.48.(1)2226a ab -+(2)18【分析】(1)根据整式的加减混合运算法则进行计算即可;(2)根据非负数相加和为0,则这几个非负数分别为0,先求出a 和b 的值,再代入求解即可.【详解】(1)解:①243M a ab =+-,269N a ab =-+,①()()224369M a N a ab a b =++-+-+224369a ab a ab =+-+-+2226a ab =-+.(2)①()2210a b ++-=,①20,10a b +=-=,解得:2,1a b =-=,把2,1a b =-=代入得: 2226M a N ab +=-+()()2222216=⨯--⨯-⨯+846=++ 18=.【点睛】本题考查了非负数的性质,整式加减中的化简求值,掌握合并同类项法则是解题的关键.49.(1)周长,2()a b -;(2)长等于宽;(3)当边长为9cm 时,最大面积为81cm 2.【分析】(1)根据长方形、正方形的周长公式和面积公式进行解答;(2)由完全平方公式进行计算分析;(3)根据第(2)的结论解答.【详解】(1)①图①长方形的周长=2a +2b ,图①正方形的周长=2(a +b )=2a +2b , ①周长相等;阴影部分的面积=正方形的面积-长方形的面积,=(a +b )2-4ab =a 2-2ab +b 2=(a -b )2,故填:周长,(a -b )2 ;(2)正方形面积为(a +b )2、长方形的面积为4ab ,①(a +b )2-4ab =(a -b )2≥0,①(a+b)2≥4ab,即:在周长一定的长方形中,当长和宽相等时,面积最大;(3)①在周长一定的长方形中,当长和宽相等时,面积最大,①当周长为36cm时,长和宽为9cm时,该图形的面积最大,最大面积为:9×9=81(cm2).【点睛】掌握乘法公式与几何图形的面积结合.。
中考数学专题复习《数与式》测试卷(附带答案)
中考数学专题复习《数与式》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×10112.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×1083.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1044.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×1085.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×1066.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×1097.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10118.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×1099.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×10810.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×10711.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×10312.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×10313.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<115.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥316.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数.(答案不唯一)四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.20.(2024•房山区一模)计算:.21.(2024•石景山区一模)计算:.22.(2024•通州区一模)计算:.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.26.(2024•大兴区一模)计算:.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.28.(2024•东城区一模)计算:.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.30.(2024•顺义区一模)计算:.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.31.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.32.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.33.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.34.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.六.提公因式法与公式法的综合运用(共11小题)36.(2024•平谷区一模)分解因式:ax2+2ax+a=.37.(2024•房山区一模)分解因式:x2y﹣4y=.38.(2024•石景山区一模)分解因式:xy2﹣4x=.39.(2024•北京一模)分解因式:8a2﹣8b2=.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=.41.(2024•朝阳区一模)分解因式:3x2+6xy+3y2=.42.(2024•大兴区一模)分解因式:ax2﹣4a=.43.(2024•海淀区一模)分解因式:a3﹣4a=.44.(2024•东城区一模)因式分解:2xy2﹣18x=.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=.46.(2024•顺义区一模)分解因式:4m2﹣4=.七.分式有意义的条件(共3小题)47.(2024•房山区一模)若代数式有意义,则实数x的取值范围是.48.(2024•丰台区一模)若代数式有意义,则实数x的取值范围是.49.(2024•顺义区一模)代数式有意义,则实数x的取值范围是.八.分式的值(共2小题)50.(2024•海淀区一模)已知b2﹣4a=0,求代数式的值.51.(2024•东城区一模)已知2x﹣y﹣9=0,求代数式的值.九.分式的加减法(共1小题)52.(2024•平谷区一模)化简:的结果为.一十.分式的化简求值(共2小题)52.(2024•石景山区一模)已知x2﹣3x﹣6=0,求代数式的值.53.(2024•丰台区一模)已知x﹣3y﹣2=0,求代数式的值.一十一.二次根式有意义的条件(共6小题)55.(2024•平谷区一模)若代数式有意义,则实数x的取值范围是.56.(2024•石景山区一模)若在实数范围内有意义,则实数x的取值范围是.57.(2024•通州区一模)若在实数范围内有意义,则实数x的取值范围为.58.(2024•朝阳区一模)若式子在实数范围内有意义,则x的取值范围是.59.(2024•海淀区一模)代数式在实数范围内有意义,则x的取值范围是.60.(2024•东城区一模)若二次根式有意义,则实数x的取值范围是.参考答案与试题解析一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:70000000000=7×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12089000=1.2089×107故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:8500=8.5×103故选:C.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.4.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:22300000000=2.23×1010故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:921000=9.21×105故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.6.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43700000=4.37×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×108【分析】根据科学记数法的规则进行作答即可.【解答】解:17500000=1.75×107.故选:C.【点评】本题主要考查科学记数法,解题的关键是熟练掌握科学记数法的规则.10.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:19000=1.9×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:3998000=3.998×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,熟悉数轴上各点的分布特点是解题的关键.15.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥3【分析】由数轴可知,﹣3<a<﹣2,由此逐一判断各选项即可.【解答】解:由数轴可知,﹣3<a<﹣2A、﹣3<a<﹣2,故选项A不符合题意;B、﹣3<a<﹣2,故选项B不符合题意;C、∵﹣3<a<﹣2,∴2<﹣a<3,故选项C符合题意;D、∵﹣3<a<﹣2,∴2<﹣a<3,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,从题目中提取已知条件是解题的关键.16.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵﹣2<a<﹣1,0<b<1∴1<|a|<2,0<|b|<1∴|a|>|b|∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1∴a<b∴a+1<b+1∴选项B符合题意;∵﹣2<a<﹣1,0<b<1∴1<a2<4,0<b2<1∴a2>b2∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴a<﹣b∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵a<﹣1∴选项A不符合题意;∵b<1∴选项B不符合题意;∵﹣2<a<﹣1∴1<﹣a<2∵0<b<1∴﹣a>b∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴﹣b>a∴选项D符合题意.故选:D.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数π.(答案不唯一)【分析】由于开方开不尽的数是无理数,然后确定的所求数的范围即可求解.【解答】解:∵1=,4=∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.【点评】此题主要考查了无理数的大小的比较,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.【分析】根据特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简分别计算即可.【解答】解:2cos30°+()﹣1+|﹣1|﹣===1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简是解题的关键.20.(2024•房山区一模)计算:.【分析】利用特殊锐角三角函数值,负整数指数幂,绝对值的性质,二次根式的性质计算即可.【解答】解:原式=6×+2+3﹣3=3+2+3﹣3=5.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.21.(2024•石景山区一模)计算:.【分析】利用绝对值的性质,二次根式的性质,特殊锐角三角函数值及负整数指数幂计算即可.【解答】解:原式=2﹣+2﹣2×+5=2﹣+2﹣+5=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22.(2024•通州区一模)计算:.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×=2+4+1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.【分析】sin45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式=4×+2﹣3+2=2﹣3+4=4.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.26.(2024•大兴区一模)计算:.【分析】cos45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式==.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.【分析】根据实数的运算法则、负整数指数幂和特殊角的三角函数值的定义进行计算.【解答】解:原式=2×+1+2﹣2=+1+2﹣2=3﹣.【点评】本题考查了实数的运算法则、负整数指数幂和特殊角的三角函数值,掌握实数的运算法则、负整数指数幂和特殊角的三角函数值的定义是关键.28.(2024•东城区一模)计算:.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.【分析】直接利用特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=3+2×﹣3﹣2=3+﹣3﹣2=﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2024•顺义区一模)计算:.【分析】利用负整数指数幂,特殊锐角三角函数值,二次根式的性质,零指数幂计算即可.【解答】解:原式=﹣4×+2+1=﹣2+2+1=.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:4x(x﹣1)+(2x+1)(2x﹣1)=4x2﹣4x+4x2﹣1=8x2﹣4x﹣1∵2x2﹣x﹣1=0∴2x2﹣x=1∴当2x2﹣x=1时,原式=4(2x2﹣x)﹣1=4×1﹣1=4﹣1=3.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.32.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:(3x+2)(3x﹣2)﹣3x(x+1)=9x2﹣4﹣3x2﹣3x=6x2﹣3x﹣4∵2x2﹣x﹣1=0∴2x2﹣x=1当2x2﹣x=1时,原式=3(2x2﹣x)﹣4=3×1﹣4=3﹣4=﹣1.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.33.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1∵x2﹣x﹣4=0∴x2﹣x=4∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.34.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.【分析】利用完全平方公式,单项式乘多项式法则进行计算,然后把a2+3a=1代入化简后的式子进行计算即可解答.【解答】解:(a+1)2+a(a+4)﹣2=a2+2a+1+a2+4a﹣2=a2+a2+2a+4a+1﹣2=2a2+6a﹣1∵a2+3a﹣1=0∴a2+3a=1当a2+3a=1时,原式=2(a2+3a)﹣1=2×1﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.35.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.【分析】利用完全平方公式,单项式乘多项式的法则进行计算,然后把x2+2x=1代入化简后的式子进行计算,即可解答.【解答】解:4(x+1)+(x﹣1)2=4x+4+x2﹣2x+1=x2+2x+5当x2+2x=1时,原式=1+5=6.【点评】本题考查了整式的混合运算﹣化简求值,代数式求值,完全平方公式,准确熟练地进行计算是解题的关键.六.提公因式法与公式法的综合运用(共11小题)【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.37.(2024•房山区一模)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2)故答案为:y(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.38.(2024•石景山区一模)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2)故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.39.(2024•北京一模)分解因式:8a2﹣8b2=8(a+b)(a﹣b).【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=8(a2﹣b2)=8(a+b)(a﹣b)故答案为:8(a+b)(a﹣b).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=y(x﹣6)2.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.42.(2024•大兴区一模)分解因式:ax2﹣4a=a(x+2)(x﹣2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.43.(2024•海淀区一模)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.44.(2024•东城区一模)因式分解:2xy2﹣18x=2x(y+3)(y﹣3).【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=a(x+2y)(x﹣2y).【分析】观察原式ax2﹣4ay2,找到公因式a,提出公因式后发现x2﹣4y2符合平方差公式,利用平方差公式继续分解可得.【解答】解:ax2﹣4ay2=a(x2﹣4y2)。
中考数学复习 一数与式 1
b
0
a
图1-1
图1-1-1
解:通过观察,根据实数加法、减法及乘法法则可知:
(1) a0,b0 ; (2) a b ;
(3) a•b0; (4) aba( b)0;
...
九年级 1.1课后
九年级 1.1课后
3
九年级 1.1课后
(1)
- 4 -2.5
12
-3 -2 -1 0 2
(2) ∴ ___-4__< __-2_._5_<___1__<___2__
九年级 1.1课前
九年级 1.1课前
参考答案: 1、A 5、C
2、C 6、D
3、B 7、C
4、A 8、D
九年级 1.1课前
九年级 1.1课前
九年级 1.1课前
九年级 1.1课前
九年级 1.1课前
九年级 1.1课前
九年级 1.1课前
九年级 1.1课前
九年级 第一章第一节课中
九年级 第一章第一节课中
方根为5,求 2(ab)7cd n 的值。 m
解: 由题意,得a+b=0, cd=1, n =5,m=1或-1.
原式= 2071575. mm
当m=1时,原式=-7+5=-2; 当m=-1时,原式=-7-5=-12.
九年级 第一章第一节课中
例4:已知如图1-1-1,a,b表示数轴上的2个数,根据数轴,请写出三个 以上与a,b有关的数学结论.
谢谢观赏
You made my day!
我们,还在路上……
例2 : 已知 a+3+b+12=0,求 a2b20124的值。
解:
a 3 b 12 0,
精品 提高题 九年级数学中考数学复习题-数与式
数与式有理数分类:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧)()(211.下列有正数和负数表示相反意义的量,其中正确的是( )A.一天凌晨的气温是—50C ,中午比凌晨上升100C ,所以中午的气温是+100C B.如果生产成本增加12%,记作+12%,那么—12%表示生产成本降低12% C.如果+5.2米表示比海平面高5.2米,那么—6米表示比海平面低—6米 D.如果收入增加10元记作+10元,那么—8表示支出减少8元2.如图,数轴上标出若干个点,每相邻两点距离1个单位,点A 、B 、C 、D 对应的数分别为a 、b 、c 、d ,且d-2a=10,那么原点应是( )A.A 点B.B 点C.C 点D.D 点3.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数. ③两个负数和的绝对值一定等于它们绝对值的和. ④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0. A.0个B.1个C.2个D.3个4.一个多位数的个位数字设为a ,而这个多位数的任何次幂的个位数字仍为a ,那么数字a ( ) A.只能是1 B.除1以外还有1个 C.共有3个 D.共有4个5.四个各不相同的整数a 、b 、c 、d ,它们的积a ×b ×c ×d=9,那么a+b+c+d 的值是( ) A.0 B.4 C.8 D.不能确定6.如果一个近似数是1.60,则它的精确值x 的取值范围是( )A.1.594<x<1.605B.1.595≤x<1.605C.1.595<x ≤1.604D.1.601<x<1.605 7.))(3(2q x px x -+-的乘积中不含x 2项,则( )A.p=qB.p=±qC.p=-qD.无法确定8.求2008322221++++ 的值,可令S=2008322221++++ ,则2S=20094322222++++ ,因此2S-S=122009-,所以2008322221++++ =122009-仿照以上推理计算出2009325551++++ 的值是( ) A.152009- B.152010- C.4152009- D.4152010-9.已知9999909911,99P Q ==,那么P ,Q 的大小关系是( ) A.P>Q B.P=Q C.P<Q D.无法确定 10.计算 dd c c b b a 1112⨯÷⨯÷⨯÷ 的结果是( ) A.2a B.2222d c b a C.bcd a 2 D.其他结果 11.如果m 为整数,那么使分式13++m m 的值为整数的m 的值有( ) A.2个 B.3个 C.4个 D.5个 12.已知ba ba b a ab b a -+>>=+则且,0622的值为( ) A.2 B.2± C.2 D.2±13.已知114a b -=,则2227a ab b a b ab---+的值等于( ) A.6 B.-6 C.215 D.27-14.已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么点B 对应的数是______ 15.若4=x ,则x=____;若03-=x ,则x=____;若13-=x ,则x =______.16.有理数a,b,c 在数轴上的位置如图所示,则化简c c a b b a -1---1--+的结果为 。
人教版中考第一轮复习九年级第一章:数与式(含答案)
第一章:数与式 1.1:实数考点一:实数的相关概念 实数 ✧实数的分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧负无理数负分数负有理数负实数零正无理数正整数正有理数正实数实数✧ 实数大小的比较在数轴上表示两个数的点,右边的点表示的数 ,左边的点表示的数 。
正数大于零,负数小于零;两个正数,绝对值大的较 ;两个负数,绝对值大的较 。
设a 、b 是任意两实数:若0>-b a 。
则a b ;若0=-b a 。
则b a =;若0<-b a 。
则a b ;数轴: ✧数轴的三要素为 、正方向和单位长度。
数轴上的点与 一 一对应。
相反数、倒数、绝对值 ✧ 实数a 、b 互为相反数,则=+b a 。
实数a 、b 互为倒数,则=ab 。
✧绝对值:()()⎩⎨⎧<≥=00a a a aa 的集合意义是数轴上表示数a 的点与原点的距离。
数的乘方与开方 ✧ 负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都是0; ✧ 正数有两个平方根,负数没有平方根,0的平方根是0,正数的正的平方根叫做 。
✧ 若a b =3,则b 叫做a 的立方根。
考点1 正数、负数的意义1.(2019 滨州)2.(2019 云南)若零上8℃记作+8℃,则零下6℃记作 ℃.3.(2019 乐山)某天早晨的气温是℃,到中午升高了℃,晚上又降低了℃.则晚上的温度是 .4.(2019 乐山)4.一定是( )A. 正数B. 负数C.0D.以上选项都不正确 考点2 实数及其分类1.(2019·玉林)下列各数中,是有理数的是( )A .ΠB .1.2 C. 2 D.33 2.(2018·重庆)下列四个数中,是正整数的是( ) A .-1 B .0 C.12D .13.(2018·菏泽)下列各数:-2,0,13,0.020 020 002…,π,9,其中无理数的个数是( )A .4B .3C .2D .1(2018巴中)1. 下列各数:,0,,023,,,0.30003……,中无理数个数为( )A . 2个B . 3个C .4个D .5个4.(2019·桂林)若海平面以上1 045米,记作+1 045米,则海平面以下155米,记作( ) A .-1 200米 B .-155米 C .155米 D .1 200米考点3 数轴、相反数、绝对值、倒数 5.(2019·威海)-3的相反数是( )A .-3B .3 C.13 D .-136.(2019·德州)-12的倒数是( )A .-2 B.12 C .2 D .17.(2019·遂宁)-|-2|的值为( )A. 2 B .- 2 C .± 2 D .28.(2019·陇南)如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是( )A.0 B.1 C.2 D.39.(2018·攀枝花)如图,实数-3,x,3,y在数轴上的对应点分别为M,N,P,Q,这四个数中绝对值最小的数对应的点是( )A.点M B.点N C.点P D.点Q10.(2019·成都)若m+1与-2互为相反数,则m的值为.考点4 科学记数法和近似数11.(2019·荆门)已知一天有86 400秒,一年按365天计算共有31 536 000秒,用科学记数法表示31 536 000正确的是( )A.3.153 6×106 B.3.153 6×107 C.31.53 6×106 D.0.315 36×108 12.(2019·潍坊)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为( )A.10.02亿 B.100.2亿 C.1 002亿 D.10 020亿13.(2019·烟台)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为( )A.1.5×10-9秒 B.15×10-9秒 C.1.5×10-8秒 D.15×10-8秒14.(2019·攀枝花)用四舍五入法将130 542精确到千位,正确的是( )A.131 000 B.0.131×106 C.1.31×105 D.13.1×104【能力提升】15.(2019·天水)已知|a|=1,b是2的相反数,则a+b的值为( )A.-3 B.-1 C.-1或-3 D.1或-316.(2019·枣庄)点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为( )A.-(a+1) B.-(a-1) C.a+1 D.a-117.(2019·泰安)2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为( ) A.4.2×109米 B.4.2×108米 C.42×107米 D.4.2×107米第2讲实数的运算【基础过关】考点1 平方根、算术平方根、立方根1.(2018·安顺)4的算术平方根是( )A .± 2 B. 2 C .±2 D .2 2.(2019·烟台)-8的立方根是( )A .2B .-2C .±2D .-2 2 3.(2019·南京)面积为4的正方形的边长是( ) A .4的平方根 B .4的算术平方根 C .4开平方的结果 D .4的立方根 4.(2019·通辽)16的平方根是( )A .±4B .4C .±2D .+2 考点2 实数的大小比较5.(2019·菏泽)下列各数中,最大的数是( )A .-12 B.14 C .0 D .-26.(2019·常德)下列各数中比3大比4小的无理数是( )A.10B.17 C .3.1 D.1037.(2019·宜昌)如图,A ,B ,C ,D 是数轴上的四个点,其中最适合表示无理数π的点是( )A .点AB .点BC .点CD .点D 考点3 实数的运算8.(2019·淄博)比-2小1的数是( )A .-3B .-1C .1D .3 9.(2019·天津)计算(-3)×9的结果等于( )A .-27B .-6C .27D .6 10.(2019·聊城)计算:(-13-12)÷54= .11.(2019·十堰)计算:(-1)3+|1-2|+38.12.(2019·黄石)计算:(2 019-π)0+|2-1|-2sin45°+(13)-1.【能力提升】13.(2019·广东)实数a ,b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a>bB .|a|<|b|C .a +b>0 D.ab<014.(2019·贺州)计算11×3+13×5+15×7+17×9+…+137×39的结果是( )A.1937 B.1939 C.3739 D.383915.(2018·潍坊)用教材中的计算器进行计算,开机后依次按下3x 2=,把显示结果输入如图的程序中,则输出的结果是 .16.64的算术平方根是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 实数及有关概念考点一:实数的有关概念及分类㈠数轴、相反数、绝对值的概念填空㈡范例1.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A.ab>0B. |a|>|b|C.a-b<0D.a+b<0 举一反三:1. 已知实数a 、b 在数轴上对应的点如图所示,A.2a-bB.bC.-bD.-2a+b 2.若数轴上的两个点A 、B 表示的数分别为a 、b,如图所示,则下列式子正确的是( ) A.021>-a b B.0>-b aC.02>+b aD.0>+b a3.数轴上表示1、2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则C 点所表示的数是 。
4.实数m,n 在数轴上的位置如图所示,则下列关系式错误的有( )个。
①n<m ②n 2<m 2 ③n 0<m 0④|n|<|m| A 1个 B 2个 C 3个 D 4个范例2. ①若|a|=4,|b|=2,且|a+b|=a+b ,则a-b 的值只能是 ;②数轴上点A 表示的数为1,点B 表示的数为5,那么和点A 距离等于2的点C 表示的数为 ,点C 离开点B 的距离为 。
③下列各组数中,互为相反数的是( )A .2与21 B .(-1)2与1 C .-1与(-1)2D .2与|-2| 举一反三:⑴31-的相反数是 ,31-的倒数是 ,31-的绝对值是 。
⑵已知|x|=4,|y|=21,且xy<0,则y x 的值等于 ;⑶已知a 、b 是互为相反数,c 、d 是互为倒数,e 是非零实数,求021)(2e cd b a -++的值.㈢范例3.在-7,tan450,sin600,3π, -9,(-7)2中,无理数的个数有( )个 A.1个 B.4个 C.2个 D.3个举一反三⑴实数9,62,31π,722中,分数的个数是( ) A.0个 B.1个 C.2个 D.3个⑵在下列实数中,是无理数的为( )A.0 B.-3.5 C.2 D.9⑶有8,2,,21,333-π这5个实数,其中有理数的和为 ,无理数的积为 . 范例4.一张纸片,第一次把它撕成6片,第二次把其中的1片又撕成6片,……如此下去,第2006次共撕得小纸片 片.举一反三⑴某种树木的分枝生长规律如下图1-4-1所示,则预计到第6年时, 树木的分枝数为 .年 份 分 枝 数 第1年 1 第2年 1 第3年 2 第4年 3 第5年 5图1-4-1实数分类 无理数有理数 小数小数⑵观察下列等式:211=,2132+=,21353++=,……………根据观察可得:13521n ++++-=L _________.(n 为正整数)⑶观察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列数排成下列形式按照上述规律排下去,第10行从左边第9个数是_________________.⑷一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图1-4-2),则这串珠子被盒子遮住的部分有____颗.⑸观察下面一列数,按某种规律在横线上填入适当的数,并说明你的理由.Λ,76____,,54,43,32 你的理由是 。
㈣平方根及立方根的相关概念填空 ⑴平方根:如果一个数x的平方等于a ,则 叫做 的平方根,记作: ;⑵一个正实数有 个平方根,它们 ;0的平方根是 ;负数 平方根;⑶一个正实数 平方根是它的算术平根,0的算术平方根是 ;⑷立方根:如果一个数x 的立方等于a ,则 叫做 的立方根,记作: ;一个实数的立方根有 个;范例5.⑴一个数的算术平方根是0.1,则这个数的平方根是 ⑵64的平方根是 ,立方根是举一反三:⑴0的9次方根是 ,416的平方根是 ,0.01的算术平方根的倒数是 . ⑵绝对值等于它本身的数是 ,平方等于它本身的数是 ,一个数的立方根是它本身的数是 .⑶一个正整数的算术平方根是a(a>0),则比它大1的正整数的立方根是 (结果用a 表示)5、非负数的性质:①如果几个非负数相加为0,则这几个非负数 。
②初中阶段几种常见的非负数是 , , 。
范例6.已知x 、y 为实数,且,0)2(312=-+-y x 则x-y 的值为( )-1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 …………图1-4-2A .3B .-3C .1D .-1举一反三:⑴若|2005|a -+2006-b =2)2007(--c ,则2b ac -= .⑵已知直角三角形两边y x ,满足065|4|22=+-+-y y x ,则第三边长为 . ⑶|2005|a -+2006-a =a ,则a -22005= .考点二 实数的运算㈠㈡范例1.计算:100245sin 25|1|-+⨯-+-举一反三:⑴已知211,)21(,45cos ,60sin 1+====-d c b a ,从d c b a ,,,这四个数中任意选取3个数求和.⑵在数学活动中,小明为了求n 2121212121432+++++Λ的值(结果用n 表示),设计如图所示的几何图形实 数 运 算 运算种类:加法, , , , , , ,及运算法则 运算顺序:图图①请你利用这个几何图形求n 2121212121432+++++Λ的值为 . ②请你利用图2-1-2,再设计一个能求n 2121212121432+++++Λ的值的几何图形.(不能与2-1-1图形相同). ⑶计算:20032)31(|160cos |45tan 813)1(-+------范例2.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价相比前天的涨跌情况:(单根据上表回答问题:①星期二收盘时,该股票每股多少元?②本周内该股票收盘时的最高价,最低价分别是多少元?③已知买入股票与卖出股票均需支付成交金额的千分之五的交易费,若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?举一反三:⒈某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数为正数,减少的辆数为负数):根据记录可知,本周星期六生产了 辆摩托车;本周总生产量与计划生产量相比,增减数为 辆;产量最多的一天比产量最少的一天多生产了 辆.⒉在2004年5月的第二个星期,红旗水文站记录了一周的水位情况:32.3,-0.1,+0.2,-0.5,+0.3(第一个数据为星期一,以后数据分别与前一天比较数值),单位:米,而2003年5月同期水位平均值33.4千米,则与去年同期水位情况比较正确的是()A.持平B.涨1.2米C.下降1.2米D.下降1.06米⒊下表是今年雨季某防汛小组测量的某河一周内的水位变化情况.(单位:米)(注:正号表示水位比前一天上升,负号表示比前一天下降)⑴若本周日达到了警戒水位73.4米,那么本周一的水位是多少?上周末的水位是多少?⑵本周哪一天河流的水位最高?哪一天水位最低?它们位于警戒水位之上还是之下?⑶与上周末相比,本周末河流水位是上升了还是下降了?考点三近似数和有效数字㈠近似数与有效数字⒈科学记数法⑴定义:把一个数表示成n的形式,其中a满足 ,n为 .a10⑵确定方法:当原数a的绝对值大于1时, n等于 ; 当原数a的绝对值小于1时, n等于 ;⒉近似数:一般地,一个近似数四舍五入到哪一位就说这个近似数精确到哪一位.有效数字: . ㈡范例1.⑴一枚一角的硬币的直径约为0.022m,用科学记数法表示为( )A.2.2×10-3mB. 2.2×10-2mC. 22×10-2mD. 2.2×10-1m⑵从《中华人民共和国2004年国民经济和社会发展统计公报》中获悉,2004年末国家全年各项税收收入25718亿元,用科学记数表示为元(结果保留三个有效数字)举一反三:⑴据测算,我国每天因土地沙漠化造成的经济损失约为1.50亿元;这个近似数精确到位,有个有效数字,若一年按365天计算,我国因沙漠化造成的经济损失为元(保留三位有效数字)⑵生物学家发现了一种病毒的长度约为0.043mm,用科学记数法表示为 m.⑶我国陆地面积约为9596960千米2,若保留二位有效数字,则结果( )A. 9.5×106千米2B. 9.59×106千米2C. 9.597×106千米2D. 9.6×106千米2⑷据世界银行统计,2003年我国国民生产总值达到11.69亿元,人民生活总体上达到了小康水平,其中11.69亿元用科学记数法表示为 元.⑸北京市申办2008年奥运会得到了全国人民的支持,据统计,某一日北京申奥网站的访问人次为201947,用四舍五入法保留两位有效数字的近似值为⑹近似数0.33万精确到 位,有 个有效字,用科学记数法表示为 万. ⑺小舒家的水表如图所示,该水表的读数 为 m 3(精确到0.1)第二讲整式的运算考点一:代数式的有关概念㈠代数式的分类㈡单项式与多项式的概念填空 一根绳子弯曲成如图⑴所示的形状,当用剪刀像图⑵那样沿虚线把绳子剪断时,绳子被剪成5段;当用剪刀像图⑶那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪成9段,若用剪刀在虚线ab 之间把绳子再剪(n-2)次(剪刀的方向与a 平行)这样一共剪n次时绳子的段数是( )定义次 数单项式 与 的乘积 所有字母的 多项式几个单项式的 .多项式中次数 的项的代数式有理式无理式 ⑵⑴⑶a a bA.4n+1B.4n+2C.4n+3D.4n+5举一反三:⑴科学发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列——著名的裴波那契数列:1,1,2,3,5,8,13,21,34,55,……仔细观察以上数列,则它的第11个数应该是 .⑵用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:⑴第4个图案中有白色地面砖块;⑵第n个图案中有白色地面砖块.⑶观察下列等式:9-1=8;16-4=12;25-9=16;36-16=20;…………这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为 .⑷下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出___个“树枝”.⑸观察下面的点阵图和相应的等式,探究其中的规律:⑴在④和⑤后面的横线上分别写出相应的等式;……①1=12;②1+3=22;③1+2+5=32;④;⑤;……⑵通过猜想写出与第n 个点阵相对应的等式.范例2 已知多项式y x y x y x m 522123154--+.⑴求多项式中各项的系数和次数;⑵若多项式是八次三项式,求m 的值举一反三:⑴单项式5332yz x -的系数是 ,次数是 .⑵下列代数式1212,0,513,1,,323+-++-x x a x ab a 中,是单项式的是 ;是多项式的是 ;⑶若一个含x 的二次三项式的二次项的系数为-5,一次项系数为4,常数项为-27,则这个二次三项式为 .⑷代数式m 2-n 2(m>n>0)的三个实际意义是:考点二 整式的运算:㈠⑴同类项的定义: . ⑵合并同类项法则: . ⑶去括号法则: . ⑷添括号法则: . ㈡范例1 下列各式中,与x 2y 是同类项的是( )A. xy 2B. 2xyC. -x 2yD. 3x 2y 2举一反三:⑴下列说法中正确的是( ) A.31x 2y -3和2x 2y -3是同类项 B. -31 x 4y - 2x 3y+1是四次三项式C. x 2-xy+y -2是多项式 D.23是单项式⑵下列各组式子中是同类项的是( )A.2a 和a 2B.2a 2b 和3a 2bC.-2xy 和3abD.0.2ab 2和0.2xb 2⑶单项式121-+-a b a y x 与y x 23是同类项,则b a -= ㈢整式的乘除法⒈幂的运算性质:①同底数的幂相乘: ; ②幂的乘积; ; ③积的幂 ;④同底数的幂相除: ; ㈣范例2⑴下列运算正确的是( )A.22×23=26B.(-2)-1×2=1 C.(-2)0-|-2|=-1 D.28÷24=22⑵0)2(= _____________, 2)21(-=____________.⑶下列各式运算正确的是( ) A.()725a a = B.22212xx =- C.623824a a a =• D.628a a a =÷ ⑷已知10953==ba,,则=+ba 23( )A.50B.-5C.2D.25 举一反三: ⑴计算x 9·x 2的结果是( ) A.x 9 B.x 18 C.x 7 D.x 5 ⑵下列运算正确的是( ) A.a 2·a 2=a 5B.()532a a = C.326a a a =÷ D.10552a a a =+⑶下列各式中,与13+n x 相等的是( )A.()13+n x B.()31+n x C.nx x x ••3D.()nx x 3•⑷在等式()n m m a a +-=•2中,括号内的代数式应当是( )A.nm a+ B.2-n a C.3++n m aD.2+n a⑸若124+=x x ,则x=_________;若167143-=⎪⎭⎫⎝⎛x,则x=_______.⑹下列运算中,错误的是( )A.32a a a =•B.2a+3b=6abC.224a a a =÷ D.()222b a ab =-⑺下列运算正确的是( ) A.3232a a a =+ B.aa2121=- C.()623a a a -=•- D.()()122-=-÷-a a ⑻下列运算正确的是( )A .422)(x x x =⋅- B .33)(x x x =÷ C .6328)2(x x = D .2)2(422=-x x ⒉单项式乘法,单项式与多项式的乘法,多项式乘法,单项式的除法,多项式除以单项式,乘法公式内容及几者之间的关系图范例3现将连续自然数1至2004按图中的方式排成一个长方形阵列,用一个正方形框出16个数,如下图①图中框出的这16个数的和是 ;1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 …………………………………………………………………… …………………………………………………………………… 1996 1997 1998 1999 2000 2001 2002 2003 2004②在上图中,要使一个正方形框出的16个数之和分别等于2000,2004,是否可能?若不可能,试说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.举一反三:⑴在2006年3月的日历中,如右图所示,任意圈出一竖列上的三个数,设中间的一个为a,则用a的代数式表示这三个数(从小到大排列)分别 , , .⑵如图3-3-1是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n=20)根时,需要的火柴棍总数为根。