概率统计专题复习

合集下载

概率与统计专题复习

概率与统计专题复习
3 )概率 统计 试题 主要考 查基 本概念 和基本 公式 ,
4 二 项式 定理 与相 关 知识 的交 汇考 查
■, ,
例 5 已知 数列 { ( a } 为 正 整数 ) 首 项 为 a , 是
公 比为 q的等 比数列 .
() 1 求和 : 1 2 2 3 ; a C 一n C +n C ,
a C 一n C + n C -a C ; 1 2 3 i 4 i
( ) 1 的结 果 归纳 概 括 出关 于 正 整数 n的 一 2 由( ) 个 结 论 , 加 以证 明. 并
( )口 C 一口 C +口 c _ 1 z 。2 O 1
对 等可 能性 事 件 的 概 率 、 斥 事件 的概 率 、 立 事件 互 独 的概率 、 事件 在 次独 立重 复试 验 中恰 发 生 k次 的概 率 、 散型 随机变 量分 布列 和数 学 期 望 、 离 方差 、 样 方 抽 法 等 内容都进 行 了考查 .
用 的全 过程 . 率统计 内容 中蕴涵 着 丰 富 的数 学思 想 概
方法 , 函数 与 方 程 思 想 、 如 分类 讨 论 、 化 思 想 等. 转 概
率统计 为人 们 处 理 现 实 数 据 信 息 , 析 、 握 随机 事 分 把
越 是 接 近 真 理 , 愈 加 发 现 真理 的 迷人 . 便
q c + … + ( 1 ” :1 1 1 q . 。 ~ )q C - 一n ( - )
森主 项定知与 识 二式理识 均
( 者单位 : 作 河北省 滦 平县 第一 中学)
数学思 想方 法作 为数 学 的精 髓 , 来是 高 考数 学 历 考查 的重 中之 重 . 蕴涵 在 数 学 知 识 发 生 、 展 和 应 它 发

最详细概率统计期末总复习PPT演示课件

最详细概率统计期末总复习PPT演示课件

2 2 (n 1)

2

2 1
(n 1)
2


2
/
2
(n
1)或
2

2 1
/
2
(n
1)
10
例1 (1) 在古典概型的随机试验中,
P(A) 0 A Ø
(√ )
(2) 若事件 A, B, C , D 相互独立, 则
事件 A D与 B C 也相互独立. (√ ) 若事件 A1, A2, …, An 相互独立, 将它
们任意分成 k 组, 同一事件不能同时 属于两个不同的组, 则对每组事件进 行求和、积、差、逆 等运算所得到
的 k 个事件也相互独立. 11
(3) 若事件 A 与 B独立, B 与 C独立, 则事件 A与 C 也相互独立. ( )
事件相互独立不具有传递性.
例2 小王忘了朋友家电话号码的最后一位
数, 故只能随意拨最后一个号, 则他拨三次
可拨通朋友家的概率为 _0._3_.
12
例3 小王忘了朋友家电话号码的最后一位
数, 他只能随意拨最后一个号, 他连拨三次, 求第三次才拨通的概率.
解 设 Ai 表示“第 i 次拨通” i 1, 2 , 3
由乘法公式 P( A1A2 A3 ) P( A1)P( A2 A1)P( A3 A1A2 )
概率统计复习
1
《概率统计》复习
2
各章比重
概率(66)
统计(34)
第第第第第 一二三四五 章章章章章
(20) (16) (14) (14) (2)
第第第 六七八 章章章
(14) (10) (10)
3

高三复习专题 概率和统计

高三复习专题    概率和统计

高三复习专题概率和统计1.下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)2.某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y,求3X 的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?3.甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果相互独立,第1局甲当裁判.(I)求第4局甲当裁判的概率;(II)X表示前4局中乙当裁判的次数,求X的数学期望.4.现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(I)求张同学至少取到1道乙类题的概率;(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.5.在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名歌手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率; (Ⅱ) X 表示3号歌手得到观众甲、乙、丙的票数之和, 求X 的分布列和数学期望.6.经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润.(Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望.7.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;(Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分X的分布列及数学期望.8.一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.9.设S是不等式260x x--≤的解集,m,n∈S。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)概率统计公式大全(复习重点)在学习概率统计的过程中,熟练掌握相关的公式是非常关键的。

本文将为大家详细介绍一些常用的概率统计公式,并对其进行简要的说明和应用举例,以便复习和巩固知识。

一、基本概率公式1. 事件的概率计算公式P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率;n(A)表示事件A中有利的结果数;n(S)表示样本空间S中的全部结果数。

例如:从一副扑克牌中随机抽取一张牌,求抽到红心牌的概率。

解:样本空间S中共有52张牌,红心牌有13张,所以 P(红心牌) = 13 / 52 = 1 / 4。

2. 条件概率计算公式P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。

例如:某班级男女生分别有30人和40人,从中随机选择一名学生,求选到女生并且是优等生的概率。

解:女生优等生有20人,所以 P(女生且是优等生) = 20 / (30+ 40)= 1 / 7。

二、常用离散型随机变量的数学期望与方差1. 随机变量的数学期望计算公式E(X) = ∑[x * P(X=x)]其中,E(X)表示随机变量X的数学期望;x表示随机变量X的取值;P(X=x)表示随机变量X取值为x的概率。

例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的数学期望。

解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。

2. 随机变量的方差计算公式Var(X) = E((X - E(X))²)其中,Var(X)表示随机变量X的方差;E(X)表示随机变量X的数学期望。

例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的方差。

解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。

统计与概率(中考复习专题)

统计与概率(中考复习专题)

六、统计与概率一.学习目标1.熟记统计与概率中的各知识点的内涵、计算公式、概率的求法 2.利用统计与概率的知识解决现实生活中的简单问题 二.知识要点1、调查收集数据的方法:普查、抽样调查2、统计图:条形统计图、折线统计图、扇形统计图3、总体,个体、样本、样本容量、频数、频率、平均数(加权平均数)、中位数、众数、极差、方差、标准差、概率的概念.设一组数据是是这组数据的平均数。

则这组数据的方差公式:标准差公式为: 4、概率的理论计算方法有:①树状图法;②列表法. 三.考点再现1. .(2010年重庆)下列调查中,适宜采用全面调查(普查)方式的是( ) A .对全国中学生心理健康现状的调查 B .对冷饮市场上冰淇淋质量情况的调查 C .对我市市民实施低碳生活情况的调查D .对我国首架大型民用直升机各零部件的检查 2. 下列事件中,是必然事件的为( )A. 我市夏季的平均气温比冬季的平均气温高;B. 每周的星期日一定是晴天;C. 打开电视机,正在播放动画片;D. 掷一枚均匀硬币,正面一定朝上 3. (2010年安徽中考) 某企业1~5月分利润的变化情况图所示,以下说法与图中反映的信息相符的是………………( ) A )1~2月分利润的增长快于2~3月分利润的增长 B )1~4月分利润的极差于1~5月分利润的极差不同 C )1~5月分利润的的众数是130万元 D )1~5月分利润的的中位数为120万元4(2010哈尔滨)1。

一个袋子里装有8个球,其中6个红球2个绿球,这些球除颜色外,形状、大小、质地等完全 相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个红球的概率是( ). (A )81 (B )61 (C )41 (D )43 .5(2010宁波市)7.从1~9这九个自然数中作任取一个,是2的倍数的概率是A .29B .49C .59D .23四.典例剖析例1.(2010江苏泰州,24,10分)玉树地震后,全国人民慷慨解囊,积极支援玉树人民抗震救灾,他们有的直接捐款,有的捐物.国家民政部、中国红十字会、中华慈善总会及其他基金会分别接收了捐赠,青海省也直接接收了部分捐赠.截至5月14日12时,他们分别接收捐赠(含直接捐款数和捐赠物折款数)的比例见扇形统计图(图①),其中,中华慈善总会和中国红十字会共接收...捐赠约合人民币15.6亿元.请你根据相关信息解决下列问题:(1)其他基金会接收捐赠约占捐赠总数的百分比是;(2)全国接收直接捐款数和捐物折款数共计约亿元;(3)请你补全图②中的条形统计图;(4)据统计,直接捐款数比捐赠物折款数的6倍还多3亿元,那么直接捐款数和捐赠物折款数各多少亿元?【答案】⑴4%;⑵52亿;⑶补全图如下:⑷设直接捐款数为x,则捐赠物折款数为:(52-x)依题意得:x=6(52-x)+3解得x =45(亿)(52-x )=52-45=7(亿)答:直接捐款数和捐赠物折款数分别为45亿,7亿元..例2. 两人要去某风景区游玩, 每天某一时段开往该风景区有三辆车(票价相同),但是他们不知道这些车的舒适程度, 也不知道车子开过来的顺序. 两人采取了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车, 当第一辆车开来时 他不上车, 而是仔细观察车的舒适度, 如果第二辆车的状况比第一辆车好, 他就上第二辆车; 如果第二辆车不比第一辆好, 他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等, 请尝试着解决下面的问题: ⑴三辆车按出现的先后顺序工有哪几种不同的可能? ⑵ 你认为甲、乙两人采用的方案, 哪一种方案使自己..乘上等车的可能性大? 为什么? 【分析】由于各车的舒适度不同,而且开过来的顺序也事先未知,因此不同的乘车方案使自己乘坐上等车的可能性不一样.我们只要将三种不同的车开来的可能性顺序全部列出来,再对照甲乙二人不同的乘车方案,就可以得出两人乘坐上等车的可能性. 五.达标训练一.选择(每题只有一个正确答案)1、(2010福建德化)下列调查方式合适的是( )A 、为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B 、为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C 、为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D 、为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式 2.400名同学中,有2名同学生日相同(可以不同年)的概率为( )A . 0.5 B. 0.0005 C. 1 D. 不能确定3、在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ) A .12 B .9 C .4 D .34、(2010年金华)小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( )A .21B .31C .61D .1215、(2010年长沙)下列事件是必然事件的是 A .通常加热到100℃,水沸腾; B .抛一枚硬币,正面朝上;C .明天会下雨;D .经过城市中某一有交通信号灯的路口,恰好遇到红灯6、(2010年镇江市)15.有A ,B 两只不透明口袋,每只品袋里装有两只相同的球,A 袋中的两只球上分别写了“细”、“致”的字样,B 袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是 ( )A .31 B .41 C .32 D .437、已知甲乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙则( )A.甲组数据比乙组数据的波动大 B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大 D.甲乙两组数据的波动大小不能比较8、小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( )。

专题六 概率统计专题复习

专题六  概率统计专题复习

专题六、概率统计 1、计数原理、二项式定理热点一 两个原理、排列与组合例1、从A ,B ,C ,D ,E 五名学生中选出四名分别参加数学、物理、化学、英语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ).A .24B .48C .72D .120变式训练:1、若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ).A .60种B .63种C .65种D .66种2、现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,则不同取法的种数为( ).A .232B .252C .472D .4843、将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有________种. 热点二 求展开式中的指定项例2、在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项等于_________.变式训练:1、8的展开式中常数项为( ).A .3516B .358C .354D .1052、若1nx x ⎛⎫+ ⎪⎝⎭的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为_________.3、在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为( ).A .10B .-10C .40D .-40热点三 求展开式中的各项系数的和例3、若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( ).A .1B .-1C .0D .2变式训练:1、若(2x -1)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 0+a 1+a 2+a 3+a 4+a 5=________.2、若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=__________.课外训练: 一、选择题1 .已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )A .4-B .3-C .2-D .1-2 .用0,1,,9十个数字,可以组成有重复数字的三位数的个数为 ( )A .243B .252C .261D .279 3 .设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m = ( ) A .5 B .6 C .7 D .84 .)()()8411+x y +的展开式中22x y 的系数是 ( )A .56B .84C .112D .1685 .满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .106 . 10(1)x +的二项展开式中的一项是 ( )A .45xB .290xC .3120xD .4252x7 .使得()3nx n N n+⎛+∈ ⎝的展开式中含有常数项的最小的为 ( )A .4B .5C .6D .78 .从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .209 . (x 2-32x )5展开式中的常数项为 ( )A .80B .-80C .40D .-40二、填空题10.二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答) 11.从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).12.从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答)13. 6x⎛⎝ 的二项展开式中的常数项为______.14.设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 15.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =16.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.17.若8x ⎛+ ⎝的展开式中4x 的系数为7,则实数a =______.18.6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).2、概率、统计与统计案例 热点一 随机事件的概率例1、如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积V =0).则V =0时的概率为_______变式训练:1、从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ).A .49B .13C .29D .192、某游乐场将要举行狙击移动靶比赛.比赛规则是:每位选手可以选择在A 区射击3次或选择在B 区射击2次,在A 区每射中一次得3分,射不中得0分;在B 区每射中一次得2分,射不中得0分.已知参赛选手甲在A 区和B 区每次射中移动靶的概率分别是14和p (0<p <1).若选手甲在A 区射击,则选手甲至少得3分的概率为_________ 热点二 古典概型与几何概型例2、设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ).A .π4B .π-22C .π6 D .4-π4变式训练:1、在长为18 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为( ).A .56B .12C .13D .162、先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X ,Y ,则log 2X Y =1的概率为( ).A .16B .536C .112D .123、如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ).A .14B .15C .16D .17热点三 统计例3、从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( ).A .x 甲<x 乙,m 甲>m 乙B .x 甲<x 乙,m 甲<m 乙C .x 甲>x 乙,m 甲>m 乙D .x 甲>x 乙,m 甲<m 乙变式训练:1、采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ).A .7B .9C .10D .152、某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人,现采用分层抽样抽取容量为30的样本,则抽取各职称的人数分别为( ).A .5,10,15B .3,9,18C .3,10,17D .5,9,16 3、甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ).A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩不比乙的成绩稳定 热点四 独立性检验例4、为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.两个班同学的成绩(百分制)的茎叶图如图所示:按照大于或等于80分为优秀,80分以下为非优秀统计成绩. (1)根据以上数据完成下面的2×2列联表:(2)能否有95%附:K 2=n (ad -bc )2(a +b )(c变式训练:为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?附:K 2的观测值k =n (ad -bc )(a +b )(c +d )(a +c )(b +d ).课外训练: 一、选择题1、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .602、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为( ) A .11 B .12 C .13 D .14 3、某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 4、如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( ) A .14π-B .12π- C .22π-D .4π5、某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450 D .120 6、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样7、以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( ) A .2,5B .5,5C .5,8D .8,8二、填空题8、盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)9、从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示.(I)直方图中x 的值为___________; (II)在这些用户中,用电量落在区间[)100,250内的户数为___________.10、利用计算机产生0~1之间的均匀随机数a,则时间“310a ->”发生的概率为________ 11、从n 个正整数1,2,n …中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________. 12、在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为______.13、现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为______.三、解答题14、某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.3、随机变量及其分布列热点一 相互独立事件、互斥事件、对立事件及其概率例1、现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分至少1分的概率; (3)求该射手的总得分至多3分的概率.热点二 二项分布及其应用例2、某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.记ξ为射手射击3次后的总得分数,求p(ξ=3)和p(ξ<2).热点三 离散型随机变量的分布列、均值与方差 例3、交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,交通指数取值范围为0~10,分为五个级别,0~2 畅 通;2~4 基本畅通;4~6 轻度拥堵;6~8 中度拥堵;8~10 严重拥堵.早高峰时段,从昆明市交通指挥中心随机1 7 92 0 1 53 0选取了二环以内的50个交通路段,依据其交通指数数据绘制的直方图如右图.(1)据此估计,早高峰二环以内的三个路段至少有一个是严重拥堵的概率是多少?(2)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.课外训练:1、某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y,求3X 的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?2、一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(1) 求取出的4张卡片中, 含有编号为3的卡片的概率.(2) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.3、经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品,以X(单位:t,150≤X)100≤表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内销商该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量X∈,则落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)取105X=的概率等于需求量落入[100,110)的概率),求利润T的数X=,且105学期望.。

专题6:概率与统计(理)高三复习经典教案含答案

专题6:概率与统计(理)高三复习经典教案含答案

专题六:概率与统计【一、基础知识归类:】1、概率(范围):0≤P(A) ≤1(必然事件:P(A)=1,不可能事件:P(A)=0)2、互斥事件有一个发生的概率:A 、B 互斥: P(A +B)=P(A)+P(B);A 、B 对立:P(A)+P(B)=13、抽样方法(等概率Nn抽样):(1)简单随机抽样、系统抽样(等距抽样)、分层抽样(等比例抽样). 4、频率分布直方图:组的=f 频率N n (频数和样本容量的比);小长方形面积=组距×组距频率=频率,(面积和为1);频率分布折线图:连接频率分布直方图中小长方形上端中点,就得到频率分布折线图;5、回归直线bx a y+=ˆ,过定点),(y x P . 6、独立性检验(分类变量关系):随机变量2K 越大,说明两个分类变量,关系越强,反之,越弱. 7、排列、组合和二项式定理(1)排列数公式:mn A =n (n -1)(n -2)…(n -m +1)=)!(!m n n -(m ≤n ,m 、n ∈N *), 当m =n 时为全排列:nn A =n (n -1)(n -2)…3.2.1=n !;(2)组合数公式:123)2()1()1()1(!⋅⋅⋅⋅⋅-⋅-⋅--⋅⋅⋅-⋅==m m m m n n n m A C mn m n(m ≤n ),10==n n n C C ; (3)组合数性质:m n m n m n m n n mnC C C C C 11;+--=+=;(4)二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a nn n k k n k n n n n n n ①通项:);,...,2,1,0(1n r b a C T rr n r n r ==-+②注意二项式系数与系数的区别;(5)二项式系数的性质: ①与首末两端等距离的二项式系数相等; ②若n 为偶数,中间一项(第2n +1项)二项式系数最大;n 为奇数,中间两项(第21+n 和21+n +1项)二项式系数最大;③;2;2131221-=⋅⋅⋅++=⋅⋅⋅++=+⋅⋅⋅+++n n n n n nnn n n n C C C C C C C C(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法. 8、随机变量的分布列:①随机变量分布列的性质:P i ≥0,i=1,2,...; P 1+P 2+ (1)②离散型随机变量:期望:E 1 1 2 2 n n 方差:D X =⋅⋅⋅+-+⋅⋅⋅+-+-n n p EX x p EX x p EX x 2222121)()()( ; 注:DX a b aX D b aEX b aX E 2)(;)(=++=+;③二项分布(独立重复试验):若X ~B (n ,p ),则EX =np , DX =np (1- p );注:k n kk n p p C k X P --==)1()(.9、条件概率:称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的概率. 注:①0≤P (B|A )≤1;②P(B ∪C|A)=P(B|A)+P(C|A). 10、独立事件同时发生的概率:P (AB )=P (A )P (B ). 11、正态总体2(,)N μσ的概率密度函数:,,21)(222)(R x ex f x ∈=--σμσπ(1)式中σμ,是参数,分别表示总体的平均数(期望值)与标准差; (2)正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,关于直线x =μ 对称; ③曲线在x =μ处达到峰值πσ21;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线随μ值的变化沿x 轴平移;⑥当μ一定时,曲线形状由σ确定:σ越大,曲线越“矮胖”,表示总体分布越集中;σ越小,曲线越“高瘦”,表示总体分布越分散.注:P )(σμσμ+≤<-x =0.6826;P )22(σμσμ+≤<-x =0.9544; P )33(σμσμ+≤<-x =0.9974.【二、专题练习:】一、选择题(共12小题,每小题5分,总分60分)1.(北京市崇文区2008年高三统一练习)某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共有( ) A .15种B .12种C .9种D .6种2.(四川省成都市新都一中高2008级12月月考)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A 、56个B 、57个C 、58个D 、60个3.某班有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案的种数为( ) (A)35(B)70(C)210(D)1054.从6人中选出4人参加数、理、化、英语比赛,每人只能参加其中一项,其中甲、乙两人都不能参加英语比赛,则不同的参赛方案种数共有( )(A)96种 (B)180种 (C)240种 (D)288种5.某服装加工厂某月生产A 、B 、C 三种产品共4000件,为了保证产品质量,进行抽样检验,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是 ( ) A .80B . 800C .90D .9006.(高州市大井中学2011高三上期末考试)六名学生从左至右站成一排照相留念,其中学生甲和学生乙必须相邻.在此前提下,学生甲站在最左侧且学生丙站在最右侧的概率是( )A .130 B .110C .140D .1207.(2011·汕头期末)下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:根据上表提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,那么表中t 的值为( ) A. 3 B. 3.15 C. 3.5D. 4.58.已知随机变量X 服从正态分布2(,)N μσ,且(22)0.9P X μσμσ-<≤+=, ()0.6826P X μσμσ-<≤+=,若4μ=,1σ=, 则(56)P X <<= ( )A .0.1358B .0.1359C .0.2716D .0.27189.(2009届高考数学二轮冲刺专题测试)若二项式213nx x ⎛⎫- ⎪⎝⎭的展开式中各项系数的和是512,则展开式中的常数项为 ( ) A .3927C - B 3927C C .499C -D .949C10.(2011福州期末)如图所示,正方形的四个顶点分别为(0,0),(1,0),(1,1),(0,1)O A B C ,曲线2y x =经过点B .现将一个质点随机投入正方形中,则质点落在图中阴影区域的概率是 ( )A .12B .14 C .13D .2511.(2010届·安徽省合肥高三四模(理))从足够多的四种颜色的灯 泡中任选六个安置在如右图的6个顶点处,则相邻顶点处灯泡颜色 不同的概率为 ( ) A .64228 B .64240 C .64264 D .6428812.(2011锦州期末)某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设0H :“这种血清不能起到预防感冒的作用”,利用22⨯列联表计算得2 3.918χ≈,经查对临界值表知2( 3.841)0.05P χ≥≈. 对此,四名同学做出了以下的判断:p :有95%的把握认为“这种血清能起到预防感冒的作用”q :若某人未使用该血清,那么他在一年中有95%的可能性得感冒r :这种血清预防感冒的有效率为95%s :这种血清预防感冒的有效率为5%则下列结论中,正确结论的序号是( ) ①p q ∧⌝;②p q ⌝∧;③()()p q r s ⌝∧⌝∧∨;④()()p r q s ∨⌝∧⌝∨(A )①③ (B )②④ (C )①④ (D )都不对 二、填空题(共4小题,每小题4分,共16分)13.(2009杭州学军中学第七次月考)在边长为2的正三角形ABC 内任取一点P ,则使点P 到三个顶点的距离至少有一个小于1的概率是 .14.(2011巢湖一检)已知随机变量2~(2,)N ξσ,若3(1)4P ξ>-=,则(5)P ξ>= . 15.(2011嘉禾一中)从颜色不同的5 个球中任取4 个放入3 个不同的盒子中,要求每个盒子不空,则不同的方法总数为____________.(用数字作答)16.(2009届福建省福鼎一中高三理科)若2005220050122005 (12)()x a a x a x a x x R -=++++∈,则010********...()()()()a a a a a a a a++++++++=____.(用数字作答)三、解答题(共6个小题,总分74分)17.(2011汕头期末)四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为x 、y ,记y x +=ξ;24131452[185,190)[180,185)[175,180)[170,175)[165,170)[160,165)频数身高(cm )(Ⅰ)求随机变量ξ的分布列和数学期望;(Ⅱ)设“函数1)(2--=x x x f ξ在区间)3,2(上有且只有一个零点”为事件A ,求事件A 发生的概率.18.(江门2011高三上期末调研测试)甲、乙两同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,具体成绩如下茎叶图所示,已知两同学这8次成绩的平均分都是85分. (1)求x ;并由图中数据直观判断,甲、乙两同学中哪一位的成绩比较稳定?(2)若将频率视为概率,对甲同学在今后3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望ξE .19.(揭阳市2011届高三上学期学业水平考试)为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2. 表1:男生身高频数分布表身高(cm )频数[150,155)[165,170)[170,175)[175,180)[155,160)[160,165)1712631男生样本频率分布直方图频率/cm表2:女生身高频数分布表(1)求该校男生的人数并完成下面频率分布直方图;(2)估计该校学生身高(单位:cm )在[165,180)的概率; (3)在男生样本中,从身高(单位:cm )在[180,190)的男生中任选3人,设ξ表示所选3人中身高(单位:cm )在[180,185)的人数,求ξ的分布列和数学期望.20.(2011东莞期末)为了调查老年人的身体状况,某老年活动中心对80位男性老年人和100位女性老年人在一次慢跑后的心率水平作了记录,记录结果如下列两个表格所示, 表1:80位男性老年人的心率水平的频数分布表(单位:次/分钟)表2:100位女性老年人的心率水平的频数分布表(单位:次/分钟)(1)从100位女性老人中任抽取两位作进一步的检查,求抽到的两位老人心率水平都在[100,110)内的概率;(2)根据表2,完成下面的频率分布直方图,并由此估计这100女性老人心率水平的中位数;(3)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.001的前提下认为“这180位老人的心率水平是否低于100与性别有关”. 表3:附:22()()()()()n ad bc K a b c d a c b d -=++++21.全球金融危机,波及中国股市,甲、乙、丙、丁四人打算趁目前股市低迷之际“抄底”,若四人商定在圈定的6只股票中各自随机购买一只(假定购买时每支股票的基本情况完全相同). (1)求甲、乙、丙、丁四人恰好买到同一只股票的概率;(2)求甲、乙、丙、丁四人中至多有两人买到同一只股票的概率;(3)由于中国政府采取了积极的应对措施,股市渐趋“回暖”.若某人今天按上一交易日的收盘价20元/股,女性老年人心率水平频率分布直方图00.010.020.030.040.050.06买入某只股票1000股,且预计今天收盘时,该只股票比上一交易日的收盘价上涨10%(涨停)的概率为0.6持平的概率为0.2,否则将下跌10%(跌停),求此人今天获利的数学期望(不考虑佣金、印花税等交易费用).22.(2011苏北四市二调)甲、乙、丙三名射击运动员射中目标的概率分别为1,,2a a (01)a <<,三人各射击一次,击中目标的次数记为ξ. (1)求ξ的分布列及数学期望;(2)在概率()P i ξ=(i =0,1,2,3)中, 若(1)P ξ=的值最大, 求实数a 的取值范围.参考答案一、选择题 1.答案:D2.解析:万位为3的共计A44=24个均满足;万位为2,千位为3,4,5的除去23145外都满足,共3×A33-1=17个;万位为4,千位为1,2,3的除去43521外都满足,共3×A33-1=17个;以上共计24+17+17=58个,答案:C3.【解析】选B.从7人中选出3人,有种方法,3人相互调整座位,共有2种调整方案,故总的调整方案种数为×2=70(种).4.C5.【解析】选B.因为分层抽样是按比抽取,由B 产品知比为101,再由A 产品的样本容量比C 产品 的样本容量多10,易得C 产品的样本容量为800. 6.C7. 2.54 4.53456110.70.350.70.35 3.53444t ty x t +++++++=+=⨯+⇒=⇒=由得,选A ;8—12:B B C C C 二、填空题13.答案:14.答案:14 15.答案180 16.答案:2003三、解答题17.解:(Ⅰ)由题意可知随机变量ξ的可能取值为2,3,4,从盒子中摸出两个小球的基本事件总数为624=C ,当2=ξ时,摸出小球所标的数字为1,1,61)2(==ξP , 当4=ξ时,摸出小球所标的数字为2,2,61)4(==ξP ,可知,当3=ξ时,3261611)3(=--==ξP ;得ξ的分布列为:12343636E ξ=⨯+⨯+⨯=;(Ⅱ)由“函数1)(2--=x x x f ξ在区间)3,2(上有且只有一个零点”可知0)3()2(<f f ,即0)38)(23(<--ξξ,解得3823<<ξ, 又ξ的可能取值为2,3,4,故2=ξ,∴事件A 发生的概率为61. 18.解:(1)依题意8587978888082819593=++++++++=x x 甲 解得4=x男生样本频率分布直方图频率/cm由图中数据直观判断,甲同学的成绩比较稳定(2)记“甲同学在一次数学竞赛中成绩高于80分”为事件A ,则4386)(==A P ξ的可能取值为0、1、2、3,且)43 , 3(~B ξ,k k kC k P -==33)41()43()(ξ,其中=k 0、1、2、3所以变量ξ的分布列为:49642736427264916410=⨯+⨯+⨯+⨯=ξE (或49433=⨯==np E ξ) 19.解:(1)样本中男生人数为40 ,由分层抽样比例为10%可得全校男生人数为400. 频率分布直方图如右图示:(2)由表1、表2知,样本中身高在[165,180)的学生人数为: 5+14+13+6+3+1=42,样本容量为70 ,所以样本中 学生身高在[165,180)的频率423705==f故由f 估计该校学生身高在[165,180)的概率35=p .(3)依题意知ξ的可能取值为:1,2,3∵14361(1)5C P C ξ===,2142363(2)5C C P C ξ===,34361(3)5C P C ξ=== ∴ξ的分布列为:ξ的数学期望1311232555E ξ=⨯+⨯+⨯=.20.解:(1)从100位女性老人中任抽取两位,共有2100C 个等可能的结果,抽到的两位老人心率都在[100,110) 内的结果有250C个,由古典概型概率公式得所求的概率250210049198C p C ==(2)频率分布直方图,略; 由0.510(0.010.02)0.2-⨯+=可估计,这100女性老人心率水平的中位数约为0.2100101040.0510+⨯=⨯.(3)2×2列联表, 表3:22180(50703030)19.01258010080100K ⨯⨯-⨯=≈⨯⨯⨯. 由于210.828K >,所以有99.9%的把握认为“这180位老人的心率水平是否低于100与性别有关” .21.【解析】(1)四人恰好买到同一只股票的概率1111116.6666216P =⨯⨯⨯⨯= (2)解法一:四人中有两人买到同一只股票的概率22223426462224135.6216C C A C A A P +== 四人中每人买到不同的股票的概承率4634605.621618A P ===所以四人中至多有两人买到同一只股票的概率231356019565.21621621672P P P =+=+== 解法二:四人中有三人恰好买到同一只股票的概率324644205.621654C A P === 所以四人中至多有两人买到同一只股票的概率14195651.21672P P P =--== (3)每股今天获利ξ的分布列为:所以,1000股股票在今日交易中获利的数学期望为()1000100020.600.220.2800E ξ=⨯⨯+⨯+-⨯=⎡⎤⎣⎦21.解:(1)()P ξ是“ξ个人命中,3ξ-个人未命中”的概率.其中ξ的可能取值为0,1,2,3.0022121122(0)C 1C (1)(1)P a a ξ⎛⎫==--=- ⎪⎝⎭, 1020121212111222(1)C C (1)C 1C (1)(1)P a a a a ξ⎛⎫==⋅-+--=- ⎪⎝⎭, 1102221212111222(2)C C (1)C 1C (2)P a a a a a ξ⎛⎫==⋅-+-=- ⎪⎝⎭,21221212(3)C C 2a P a ξ==⋅=. 所以ξ的分布列为ξ的数学期望为 22221112222410(1)1(1)2(2)32a a E a a a a ξ+=⨯-+⨯-+⨯-+⨯=. (2) ()221(1)(0)1(1)(1)2P P a a a a ξξ⎡⎤=-==---=-⎣⎦, 22112(1)(2)(1)(2)22a P P a a a ξξ-⎡⎤=-==---=⎣⎦, 222112(1)(3)(1)22a P P a a ξξ-⎡⎤=-==--=⎣⎦. 由2(1)0,120,21202a a a a ⎧⎪-≥⎪-⎪≥⎨⎪⎪-≥⎪⎩和01a <<,得102a <≤,即a 的取值范围是10,2⎛⎤ ⎥⎝⎦.。

概率统计公式大全复习重点

概率统计公式大全复习重点

概率统计公式大全复习重点在学习概率统计这门学科时,掌握各种公式是至关重要的。

这些公式不仅是解决问题的工具,更是理解概率统计概念的关键。

本文将为您梳理概率统计中的重点公式,帮助您更好地复习和掌握这部分知识。

一、随机事件与概率1、古典概型概率公式如果一个随机试验所包含的基本事件总数为 n,事件 A 所包含的基本事件数为 m,则事件 A 发生的概率为:P(A) = m / n2、几何概型概率公式设样本空间为几何区域Ω,事件 A 对应的区域为ω,则事件 A 发生的概率为:P(A) =ω 的测度/Ω 的测度3、条件概率公式设 A、B 是两个事件,且 P(B) > 0,则在事件 B 发生的条件下,事件 A 发生的条件概率为:P(A|B) = P(AB) / P(B)4、乘法公式P(AB) = P(A|B)P(B) 或 P(AB) = P(B|A)P(A)5、全概率公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,则有:P(A) =∑ P(Bᵢ)P(A|Bᵢ)(i从 1 到 n)6、贝叶斯公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,在事件 A 已经发生的条件下,事件 Bᵢ发生的概率为:P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ) /∑ P(Bₙ)P(A|Bₙ) (i从 1 到 n,k 从 1 到 n)二、随机变量及其分布1、离散型随机变量的概率分布设离散型随机变量 X 的可能取值为 x₁, x₂,, xₙ,对应的概率为p₁, p₂,, pₙ,则概率分布为:P(X = xᵢ) = pᵢ(i = 1, 2,, n),且∑pᵢ= 12、二项分布如果随机变量 X 服从参数为 n 和 p 的二项分布,记为 X ~ B(n, p),则概率质量函数为:P(X = k) = C(n, k) p^k (1 p)^(n k) (k = 0, 1, 2,, n)3、泊松分布如果随机变量 X 服从参数为λ 的泊松分布,记为 X ~P(λ),则概率质量函数为:P(X = k) =(e^(λ) λ^k) / k! (k = 0, 1, 2,)4、连续型随机变量的概率密度函数设连续型随机变量 X 的概率密度函数为 f(x),则分布函数为:F(x)=∫∞, x f(t) dt5、正态分布如果随机变量 X 服从参数为μ 和σ² 的正态分布,记为 X ~N(μ, σ²),则概率密度函数为:f(x) =(1 /(σ√(2π))) e^((x μ)² /(2σ²))三、随机变量的数字特征1、数学期望离散型随机变量 X 的数学期望为:E(X) =∑ xᵢ pᵢ(i 从 1 到 n)连续型随机变量 X 的数学期望为:E(X) =∫∞,+∞ x f(x) dx2、方差离散型随机变量 X 的方差为:D(X) =∑ (xᵢ E(X))² pᵢ(i 从 1 到n)连续型随机变量 X 的方差为:D(X) =∫∞,+∞ (x E(X))² f(x) dx3、标准差随机变量 X 的标准差为:σ(X) =√D(X)4、协方差设随机变量 X 和 Y,其协方差为:Cov(X, Y) = E((X E(X))(Y E(Y)))5、相关系数随机变量 X 和 Y 的相关系数为:ρ(X, Y) = Cov(X, Y) /(σ(X)σ(Y))四、大数定律和中心极限定理1、大数定律当 n 足够大时,样本均值X依概率收敛于总体均值μ,即:P(|Xμ| >ε) → 0 (n → ∞)2、中心极限定理设随机变量 X₁, X₂,, Xₙ 相互独立,且具有相同的分布和有限的数学期望μ 和方差σ²。

概率统计公式大全复习重点

概率统计公式大全复习重点

第一章随机事件和概率1排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数;)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数;2加法和乘法原理加法原理两种方法均能完成此事:m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成;乘法原理两个步骤分别不能完成这件事:m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成;3一些常见排列重复排列和非重复排列有序对立事件至少有一个顺序问题4随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验;试验的可能结果称为随机事件;5基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的;这样一组事件中的每一个事件称为基本事件,用ω来表示;基本事件的全体,称为试验的样本空间,用Ω表示;一个事件就是由Ω中的部分点基本事件ω组成的集合;通常用大写字母A,B,C,…表示事件,它们是Ω的子集;Ω为必然事件,为不可能事件;不可能事件的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件Ω的概率为1,而概率为1的事件也不一定是必然事件;6事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,A发生必有事件B发生:BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B;A、B中至少有一个发生的事件:A B,或者A+B;属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件;A、B同时发生:A B,或者AB;A B=,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥;基本事件是互不相容的;Ω-A称为事件A的逆事件,或称A的对立事件,记为A;它表示A 不发生的事件;互斥未必对立;②运算:结合率:ABC=ABC A∪B∪C=A∪B∪C分配率:AB∪C=A∪C∩B∪C A∪B∩C=AC∪BC德摩根率:∞=∞==11iiii AABABA=,BABA=7概率的公理化定义设Ω为样本空间,A为事件,对每一个事件A都有一个实数PA,若满足下列三个条件:1° 0≤PA≤1,2° PΩ =13° 对于两两互不相容的事件1A,2A,…有常称为可列完全可加性;则称PA为事件A的概率;8古典概型1°{}nωωω21,=Ω,2°nPPPn1)()()(21===ωωω ;设任一事件A,它是由mωωω21,组成的,则有PA={})()()(21mωωω=)()()(21mPPPωωω+++9几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型;对任一事件A,)()()(Ω=LALAP;其中L为几何度量长度、面积、体积;10加法公式PA+B=PA+PB-PAB当PAB=0时,PA+B=PA+PB11减法公式PA-B=PA-PAB当B⊂A时,PA-B=PA-PB 当A=Ω时,P B=1- PB12条件概率定义设A、B是两个事件,且PA>0,则称)()(APABP为事件A发生条件下,事件B发生的条件概率,记为=)/(ABP)()(APABP;条件概率是概率的一种,所有概率的性质都适合于条件概率;例如PΩ/B=1⇒P B/A=1-PB/A13乘法公式乘法公式:)/()()(ABPAPABP=更一般地,对事件A1,A2,…An,若PA1A2…An-1>0,则有21(AAP…)n A)|()|()(213121AAAPAAPAP= (2)1|(AAAP n…)1-n A;14独立性①两个事件的独立性设事件A、B满足)()()(BPAPABP=,则称事件A、B是相互独立的;若事件A、B相互独立,且0)(>AP,则有若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立;必然事件Ω和不可能事件与任何事件都相互独立;与任何事件都互斥;②多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,PAB=PAPB;PBC=PBPC;PCA=PCPA并且同时满足PABC=PAPBPC那么A、B、C相互独立;对于n个事件类似;15全概公式设事件n BBB,,,21 满足1°n BBB,,,21 两两互不相容,),,2,1(0)(niBP i=>, 2°niiBA1=⊂,则有)|()()|()()|()()(2211nn BAPBPBAPBPBAPBPAP+++= ;16贝叶斯公式设事件1B,2B,…,n B及A满足1°1B,2B,…,n B两两互不相容,)(BiP>0,=i1,2,…,n, 2°niiBA1=⊂,0)(>AP,则∑==njjjiiiBAPBPBAPBPABP1)/()()/()()/(,i=1,2,…n;此公式即为贝叶斯公式;)(i B P ,1=i ,2,…,n ,通常叫先验概率;)/(A B P i ,1=i ,2,…,n ,通常称为后验概率;贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断;17伯努利概型我们作了n 次试验,且满足每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样;每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与否是互不影响的;这种试验称为伯努利概型,或称为n 重伯努利试验;用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,k n k kn n q p k P C -=)(,n k ,,2,1,0 =;第二章 随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及抽样分布第七章参数估计第八章假设检验单正态总体均值和方差的假设检验。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)

初中数学专题复习统计与概率含答案

初中数学专题复习统计与概率含答案

专题训练16统计与概率一、选择题(每小题3分,共24分) 1.下列调查工作需采用的普查方式的是()(A )环保部门对淮河某段水域的水污染情况的调查. (B )电视台对正在播出的电视节目收视率的调查. (C )质检部门对各家生产的电池使用寿命的调查. (D )企业在给职工做工作服前进行的尺寸大小的调查.2.筹建中的安徽芜湖核电站芭茅山厂址位于长江南岸繁昌县狄港镇,距离繁昌县县城约17km ,距离芜湖市区约35km ,距离无为县城约18km ,距离巢湖市区约50km ,距离 铜陵市区约36km ,距离合肥市区约99km .以上这组数据17、35、18、50、36、99 的中位数为( )4.在一个暗箱里放有Q 个除颜色外其它完全相同的球,这Q 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发 现,摸到红球的频率稳定在25%,那么可以推算出Q 大约是()(A ) 18.(B ) 50.3 .下列事件中,必然事件是()(A )中秋节晚上能看到月亮.(C )早晨的太阳从东方升起.(C ) 35.(D ) 35.5.(B )今天考试小明能得满分. (D )明天气温会升高. (A) 12. (B) 9. (C ) 4. (D ) 3.5.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()1v 3 <33超(A ) — .(B ) -兀.(C ) ――^ .(D ) ----- .2 6 9几6.将50个个体编成组号为①④的四个组,如下表:组号 ① ②③ ④统计图,在一片果园中,有不同种类的果树,为了反映某种果树的种10 .有长为2、4、6、8、10的五根木棍,从中任意抽取三根,能构成三角形的概率是 11 .某校学生会调查60名同学体育爱好项目的统计图如图所示,根据图中信息,喜欢各12 .某地湖水在一年中各个月的最高温度和最低温度统计图如图所示.由图可知,全年湖频数 14 1113(A) 24.(B) 0.24.(C) 12.(D) 0.12.7.甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出 的统计图如图所示,则符合这一结果的实验可能是 (A )掷一枚正六面体的骰子,出现1点的概率. (B) 一个袋子中有2个白球和1个红球从中8. 二、 9. 任取一个球,则取到红球的概率. (C )抛一枚硬币,出现正面的概率.(D )任意写一个整数,它能被2整除的概率.在—2, — 1, 0, 1, 2中任取一个数 2 (C) 5填空题(每小题3分,共18分) 反映某种股票涨跌情况,应选用40% 30% 20% 10%200 400 600 次数 … .2 + x .................... ....恰好使分式___有意义的概率是()4(D) 5(E) 1.统计图;学校统计各年级的总人数应选值面积占整个果园的面积百分比,应选用统计图.那么第③组的频率为(频率(第11题)(第12题) (第13项体育项目的人数极差.水的最低温度是___________ ,温差最大的月份是 __________ .13.如图,数轴上两点A B,在线段AB上任取一点,则点C到表示1的点的距离不大于2的概率是___________ .14.为备站2008年奥运会,教练要判断刘翔100米跨栏成绩是否稳定,对他10次训练成绩进行统计分析,则教练需了解刘翔这10次成绩的.三、解答题(每小题6分,共24分)15.请将表示下列事件的序号按其发生概率的大小标在下图中.A.掷一枚均匀的硬币,正面朝上.B.在分别标有1〜9连续自然数的九张卡片中,随机抽出两张,和大于17.C任意找到两个负数,它们的乘积为正数.D.在某次有奖销售活动中,共准备了1000个抽奖号码,其中设一等将10个,二等将40个,三等将50个,顾I I I I I I I I I I I客摸一次中奖. 0 116.某校学生会生活部长王敏同学随机调查部分同学对食堂伙食的评价,准备绘制成统计图表,现已完成其中的一部分,请你运用统计知识将其他空缺部分逐一补上.食堂伙食意见统计表食堂伙食意见条形统计图食堂伙食意见扇形统计图17.下表是某校九(1)班20名学生某次数学测验的成绩统计表.成绩/分60708090100■人数/人151y(1)若这20名学生的平均成绩为82分,求1和y的值;(2)在(1)的条件下,求这20名学生本次测验成绩的众数与中位数.18.某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.画树形图或列表求下列事件发生的概率.(1)甲、乙、丙三名学生在同一个餐厅用餐;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐.四、解答题(每小题7分,共14分)19.“十•一”七天长假期间,很多同学都和父母一起旅游,下图是班长小明将本班同学出游2天、3天、4天的数据绘制成扇形统计图的一部分:(1)若问一位出游的同学十一期间旅游几天,那么最有可能的回答是 ______ 天;............ ,一」,,3 …… 一、」…八, (2)小明说旅游4天的人数是2天的;,请你通过这一信息,并通过计算将扇形统计4图补充完整.20.在背面图案一样的四张卡片的正面标有数字1、2、3、4,将正面朝上洗匀后抽取一张数字为m,把此卡片放回洗匀后以同样的方式再次抽取一张卡片数字为n .若把m、n作为点的横、纵坐标,求点(m , n)在函数y 2x的图象上的概率.五、解答题(每小题10分,共20分)21 .张明、王成两位同学的10次数学单元自我检测成绩分别如下图所示:(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.张明同学王成同学1 1 S -1 5 6 7 3 1 W %号 成结/7T sT5 77 m 号(1)完成下表:(2)如果将90分以上(含90分)的成绩视为优秀,则获得优秀次数较多的同学22. A、B、C三个工程队共修建一段长240km的公路,图中分别反映了每个工程队的工程比例及每月完成公路的进度.(1)根据图中的信息,求出每个工程队的工程量;(2)若B队9个月的工程量与A队6个月的工程量相同,求a的的值;(3)在(2)的条件下,同时开工,完成全部工程需要几个月时间.参考答案一、选择题1. D2. D3. C4. A5. C6. B7. B8. C 二、填空题29.折线,条形,扇形10. 0.3 11. 25名12. 22℃, 9月份13. 3 14.方差 三、解答题15 . P (A )=0.5, P (B )=0, P (C )=1, P (D )=0.1,图略.16 .一般:20,好:(10+20+120);(1—50%)X 50% = 50,条形、扇形统计图略. 17 . (1) X + J = 12, 8 X + 9 J = 103,解得了 = 5, J = 7; (2) 90 分,80 分. 18 .树形图或列表如图所示:(1) P (甲、乙、丙三名学生在同一餐厅用餐)=1.47 (2) P (甲、乙、丙三名学生中至少有一人在B 餐厅用餐)=-. 8四、解答题19. (1) 3; (2)人数是2天的百分比为20%,人数是4天的百分比为15%,图略. 20. 点(m , n )共有16种情况,而在函数J = 2X 图象上的点有(1, 2) (2, 4)两种,丙 ABABABAB甲 A A A A B B B B 乙 A A BB A A B B 丙 A B AB A B AB-8所以点(m , n )在函数J = 2X图象上的概率为0.125.五、解答题21. (1)平均成绩均为80分,张明的方差为60分2,王成的中位数为85分,众数为90分;(2)王成;(3)王成的学习要持之以恒,保持稳定;张明的学习还须加油,提高优秀率(答案不唯一,只有你的建议合理即可).22. (1) A 工程队的工程量为:35% x 240 = 84, C 工程队的工程量为:45%x 240 = 108 ,B 工程队的工程量为:20% x 240 = 48.(2) 4x 9 = 6a , a = 6.答:三个工程队同时开工需要14个月完成全部工程. (3) T 二 14,手二 12,T = 13.5 .。

中考数学专题复习《统计与概率》经典例题及测试题(含答案)

中考数学专题复习《统计与概率》经典例题及测试题(含答案)

中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。

概率统计复习

概率统计复习

13.下列两个变量之间是相关关系的是( D

A、正方体的棱长和体积 B、单位圆中角的度数和所对的弧长 C、单产为常数时,土地面积和总产量
D、日照时间与水稻的亩产量
14.若样本 X1 + 1,X2 + 1,…,Xn+1的平均数为 10,方差为 2,则 对样本X1 + 2,X2 + 2,…,Xn+2,下列结论正确的是( C ) A、平均数为 10,方差为 2 C、平均数为 11,方差为2 B、平均数为 11,方差为 3 D、平均数为 11,方差为 4
8.一组数据的方差为 a ,如将着组数据的每个数据乘以 2 ,所的到 的一组数据的方差为( D ) A、a/2 B、a C、2a D、4a
9.
A、平均数不变,方差不变
C、平均数不变,方差改变
B、平均数改变,方差改变
D、平均数改变,方差不变
C、甲 乙
D、甲,丙
二、填空题:
1.卫生检查人员在100袋食品中任意抽取10袋进行质量检查,则这种 抽样方法是------ 简单随机抽样 2.进行n次试验,得到样本观测值为 X1 ,X2 ,…,Xn,设X为任意 常数,d为任意正数,得变量Yi=(Xi-c)/ d,(i=1,2,3… n )则 Y的平均数为----- 1/d(x-c) 3.一个样本容量为n的样本分成若干组,已知某组的频数和频率分别 为 36 和 0.18,则 n = ------ 200
3、有一容量为 50 的样本,数据的分组的频数如下:
[10,15),4;[15,20),5;[20,25),10;[25,30),11 [30,35),9;[35,40),8;[40,45),3
(1)列出样本分布的直方表;
(2)画出频率分布直方图和频率分布折线图; (3)估计总体在 [25,35)之内的概率; 解题点拨:先列出分布表,再画出频率分布直方图和折线图,最 后根据直方图来估计总体分布,大约是 P = 1/5 +11/50 +9/50 = 3/5

概率统计考试总复习一

概率统计考试总复习一

总复习 一.填空题1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则(1) 若B A ,互斥,则=)B -A (p 0.5 ; (2) 若B A ,独立,则=)B A (p 0.65 ; (3) 若2.0)(=⋅B A p ,则=)B A (p 3/7 .2、 A 、B 是两个随机事件,已知0.125P(AB)0.5,)B (p ,52.0)A (p ===,则=)B -A (p 0.125 ;=)B A (p 0.875 ;=)B A (p 0.25 .3、袋子中有大小相同的红球7只,黑球3只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为:7/15 。

(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。

(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 .4、袋子中有大小相同的5只白球, 4只红球, 3只黑球, 在其中任取2只。

(1)4只中恰有2只白球1只红球1只黑球的概率为:412131425C C C C . (2) 4只中至少有2只红球的概率为:4124814381C C C C +-. (3 4只中没有白球的概率为:41247C C5、10把钥匙中有板有3把能打开门,今任取2把,能将门打开的概率为:112237372210108(1)15C C C C C C +=-或 6、设离散型随机变量X 的概率分布P{X=0}=0.2,P{X=1}=0.3,P{X=2}=0.5, 则P{X ≤1.5}= 0.5 . 7.设随机变量X~U(0,1),则2-3X的概率密度函数为:112()(3Y y f y ⎧-<<⎪=⎨⎪⎩参考教材P61例2)其他8、设随机变量X 的分布函数为01(1)(),{1}00xx x e F x P X x -≥⎧-+=≤=⎨<⎩则1(1)12F e -=-.9、设X~N(1,2),Y~N(0,3),Z~N(2,1),且X,Y ,Z 独立,则 P{0≤2X+3Y-Z ≤6}=0.3413(提示:2X+3Y-Z~N(0,36))10、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=XE 811、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率统计期末复习题

概率统计期末复习题

概率统计期末复习一、填空题1、完成一件事情有n 种方法,第一种有m 1种方法,第二种有m 2种方法,…,第n 种有m n 种方法,则完成这件事有: 方法,这种方法则称为 法则。

2、概率的公理化定义: 、 、 。

3、掷两枚骰子,出现点数之和大于9的概率为: 。

4、若事件A 、B 相互独立,且P(A)=0.3,P(B)=0.2,则P(A+B)= 。

5、设随机变量X 的数学期望E(X)=μ,方差D(X)=σ2,由切比雪夫不等式有P{|X -μ|≥36}≤ 。

6、随机变量X 的K 阶原点矩为 。

7、随机变量X 服从指数分布,则X 的期望是: ,方差是 。

8、(x 1,x 2,…,x n )是取自总体的一个样本,称 为样本均值。

9、已知随机变量T~t(n),则t 0.01(12)= ,已知t 0.99(12)=2.681010、已知X 服从正态分布N(1,4),则Y=3x+5,Y 服从 。

11、随机变量(x,y)不相关的等价条件是: 。

12、D(x+y)= 。

13、随机变量x ,期望E(x)=μ,方差D(x)=σ2,中心化随机变量是: ,标准化随机变量是: 。

二、解答题1、某年级有甲、乙、丙三个班级,各班人数分别占年纪总人数的14 ,13 ,512。

已知甲、乙、丙三个班级中集邮人数分别占该班总人数的12 ,14 ,15,试求: (1) 从该年级中随机地选取一个人,此人为集邮者的概率;(2) 从该年级中随机的选取一个人,发现此人为集邮者,此人属于乙班的概率。

2、已知事件A,B,P(A)=0.5,P(B)=0.7,P(A ∪B)=0.8,试求P(A-B),P(B-A)。

3、已知随机变量X 与Y 独立同分布,且都服从0-1分布,B(1,P),记随机变量:(1) 试求Z 的概率函数。

(2) 试求X 与Z 的联合概率函数。

4、设(X,Y )服从如图区域D 上的均匀分布,求关于X 的和关于Y 的边缘概率密度。

5、设(X,Y)服从区域D:0<X<1,0<Y<X上的均匀分布,求X与Y的相关系数。

概率统计总复习题

概率统计总复习题
1.设 A、 B 为随机事件, P( A) 0.7, 则 P( AB)
P( A B) 0.3
0 .6

2、设 P( A) 0.4, P( AB) 0.3 ,则 P( A B) 4.P(A)=0.5,P(B)=0.3,(1) B A, P ( A B) (2)A,B 独立,P(A-B)= 5.已知 P( A) 0.5,
2 1
B . P{ X 1 X 2 } 1
8 . X ~ N μ1 , σ ,Y ~ N μ2 , σ ,
2 2
D. 以上都不正确
那么 X 和 Y
C 的联合分布为_____. A.二维正态分布,且 ρ 0 B.二维正态分布,且 ρ 不定
A.0.16 ; B.0.18 ; C.0.21 ; D.0.23 2.设事件 A 和 B 满足 PB A 1,则 A. A 是必然事件 C. P( A B) 0
C
B、 A 包含事件 B D
PBA 0

3、F1 ( x ) , F2 ( x ) 都是分布函数,为使 C1F1 ( x ) C2 F2 ( x ) 是分布 函数, C1 , C2 应取下列哪组值(
1 1 (5 U , 5 U ) 3 2 3 2

2 21.设 X1 , X 2 ,, X n 是来自正态总体 N ( , ) 的样本,其中
2 未知。对假设检验 H0 : 1, H1 : 1,则当 H 0 成立时,常
X 1
选用的统计量是
S/ n
,它服从的分布为
(用 (·)表示) 。
X E( X ) N (0,1) D( X ) 服从
12.设服从正态分布的随机变量 X 的期望 E ( X ) ,方差 D( X ) 均存在, 且 D( X ) 0 ,则标准化随机变量

概率与统计的复习知识点

概率与统计的复习知识点

概率与统计的复习知识点概率与统计是数学中的重要分支,在日常生活、科学研究以及各个领域都有着广泛的应用。

为了帮助大家更好地复习这部分知识,下面将对一些关键的知识点进行梳理。

一、概率的基本概念1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

例如,抛硬币时正面朝上就是一个随机事件。

2、样本空间样本空间是指随机试验中所有可能结果的集合。

比如抛一次硬币,样本空间就是{正面,反面}。

3、事件的概率事件的概率是指某个事件在一次试验中发生的可能性大小,通常用0 到 1 之间的数来表示。

概率的计算方法有古典概型、几何概型等。

古典概型是指试验中所有可能的结果是有限的,并且每个结果出现的可能性相等。

其概率计算公式为:P(A) =事件 A 包含的基本事件数/基本事件总数。

几何概型则是适用于试验中每个结果出现的可能性相等,但结果是无限个的情况。

例如,在一个区间内随机取一个点,计算该点落在某个子区间的概率。

二、概率的基本运算1、互斥事件互斥事件是指两个事件不可能同时发生。

如果事件 A 和事件 B 互斥,那么它们的和事件的概率等于各自概率之和,即 P(A∪B) = P(A) + P(B)。

2、对立事件对立事件是指两个事件非此即彼,且它们的概率之和为 1。

即事件A 的对立事件记为A,P(A) + P(A)= 1。

3、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

记作 P(B|A),其计算公式为 P(B|A) = P(AB) / P(A)。

4、乘法公式P(AB) = P(A)P(B|A) (当 A、B 相互独立时,P(AB) = P(A)P(B))三、随机变量及其分布1、随机变量随机变量是用来表示随机试验结果的变量。

它可以是离散型的,如掷骰子的点数;也可以是连续型的,如某段时间内的气温。

2、离散型随机变量的概率分布离散型随机变量的概率分布可以用分布列来表示,即列出随机变量取每个值的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

该社区一户收入为15万元家庭年支出为()概率与统计知识点:1.随机抽样的方法:简单随机抽样;系统抽样;分层抽样2. 用样本估计总体:中位数、平均数、众数的意义,方差与标准差,茎叶图与频率分布直方图;3. 变量间的相关关系与统计案例:回归直线方程,独立性检验;4. 计数原理,排列组合,二项式定理5. 概率:古典概型与几何概型;条件概率和相互独立事件的概率;二项分布和超几何分布;离散型随机变量概率分布列,均值和方差;正态分布曲线练习:1. 为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是(A. 5, 10, 15, 20, 25 B . 2, 4, 8, 16, 32 C . 1, 2, 3, 4,2. 为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为样,则分段的间隔 k 为()A . 60B . 40C . 303.某校高中部有学生 2 000人,其中高一学生 800人,高二学生600人,高三学生600 人.现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三各年级被抽取的学生人数分别为(A. 15 , 10, 25B. 20,15,15 80人,中年教职工人数是老年教职工人数的 2倍。

在抽取的样本中有青年职工 16人,则该样本中的 .9 DA. 氐 C. D.9.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区1nXAXC 方元) s.2-| e.e ] 10.0-| 11.3^11.击出玖(万元)• e.2 j 7. b ] 5、 y _ 1沪"'1到50的袋装奶粉中抽取 5袋进行)D . 7, 17, 27, 37, 4740的样本,考虑用系统抽D . 12C .10,10,30D .10,20,20 4.某学校共有老、中、青教职工215人,其中青年教职工 为了解教职工身体状况, 现采用分层抽样方法进行调查,老年教职工人数为() A. 6 B . 8 C5 .已知样本数据Xj X 2,i 1,2,X i0 的平均数和方差分别为4,若y i X i a( a 为非零常数,I,10),则数据儿%,A. 1 a,4 Ba, 4 a,y 10-的平均数和方差分别为(1,4 D . 1,46 .根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20— 80mg/100ml (不含80)之间,属于酒后驾车;血液酒精 浓度在80mg/100ml (含80)以上时,属醉酒驾车.据《法制晚报》报道, 2010年8月15日至8月28 日,全国查处酒后驾车和醉酒驾车共 28800 人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果 的频率分布直方图,则属于醉酒驾车的人数约为()A . 2160B .2880C .4320D .86407 .某科技研究所对一批新研发的产品长度进行检测(单位:图是检测结果的频率分布直方图,据此估计这批产品的中位数为(A.20B. 22.5C. 22.75D. 25&在下列各图中,两个变量具有较强正相关关系的散点图是(«.u --5户家庭,得到如下统计数据表:)■ill MDI' iPU 7 (JO.IKI根据上表可得回归直线方程? bX ?,其中b? 0.76,令y bX,据此估计,该社区一户收入为15万元家庭年支出为()A . 11.4万元B . 11.8万元C . 12.0万元D . 12.2万元 10 .通过随机询问110名性别不同的学生是否爱好某项运动,得到如下的列联表: 附表: O. 0503. E41 K 2 n ( ad bc )2 若由 (a —bjfc —d )( a —cjfb —dj 参照附表,得到的正确结论是( 有99%X 上的把握认为 有99%X 上的把握认为 在犯错误的概率不超过 在犯错误的概率不超过 A . B . C. D. 算得K 2 110 (40 30 20 20)2 ---------------------------- 7.8 60 50 60 50) “爱好该项运动与性别有关” “爱好该项运动与性别无关” 0.1%的前提下,认为“爱好该项运动与性别有关” 0.1%的前提下,认为“爱好该项运动与性别无关” 11. 8名学生和2位老师站成一排合影, 2位老师不相邻的排法种数为( B .A ^Cg C. A ^Ay D. A ^^Cy12 •从10名高三年级优秀学生中挑选 选法的种数为( ) A. 85 B. 56 13.从 0, 数的个数是 ) 2, 4中取一个数字,从 1 , 3, ( ) A. 36 B 3人担任校长助理,则甲、乙至少有 C.49 D. 28 5中取两个数字,组成无重复数字的三位数,则所有不同的三位 .48 .52 D . 54 1人入选,而丙没有入选的不同 14.若 X 2 a 。

31 X 2 a ? a 7 x 7 2 ,则 32 () A. 20 B. 19C. 20D. 19 15.若(J X 3 )的展开式中,各项系数的和与各项二项式系数的和之比为X A. 4 B. 5 C. 6 16 .在长为12cm 的线段 64,则n 的值为()81cm 2之间的概率是( 17•设不等式组 于2的概率是( 18.随机变量 D. 7 AB 上任取一点 M,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 与 1B 62,,表示平面区域为2 服从二项分布 D ,B n, P ,且 E 在区域 D 内随机取一个点,则此点到坐标原点的距离大300, D 200,则 P 等于( A. 2 3 19. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小 1 1A 丄 B. - C. 3 2B . C. 1 D. 0 则这两位同学不在同一个兴趣小组的概率为(组的可能性相同,34 D.20. 甲、乙、丙三人参加一个掷硬币的游戏,每一局三人各掷硬币一次;当有一人掷得的结果与其他二人 不同时,此人就出局且游戏终止;否则就进入下一局,并且按相同的规则继续进行游戏;规定进行第十局 12,则下列结论中 时,无论结果如何都终止游戏.已知每次掷硬币中正面向上与反面向上的概率都是①第一局甲就出局的概率是 3 ;②第一局有人出局的概率是 2 ;31③第三局才有人出局的概率是 ;④若直到第九局才有人出局,则甲出局的概率是3;1 .⑤该游戏在终止前,至少玩了六局的概率大于 ''0b“ . 正确的是( ) A .①② B. ②④⑤ C. ③ D 。

④ 21. 一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机 器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果: 转速x (转/秒) 8 10 12 14 16每小时生产有缺点的零 件数y (件) 5 7 8 9 11(1) 如果y 对x 有线性相关关系,求回归方程;(2) 若实际生产中,允许每小时生产的产品中有缺点的零件最多为什么范围内? 10个,那么机器的运转速度应控制在 n (X i X)(y i y) 参考公式:召 y 除,b? t ______________ n(x x)2i 1nX i y i nxy i 1 ~n2 - 2X nxi 122.如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分 布直方图的分组区间分别为 [50, 60) , [60, 70) , [70 , 80), [80, 90), (1) 求全班人数及分数在[80 , 100]之间的频率;(2) 现从分数在[80 , 100]之间的试卷中任取 3 份分析学生失分情况,设抽取的试卷分数在[90 , 100]的份数为X ,求X 的分布列和数学望期. [90 , 100),据此解答如下问题.uaiasl —j 3 B q2 2 J 0 7 J 八1 a : s i 3 3 g srti ,Sfl dD 7D 30 w0,20叵2000,4000 , 4000,6000_,_6000,8000 , 80^0,10000 --方图:1) 根据频率分布直方图估计小区平均每户居民的平均损失 (同一组中的数据用该组区间的中点值作代表)2) 小明向班级同学发出倡议,为该小区居民捐款.现从损失超过4000元的居民中随机抽出 2户进行捐款援助,设抽出损失超过 8000元的居民为 户,求的分布列和数学期望;3)台风后区委会号召该小区居民为台风重灾区扣款,小明调查的50户居民捐款情况如下表,在图空白处填写正确数字,并说明是否有 95%^上的把握认为捐款数额多于或少于到4000元有关?23.某商场举行抽奖促销活动,在该商场消费的顾客按如下规则参加抽奖活动: 抽奖中有9个大小形状完全相同的小球,其中 4个红球、3个白球、2个黑球(每次只能抽取一个,且不放回抽取) ,若抽得红球,获奖金10元;若抽得白球,获奖金 20元;若抽得黑球,获奖金 40元. (1) 若某顾客在该商场当日消费金额为 2000元,求该顾客获得奖金(2) 若某顾客在该商场当日消费金额为 1200元,获奖金 元。

求 pOQJOQO} . fJOQOJiOO) f [1500|4牛70元的概率; 的分布列和E ()的值。

24. 2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成 受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失 陆丰市222千米的梅州也受到了台风的影响, 的 经 济 损 失 , 适逢暑假,小明调查了梅州某小区的 将 收 165.17万人 12.99亿元.距离50户居民由于台风造成数 据 分 成■—0. L50*10 0,050-02b i 0*0LO2軒2阿1’臼上哙五组,并作出如下频率分布直2表格500元和自身经济损失是否w* -一 2 ----.,2n(ad bc) .:UQUF ; 0卫£-(a b)(e d)(a e)(b d)-参考答案DCBCACBBBAACBCCBDBCC21. ( 1) ? L x1022. (I ) I5; (II )分布列(略)数学期望为616 5 23.(2) x 1472—;(2)40.21(1)224. (1) 3360 ; (2)分布列见解析,-;(3)表格5是否多于或少于500元和自身经济损失是否4000元有关.(略95%以上的把握认为捐款数额。

相关文档
最新文档