《算术平方根》教学设计
算术平方根教学设计10篇
算术平方根教学设计10篇《平方根》教案篇一教学设计示例一.教学目标1.会用计算器求数的平方根;2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。
二.教学重点与难点教学重点:用计算器求一个正数的平方根的程序教学难点:准确用计算器求解一个正数的平方根三.教学方法讲练结合四.教学手段实物投影仪,计算器五.教学过程在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01,等数的平方根,但对于如:2,3,,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。
具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。
复习提问学生有关乘方如何用计算器运算的步骤。
熟悉计算器基本键的功能。
现在讲计算器打开,按键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。
解:用计算器求的步骤如下:小结:在求解的过程中,由于要用到这个键上方的功能,这就需要用上方标有“2F”的键来转换。
例2.用计算器求的值。
(保留4个有效数字)解:用计算器求的步骤如下:小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求的'值。
解:用计算器求的步骤如下:因为计算结果要求保留4个有效数字,例4.用计算器求1360.57的平方根。
解:用计算器求1360.57平方根的步骤如下:因为计算结果要求保留4个有效数字,小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
初中数学七年级《算术平方根》优秀教学设计
教学设计:算术平方根教学目标:1.了解算术平方根的定义和性质;2.掌握求算术平方根的方法;3.能够运用算术平方根解决实际问题。
教学准备:1.教师准备:教学课件、教学实例、学生练习题;2.学生准备:学生课本、笔、纸。
教学过程:Step 1 引入问题教师通过一个实际问题引入算术平方根的概念,比如:小明爸爸去年买了一块地,面积是121平米,今年小明要给这块地做一个花坛,他想知道这个花坛的边长是多少米?Step 2 引导思考教师引导学生思考如何求解这个问题,通过讨论、提问引导学生思考求算术平方根的方法和步骤,并与学生共同总结算术平方根的定义和性质。
Step 3 概念讲解教师通过课件或板书,给学生讲解算术平方根的概念和性质,包括算术平方根的定义、算术平方根的性质、算术平方根的符号表示等。
Step 4 求算术平方根的方法讲解教师讲解求算术平方根的方法,包括试探法、直接开根法和近似法,配合实例进行讲解。
同时,要注意讲解每种方法的适用场景和注意事项。
Step 5 例题演示教师通过几个例题演示如何利用不同的方法求解算术平方根,并引导学生积极参与解题过程,帮助学生掌握不同方法的操作步骤和技巧。
Step 6 学生练习让学生独立完成一些练习题,包括对给定的正整数求算术平方根、对给定的小数求算术平方根以及运用算术平方根解决实际问题等。
Step 7 实际问题探究教师提供一个实际问题给学生,并让学生运用算术平方根的方法解决问题。
鼓励学生利用所学知识进行思考和讨论,引导他们分析问题并提出解决方案。
Step 8 总结归纳教师与学生一起总结、归纳算术平方根的概念、性质、求解方法以及解决问题的思路和步骤。
Step 9 引导学生拓展教师引导学生思考并拓展,比如如何求负数的算术平方根,如何判断一个数是否为完全平方数等相关问题,鼓励学生进一步研究和探究。
Step 10 课堂小结与反思教师对本节课的内容进行小结,并引导学生思考本节课的收获和不足之处,鼓励学生批判性地思考和提出意见。
平方根教学设计
平方根教学设计平方根教学设计篇一教材分析:《算术平方根》是人教版七年级下第六章第一节,本节通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。
通过对这一节课的学习,既可以让学生了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性,将为学生学习算术平方根奠定基础。
引入算术平方根的知识,要借助具体的生活情境,这样才能加深对引入平方根知识必要性的认识。
注意引导学生发现被开方数与对应的算术平方根之间的关系。
本节课的开始就设置了一个问题情境,把这个问题情境抽象成数学问题就是已知正方形的面积求正方形的边长,这是典型的求算术平方根的问题。
由于所选数字简单,可见其设计目的,并不着眼于计算,而在于巩固概念。
因此本节课的关键是抓住算术平方根概念的本质特征,逐层深入,多个角度展示。
课标要求:在实际情境中理解算术平方根的概念及求法,并能解决简单的问题,体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。
本节突出概念形成过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。
同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。
在本节课中,我利用学生的已有经验,通过思考、讨论、探究等活动,使学生感受到做数学、用数学的价值。
策略分析:根据教材内容和编排特点,为了更有效地突出重点、突破难点、抓住关键,本节课按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的原则,采用“自主探究法”和“引导发现法”为主,并根据学法指导自主性和差异性要求,让学生在探究过程中理解理解算术平方根的概念。
教学目标:1、经历算术平方根概念的形成过程,会用根号表示算术平方根,并了解算术平方根的非负性。
2、会用平方运算求非负数的算术平方根,包括完全平方数的算术平方根和部分非完全平方数的算术平方根。
八年级数学下册《算术平方根》教案、教学设计
4.课堂小结,总结提升
-通过课堂小结,让学生回顾本节课所学内容,加深对算术平方根的理解。
-教师总结学生在学习过程中的优点和不足,提出改进措施,促进学生的全面发展。
5.课后拓展,提高应用能力
-布置课后作业,让学生运用算术平方根知识解决实际问题,提高学生的应用能力。
1.请同学们完成课本第chapter页的练习题,题目涵盖了算术平方根的定义、性质和求法等知识点,通过练习,加深对算术平方根的理解。
2.结合生活实际,找一找身边的例子,运用算术平方根知识解决问题,并简要说明解题过程。例如:计算家中某间房屋的面积、求解物体速度等。
3.小组合作,探讨以下问题:
a.算术平方根与平方根有什么区别和联系?
b.如何求解含有算术平方根的实际问题?
c.在计算过程中,如何避免符号和精度问题?
4.针对课堂学习中的难点,请同学们自主查找相关资料,总结求解算术平方根的方法和技巧,并在下节课分享。
5.结合课后拓展阅读,了解算术平方根在科学研究和生产生活中的应用,提高学生的数学素养。
作业要求:
1.认真完成作业,书写规范,保持卷面整洁。
4.设计丰富的练习题,巩固所学知识,培养学生的逻辑思维能力和解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的热情。
2.培养学生勇于探索、善于合作的精神,增强学生的自信心。
3.使学生认识到算术平方根在日常生活和科学计算中的重要性,提高学生的数学应用意识。
4.培养学生严谨、细致的学习态度,养成良好的学习习惯。
3.每个小组汇报解题过程和答案,其他小组进行评价和补充。
(四)课堂练习,500字
算术平方根教案范文
算术平方根教案范文教学目标:1.了解算术平方根的概念和性质;2.学会求解算术平方根的方法;3.能够应用算术平方根解决实际问题。
教学准备:1.教学PPT;2.黑板和粉笔;3.计算器;4.学生练习册。
教学过程:Step 1: 引入和概念解释(10分钟)-准备一组数字卡片,包括完全平方数和非完全平方数,比如4、9、12、16、30、36等。
-提问学生对这些数字是否有什么特点。
-引导学生发现完全平方数的特点,即它们的算术平方根是一个整数。
-解释算术平方根的概念:对于一个非负数a,当且仅当存在一个非负数b,使得b的平方等于a时,称b为a的算术平方根。
Step 2: 算术平方根的计算方法(15分钟)-分别以完全平方数和非完全平方数为例,介绍求解算术平方根的方法。
-对于完全平方数,提醒学生可以直接将该数的平方根写出来。
-对于非完全平方数,引导学生用近似法求解,比如对于a,从1开始逐个尝试b的值,直到找到一个b,其平方最接近a。
可以通过逐步逼近的方法进行计算。
Step 3: 算术平方根的性质(15分钟)-讲解算术平方根的性质:非负数的算术平方根都是非负数;-任意两个正数a和b,若a<b,则√a<√b;-算术平方根的运算法则,如√(a*b)=√a*√b,√(a^2)=,a,(非负数的绝对值);-引导学生通过示例进行演练,巩固对性质的理解和应用。
Step 4: 应用实践(20分钟)-设计一组实际问题,要求学生运用算术平方根的概念和方法进行求解。
例如,一块田地的面积为64平方米,求这块田地的边长。
-指导学生分析问题,将问题转化为求解算术平方根的问题,然后运用算术平方根的计算方法求解。
-分组让学生自行解决问题,并鼓励他们互相讨论和交流。
-随机抽取几组学生进行发言,展示解题过程和思路。
Step 5: 总结与反思(10分钟)-对本节课的内容进行总结梳理,强调算术平方根的概念、计算方法和性质;-提醒学生在日常生活中要注意运用算术平方根的知识,如测量、建模等方面;-鼓励学生查找更多关于算术平方根的应用和拓展阅读,拓宽知识面。
人教版七年级下册6.1.1《算术平方根》(教学设计)
人教版七年级下册6.1.1《算术平方根》(教学设计)一. 教材分析《算术平方根》是人教版七年级下册数学教材第六章第一节的内容。
本节课主要介绍了算术平方根的概念、性质及其求法。
通过学习本节课,学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够应用算术平方根解决实际问题。
教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数、整数、分数等基础知识,具备了一定的逻辑思维能力和运算能力。
但部分学生对平方根的概念可能还比较模糊,需要通过实例和练习来进一步理解。
此外,学生可能对算术平方根的求法存在一定的困惑,需要通过教师的引导和同学的讨论来掌握。
三. 教学目标1.知识与技能目标:理解算术平方根的概念,掌握求算术平方根的方法,能够熟练运用算术平方根解决实际问题。
2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题和解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生学习数学的积极性。
四. 教学重难点1.重点:算术平方根的概念及其求法。
2.难点:算术平方根在实际问题中的应用。
五. 教学方法1.启发式教学:通过问题引导,激发学生的思考,培养学生的探究能力。
2.合作学习:学生进行小组讨论,促进学生之间的交流与合作,共同解决问题。
3.实例教学:通过具体的例子,让学生更好地理解算术平方根的概念和求法。
4.练习巩固:通过适量练习,巩固所学知识,提高学生的应用能力。
六. 教学准备1.教材:人教版七年级下册数学教材。
2.课件:制作课件,包括算术平方根的定义、性质、求法及应用等内容。
3.练习题:准备一些有关算术平方根的练习题,用于课堂练习和巩固。
4.板书:准备黑板,用于书写重要概念和步骤。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的平方根知识,为新课的学习做好铺垫。
例如:“请大家回忆一下,平方根的概念是什么?我们已经学习了哪些求平方根的方法?”2.呈现(10分钟)教师展示课件,介绍算术平方根的定义、性质和求法。
《算术平方根》说课稿(通用10篇)
《算术平方根》说课稿(通用10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!《算术平方根》说课稿(通用10篇)《算术平方根》说课稿(通用10篇)作为一位兢兢业业的人民教师,总归要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。
2.2.1算术平方根(教案)
1.理论介绍:首先,我们要了解算术平方根的基本概念。算术平方根是一个数乘以自身得到另一个数的运算的逆运算。它是解决几何、物理等学科问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何计算正方形面积的算术平方根,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调算术平方根的定义和性质这两个重点。对于难点部分,如无理数平方根的理解,我会通过举例和比较来帮助大家理解。
2.2.1算术平方根(教案)
一、教学内容
本节课选自教材第二章第二小节,标题为“2.2.1算术平方根”。教学内容主要包括以下三个方面:
1.算术平方根的定义:引导学生了解算术平方根的概念,理解平方根在数学中的重要性。
2.算术平方根的性质:探讨算术平方根的性质,如非负性、唯一性等,并通过实例加以验证。
3.算术平方根的计算方法:教授如何计算一个正数的算术平方根,以及如何估算无理数的平方根。
-难点突破策略:提供丰富的练习题,包括理论计算和实际应用题,通过反复练习,帮助学生巩固知识点,并鼓励学生通过小组讨论和互助学习来共同解决难题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“2.2.1算术平方根”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的平方根的情况?”(如,计算正方形面积时)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索算术平方根的奥秘。
-结合实际情境,如计算正方形面积时,强调平方根的应用。
2.教学难点
-无理数的平方根理解:学生往往难以理解无理数平方根的概念,如√2、√3等。
算术平方根的定义教案
算术平方根的定义教案【篇一:算术平方根公开课教案】2 平方根第1课时算术平方根教学目标【知识与技能】理解并掌握算术平方根的定义,会求一个数的算术一平方根.【过程与方法】掌握求一个数的算术平方根的方法.【情感、态度与价值观】培养同学们热爱代数的兴趣.教学重难点重点算术平方根的概念及其符号表示.难点求一个数的算术平方根.教学过程一、创设情境,引入新课师:请同学们看图片.出示多媒体课件:二、讲授新课师:请同学们填空:师:上面的问题,实际上是已知一个正数的平方,求这个正数的问题.师:一般地,如果一个正数x的平方等于a,即x=a,那么这个正数x叫做a的算术平方根.记作,读作“根号a”, a x. 2规定:0的算术平方根是0,即=0.师:我们一起来做题.三、例题讲解【例1】求下列各数的算术平方根: (1)900;(2)1;(3)师生共同完成.【例2】已知|x-3|+(y+4)2+z+5=0. 求x+y+z的值.师生共同完成三、学生练习1、求下列各数的算术平方根:36,学生口答过程。
2、填空题:(1).若一个数的算术平方根是,那么这个数是; 121,15,0.64,169,81,361 . 1444964;(4)14.(2). 的算术平方根是;(3).(-4)2的算术平方根是(4).若a+2=3,则 (a+2)2=师生共同完成3、如图,从帐篷支撑竿ab的顶部a向地面拉一根绳子ac固定帐篷.若绳子的长度为6米,地面固定点c到帐篷支撑竿底部b的距离是5米,则帐篷支撑竿的高是多少米?师生共同完成四、课堂小结师:本节课你学到了哪些知识?与同伴交流.师生共同归纳算术平方根的定义及其表示方法及性质等。
五、课后作业习题2.3【篇二:算术平方根教案】初中数学《 6.1.1算术平方根》教学设计一、教学目标知识与技能:1. 了解算术平方根的概念.2. 会求一个正数的算术平方根并会用符号表示. 过程与方法:通过学习算术平方根,建立初步的数感和符号感,发展抽象思维. 情感态度与价值观:1. 通过学习算术平方根,认识数学与人类生活的密切联系.2. 通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情. 二、重点难点重点:算术平方根的意义及求法. 难点:算术平方根的概念,对符号三、教学过程设计(一)、复习巩固,探究新知师:同学们,小学你们学过哪些运算?七年级上学期,我们又学习了哪种新的运算?生:加、减、乘、除,乘方. 师:下面来做两道练习题. 练习题:1、72 = (-7)2 = 0.52 = (-0.5)2 = 02 =42、()2= 1 ()2=9 ()2=16 ()2= 36 ()2=25观察一下1、2题有什么联系? 3、的理解.设计意图:从学生已有的求一个数平方的经验出发,问题由浅入深,使学生积极主动地投入到数学活动中,为引入一种新的运算做好铺垫归纳总结:算术平方根的定义:(1)一般地,一个正数x的平方等于a,即x2=a那么,这个正数x就叫做a的算术平方根. a的算术平方根记作a,读作:“根号a”, a叫做被开方数.(2)规定:0的算术平方根为0.设计意图:让学生用自己的语言阐述,提高语言表达能力. (二)、自学例题,巩固训练同学们自学书中40页的例题.49(3)0.0001 64设计意图:这道例题是算术平方根定义的直接应用,例题解析详细,浅显易懂.所以例1.求下列各数的算数平方根.(1)100 (2)这个环节,安排学生自学,可以提高学生的自主学习的能力.巩固练习: 1、求下列各数的算数平方根9(1)81 (2)(3)1.44(4)32491(5)(-5)2 (6)242、说一说下列各式表示的意义,并分别求值.9(-2)2 25设计意图:让学生及时巩固应用算术平方根的定义和法则解决问题的方法,规范解题格式,同时使学生注意解题的关键进一步加深对概念的理解将学生对知识的理解转化为数学技能,使学生获得成功的体验. (三)深入探究,交流归纳 1. a中的a是什么数? 2、a是什么数?练习:下列各式中哪些有意义?哪些无意义?为什么?4-4 -4 (-4)2思考:b++(c-2)2=0,求a+b+c的值.设计意图:通过对a的研究进一步巩固概念,突出本节课的重点(四)当堂检测,有效反馈(组内互相批阅,通过组内讨论,总结出现的问题)设计意图:通过检测练习,检查学生对新知识的掌握情况.另外在当堂检测中,充分发挥小组的作用,以小组为单位,互批互改,在批改的过程中学生知道自己结果的对错,有利于培养学生的判断能力,形成良好学习习惯和学习方法,也能激起学生的学习兴趣.(五)回顾小结,整体感知通过这节课的学习,你有什么收获呢?还有哪些困惑?设计意图:学生通过对学习过程的小结,梳理所学内容,形成完整知识结构,培养归纳概括能力.(六)布置作业,巩固加深课本第47页复习巩固第1、2题.设计意图:及时应用,加深对知识的理解和记忆,提高思维能.【篇三:《算术平方根》教学设计与反思】《算术平方根》教学设计与反思永善县教育局教研室陈昭一、教材分析《算术平方根》是人教版八年级上第十三章第一节内容,隶属于“数与代数”领域,重点结合实际问题情景认识算术平方根、平方根的意义,能够对算术平方根进行符号表示,能够利用概念的本质探获求算术平方根、平方根的方法,理解算术平方根、平方根的性质。
算术平方根教学设计(最新3篇)
算术平方根教学设计(最新3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!算术平方根教学设计(最新3篇)作为一位优秀的人·民教师,就不得不需要编写教案,教案是教学蓝图,可以有效提高教学效率。
2023最新-平方根教学设计(4篇)
平方根教学设计(4篇)作为一名默默奉献的教育工作者,时常需要用到教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
我们应该怎么写教学设计呢?以下是人见人爱的小编分享的4篇平方根教学设计,如果能帮助到您,牛牛范文将不胜荣幸。
平方根教学设计篇一学科:数学年级:七年级审核:内容:沪科版七下6.1平方根(1)课型:新授时间:学习目标:1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。
学习重点:了解平方根的概念,求某些非负数的平方根学习难点:了解被开方数的非负性;学习过程:一、学习准备1、我们已经学习过哪些运算?它们中互为逆运算的是?答:加法、减法、乘法、除法、乘方五种运算。
加法与减法互逆;乘法与除法互逆。
2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。
32 = ( ) ( )2 = 9(-3)2= ( ) ( )2 =( )2= ( ) ( )2 = 0( )2 =( )02 =( ) ( )2 =-43、左边算式已知底数、指数求幂,右边算式已知幂、指数求底数一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。
即如果X2=a,那么叫做的平方根。
请按照第3页的举例你再举两个例子说明:叫做开平方,平方与互为逆运算4、观察上面两组算式,归纳一个数的平方根的性质是:一个正数有两个平方根,它们互为相反数;零有一个平方根,它是零本身;负数没有平方根。
交流:(1)的平方根是什么?(2)0.16的平方根是什么?(3)0的平方根是什么?(4)-9的平方根是什么?5、平方根的表示方法一个正数a有两个平方根,它们互为相反数。
正数a的正的平方根,记作“ ”正数a的负的平方根,记作“ ”这两个平方根合在一起记作“ ”如果X2=a,那么X=,其中符号“ ”读作根号,a叫做被开方数这里的a表示什么样的数?a是非负数二、合作探究1、判断下面的说法是否正确:1).-5是25的平方根;()2).25的平方根是-5;()3).0的平方根是0()4).1的平方根是1()5).(-3)2的'平方根是-3()6). -32的平方根是-3()2、阅读课本第4页例题1,按例题格式判断下列各数有没有平方根,若有,求其平方根。
2024秋八年级数学上册第4章实数4.1平方根1算术平方根教学设计(新版)苏科版
3.素质特点:学生在学习过程中,可能对新的数学概念和方法产生好奇心,愿意主动探索和学习。但是,部分学生可能对数学学习缺乏信心,害怕面对困难。此外,学生的合作意识和沟通能力也需加强。
教学内容与学生已有知识的联系:
1.学生需要掌握有理数的乘方知识,以便理解平方根的概念。
2.学生应了解乘方的意义,能够将乘方转化为平方根的运算。
3.学生应具备一定的代数运算能力,以便在学习平方根的过程中能够进行相关的运算。
本节课的教学重点是平方根的概念和性质,教学难点是平方根的运算和应用。教师将通过实例讲解、练习题等形式,帮助学生掌握平方根的知识,并能够运用到实际问题中。
(5)鼓励学生参加数学竞赛、科研项目等活动,提升学生的数学素养和综合素质。
(6)建议学生关注平方根在现实生活中的应用,如购物、建筑、科技等领域,提高学生对数学与生活联系的认识。
板书设计
本节课的板书设计旨在帮助学生清晰地理解平方根的概念、性质和应用。板书设计将包括以下几个部分:
1.平方根的定义:板书将列出平方根的定义,包括平方根的符号表示和计算方法。通过简洁明了的板书,学生能够准确地理解平方根的基本概念。
过程:
简要回顾本节课的学习内容,包括平方根的基本概念、组成部分、案例分析等。
强调平方根在现实生活或学习中的价值和作用,鼓励学生进一步探索和应用平方根。
布置课后作业:让学生撰写一篇关于平方根的短文或报告,以巩固学习效果。
教学资源拓展
1.拓展资源
(1)数学故事:可以向学生介绍一些关于平方根的数学故事,如“勾股定理的故事”、“开普勒与平方根”等,让学生在轻松愉快的氛围中了解平方根的历史和发展。
算术平方根教学设计方案
一、教学目标1. 知识与技能目标:(1)理解算术平方根的概念,掌握算术平方根的定义和性质。
(2)学会求一个数的算术平方根的方法,并能进行简单的计算。
(3)能够运用算术平方根解决实际问题。
2. 过程与方法目标:(1)通过观察、比较、操作等活动,发现算术平方根的性质。
(2)通过小组合作,探究求算术平方根的方法。
(3)通过实际问题,提高解决问题的能力。
3. 情感态度与价值观目标:(1)培养学生对数学学习的兴趣和热情。
(2)培养学生严谨、求实的科学态度。
(3)培养学生合作、探究的精神。
二、教学内容算术平方根的概念、性质、求法及在实际问题中的应用。
三、教学重难点1. 教学重点:算术平方根的概念、性质、求法。
2. 教学难点:求算术平方根的方法及在实际问题中的应用。
四、教学过程1. 导入新课(1)回顾平方根的概念,引导学生思考平方根的平方等于被开方数,进而引出算术平方根的概念。
(2)提出问题:如何求一个数的算术平方根?2. 新课讲解(1)算术平方根的概念:一个数的正的平方根称为这个数的算术平方根。
(2)算术平方根的性质:①算术平方根是正数;②一个数的算术平方根是唯一的;③0的算术平方根是0;④一个正数的算术平方根的平方等于这个数。
(3)求算术平方根的方法:①直接开平方;②利用计算器。
3. 课堂练习(1)判断题:判断下列各数是否有算术平方根。
(2)选择题:求下列各数的算术平方根。
(3)填空题:填空,使等式成立。
4. 小组合作探究(1)小组讨论:如何运用算术平方根解决实际问题?(2)学生代表展示解题过程,教师点评。
5. 应用新知(1)解决实际问题:小明有一块边长为4cm的正方形地砖,他想用这块地砖铺成一个长方形地面,长方形地面的长是10cm,求长方形地面的宽。
(2)学生独立完成,教师巡视指导。
6. 总结归纳(1)回顾本节课所学内容,总结算术平方根的概念、性质、求法及在实际问题中的应用。
(2)布置课后作业,巩固所学知识。
1 算术平方根》一等奖创新教学设计
1 算术平方根》一等奖创新教学设计算术平方根教学目标:(一)知识目标:1.了解算术平方根的概念,会用根号表示一个正数的算术平方根。
2.了解一个正数的算术平方根与平方是互逆的运算,会利用这个互逆关系求某些非负数的算术平方根。
3.了解算术平方根的性质。
(二)能力目标:1.加强概念形成的教学,提高学生的思维水平。
让学生会用数学符号来表示没有见过的一些量。
2.鼓励学生进行探索和交流,培养他们的创新意识和合作精神。
(三)情感态度价值观:1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲。
2.训练学生动脑,动口和动手的能力。
重点和难点:1.重点:算术平方根的概念.性质,会用根号表示一个正数的算术平方根。
2.难点:算术平方根的概念.性质。
教学方法:合作交流。
内容分析:本教学内容是让学生从有理数走向无理数的转折点。
是学生认识数的发展的一个节点。
首先要让学生认识到学生学习这一知识的必要性,我们让学生从实际问题出发,让学生从解决实际问题的过程中发现一些以前的知识解决不了的问题或者是没有见过的问题,以提高学生分析问题和解决问题的欲望和兴趣。
学情分析:学生在这一阶段学习过了有理数及其运算,对有理数有着深刻的理解,学生还需要认识更多的知识来武装自己,以适应这些学生的发展需要。
在学生的学习尊重知识的过程中,培养学生合作交流的方法和能力。
教学过程:一、引入新课(1)回忆正方形的面积公式给出一组简单的数字,1,2,3,4,5,6,7,8,9,10……。
(2)提出思考问题①把这些数字当成正方形的边长,你能算出其面积吗?②把这些数字当成正方形的面积,你能算出其边长吗?在解决这个问题中你有什么困惑?说出来。
提出这两个问题的目的是让学生发现1、4、9、……这些数作为正方形的面积是没有问题,而2、3、5、6、7、8、……这些数作为正方形的面积,学生能不能发现这些数能不能胸为正方形的面积,如果能作为正方形的面积,其边长又是多少呢?来激发学生的发现问题的能力和求知欲。
《算术平方根》教案
《算术平方根》教案一、教学目标1. 让学生理解算术平方根的概念,掌握求算术平方根的方法。
2. 培养学生运用算术平方根解决实际问题的能力。
3. 培养学生合作学习、积极思考的良好学习习惯。
二、教学重点与难点1. 重点:算术平方根的概念,求算术平方根的方法。
2. 难点:理解算术平方根的应用,解决实际问题。
三、教学方法1. 采用问题驱动法,引导学生探究算术平方根的概念和求法。
2. 运用实例分析法,让学生学会运用算术平方根解决实际问题。
3. 采用合作学习法,培养学生的团队精神和沟通能力。
四、教学准备1. 课件、黑板、粉笔。
2. 相关实例和练习题。
3. 学生分组合作学习的材料。
五、教学过程1. 导入新课利用课件展示实例,引导学生思考:如何求一个数的算术平方根?从而引出本节课的主题——算术平方根。
2. 自主学习让学生通过阅读教材,自主学习算术平方根的概念和求法。
3. 课堂讲解讲解算术平方根的概念,示范求算术平方根的方法,引导学生跟着一起动手操作。
4. 实例分析分析实际问题,让学生学会运用算术平方根解决问题。
5. 合作学习学生分组讨论,合作完成练习题,巩固所学知识。
6. 课堂小结7. 课后作业布置相关练习题,让学生巩固所学知识。
8. 教学反思课后对教学效果进行反思,针对学生的掌握情况,调整教学策略。
六、课堂拓展1. 让学生举例说明算术平方根在实际生活中的应用,如计算物品的面积、体积等。
2. 引导学生思考:算术平方根与其他平方根(如算术立方根、指数根等)的区别和联系。
3. 介绍一些数学家与算术平方根相关的故事,激发学生的学习兴趣。
七、练习巩固1. 设计一系列练习题,让学生独立完成,检验对算术平方根的掌握程度。
2. 针对学生的练习情况,进行针对性讲解,解答学生的疑问。
1. 回顾本节课的主要内容,强调算术平方根的概念和求法。
九、课后作业1. 布置一定数量的练习题,让学生巩固所学知识。
2. 鼓励学生自主探究,发现算术平方根在生活中的应用。
算术平方根教学设计
算术平方根教学设计《平方根》教案篇一一、内容和内容解析1、内容算术平方根的概念,被开方数越大,对应的算术平方根也越大、2、内容解析算术平方根是初中数学中的重要概念,引入算术平方根,是解决实际问题的需要、作为《实数》的开篇第一课,掌握好算术平方根的概念和计算,一方面可为后续研究平方根、立方根提供方法上的借鉴,另一方面也是为认识无理数,完成数集的扩充,解决数学内部运算,以及二次根式的学习等作准备、算术平方根的概念分两个部分,分别是关于一个正数算术平方根的定义和关于0的算术平方根的规定、由算术平方根的概念引出其符号表示、读法及什么是被开方数、根据算术平方根的概念,可以利用互逆关系,求一些数的算术平方根、根据这些数的算术平方根的结果,不难归纳得出“被开方数越大,对应的算术平方根也越大”的结论,其间体现了从特殊到一般的思想方法、基于以上分析,确定本节课的教学重点为:算术平方根的概念和求法、二、目标和目标解析1、教学目标(1)了解算术平方根的概念,会用根号表示一个非负数的算术平方根、(2)会求一些数的算术平方根、2、目标解析(1)学生能说出正数的算术平方根的定义,记住0的算术平方根是0;会用符号表示一个非负数的算术平方根,并能正确读出符号,能够说出中数的名称;理解符号中被开方数≥0(即是一个非负数)的条件,了解也是一个非负数、(2)学生能依据算术平方根的定义判断一个数有没有算术平方根;掌握用平方运算求某些数的算术平方根的方法,会求出100以内完全平方数或分子、分母均是这类数的分数的算术平方根,以及上述这类数扩大(或缩小)100倍、10000倍的数的算术平方根;了解被开方数越大,对应的算术平方根也越大、三、教学问题诊断分析在本课学习之前,学生们已经掌握了一些完全平方数,对乘方运算也有一定的认识、但对于算术平方根为什么只是就正数进行定义,并对0的算术平方根作出规定,大多数学生不习惯、还有就是负数没有算术平方根,这种某数不能进行某种运算的情况在有理数的前五种代数运算中,一般不会碰到(0不能作除数除外);加之算术平方根的符号表示只涉及一个数,这与前面所学都涉及两个数的运算不一样,学生可能难以理解、基于以上分析,本节课的教学难点是:深化对算术平方根的理解、四、教学过程设计1、创设情境,引入新课教师展示教科书中本章的章前图,说明这是神舟七号宇宙飞船升空的照片,并提出下面的问题、问题1请同学们阅读本章的引言,你从引言中发现了哪些与数有关的概念?本章将要学习的主要内容以及大致的研究思路是什么?师生活动学生阅读,回答;教师补充说明数的范围不断扩大体现了人类在数的认识上的不断深入,让学生感受数的扩充的必要性、设计意图:通过“神舟七号载人飞船发射成功”引入本章学习,激发兴趣,增强学生的学习热情、2、师生互动,学习新知问题2学校要举行美术作品比赛,小鸥想裁出一块面积为25d的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?师生活动:学生可能很快答出边长为5d、追问请说一说,你是怎样算出来的?师生活动:学生理清解决问题的思路,回答,教师可结合图片强调思路、设计意图:从现实生活中提出数学问题,使学生积极主动的投入到数学活动中去,同时为学习算术平方根提供实际背景和生活素材、问题3完成下表:正方形的面积师生活动:学生不难回答“0的算术平方根是0”,可以表示为“”;教师指明:算术平方根的概念包含“正数算术平方根”的定义和“0的算术平方根”的规定两部分、追问(1)根据以上学习,你认为对于算术平方根中被开方数可以是哪些数?师生活动:学生回答,教师明确:算术平方根中被开方数可以是正数或0,即非负数、追问(2)为什么负数没有算术平方根呢?师生活动:学生思考、回答,教师点拨:因为任何一个正数的平方都不可能是负数、设计意图:通过不断追问,由学生思考解决,体会分类讨论,既加深学生对算术平方根的理解,又让学生养成全面考虑问题的习惯、追问(3)请判断正误:(1)—5是—25的`算术平方根;(2)6是的算术平方根;(3)0的算术平方根是0;(4)0、01是0、1的算术平方根;(5)一个正方形的边长就是这个正方形的面积的算术平方根、师生活动:学生回答,其他学生讨论,教师对有难度的进行适当引导、设计意图:检验对算术平方根的理解、3、例题示范,学会应用例1求下列各数的算术平方根:(1)100;(2);(3)0、0001、师生活动:教师给出第(1)小题求数的算术平方根的思考过程,学生模仿独立完成第(2)、第(3)小题,两名学生板演后,全班交流、追问从例1中,你能发现被开方数的大小与对应的算术平方根的大小之间有什么关系吗?师生活动:学生比较被开方数的大小以及其算术平方根的大小,试图归纳出结论、如有困难,教师再举一些具体例子加以引导,说明、设计意图:通过求大小不同的三种形式的正数的算术平方根的实践,巩固求算术平方根的方法,由特殊到一般归纳出结论:被开方数越大,对应的算术平方根也越大、为下节课学习估计平方根的大小做准备、例2求下列各式的值、(1)_____;(2)_____;(3)_____师生活动:学生先说明所求式子的含义,然后三名学生板演,全班交流,教师点评、设计意图:使学生熟悉算术平方根的符号表示,全面了解算术平方根、4、即时训练,巩固新知(1)教科书第41页的练习、(2)求的算术平方根、师生活动:学生独立完成,教师巡视,对个别差生进行辅导、对“求的算术平方根”,要让学生明白此题包含两层运算,即先求=?,然后再求“?”的算术平方根,实际上就是上述例1、例2类型的综合题、设计意图:通过练习使学生在了解算术平方根及有关概念的基础上,达到能自己求一个数的算术平方根,进一步巩固、深化对算术平方根的理解、5、课堂小结师生共同回顾本节课所学内容,并请学生回答以下问题:(1)什么是算术平方根?(2)如何求一个正数的算术平方根?(3)什么数才有算术平方根?设计意图:让学生对本节课知识进行梳理,进一步落实相关概念、6、布置作业:教科书习题6、1第1、2题、五、目标检测设计1、若是49的算术平方根,则_____=(_____)A、7B、-7C、49D、-49设计意图:本题考查学生对算术平方根概念的理解、2、说出下列各式的意义,并求它们的值、(1)_____;(2)_____;(3)_____;(4)_____设计意图:本题考查学生对算术平方根概念的理解,以及是否能正确认识符号化语言、3、_____的算术平方根是_____设计意图:本题考查学生对算术平方根概念的全面理解、教学目标: 篇二知识与技能目标:1、知道平方根的概念,能熟练地求出一个正数的平方根。
《算术平方根》教案
《算术平方根》教案一、教学目标1. 让学生理解算术平方根的概念,掌握求一个正数的算术平方根的方法。
2. 培养学生运用算术平方根解决实际问题的能力。
3. 培养学生合作学习、积极思考的能力。
二、教学内容1. 算术平方根的概念。
2. 求一个正数的算术平方根的方法。
3. 算术平方根在实际问题中的应用。
三、教学重点与难点1. 重点:算术平方根的概念,求一个正数的算术平方根的方法。
2. 难点:理解算术平方根的实际应用。
四、教学方法1. 采用自主学习、合作学习、探究学习的方式。
2. 利用多媒体辅助教学,直观展示算术平方根的概念和应用。
3. 结合生活实例,激发学生学习兴趣。
五、教学过程1. 导入:利用多媒体展示一些生活中的平方根现象,如建筑物的高度、物体的温度等,引导学生思考这些现象与平方根的关系。
2. 新课导入:介绍算术平方根的概念,引导学生理解算术平方根的定义。
3. 知识讲解:讲解求一个正数的算术平方根的方法,引导学生掌握求解方法。
4. 实例分析:给出一些实际问题,让学生运用所学的算术平方根知识解决问题。
5. 课堂练习:设计一些练习题,让学生巩固所学知识。
7. 课后作业:布置一些课后作业,让学生进一步巩固所学知识。
六、教学评价1. 通过课堂表现、练习题和课后作业评价学生对算术平方根的理解和运用能力。
2. 关注学生在解决问题时的思维过程,鼓励创新和解决问题的方法。
3. 评价学生在小组合作学习中的参与程度,培养团队合作精神。
七、教学反馈1. 课后收集学生作业,分析学生对算术平方根概念和求解方法的掌握情况。
2. 听取学生对课堂内容和建议的反馈,及时调整教学方法和内容。
3. 与家长沟通,了解学生在家庭环境下的学习情况,共同促进学生进步。
八、教学资源1. 多媒体教学课件:包括算术平方根的定义、求解方法、实际应用等内容的展示。
2. 练习题库:设计不同难度的练习题,供课堂练习和课后作业使用。
3. 生活实例素材:收集一些与算术平方根相关的实际问题,用于教学导入和实例分析。
(完整版)《算术平方根》教学设计
(完整版)《算术平方根》教学设计一、教学目标:能够理解算术平方根的概念,掌握算术平方根的求解方法,应用算术平方根解决实际问题。
二、教学重点:1.算术平方根的概念。
2.算术平方根在实际问题中的应用。
四、教学方法:1.课堂讲解法。
2.示范法。
3.问答互动法。
五、教学过程:1.引入新知:通过举例说明,引入算术平方根的概念。
如:林老师通过种树,发现全校共有2304棵树,要分别在两个操场种树,使得两个操场的树数相等,该怎么办?2.概念讲解:对算术平方根的概念进行讲解及其符号的表示,包括算术平方根的定义、性质及其用途。
3.算术平方根的求解方法:教师通过讲解及例题演示,介绍算术平方根的求解方法。
4.讲解应用:教师通过多个实例说明算术平方根在实际生活中的应用,如:厨师需要知道多少肉可以做出100个饺子,房屋买卖需要知道房子周围有多少条街道。
5.概念和应用的综合练习:由教师出题,学生在课堂上练习,考察学生对于算术平方根概念和应用的掌握程度。
6.巩固遗忘知识:教师通过快速回顾上节课的内容,并且与这节课的知识统一起来,对本节课内容进行巩固。
七、板书设计:√a定义:对于任意非负数a,其算术平方根就是b∈[0,+∞),满足b²=a。
性质:应用:八、教学反思:此次教学中,我采用了课堂讲解、示范和问答互动等多种教学方法,使得学生能够更好地理解算术平方根的概念、求解方法和应用,并且能够运用到实际生活中。
在教学过程中,我注重给学生提供实例,让学生发现问题、解决问题,帮助学生在学习中更好地掌握知识。
但是,教学内容仍有一些难点,需要加强巩固。
在未来的教学过程中,我将持续关注学生的掌握程度,对于难点,我将做好相关的分析和辅导工作,帮助学生更好地掌握知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算术平方根》教学设计
都匀市杨柳街中学张启航
教材:人教版《义务教育课程标准实验教科书数学》七年级下
目标:1、知识与技能
(1)了解算术平方根的概念,懂得使用根号表示正数的算术平方根。
(2)会求正数的算术平方根并会用符号表示。
2、过程与方法
(1)经历算术平方根概念的形成过程,理解平方与开方之间是互为
逆,会求正数的算术平方根并会用符号表示。
(2)通过引导、启发学生探索、合作交流等数学活动,使学生掌握
研究问题的方法。
3、情感态度与价值观
让学生体验数学与生活实际是紧密联系着的,激发学生的学习兴趣。
重点:算术平方根的概念。
难点:算术平方根的概念。
学情、教法分析:
《算术平方根》是人教版教材七年级数学第6章第一节的内容。
在此之前,学生们已经掌握了数的平方,这为过渡到本节内容的学习起到了铺垫的作用。
本课是《实数》的开篇第一课,掌握好算术平方根的概念和计算,为今后学习根式运算、方程、函数等知识作出了铺垫,提供了知识积累。
本节课中重难点不多,利于学生对知识的掌握,利于学生能力的发展。
因此,本节课通过引导、启发学生探索、交流、
合作等数学活动,初步培养学生分析问题、解决问题的能力,使学生掌握研究问题的方法,从而学会学习。
教具:课件、计算机、投影仪。
过程:
一、创设情境,复习引入
1、我们知道,要求正方形的面积,只要知道边长,利用面积公式即可救出;知道面积,怎样求边长呢?如:“学校要举行美术作品比赛,小欧想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?”
(1)谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的?
(2)大家说了很多方法,我们知道52=25,所以这个正方形画布的边长应取5分米;现在请同学们根据这一方法填写下表:
2、想一想:如果正方形的面积是10 dm2,它的边长是多少?
表中的数,我们很容易知道是什么数的平方,但10是什么数的平方呢?这就是我们今天要学习的“算术平方根”,学习后大家说知道了。
二、感知新知识
1、算术平方根的概念
(1)从填表知道正数3的平方等于9,我们把正数3叫做9的算术平方根;正数4的平方等于16,我们把正数4叫做16的算术平方根。
(2)归纳概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。
a的算术平方根记为a,读作“根号a”,a叫做被开方数,规定:0的算术平方根是0。
(3)上述概念可归纳为:在等式x2=a(x≥0)中,规定x=a
2、教学例1
例1、求下列各数的算术平方根
49(3)0.0001
(1)100 (2)
64
①以100为例进行分析:100的算术平方根,就是求一个数x,使x2=100,因为102=400,所以100的算术平方根是10,记作100=10。
解:因为102=400,所以100的算术平方根是10,即100=10。
②学生独立完成(2)(3)的分析后,同桌互相交流。
③在学生交流的基础上2人板书,并根据板书的情况进行订正。
3、试一试
求下列各数的算术平方根
81
(1)121 (2) 0.25 (3)
169
4、我们再回到“正方形的面积是10 dm2,它的边长是多少?”现在学习了算术平方根,你能说出10的算术平方根吗?
(1)同桌交流讨论;
(2)根据讨论结果,说出下列各数的算术平方根:
2 5 15 38 1
5、思考:负数有算术平方根吗?为什么?
(学生思考后,抽几名学生回答,再根据回答的情况进行讲解。
)
6、教学例
求下列各式的值: (1) 81 (2)100 (3)25
9
的值,实际上是求81的什么?怎样计算?
(根据学生的回答,指导学生解答 解 :81=9)
②指导学生余下的两题。
三、反馈与练习
1、求下列各数的算术平方根。
(1)0.0025 (2)144 (3)32
2、求下列各式的值。
(1)1 (2(3)22 (4) -81
4 3、下列式是否有意义,为什么?
(1)121- (2)-5 (3)22- (4) 221⎪⎭
⎫ ⎝⎛- 4、根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:
_______,=_______,=_______,
=_______,_______,_______,
_______,_______,_______.
四、小结:
这节课我们学习了“算术平方根”,你有哪些收获,能总结一下吗? 学生自由发表对本节课的理解,教师归纳如下:
(1)算术平方根是非负数;
(2)被开方数是非负数;
(3)规定:零的算术平方根是零;
五、作业:
课本P47习题6.1第1、2题.。