初一级数学上册第一章人教版[1]PPT课件

合集下载

七年级-人教版(2024新版)-数学-上册-[课件]初中数学-七年级上册-第一章--1

七年级-人教版(2024新版)-数学-上册-[课件]初中数学-七年级上册-第一章--1
请大家玩一玩这个游戏,并思考,如何猜想能更快地猜中?至少猜想几次 就一定能猜中?多做几次游戏,检验一下你的猜数策略是否有效.
50
猜想
回答
0 0与50的中间数→ 25 25与50的中间数→ 38 38与50的中间数→ 44
47 49 50
小了 小了 小了 小了 小了 小了

-30
猜想
回答
0 0与-50的中间数→ -25 -25与-50的中间数→ -38 -25与-38的中间数→ -32
3.一个正数的绝对值是__它__本__身__;一个负数的绝对值是 __它__的__相__反__数__;0的绝对值是__0__.即
(1)如果a>0,那么__|a_|_=__a_; (2)如果a=0,那么__|a_|_=__0_; (3)如果a<0,那么__|a_|_=__-__a_.
4.绝对值的非负性:任何一个有理数的绝对值总是__正__数__或__0__. 即对任意有理数a,总有__|a_|_≥__0__.若|a|+|b|=0,则必有__a_=__b_=___0__.
示的数大,可得a,b,-a,-b的大小关系为b<-a<a<-b.
在对多个数进行大小 比较时,运用数轴比较法 比较合适.
数学活动——猜数游戏
两个人合作,按下面的步骤完成游戏: (1)第一位同学默想一个-50~50的整数记住; (2)第二位同学对第一位同学默想出的数提出一个猜想,第一位同学比较 这个数和自己心中所想数的大小,然后回答“大了”“小了”或者“相等”, 若相等则说明第二位同学猜中; (3)若第二位同学没有猜中,则根据第一位同学的回答,调整猜想; (4)重复步骤(2)(3),直到猜中.
5.求一个数的绝对值的两种方法: 方法1:求某个数的绝对值,首先要确定这个数的__符__号___,然后根 据__绝__对__值___的__性__质___进行求值. 方法2:根据__绝__对__值__的__几__何__意___义__进行求解.

人教版初一数学 1.1 正数和负数PPT课件

人教版初一数学 1.1   正数和负数PPT课件
方法总结:解题时一定要先弄清“基准”,再还原数据.
巩固练习
下列语句正确的是 ( C ) A. 0℃表示没有温度 B. 0表示什么也没有 C. 0是非正数 D. 0既可以看作是正数又可
以看作是负数
巩固练习
解释图中的正数和负数的含义.
10℃表示白天温度为零上10℃ -5℃表示晚上温度为零下5℃
它们以什么为基准?
0℃
巩固练习
下面是某存折中记录的支出、存入信息,试着说说其中 “支出或存入”那一栏的数字表示什么含义.
存折中的正数表示存入, 反之,负数表示支出.
当堂训练
基础巩固题
1.下列说法,正确的是( C ) A. 加正号的数是正数,加负号的数是负数 B. 0是最小的正数 C. 字母a既可是正数,也可是负数,也可是0 D. 任意一个数,不是正数就是负数
巩固练习
完成下列各题: (1)如果零上5°C记作+5 °C,那么零下3°C记作什么?
记作-3°C. (2)东、西为两个相反方向,如果- 4米表示一个物体向西 运动4米,那么+2米表示什么?物体原地不动记为什么?
+2米表示一个物体向东运动2米; 物体原地不动记为0米.
探究新知
例2(1)一个月内,小明体重增加2kg,小华体重减少1kg, 小强体重无变化,写出他们这个月的体重增长值;
下图是吐鲁番盆地的示意图,你能用语言表述它与海平 面的高度关系吗?它的含义是什么?
记为+8848.86m 8848.86m
珠 穆
高度看作0米



155m
海平面
吐鲁番盆地 记为-155m
探究新知
知识点 3 0的意义及用正负数表示相对基准量 【思考】 0只表示没有吗?

人教版七年级数学上册第一章至第四章知识总结复习课件

人教版七年级数学上册第一章至第四章知识总结复习课件

指数分别相等.
解:
mn=+25,=3,解得
m=-2, n=2.
所以 mn=(-2)2=4.
针对训练
3、若5x2 y与x m yn是同类项,则m=2( ) ,n=1( ) 若5x2 y与x m yn的和是单项式,则m=2( ) , n=1( )
只有同类项才 能合并成一项
考点三 去括号
例3 已知A=x3+2y3-xy2,B=-y3+x3+2xy2, 求:(1)A+B;(2)2B-2A. 【解析】 把A,B所指的式子分别代入计算. 解:(1)A+B=(x3+2y3-xy2)+(-y3+x3+2xy2)
5.绝对值 (1)一个数在数轴上对应的点到原点的距离 叫做这个数的绝对值 (2)一个正数的绝对值是它本身.
一个负数的绝对值是它的相反数. 0的绝对值是0.
6.有理数大小的比较 (1)数轴上表示的两个数,右边的总比左边的大. (2)正数大于0,0大于负数,正数大于负数;
两个负数,绝对值大的反而小.
三、有理数的运算 1.有理数的加法
例4 若A是一个三次多项式,B是一个四次多项式,
则A+B一定是( B )
A.三次多项式 B.四次多项式或单项式
C.七次多项式
D.四次七项式
【解析】A+B的最高次项一定是四次项,至于是否含 有其它低次项不得而知,所以A+B只可能是四次多项式或 单项式.故选B.
你能举出对应 的例子吗?
针对训练
5.若A是一个四次多项式,B是一个二次多项式, 则A-B( ) C
第一章 有理数
小结与复习
要点梳理
考点讲练
当堂练习
课堂小结
要点梳理
一、正数和负数 1.小学学过的除0以外的数都是正数. 在正数前面加上符号“-”(负)的数叫做负数. 2.用正、负数表示具有相反意义的量

人教版七年级数学上册第一章《有理数》复习PPT课件

人教版七年级数学上册第一章《有理数》复习PPT课件

2/ 3 化简(1)-|-2/3|=___ ;
1/
由绝对值求数
3. 若|a|=3,则a=____ -1 ±3 ;|a+1|=0,则a=____ 若|a+1|=3,则a=____ 2,-4
1 4、已知a>0,ab<0,化简|a-b+4|-|b-a-3|=_____ 。
5、若
a a
> ,若 =1,则a____0
×
×
考点二:有理数的分类
一、按整数、分数分类:
整数
正整数 0 负整数 正分数 负分数
二、按正数、负数分类:
正有理数
正整数
正分数
有 理 数
有 理 数
0 负有理数
分数
负整数 负分数
1、0和正数 叫非负数 2、0和负数 叫非正数
3、0和负整数 叫非正整数
4、0和正整数叫非负整数 也叫自然数
分数 。 5、有限小数和无限循环小数属于_____
下列各式中用了哪条运算律?如何用字母表示? 1、(-4) × 8=8 ×(-4) ab=ba 乘法交换律: 2、[(-8)+5]+(-4)=(-8)+[5+(-4)] 加法结合律:( a+b)+c=a+(b+c) 2 1 2 1 3、 (6) [ ( )] (6) (6) ( ) 3 2 3 2 分配律: a(b+c)=ab+bc 4、[29×(-5/6)] ×(-12)=29×[(-5/6) ×(-12)] 乘法结合律:(ab)c=a(bc) 5、(-8)+(-9)=(-9)+(-8) 加法交换律: a+b=b+a
乘法三结合 1、积为整数结合 解 题 技 能

人教版七年级数学上册《有理数及其大小比较》有理数PPT课件(第1课时有理数的概念)

人教版七年级数学上册《有理数及其大小比较》有理数PPT课件(第1课时有理数的概念)

2017 √


4
3
√√

-4.9



0

-12 √



探究新知
知识点 2 有理数的分类 你能根据有理数的定义对有理数分类吗?
探究新知
有理数
整数 分数
正整数 零 负整数 正分数
负分数
探究新知
质疑探索 学了有理数的分类后,有没有一些数不是有理数呢? 探究总结
有限小数和无限循环小数都是分数,所以也是有理数. 无限不循环小数(如π)不是分数,就不是有理数.
-3, + 1 ,0, 4,,+2.12,-0.65,+300%,-0.6,22 .
2
7
正数集合:{
};
负数集合:{
};
分数集合:{
};
整数集合:{
};
探究新知
素养考点 2 把有理数按要求分类
例2 把下列各数填在相应的集合中:
易错提醒
-3,
+
1 ,0, 2
4,,+2.12,-0.65,+300%,1先-0.像.化6, +简3270成20.%整数这的种数可是以
第一章 有理数
1.2 有理数及其大小比较 1.2.1 有理数的概念
学习目标
1. 了解有理数的定义. 2. 会判断一个数是整数还是分数,是正数还是负数. 3. 知道有理数的两种分类方法.
探究新知
知识点 1 有理数的概念 某天毛毛看报纸,见到下面一段内容:冬季的一天,某地 的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而 同一天北京的气温为-3℃~7℃. 问题1:这里面出现的数是什么数? 6,7是正数; -10,-3是负数; 0既不是正数也不是负数.

七年级-人教版(2024新版)-数学-上册-[课件]初中数学-七年级上册-第一章--1

七年级-人教版(2024新版)-数学-上册-[课件]初中数学-七年级上册-第一章--1
解:因为 |a-3|+|b-2|=0, |a-3|≥0,|b-2|≥0, 所以 a-3=0,b-2=0. 所以 a=3,b=2. 所以 a+b=3+2=5.
巧用绝对值的非负性求值: 绝对值具有非负性,即 若 |a|+|b|=0,则必有 a=b=0.
绝对值
绝对值的定义
求绝对值的方法
绝对值的性质
绝对值的非负性 绝对值与相反数
试一试,看能不能发现规律.
4
4
(1)|+2|=___2___, 5 = 5
(2)|0|=___0___;
,|+5.2|=__5_._2__;
(3)|-3|=___3___,|-1.5|=___1_.5__,|-5.2|=___5_.2__.
4
-5.2 -3 -1.5 0 5 +2
+5.2
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
C.0
解析:因为 a=-5,所以|a|=5. 又因为|a|=|b|,所以|b|=5, 所以 b=±5.
D.±5
如果两个数的绝对值相等,那么这两个数相等 或者互为相反数.
例3 若整数 a,b 满足等式 |a-3|+|b-2|=0,则 a+b 的值是多少?
分析:根据等式和绝对值的非负性,可知a-3=0,b-2=0,即可 求出 a,b 的值,从而求出 a+b 的值.
归纳 我们可以得到绝对值的性质如下:
一个正数的绝对值是它本身.
如果 a>0,那么|a|=a.
一个负数的绝对值是它的相反数.
如果 a<0,那么|a|=-a.
0得到绝对值的性质如下:
任何一个有理数的绝对值总 是正数或0.即对任意有理数 a, 总有|a|≥0.
有理数及其大小比较
(第4课时)

人教版初一数学 1.2.4 绝对值PPT课件

人教版初一数学 1.2.4  绝对值PPT课件

-1 5
= 1; 5
|-2.8|=2.8.
当堂训练
能力提升题
化简: | 0.2 |=__0_.2___;
-2 3 7
=__2_73___;
| b |=__-_b___ (b<0); | a – b | =__a_-_b__(a>b).
当堂训练
拓广探索题 正答式:排第五球个比排赛球对的所质用量的好一排些球,重因量为是它有的严绝对格值规最定小的,,也现就检是离查标5个准排重 球量的的重克数量最,近超.过规定重量的克数记作正数,不足规定重量的克数 记作负数,检查结果如下:
第一章 有理数
1.2 有理数及其大小比较 1.2.4 绝对值
学习目标
1.理解绝对值的概念及其几何意义. 2.会求一个数(不涉及字母)的绝对值. 3.会求绝对值已知的数. 4.了解绝对值的非负性,并能用其非负性解决相关问题.
导入新课
两辆汽车从同一处O出发分别向东、西方向行驶10km,到 达A、B两处.
|5|= 5 |3.5|= 3.5 |-3|= 3 |-4.5|= 4.5 |0|= 0
-3 -4.5
0
5
0 3.5 0
0
01
探究新知
知识点 2 绝对值的性质 观察这些表示绝对值的数,它们有什么共同点?
|5|=5 |100|=100 |-4.5|=4.5
|-10|=10 |-3|=3 |-5000|=5000
探究新知
例如,下图所示:
-5到原点的距离是5, 所以-5的绝对值是5, 记作|-5|=5.
-6
-5
-4
-3
-2
0 1
|-5| = 5
-1
0到原点的距离是0,所以 0的绝对值是0,记作

人教版七年级数学上册PPT课件

人教版七年级数学上册PPT课件

多做练习
通过大量的练习,提高 解题能力和思维水平, 培养数学素养。
建立错题本
将做错的题目记录下来 ,分析错误原因,避免 重复犯错。
02 有理数及其运算
有理数的概念与性质
有理数的定义
可以表示为两个整数之比 的数,形如 a/b(b≠0) 。
有理数的分类
正有理数、零、负有理数 。
有理数的性质
具有顺序性、稠密性、可 数性等。
整式的分类
单项式和多项式,其中多项式是 由一个或多个单项式组成的整式

整式的次数
整式中次数最高的项的次数,如 $2x^2 + 3x + 4$ 的次数为 $2$

整式的加减运算
整式的加法
整式的加减混合运算
同类项合并,不同类项直接相加,如 $(2x^2 + 3x + 4) + (x^2 - 2x + 1) = 3x^2 + x + 5$。
D
谢谢聆听
用于表示各部分在总体中所占的比例。
02
直方图
用于表示数据分布情况,反映数据的集中趋 势和离散程度。
04
03
01
数据的分析与应用
平均数
反映一组数据的平均水 平,用于比较不同组数 据的差异。
中位数
将一组数据按大小顺序 排列后,位于中间位置 的数,用于描述数据的 集中趋势。
众数
一组数据中出现次数最 多的数,用于描述数据 的集中趋势。
有理数的四则运算
加法运算
减法运算
同号相加,取相同的符号,并把绝对值相 加;异号相加,取绝对值较大的数的符号 ,并用较大的绝对值减去较小的绝对值。
减去一个数等于加上这个数的相反数。

人教版七年级数学上册第一章 1.1 正负数 优秀教学PPT课件

人教版七年级数学上册第一章 1.1 正负数 优秀教学PPT课件

自学指导
请同学们认真阅读课本P2-P4页练习以上内容,并思考: 1.什么是正数,负数;怎样来表示?零是正数还是负数? 2. 在同一个问题中,相反意义的量可以用什么样的数表示?什么情况下
增长率是0?
问题1: 什么叫做正数?
像3,2,0.5……这样大于0的数叫做正数.
问题2: 什么叫做负数?
像-3,-0.5,-2,-2.7%这样在正数前面加上负号“-” 的数叫做负数.
重难点: 1.掌握正数,负数的概念,理解零的意义。 2.初步使用正数和负数表示具有相反意义的量.
在例子中你发现还不很熟悉的数字了吗?
(1)天气预报北京冬季里某天的温度为―3℃~3℃,它的确切含 义是什么?这一天北京的温差是多少?
(2)某年,我国棉花生产量比上一年增长1.8%,油菜籽产量比上 一年增长-2.7%.“增长-2.7%”表示什么意思?
第一章 有理目标
一、知识与能力:借助生活中的实例会判断一个数是正数还是负数, 能用正负数表示具有相反意义的量 二、过程与方法过程:通过实例引入负数,从而指导学生会识别正负 数及其表示法,能应用正负数表示具有相反意义的量。方法:讨论法、 探究法、讲授法、观察法。 三、情感、态度、价值观乐于接触社会环境中的数学信息,愿意谈论 数学话题,在数学活动中发挥积极作用
12.一种面粉的质量标识为“25±0.20千克”,下列面粉中合格的是( D) A.25.30千克 B.24.70千克 C.25.51千克 D.24.82千克
13.七(1)班与七(2)班进行拔河对抗赛,如果胜一局记为+1, 负一局记为-1.比赛结束后七(1)班的记录结果为-1和+2, 则表示七(1)班共比赛___3_局,其中胜了__2__局,负了__1__局. 14.教室的天花板高2.8米,课桌高0.6米,如果把课桌面记作0米, 则教室的天花板和地面分别记作__+_2_.2_米__,_-_0_.6_米______; 如果以天花板为0米, 那么桌面高度和地面各记作____-_2_.2_米_,__-_2_.8_米_______.

七年级-人教版(2024新版)-数学-上册-[课件]初中数学-七年级上册-第一章--1

七年级-人教版(2024新版)-数学-上册-[课件]初中数学-七年级上册-第一章--1

9
负有理数:-3 ,-30,-12%,-7.5,-60 . 8
例2 下列说法中,正确的是( D ). A.在有理数中,0的意义仅仅表示没有 B.一个有理数,它不是正数就是负数 C.正有理数和负有理数组成有理数 D.0是自然数 解析:0的意义不仅仅表示没有,在一些具体情境中有特殊的 表示,故选项A错误;一个有理数,它有可能是正数,也有可能是 负数,还有可能是0,故选项B错误;正有理数、0和负有理数组成 有理数,故选项C错误.0是自然数,故选项D正确.
为4.
圆周率 π 是正数,但不是有理数,千万要注意,类 似 π ,- π 等同样也不是有理数.
23
例4 把下列各数填入相应的集合内.
172,-3.141
6,0,2
019,-
8 5
,10%,10.1,0.67,-89.
正数集合: 12,2 019,10%,10.1,; 0.67, 7

负数集合: -3.141 6,- 8 ,-89,
思考 你能试着对有理数进行分类吗?
归纳 按定义分类:
有理数
正有理数 0
负有理数
例1 指出下列各数中的正有理数、负有理数,并分别指出其中的 正整数、负整数:
13,4.3,-3
,8.5%,-30,-12%,1

,-7.5,20,-60,1.2
.
8
9
正有理数:13,4.3,8.5%,1

,20,1.2 .
“0”的意义
_表__示__没__有_____ _某__种__量__的_基__准__ _分__界__点_______
思考 回想一下,我们认识了哪些数?
从小学开始,我们首先认识了正整数. 后来又增加了0和正分数. 在认识了负整数和负分数后,对数的认识就扩充到了有理数 范围.

新人教版七年级上册数学第一章《有理数》1.4.1 有理数的乘法课件

新人教版七年级上册数学第一章《有理数》1.4.1 有理数的乘法课件


。 -3
其结果可表示为(-2)×(-。3)=+6
2019/10/5
10
想一想:
问题4的结果(-2)×(-3)=+6 与 问题1的结果(+2)×(+3)=+6 有何区别?
因数符号的改变, 积的符号怎么变?
结论: 两个有理数相乘,同时改变两个 乘数的符号,积的符号不变。
2019/10/5
11
规律呈现:
L
0
1、如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟后它 在什么位置?
2、如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后它 在什么位置?
3、如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟前它 在什么位置?
4、如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟前它 在什么位置?
2019/10/5
引入相反数后加减混合运算可以统一为加法运算.
a+b-c=a+b+(-c).
减一个数等于加上这个数的相反数,那么,加上一 个数也等于减去这个数的相反数.
(1) (4) (3) (0.5) 解: = 1 4 3 0.5
= 1 3 4 0.5
2019/10/5
= 4 4.5 = 0.5
2 × 3= 6 ········ 把绝对值相乘
所以 (-2)×(-3)=6
一定又,如,二(求-3,.6) ×5 ····· 异号两数相乘 三相乘.(-3.6)×5= -() ········ 得负
3.6 ×5=18 ······· 把绝对值相乘
所以 (-3.6) ×4= -18
有理数相乘,先确定积的 符号 , 再确定积的 绝对值 .
4、乘积是1的两个数互为倒数.

新人教版七年级数学上册全册ppt课件

新人教版七年级数学上册全册ppt课件
注意
有时,我们为了明确表达意义,在正数前面也加上“+” (正)号,如+3,+1.8%,+0.5,….不过一般情况下我 们省略“+”不写.
典例精析
例1 读出下列各数,并把它们填在相应的圈里:
7 3 1 . -11, ,+73,-2.7, ,4.8, 12 4 6
7 正 1 数 6 ,+73,4.8, 12
例3(1)一个月内,小明体重增加2kg,小华体重减少
1kg,小强体重无变化,写出他们这个月的体重增长值; (2)某年下列国家的商品进出口总额比上年的变化情 况是: 美国减少6.4%, 德国增长1.3%,
法国减少2.4%, 英国减少3.5%,
意大利增长0.2%,中国增长7.5%. 写出这些国家2001年商品进出口总额的增长率.
课堂小结
1.正数是比零大的数,正数前面加“—‖号 的数叫做负数. 2.0 既不是正数也不是负数,它是正负数的分界.
3.正数和负数表示的是一对具有相反意义的量.
回顾本节课所学内容,并请同学们回答以下问题: 1. 什么是正数?什么是负数? 2. 你是如何理解数0的? 3. 你能举例说明引入负数的好处吗?
(3)存入现金记为正,支出现金记为负,若存款折
上记录的数字有¥2000元和¥-1800元,你知道分别 代表什么意义吗?
解(1)4600 m表示高出海平面4600 m, -200 m表示低于海平面200 m; (2)水位下降1.5 m; (3)¥2000元表示存入现金2000元,
¥-1800元表示支出现金1800元;
一 正、负数的认识 问题1:说一说上面用到的各数的含义.
(1)天气预报中的3,电梯按钮中的1-10,新闻报道中的 1.8%; (2)天气预报中的-3,电梯按钮中的-1,-2,新闻报道 中的-2.7%.

七年级-人教版(2024新版)-数学-上册-[课件]初中数学-七年级上册-第一章--1

七年级-人教版(2024新版)-数学-上册-[课件]初中数学-七年级上册-第一章--1

定好误差范围再判断 (1)用“+”或“-”表示物体的长度、质量等的范围时, 首先要明确以何为标准,然后根据正数和负数的意义确定符合要 求的范围,运用小学学过的数的大小比较方法即可确定给出的数 是否符合要求. (2)“+”号在运算时可以看成加号,“-”号在运算时可 以看成减号.
正数和负数 的实际应用
正数和负数(第2课时)
像3,50,7.8%这样___大_于__0__的数叫作__正__数___.像-3, -10 ,-0.7%,这样在正数前加上符号___“__-__”___的数叫作 ____负__数_____.
有时,为了明确表达与负数的相反意义,在正数前面也加 上符号_“__+__”__(读作“正”).
一个数前面的“+”“-”号叫作这个数的__符__号___.
0既__不__是__正数,也__不__是__负数.
如果一个问题中出现相反意义的量,我们可以用__正__数__和__负__数__ 分别表示它们.
问题 根据前面的学习我们知道: 把 0 以外的数分为正数和负数,它们表示具有相反意义的量.
试回答:
(1)上面5名同学对应的成绩分别应记为多少?
解:(1)80分比平均成绩低5分,记作-5分; 98分比平均成绩高13分,记作+13分; 90分比平均成绩高5分,记作+5分;
角度2 用正数和负数表示具体数量 例2 在一次数学测验中,七(1)班全体同学的平均分为 85 分,
其中 5 名同学的成绩分别为 80分、98分、90分、84分、73分.以平 均分为基准,用正数表示超出部分,用负数表示不足部分.
分析:增加和减少是具有相反意义的量,规定体重增加 用正数表示.体重增加1.2 kg,记为1.2 kg或+1.2 kg;减少0.5 kg,记为-0.5 kg;体重无变化,记为0 kg.

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)
1用科学计数法表示数只是改变数的形式并没有改变数的大小2负数用科学计数法表示时和正数一样区别就是前面多一个号3当把一个用科学计数法表示的数还原为原数时只需将小数点向右移动n位不足的数位用0补齐并把10的n次幂去掉551确定n时要根据科学计数法的规定使它为只含有一位整数的数2确定n的方法有两种1利用整数的位数来求nn等于原数的整数位数1ex
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、减法: 减去一个数,等于加上这个数的相反数。
3、乘法: 两数相乘,同号得正,异号得负,绝对值相乘。 任何数与0相乘,积仍为0。 几个不为0的数相乘,当负因数有奇数个时,积为负;当负
因数有偶数个时,积为正。
.
6
4、除法: 除以一个数等于乘以这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。 0除以任何一个不为0的数,都得0。
a
.
3
绝对值:
从数轴上看,一个数的绝对值就是表示这个数的点离
开原点的距离。数 a的绝对值记为 a 。 正数的绝对值是它本身; 0的绝对值是0; 负数的绝对值是它的相反数。 即:
a a(a 0)
a a(a 0)
例如: 3 3
5 5
.
4
有理数的大小比较:
正数都大于0,负数都小于0。即负数<0<正数。 数轴上两个点表示的数,右边的总比左边的大。 两个负数,绝对值大的反而小。
D点表示_0_:
E点表示_1_.5。
.
2
相反数:
只有符号不同的两个数互为相反数。 0的相反数是0。 例如:2和-2 互为相反数的两个数相加得0。 例如:5+(-5)=0
一个数 a相反数是 a。
例如: 3的相反数是-3 -4的相反数是-(-4)=4
倒数:
乘积是1的两个数互为倒数。 0没有倒数。
1
a 的倒数是 。
3、乘法交换律: abba 4、乘法结合律: (a)bca(b)c
5、分配律: a(bc)ab ac
有理数混和运算的运算顺序: 先算乘方,再算乘除,最后算加减。如果有括号就先
算括号里面的。
注意:同级运算要由左到右进行。
.
8
测试:
1、一个数的绝对值是6.5,这个数是__6_.5_。 2、绝对值小于3的非负整数是___0,1_,2___。
例:
比较大小 : 2 __ 0 . 6 3
解:
因为 : 2 2 , 0 . 6 0 . 6 33
2 0 .6 3 所以 : 2 0 . 6
3
.
5ቤተ መጻሕፍቲ ባይዱ
有理数的运算方法:
1、加法: 同号两数相加,取相同的符号,并把绝对值相加。 异号两数相加,取绝对值大的数的符号,并用较大的
绝对值减去较小的绝对值。 一个数同0相加,仍得这个数。
有理数的两种分类:
整数
{ 有理数
{ { 分数
正整数
0 负整数 正分数
负分数
{ {{ 有理数
正有理数 0 负有理数
正整数 正分数 负整数 负分数
.
1
数轴:
规定了原点、正方向、单位长度的直线叫做数轴。 任何一个有理数都可以用数轴上的一个点来表示。
如上图:
A点表示__2;
B点表示_2_;
C点表示__3;
5、乘方: 求几个相同因数的积的运算,叫做乘方。 乘方运算可以化为乘法运算进行:
即: an a a a
n
a是底数, n是指数, a n 是幂。
正数的任何次幂都是正数。
负数的奇数次幂是负数,偶数次幂是正数。
0的任何次幂都是0。
.
7
运算律:
1、加法交换律: abba
2、加法结合律: a (b c) (a b ) c
3、
1
1 9
9
的相反数的倒数是__1_0 __。
4、 (1)2002(22)___4__。
5、如果 a2 16 ,那么 a__4_。__
6、 若a3,b5,则ab_8_或_2 ______
7、计算:
(1)1(21)23732 2 3 48 3
1 24
(2)0.25 (2)(13)0.6 1
35
.
9
相关文档
最新文档