回复与再结晶
回复与再结晶
(1)温度 随T↑,晶粒长大 温度一定,晶粒达到一定尺寸后不再长大。 (2)杂质与合金元素 异类原子吸附晶界处,降低晶界能,减少驱动力,阻碍晶粒长大。
第八章: 回复与再结晶
8.4晶粒长大
8.4.1晶粒的正常长大 3.影响晶粒长大的因素 晶粒长大,是通过晶界处的原子扩散迁移实现
(3)分散相粒子 第二相粒子越细小,数量越多,则阻碍晶粒长大能力越强。
8.1.1 显微组织的变化
冷变形金属随加热温度升高组织变化示意图
再结晶后组织恢复到变形前的程度,性能也恢复到变形前的程度 晶粒长大:新晶粒逐渐相互合并长大.
第八章: 回复与再结晶
8.1 冷变形金属及合金在退火过程中的变化
8.1.2 储存能与内应力变化
随T↑,储存能逐渐释放. 再结晶后,形变储存能全部释放.
第八章: 回复与再结晶
8.5 金属的热加工(变形)
8.5.2热加工后的组织与性能
热加工对组织和性能有如下影响: 3.产生带状组织
未热轧的20钢组织:F+P
热轧后的20钢组织:F+P 带状分布
带状组织常在热轧板材、管材中 出现,性能上产生各向异性
第八章: 回复与再结晶
8.3再结晶(recrystallization)
8.3.2 再结晶动力学
第八章: 回复与再结晶
8.3再结晶(recrystallization)
8.3.3 再结晶温度及其影响因素 再结晶温度:经过严重冷变形的金属,在一个小时的退火保温时间内,能完成再结 晶的最低温度(T再).对纯金属T再=0.4T熔 再结晶速度:V再 若T再低,V再快,则再结晶易进行. 影响再结晶的因素如下: 1.加热温度(退火温度) : 退火温度越高,原子扩散越容易进行,V再↑,完成再结晶时间越短. 2.预先变形量 变形度越大,则T再越低 ∵储存能大,再结晶驱动力大.
第七章回复再结晶
注:再结晶退火温度一般比上述温度高100~200℃。
3.影响再结晶温度的因素
(1)金属冷加工变形度 变形度δ越大,驱动力越大,发生再结晶的温度越低,当变形度达 到一程度后, 趋于一个最低温度,称为最低再结晶温度,T再min。 经验表明:T再min≈0.4T熔点, (2)金属的纯度 金属中的杂质或合金元素,尤其是高熔点成分的存在,会阻碍原子 的扩散(位错的扩散),因此再结晶温度会提高。纯度越高,再结晶温 度越低。 如:纯铁T再min =450℃;碳钢T再min =500-650℃;合金钢T再min >650700℃ (3)加热速度和保温时间 a、提高加热速度,再结晶温度升高;加热速度太低,再结晶温度也会 升高。 b、延长保温时间,再结晶温度降低 综合上述因素,再结晶退火温度一般为: T再min +100-200℃
5.分散相粒子
当合金中溶质浓度超过其固溶度后,就会形成第二相,多数情 况下,这些第二相为硬脆的化合物,在冷变形过程中,一般不 考虑其变形,所以合金的再结晶也主要发生在基体上。 当第二相颗粒较粗时,变形时位错会绕过颗粒,并在颗粒周围 留下位错环,或塞积在颗粒附近,从而造成颗粒周围畸变严重, 促进再结晶,降低再结晶温度; 当第二相颗粒细小,分布均匀时,不会使位错发生明显聚集, 因此对再结晶形核作用不大,相反,其对再结晶晶核的长大过 程中的位错运动和晶界迁移起一种阻碍作用,因此使得再结晶 过程更加困难,提高再结晶温度。 间距和直径都较大时,提高畸变能,并可作为形核核心,促进 再结晶;直径和间距很小时,提高畸变能,但阻碍晶界迁移, 阻碍再结晶。
图 变形程度与再结晶温度的关系
3.微量溶质原子
阻碍位错和晶界的运动, 不利于再结晶。
图 合金元素对铁再结晶温度影响
一文看懂回复和再结晶
一文看懂回复和再结晶回复和再结晶一、冷变形金属在加热时的组织与性能变化金属和合金经塑性变形后,由于空位、位错等结构缺陷密度的增加,以及畸变能(晶体缺陷所储存的能量)的升高将使其处于热力学不稳定的高自由能状态,具有自发恢复到变形前低自由能状态的趋势,但在室温下,因温度低,原子活动能力小,恢复很慢,一旦受热,温度较高时,原子扩散能力提高,组织、性能会发生一系列变化。
这一变化过程随加热温度的升高可表现为三个阶段:回复:指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。
在此阶段,组织:由于不发生大角度晶界的迁移,晶粒的形状和大小与变形态相同,仍为纤维状或扁平状。
性能:强度与硬度变化很小,内应力、电阻明显下降。
(回复是指冷塑性变形的金属在(较低温度下进行)加热时,在光学显微组织发生改变前(即在再结晶晶粒形成前)所产生的某些亚结构和性能的变化过程。
)再结晶:指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程。
在此阶段,组织:首先在畸变度大的区域产生新的无畸变晶粒的核心,然后逐渐消耗周围的变形基体而长大,直到变形组织完全改组为新的、无畸变的细等轴晶粒为止。
性能:强度与硬度明显下降,塑性提高,消除了加工硬化,使性能恢复到变形前的程度。
晶粒长大:指再结晶结束之后晶粒的继续长大。
在此阶段,在晶界表面能的驱动下,新晶粒相互吞食而长大,最后得到较稳定尺寸的晶粒。
显微组织的变化:回复阶段:显微组织仍为纤维状,无可见变化。
再结晶阶段:变形晶粒通过形核长大,逐渐转变为新的无畸变的等轴晶粒晶粒长大阶段:晶界移动,晶粒粗化,达到相对稳定的形状和尺寸。
性能变化:回复阶段:强度、硬度略有下降,塑性略有提高;密度变化不大,电阻明显下降。
再结晶阶段:强度、硬度明显下降,塑性明显提高;密度急剧升高。
晶粒长大阶段:强度、硬度继续下降,塑性继续提高;粗化严重时下降。
二、回复1. 回复动力学上图同一变形程度的多晶体铁在不同温度退火时,屈服强度的回复动力学曲线特点:(1)没有孕育期;(2)在一定温度下,初期的回复速率很大,随后即逐渐变慢,直至趋近于零;(3)每一温度的恢复程度有一极限值,退火温度越高,这个极限值也越高,而达到此一极限值所需的时间则越短;(4)预变形量越大,起始的回复速率也越快,晶粒尺寸减小也有利于回复过程的加快。
10回复与再结晶
§7.4.2 晶粒的异常长大 冷形变金属在初次再结晶刚完成时,晶粒是比较细小的。 如果继续保温或提高加热温度,晶粒将渐渐长大,这种 长大是大多数晶粒几乎同时长大的过程。 如将再结晶完成后的金属继续加热超过某一温度,则会 有少数几个晶粒突然长大,它们的尺寸可能达到几个厘 米,而其他晶粒仍保持细小。最后小晶粒被大晶粒吞并, 整个金属中的晶粒都变得十分粗大。这种晶粒长大叫做 异常晶粒长大或二次再结晶。
1.小变形量的晶界弓出形核机制 对于变形程度较小的金属(一般小于20%),再结晶晶核往往采 用弓出形核机制生成。 变形的两个相邻晶粒内,其位
图 晶界弓出形核
错胞的尺寸相差悬殊,晶核产 生于位错胞尺寸大的晶粒一侧, 长入到有小位错胞晶粒内,也 就是伸向畸变能较高的区域以 减少畸变能。
2.亚晶合并机制
的等轴晶粒逐渐取代变形晶粒,而使形变强化效应完全消除的过程。
第一节 形变金属及合金在退火过程中的变化 §10.1.1 显微组织的变化 在回复阶段,与冷变形状态相比,光学金相组织中几乎没有发生 变化,仍保持形变结束时的变形晶粒形貌; 在再结晶开始,首先在畸变较大的区域产生新的无畸变的晶粒核 心,然后通过逐渐消耗周围变形晶粒而长大,转变成为新的等轴 晶粒,直到冷变形晶粒完全消失; 最后,在晶界界面能的驱动下,新晶粒会发生合并长大,最终会 达到一个相对稳定的尺寸,这就是晶粒长大阶段。 §10.1.2 储存能释放与性能变化 储存能是变形金属加热时发生回复与再结晶的 驱动力。
图 再结晶全图
§10.3.6 再结晶的应用
恢复变形能力 改善显微组织 再结晶退火 消除各向异性 提高组织稳定性
再结晶退火温度:T再+100~200℃。
第四节 晶粒长大
§10.4.1 晶粒的正常长大 晶粒长大过程中,如果长大的结果是晶粒尺寸分布均匀的,那么 这种晶粒长大称为正常长大。 晶粒长大的过程实际上就是一个晶界迁移过程,从宏观上来看, 晶粒长大的驱动力是界面能的降低,而从晶粒尺度来看,驱动力 主要是由于晶界的界面曲率所造成的。 晶界移动方向总是指向曲率中心。
回复与再结晶ppt
金属材料在高温或高压下发生塑性变形,随后在较低的温度 或压力下发生再结晶,改变晶格结构和相变,提高材料的强 度和韧性。
半导体材料的回复与再结晶
半导体材料在高温或高压下的回复过程中,通过晶格结构的 变化和缺陷的修复,材料的电学性能得到改善。
THANKS
谢谢您的观看
汇报的目的和背景
汇报目的
本次汇报旨在探讨回复与再结晶对金属材料性能的影响以及应用方面的研究 进展。
背景
随着工业和科技的发展,金属材料在各个领域的应用越来越广泛,而回复与 再结晶作为金属材料热处理过程中的重要环节,对于提高金属材料的综合性 能具有重要意义。
02
回复
回复的定义和特点
回复是指一种物质在受到外部刺激(如温度、压力、电磁波 等)后,产生的某种反应或变化。
对回复与再结晶未来发展的展望
探索新的回复与再结晶技术,提高材料的综合 性能和可靠性,以满足现代科技和工业发展的 需求。
加强回复与再结晶基础理论的研究,深入探讨 材料在回复与再结晶过程中微观结构和物理性 质的演变规律。
研究新型材料在回复与再结晶过程中的行为和 特性,拓展回复与再结晶理论的应用范围。
对回复与再结晶具体案例的分析
升温
将金属加热到一定温度,使其发生再结晶 。
形核
在金属中形成新的晶核。
晶粒细化
通过控制温度和变形量,细化晶粒,提高 金属性能。
长大
新晶核逐渐长大,形成新的晶粒组织。
04
回复与再结晶的关系
回复与再结晶的联系
两种现象都与材料在高温下发生的物理性质变化有关。 两种现象都受到材料内部结构的影响。
回复与再结晶的区别
回复的特点是具有滞后性和不完全性。即,回复是在外部刺 激作用下的一个过程,需要一定的时间和能量,且回复的程 度往往不能完全恢复到初始状态。
回复与再结晶
7.3 再结晶
7.3 再结晶
7.3 再结晶
7.3 再结晶
7.3 再结晶
7.3 再结晶
第二相粒子的作用
(1)增加形变储存能而 增缘故。
7.3 再结晶
(2)第二相粒子附近可能作为再结晶形核位置。
大而硬间距宽的第二相粒子,由于形变时粒子附近出现更多 不均匀形变区,这些区域有大的显微取向差,可促进形核。 (Particle Stimulated Nucleation)
7.5 金属的热变形
动态回复引起的软化过程是通过刃型位错的攀移、螺位 错的交滑移,使异号位错对消、位错密度降低的结果。 动态回复中也发生多边化,形成亚晶。层错能较高的金 属如铝合金、纯铁、铁素体钢等热加工时,易发生动态 回复,因这些金属中易发生位错的交滑移及攀移之故。
动态回复过程中,变形晶粒不发生再结晶,故仍呈纤维 状,热变形后迅速冷却,可保留伸长晶粒和等轴亚晶的 组织。在高温较长时间停留,则可发生静态再结晶而使 材料彻底软化。动态回复组织比再结晶组织的强度高, 将动态回复组织保留下来可提高金属的强度,例如热挤 压法生产的建筑用铝镁合金,采用保留动态回复组织的 方法,提高其使用强度。
晶粒正常长大后,各晶粒尺寸的分布仍然是均匀的。
7.4 晶粒长大
7.4 晶粒长大
影响晶粒长大的因素
温度:温度越高,晶粒长大越快,一定温度下,晶粒长大极 限尺寸后不再长大,提高温度长大继续。
杂质与合金元素:吸附于晶界可使界面能下降,降低了界面 移动的驱动力,使晶界不易迁动。
第二相质点:阻碍晶界迁动,使晶粒长大受到抑制。 相邻晶粒的位相差:位相差越大,晶界可动性越高,小角晶
7.3 再结晶
再结晶:冷变形后的金属加热到一定温度后,在变形 基体中重新生成无畸变的新晶粒的过程。
材料的回复及再结晶
亚晶粒长大形核,适于低层错能的金属。通过亚晶合并 和亚晶长大,使亚晶界与基体间的取向差增大,直至形 成大角度晶界,便成为再结晶的核心。
(a)
(b)
亚晶长大形核示意图
(c)
具体过程:变形后的亚晶组织中,有些位 错密度很高,同号位错过剩量大的亚晶界 与它相邻的亚晶取向差就比较大。退火时, 这种亚晶界很容易转变成为易动性大的大 角度亚晶界,它就可能向变形区弓出“吞 食”周围亚晶而成为再结晶核。
设 P 为冷变形后在回复阶段发生变化的某种性能, P0 为变形前该性能 的值,△P为加工硬化造成的该性能的增量。 这个增量△P与晶体中晶体缺陷(空位、位 错)的体积浓度Cp成正比,即
在某一温度进行等温回复过程中,晶体 缺陷的体积浓度将发生变化,伴随着性 能P也发生变化,其随时间的变化率为 缺陷的变化是一个热激活的过 程,假设其激活能为Q,则 将(2)代入(3)中 将(1)代入(4)中 积分得:
(2)、原有晶界弓出的形核机制
一般是发生在形变较小的金属中。
变形不均匀,位错密度不同。
能量条件:
2 Es L
Es:单位体积变形畸变能的增量 σ:晶面能 L:球冠半径 变形程度较小时,金属的变形不均匀,各晶粒的位错密度不同, 原有晶界两侧的胞状组织粗细各异。退火时在原来的大角度晶界 中可能有一小段突然向位错密度大、胞状组织细的一侧弓出,并 形成一小块无位错区,此区域成为再结晶晶核。
2) 在回复初期,首先是过剩空位消失,胞状组织内的位错被吸 引到胞壁,并于胞壁中的异号位错相互抵消,使位错密度降低, 而且位错变得较直,较规整,如图(b)所示。 3) 回复继续进行时,胞内变得几乎无位错,胞壁中的位错缠结 逐渐形成能量较低的位错网,胞壁变薄,且更清晰,单胞有所 长大,如图(c)所示。此时,胞状组织实际上就是亚晶粒。 4) 随着回复的继续进行,亚晶粒继续长大,亚晶界上有更多的位 错按低能态的位错网络排列,如图(d)所示。 总结:材料冷变形程度越大,回复退火温度越低,最后获得亚晶 粒的尺寸越小。
回复与再结晶
• 回复 • 再结晶 • 晶粒长大 • 再结晶后的组织 • 金属的热加工
引言
冷变形金属在加热时组织性能会发生变化。 冷变形时较高的弹性畸变能、高位错密度、空
位等储存能量是促使冷变形金属发生变化的驱 动力。 微观组织处于不稳定状态。一旦加热,原子具 有足够的扩散能力,将发生一系列变化,从而 导致性能的变化。 变化时从储能释放及组织结构和性能的变化来 分析,可分为回复、再结晶和晶粒长大三个阶 段。
• 3. 形核与长大
4.再结晶的转变不是相变
• 冷塑性变形后的发生再结晶,晶粒以形核和 晶核长大来进行,但再结晶过程不是相变
• 原因有:
1.变化前后的晶粒成分相同,晶体结构并未发生变化, 因此它们是属于同一个相。
2.再结晶不像相变那样,有转变的临界温度点,即没 有确定的转变温度。
3.再结晶过程是不可逆的。相变过程在外界条件变化 后可以发生可逆变化。
经验公式 工业纯金属:T再=(0.35~0.45)Tm。 合金:T再=(0.4~0.9)Tm。
注:再结晶退火温度一般比上述温度高100~200℃。
四. 影响再结晶的因素
(1)退火温度。 温度越高,再结晶速度越大。 (2)变形量。 变形量越大,再结晶温度越低 随变形量增大,再结晶温度趋于稳定 变形量低于一定值,再结晶不能进行。 (3)原始晶粒尺寸。 晶粒越小,驱动力越大;晶界越多,有利于形核。 (4)微量溶质元素。 阻碍位错和晶界的运动,不利于再结晶。 纯度越高,再结晶温度越低; (5)第二分散相。 间距和直径都较大时,提高畸变能,并可作为形核核心,促进再结晶; 直径和间距很小时,提高畸变能,但阻碍晶界迁移,阻碍再结晶。
9.2 回复
• 一 回复概念 • 回复:在加热温度较低时,仅因金属中的一些
回复与再结晶
晶粒的正常长大(normal grain growth)
正常长大:再结晶后的晶粒均匀连续的长 大。 驱动力:界面能越大,曲率半径越小,驱 动力越大。(长大方向是指向曲率中心, 而再结晶晶核的长大方向相反。) 长大方式:大晶粒吞食小晶粒,大角度晶 界向曲率中心移动。
晶粒的正常长大
晶粒的稳定形状 晶界趋于平直; 二维晶粒:二维坐标中晶粒边数趋于6, 晶界夹角趋于120°; 三维晶粒:十四面体。
7.5 金属的热塑性变形
7.4.1 热、冷塑性变形的区别 (1) 热、冷塑性变形的区别 冷加工:在再结晶温度以下的变形加工。 加工硬化。 热加工:在再结晶温度以上的变形加工。 加工硬化、软化。 热加工温度:T再<T热加工<T固-100~200℃。
金属的冷加工
性能变化是单向的: 变形前 变形后
第7章 回复与再结晶
本章主要内容
冷塑性变形金属在加热时的转变 回复阶段 再结晶
金属的热塑性变形
回复与再结晶
7.1 冷塑性变形金属在加热时的转变
机械功(塑性变形) 热量(散失) 晶体内部缺陷储存能量→金属处于不稳 定的高能状态→有向低能转变的趋势
根据冷变形金属加热时组织和性能的变 化,可分为回复、再结晶和晶粒长大三 个阶段。
导致位错密度降低
7.2.2 回复机制
(3) 高温回复(>0.5Tm) 攀移:位错垂直于滑移面的移动。 机制:原子面下端原子的扩散,位错随半 原子面的上下移动而上下运动。 分类:正攀移(原子面上移、空位加入)、 负攀移(原子面下移、原子加入)。 攀移的作用:原滑移面上运动受阻—攀 移—新滑移面—滑移继续。
7.1.1 显微组织的变化
材料科学基础4-回复、再结晶
Q Q A exp RT t1 A exp RT t2 1 2
t1 t2 exp exp 1 1 RT2 R T2 T1 e RT 1
晶粒长大--3.影响晶粒长大(即晶界迁移率)的因素
(1)温度 温度越高,晶粒长大速度越快,晶粒越粗大
G =G0exp(-QG /RT)
G:晶界迁移速度 G0:常数 QG:晶界迁移的激活能
(2)第二相 晶粒长大的极限半径 R=kr/f K:常数 r:第二相质点半径 f:第二相的体积分数 ∴ 第二相质点的数量越多,颗粒越小,则阻碍晶粒长大的能 力越强。 (3)可溶解的杂质或合金元素阻碍晶界迁移,特别是晶界偏 聚现象显著的元素,其阻碍作用更大。但当温度很高时, 晶界偏聚可能消失,其阻碍作用减弱甚至消失。
§2
一、回复动力学 1.回复动力学曲线
回复
回复动力学特点:
(1)回复过程没有孕育期,随着退火的开始进行,发 生软化。 (2)在一定温度下,初期的回复速率很大,以后逐渐 变慢,直到最后回复速率为零。
(3)每一温度的回复程度有一极限值,退火温度越高, 这个极限值也越高,而达到此极限所需时间则越短
(4)回复不能使金属性能恢复到冷变形前的水平。
TC TA TB sin A sin B sin C
当界面张力平衡时: 因 为 大 角 度 晶 界 TA=TB=TC, 而 A+B+C=360o ∴A=B=C=120o
晶粒长大--晶粒长大的方式
(3)在二维坐标中, 晶界边数少于6的晶 粒,其晶界向外凸出, 必然逐渐缩小,甚至 消失,而边数大于6 的晶粒,晶界向内凹 进,逐渐长大,当晶 粒的边数为6时,处 于稳定状态。 在三维坐标中, 晶粒长大最后稳 定的形状是正十 四面体。
《材料科学基础》回复与再结晶
G:晶界迁移速度; G0:常数; QG:晶界迁移激活能。
45
(2)弥散第二相粒子: 弥散第二相粒子对晶界移动有钉扎作用。 产生原因:晶界开始穿过粒子时,晶界面积减小, 即减少了总的界面能量,这时粒子是帮助晶界前进 的。
但当晶界到达粒子的最大截面处后,晶界继续 移动又会重新增加晶界面积,即增加了总的界面能 量,这时粒子对晶界移动产生拖曳力,即起钉扎作 用。
16
多边形化: 刃型位错通过攀移和滑移构成竖直排列(位错 墙),形成位错墙的过程称为多边形化。
17
回复亚晶:多边化形成小角度晶界,亚晶界将原来 的晶粒分割成许多亚晶块。
实质是胞壁处的缠结位错不断聚集、使胞壁 变薄,逐渐形成网络,构成清晰的亚晶界过程。
18
过程示意
19
三、回复退火的应用
主要用作去应力退火,使冷加工金属在基本 上保持加工硬化的状态下降低其内应力,以稳定 和改善性能,减少变形和开裂,提高耐蚀性。
这说明冷变形铁的回复,不能用一种单一的 回复机制来描述。
12
二、回复机理
点缺陷和位错在退火过程中发生运动,从而改 变了它们的组态和分布。 回复时空位迁动和消失是不会影响显微组织的, 只有涉及位错迁动时才会影响显微组织。 位错迁动和重排引起的显微组织变化主要是多 边形化和亚晶形成和长大。
13
1. 低温回复(0.1-0.3 Tm) 点缺陷运动:(1)空位、间隙原子移至晶界、位 错处消失;(2)空位聚集(空位群、对)。→点 缺陷密度降低 2. 中温回复(0.3-0.5 Tm)
回复速率和温度有阿累尼乌斯关系:
10
两边取对数得回复方程式:
以ln ( 1/t )对1/T作图,得直线,直线斜率为 Q/R,可求出回复过程的激活能。
《回复和再结晶》课件
回复的类型和特点
动态回复
发生在高温快速冷却过程中,晶格缺陷快速消失。
静态回复
发生在相对较低温度下,晶格缺陷比较稳定,回复速度较慢。
回复特点
包括晶粒形状恢复、细化晶粒、消耗应变能以及调整晶格结构等。
再结晶的过程和影响因素
1
晶粒长大
原先晶粒消失,新的晶粒长大,形成新的晶界。
2
再结晶温度
温度过高或过低都会影响再结晶的进行。
钢材再结晶
通过控制再结晶过程,可以调整 钢材的晶粒尺寸和结构,提高其 强度和耐腐蚀性。
半导体制造
回复和再结晶在半导体制造中起 到重要的作用,通过微结构调控 改善半导体器件性能。
总结与展望
通过本课件的学习,我们了解了回复和再结晶的概念、类型以及影响因素。 同时,我们也看到它们在材料加工、强化技术和材料改性中的重要应用。未 来,随着科学技术的发展,回复和再结晶将继续在材料科学领域发挥重要作 用。
3
应力状态
应力存在会抑制再结晶的发生。
回复和再结晶的应用
1 材料加工
通过控制回复和再结晶过程,可以改善材料的塑性和强度。
2 强化技术
再结晶可以改变材料的微观结构,提高其性能和使用寿命。
3 材料改性
回复和再结晶可以改变材料的结构和性能,满足特定需求。
实例分析
金属锻造
通过应用回复和再结晶技术,可 以改善金属锻件的塑性和韧性, 提高产品质量。
回复和再结晶 PPT课件
欢迎各位观众参加我们今天的演讲,本PPT课件将介绍回复和再结晶的概念、 类型、过程、影响因素以及应用,并通过实例分析,最终给出总结和展望。
回复与再结晶的概念
回复和再结晶是材料学中重要的两个概念。回复是材料在高温条件下晶格重 新排列,消除应力和调整晶体
第七章回复与再结晶
回复、再结晶及晶粒长大阶段中性能的变 化情况
7.2 回复
回复过程3阶段(储存能在回复阶段三个峰值所对应的) 约化温度:表征加热温度的高低,用绝对温标表示的加热温度与其熔点温度之比, TH =T/Tm。
错相遇相消,位错密度下降,位错缠结内部重新排列组合,使亚晶规整化。
(3)高温回复( TH >0.5Tm) 高温回复,原子活动能力进一步增强,位错除滑移外,还可攀移。主要机制是多边化。冷变形后由
于同号刃型位错在滑移面上塞积而导致点阵弯曲,在退火过程中通过刃型位错的攀移和滑移,使同号 刃型位错沿垂直于滑移面的方向排列成小角的亚晶界,这个过程称为多边化。其驱动力来自应变能的 下降。
位错及晶界处,对位错的运动及晶界的迁移起阻碍作用,因此不利于再结晶的形核与长大,阻碍再结 晶,使再结晶温度升高。 4.原始晶粒尺寸
其他条件相同情况下,晶粒越细,变形抗力越大,冷变形后存储能越多,再结晶温度越低。相同变 形度,晶粒越细,晶界总面积越大,可供形核场所较多,生核率也增大,再结晶速度加快。
5.分散相粒子 分散相粒子直径较大,离子间距较大的情况下,再结晶被促进;而小的粒子尺寸和小的粒子间距,
储存能的释放与性能变化
1 储存能:存在于冷变形金属内部的一小部分(~10%)变形功。
弹性应变能(3~12%) 2 存在形式 位错(80~90%)
点缺陷
3 储存能的释放:原子活动能力提高,迁移至平衡位置,储存能得以释放。
(1)力学性能 回复阶段:强度、硬度略有下降,塑性略有提高。 再结晶阶段:强度、硬度明显下降,塑性明显提高。 晶粒长大阶段:强度、硬度继续下降,塑性继续提高,粗
第7章 《材料科学》回复与再结晶.
式中t为恒温下的加热时间,x为冷变形导致的性能增量经加热后的残留分数,c为 与材料和温度有关的比例常数,c值与温度的关系具有典型的热激活过程的特点:
c c0eQ RT
( 7.2)
式中Q为激活能,R为气体常数(8.31×10-3J/mol·K),c0为比例常数,T为绝对温度。 将式7.2代入方程7.1中并积分,以x0表示开始时性能增量的残留分数,则得: ( 7.3)
特点: ①无孕育期; ②开始变化快,随后变慢; ③长时间处理后,性能趋于一平衡值; ④加热温度越高,回复程度也越高; ⑤变形量越大,初始晶粒尺寸越小, 有助于加快回复速率。
图 同一变形度的Fe在不同温度等温退火后的性能变化曲线
§7.2 回复
§7.2.2 回复动力学
回复特征通常可用一级反应方程来表达,即:
再结晶:经冷变形的金属在足够高的温度下加热时,通过新晶粒 的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。
(再结晶是一个显微组织彻底改组、变形储能充分释放、性能显著变化的过程。)
形核的两种方式:晶界凸出形核、亚晶形核。
(1)晶界凸出形核----晶核伸向小位错胞晶粒(畸变能较高域)内
对于变形程度较小的金属(一般小于20%),再结晶晶核往往采用凸出形核机制生 成,如图所示。
※ 注:实际再结晶退火温度一般比上述温度高 100~200℃。 19
§7.3
再结晶
§7.3.4 影响再结晶的因素
(1)退火温度 ----温度越高,再结晶速度越大。 (2) 变形量 ----变形量越大,再结晶温度越低;随变形量增大,再结晶 温度趋于稳定;变形量低于一定值,再结晶不能进行。 (3) 原始晶粒尺寸 ----晶粒越小,驱动力越大;晶界越多,有利于形核。 (4) 微量溶质元素 -----阻碍位错和晶界的运动,不利于再结晶。 (5)第二分散相 ----间距和直径都较大时,提高畸变能,并可作为形核核心, 促进再结晶;直径和间距很小时,提高畸变能,但阻碍晶 界迁移,阻碍再结晶。
动态回复和再结晶
亚晶尺寸与稳
态流变应力成反比, 并随变形温度升高 和变形速度降低而 增大(图5.39)。
图 5.39 铝在400oC挤压时动态 回复所形成旳亚晶
3)动态回复旳机制
(1).是位错旳攀移和交滑移,攀移在动态回复中 起主要旳作用。
(2).层错能旳高下是决定动态回复进行充分是否 旳关键原因
(3). 动态回复易在层错能高旳金属,如铝及铝合 金中发生。
热变形或热加工指金属材料在再结晶温度以上旳 加工变形。工业生产个,高温进行旳铸造,轧制等 压力加工属热加工。热加工过程中,在金属内部同 步进行着加工硬化与回复再结晶软化两个相反旳过 程。
1.热加工与冷加工
从金属学旳角度,将再结晶温度以上进行旳压力加工称为热加 工,发生硬化、回复、再结晶。而将再结晶温度下列进行旳压力 加工称为冷加工,发生加工硬化。 例如钨旳再结晶温度约为 1200℃,所以,虽然在1000℃进行变形加工也属于冷加工。
(1)、(2)是在温度和负荷联合作用下发生旳。 • (3) 亚动态再结晶 • (4) 静态再结晶 • (5) 静态回复
(3)、(4)、(5)是在变形停止之后,即在无负荷 作用下发生旳。
5.4.1 动态回复和动态再结晶
在金属冷形变后旳加热过程中发生旳,称为静态回复和静态 再结晶。若提升金属变形旳温度,使金属在较高旳温度下形变 时,金属在热变形旳同步也发生回复和再结晶,这种与金属 热变形同步发生旳回复和再结晶称为动态回复(dynamic recovery)和动态再结晶(dynamic recrystallization)。
第Ⅰ阶段—微应变阶段现。 第Ⅱ阶段—均匀变形阶段:曲线旳斜率逐渐下降,金属材料开始均匀塑性变 形,即开始流变,并发生加工硬化,且随加工硬化作用旳加强,开始出现动 态回复并逐渐加强,其造成旳软化逐渐抵消加工硬化作用,使曲线旳斜率下降 并趋于水平,加工硬化率为零,进入第三阶段。 第Ⅲ阶段—稳态流变阶段:在到达第三阶段后,即可实现连续形变。体现为 由变形产生旳加工硬化与动态回复产生旳软化
第七章回复与再结晶
§6-2 回复
回复的定义及特点
1 定义:冷变形后的金属在加热温度不高时,其光学显微组织
未发生明显改变时所产生的某些亚结构和性能的变化过程。 2 特点:
① 加热T低:T回 = (0.25~0.3)T熔; ② 显微组织无明显变化:仍保留拉长、畸变的晶粒。 ③ 晶粒内部亚结构发生变化(电子显微镜): a 低温回复,点缺陷↓↓;主要指空位 b 高温回复,位错密度↓ (异号位错的合并;同号位错的规整
拉应力场和压应力场重叠而抵消一部分应变能。P197+9
滑移
攀 移 多边形化前 多边形化后
回复亚晶的形成 ——“多边形化” 过程
缠结 位错
位错 伸直
冷加工态
位错 网络
回复0.1h 大的稳 定网格
回复50h
回复300h
④ 性能变化: HB、ζ 略 ↓ ,δ 、ψ 略↑;
R↓↓;耐腐蚀性提高 原因:晶格畸变↓
热加工实质:是否有再结晶软化过程
衡量依据:T再
例:W 在1000℃非热加工; Sn、Pb 在室温为热加工; 动态回复和 动态再结晶
原晶粒
变形晶粒
所形成的小晶粒
全部新晶粒
残留的变形晶粒
金属在热轧时变形和再结晶的示意图
热加工对组织、性能的影响
热加工:钢材的热锻与热轧 1 消除铸态组织缺陷
⑴ 压合铸件中的疏松、气孔等缺陷,提高组织致密度和机械
再结晶应用——再结晶退火
再结晶退火的目的:
① 中间退火:消除加工硬化,有利于进一步冷变形;
如:冷拔铁铬铝电阻丝生产中: 氢气保护再结晶退火 ② 无相变金属的细晶强化(如Al、Cu等): 冷塑变 + 再结晶退火→细化的再结晶晶粒
再结晶图的应用
回复和再结晶
从图8-3中可以看出,温度越高,经过回复后残余 的加工硬化越少,回复越快。 而且当温度一定时,在前十几分钟的时间里残余 的加工硬化减少得最快,说明:回复速度快,然后随 回复量的增加而逐渐减慢。
二、回复的动力学
回复过程可用一级方程式表示:
dx cx dt
(8-1)
式中t为恒温下的加热时间,x为冷变形导致的性能增 量经加热后的残留分数,c为与材料和温度有关的比例常 数,c值与温度的关系具有典型的热激活过程的特点:
(8-3)
这说明与其他热激活过程一样,回复的速度随温度升高 而增大。这一点在图8-3中也显示得很清楚。 如果采用两个不同的温度将同一冷变形金属的性能 回复到同样的程度,则
c 0 t 1e Q / RT1 c 0 t 2 e Q / RT2
( ) t1 e Q / RT 2 R T2 T1 Q / RT e 1 t2 e Q 1 1
冷变形金属发生多边化过程的驱动力来自应变能的 下降。
当同号的正刃型位错塞积于同一滑移面上时,它们 的应变能是相加的,因为在每一个正刃型位错的应变场 内,滑移面上部的区域都受到压缩,下部都受到伸张; 而当多边化后同号的正刃型位错沿滑移面的法线方向重 叠排列时,上下相邻的两个正刃型位错的区域内,上面 一个位错所产生的张应变场正好与下面一个位错所产生 的压缩应变场相迭加,从而互相部分的抵消。 位错的攀移是通过空位扩散到位错线处来实现的, 而空位的扩散又是一种热激活过程,因此多边化的速度 随温度升高而迅速增加。
3、经冷塑性变形的金属加热时,经过那些阶段?各 阶段的特点?
依次经过回复、再结晶和晶粒长大三个阶段 (此三阶段有部分交迭)。如图1所示:
回复 再结晶 晶粒长大
0
T1
回复与再结晶
第七章回复与再结晶重点与难点内容提要:晶体在外力的作用下发生形变.当外力较小时形变是弹性的,即卸载后形变也随之消失.这种可恢复的变形就称为弹性变形.但是,当外加应力超过一定值(即屈服极限)时,卸载后变形就不能完全消失,而会留下一定的残余变形或永久变形.这种不可恢复的变形就称为塑性变形.晶体的弹性和材料的微观组织(或结构)关系不大,而晶体的塑性(和强度)则对微观组织(结构)十分敏感.本章的重点时讨论单晶体的塑性变形方式和规律,并在此基础上讨论多晶体和合金的塑性变形特点及位错机制,以便认识材料强韧化的本质和方法,合理使用,研制开发新材料.从微观上看,单晶体塑性变形的基本方法有两种:滑移和孪生.滑移和孪生都是剪应变,即在剪应力作用下晶体的一部分相对与另一部分沿着特定的晶面和晶向发生滑移.在滑移时,改特定晶面和晶向分别称为滑移面和滑移方向,一个滑移面和位于该面上的一个滑移方向便组成一个滑移系统.类似的,在孪生时,该特定晶面和晶向分别称为孪生面和孪生方向,一个孪生面和位于该面上的一个孪生方向组成一个孪生系统.多晶体及合金的塑性变形,其基本方式也是滑移和孪生.不过,也各有其特点,如多晶体变形时,就会受晶粒取向及晶界的影响;而合金变形时还会受到第二相的影响.陶瓷晶体的塑性变形与金属不同.除了与结合键(共价键、离子键)的本性有关外,还与陶瓷晶体中的滑移多少、位错的柏氏矢量大有关.所以,仅有那些以离子键为主的单晶体陶瓷可以进行较多的塑性变形.许多高聚物在一定的条件下都能屈服,有些高聚物在屈服之后产生很大的塑性变形,但这与金属材料的屈服现象有着本质上的差别.高聚物的变形受温度的影响很大:在Tg以下,材料是钢硬的,只有弹性变形;在Tg附近,呈粘弹性或皮革状;在Tg以上呈橡胶态;接近Tm时呈粘性流动。
基本要求:(1)熟悉滑移、孪生变形的主要特点;滑移系统及schmid定律(T=σm=Tk)(2)能用位错理论解释晶体的滑移过程,滑移带和滑移线的形成,滑移系的特点;(3)理解加工硬化、细晶强化、弥散强化、固溶强化等产生的原因和它的实际意义;(4)了解聚合物及陶瓷塑性变形的特点;(5)熟悉材料塑性变形后内部组织及性能的变化,这些变化的实际意义;(6)了解屈服现象与应变实效,它对生产有什么危害及如何消除?(7)熟悉下列概念及术语:滑移、滑移线、滑移带、滑移系、滑移面、滑移方向、临界分切应力、多滑移;孪生、孪晶、孪晶面、孪生方向;取向因子、屈服现象、吕德斯带、应变时效、柯氏气团;固溶强化、有序强化、细晶强化、弥散强化、第二相强化;纤维组织、胞状亚结构、位错网络、加工硬化、择优取向、变形织构、内应力.回复、再结晶与晶粒长大是冷变形金属加热过程中经历的基本过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 冷变形金属在加热时的 组织与性能变化
一、 回复与再结晶的概念 回复:冷变形金属在低温加热时,其光学显微组织无可见变化,但其物 理、力学性能却部分恢复到冷变形以前的过程。 再结晶:冷变形金属被加热到适当温度时,在变形组织内部新的无畸变 的等轴晶粒逐渐取代变形晶粒,而使形变强化效应完全消除的过程。 二 、显微组织变化(示意图) 回复阶段:显微组织仍为变形晶粒(纤维状),形态无可见变化; 再结晶阶段:变形晶粒通过形核长大,逐渐转变为新的无畸变等轴晶粒。 晶粒长大阶段:晶界移动、晶粒粗化,达到相对稳定的形状和尺寸。
二、 回复机制
1.低温回复(T=0.1-0.3Tm) 点缺陷运动:空位迁移至晶界、位错处而消失;空位与间隙原子 结合而消失; 空位聚集(空位群),然后崩塌成位错环而消失。 2.中温回复 (T=0.3-0.35Tm) 位错滑移:异号位错相遇而抵销、缠结位错重新排列,位错密度 降低。 3.高温回复(T>0.35Tm) 位错攀移(+滑移)→位错垂直排列(亚晶界)→多边化(亚晶 粒)→弹性畸变能降低。 多边化的条件:塑性变形使晶体点阵弯曲、滑移面上有塞积的同 号刃型位错、较高的加热温度使刃型位错产生攀移运动。
六、再结晶后晶粒大小及其控制
晶粒大小-变形量关系图
1.变形量:存在临界变形量(一般约为2%-10%);在临界变形量以下, 不发生再结晶,晶粒尺寸不变;在临界变形量处,再结晶后晶粒 特别粗大(峰值),生产中应避免临界变形量;在临界变形量以 上,随变形量增大,再结晶后晶粒逐渐细化。(d∝(G/N)1/2) 2. 退火温度:退火温度提高,晶粒粗化;退火温度越高,临界变 形度越小,晶粒粗大。 3. 原始晶粒尺寸:原始晶粒越细小,再结晶驱动力越大,再结晶 温度越低,且形核位臵越多,使再结晶后晶粒细化。 七、再结晶的应用-再结晶退火 恢复变形能力、改善显微组织、消除各向异性、提高组织稳定性。
第五节 金属的热变形
三、金属热加工时的应力-应变曲线 特点: (1)曲线起始部分的加工硬化率随变形温度的提高和应 变率的降低而减小; (2)大于一定应变后,加工 硬化效应消失,出现不随应变 而增高的稳定状态的流变应力; (3)在某些情况下(低应变率),稳定态会 被应力随应变而周期性变化的 波动曲线所代替。 解释:动态回复+动态再结晶 (P211图5.67、P212图5.59)
三、性能变化 1.力学性能(示意图) 回复阶段:强度、硬度略有下降,塑性略有提高。 再结晶阶段:强度、硬度明显下降,塑性明显提高。 晶粒长大阶段:强度、硬度继续下降 , 塑性继续提高, 粗化严重时下降。 2.物理性能 密度 : 在回复阶段变化不大,在再结晶阶段急剧升高; 电阻:电阻在回复阶段可明显下降(因点缺陷减少)。 3.内应力
Q 1 1 ln ln A R t R T
因此,lnt与1/T之间呈线性关系。 特点及规律: 图5.53 有孕育期; 温度越高,变形量越大,孕育期 越短; 在体积分数为50%时速率达最大, 然后减慢。
四、再结晶温度及其影响因素 1. 再结晶温度:经严重冷变形(变形量 >70% )的金属或合金,在 1h 内 能够完成再结晶的(再结晶体积分数>95%)最低温度。 (一般,它与金属产生再结晶的实际温度是不一样的!) 理论上再结晶温度为冷变形金属开始进行再结晶的最低温度。可 以用金相法或硬度法测定(实际上再结晶温度不是个物理常数)。 2.经验公式: 高纯金属:T再=(0.25-0.35)Tm 工业纯金属:T再=(0.35-0.45)Tm 合金:T再=(0.4-0.9)Tm 注:再结晶退火温度一般比上述温度高100~200℃。 3.影响因素: 变形量越大,驱动力越大,再结晶温度越低(图5.54); 纯度越高,再结晶温度越低,可能是溶质易于在位错和晶界处偏 聚、对位错运动和晶界迁移起阻碍作用而阻碍再结晶(表5.9); 加热速度太低(回复充分、储能减小、再结晶驱动力减小)或太 高(各温度下停留时间过短、扩散受抑制而难以再结晶形核与长大), 再结晶温度提高。
4.影响晶粒长大的因素
(1)温度:温度越高,晶界易迁移,晶粒长大速度加 快,晶粒易粗化(图5.58)。 (2)分散相粒子 :第二相粒子阻碍晶界迁移,降低晶 粒长大速率。 一般,晶粒稳定尺寸 d和第二相质点半径 r、体 积分数f的关系:
d=4r/3f
(3)微量杂质的存在 :“气团”钉扎晶界 ,不利于晶界 移动(图5.61)。 (4)晶粒位向差 :小角度晶界的界面能和扩散系数小 于大角度晶界,因而前者的移动速率低于后者。
金属热加工时的应力-应变曲线
第五节 金属的热变形
四、热加工后的组织与性能 a.改善铸锭组织,焊合气孔、破碎碳化物、细化晶粒(铸态树 枝晶-均匀细小等轴晶)、降低偏析;提高强度、塑性、韧性。 b.形成纤维组织(加工流线)P214图5.72 组织特征:枝晶、偏析、夹杂物沿变形方向呈纤维状分布。 性能:各向异性,沿流线方向塑性和韧性明显提高。 c.形成带状组织 P214图5.73 形成:热加工时两相合金沿变形方向交替地呈带状分布,或 带状偏析被拉长而冷却时因偏析区成分不同转变成不同组织。 影响:各向异性,类似于流线组织。 消除:避免在两相区变形、减少夹杂元素含量、采用高温扩 散退火或正火处理。 五、热加工的优点 a.可持续大变形量加工; b.动力消耗小; c.提高材料质量和性能(例:吊钩的锻造加工)。
三种再结晶形核方式的示意图
三、再结晶动力学 再结晶是一种热激活过程,再结晶速度v与温度T的关系:
v再 Ae
QR RT
式中:QR为再结晶激活能,R为气体常数,T为绝对温度,A为比例系数。
因再结晶速度v与产生一定量再结晶体积分数所需的时间t成反 Q 比,则: 1 RT
t Ae
R
而边取对数,得:
第五节 金属的热变形
一、金属的热加工 1.加工的分类 冷加工:在再结晶温度以下的加工过程。 (加工硬化) 热加工:在再结晶温度以上的加工过程。(加工硬化、回复、 再结晶) 2.热加工温度范围:T再<T热加工<T固-100~200℃。 温度 二 、动态回复与动态再结晶(P211) ↙温度、外力 ↓ 1.动态回复:在塑性变形过程中发生的回复。(静态回复) 2.动态再结晶:在塑变过程中发生的再结晶。(静态再结晶) 条件:在一定温度和应变率(加载速度)下变形。 特点:反复形核,有限长大,晶粒较细;包含亚晶粒, 位错密度较高,强度、硬度较高。 应用:采用低的变形终止温度、大的最终变形量、快的 冷却速度可获得细小的晶粒、优良的综合性能。
三、 回复退火的应用 去应力退火:降低应力(保持加工硬化效果),防止工件变形、开裂, 提高耐蚀性。
第三节 再结晶
一、再结晶驱动力 冷变形金属经回复后未被释放的储存能。 二、再结晶过程 再结晶是一种形核和长大过程,即通过在变形组 织的基体上产生新的无畸变再结晶晶核,并通过逐渐 长大形成等轴晶粒,从而取代全部变形组织的过程。 1.形核 a.晶界弓出形核机制:对变形程度较小(<20%) 的金属,再结晶核心多以晶界弓出方式形成,即应变 诱导晶界移动,晶核伸向小位错胞晶粒内 ( 畸变能较 高区域、亚晶粒小的方向)。 b.亚晶形核机制:一般在大变形度下发生。 以亚晶为再结晶核心,形核机制可分为以下两种: ①亚晶合并机制:亚晶间亚晶界消失,亚晶粗化。 ②亚晶界迁移机制:亚晶界移动吞并相邻形变基体。 2.长大 驱动力:畸变能差。 方式:晶核借界面的移动向周围畸变晶粒扩展 , 至新 晶粒相互接触。 注:再结晶不是相变过程!!
第二节
回复
一、回复动力学(P195) 1.加工硬化残留率与退火温度和时间的关系 回复是一种驰豫过程,金属在恒温下回复时,开始阶段性能恢复 速度快,这种特征通常可用一级反应方程来表达: dx/dt=-cx 式中:t为恒温下的加热时间;x为冷变形导致的性能增量经加热后 的残留分数;c为与材料和温度有关的比例常数。c值与温度的关系具 有典型的热激活过程的特点,可由著名的阿累尼乌斯(Arrhenius)方 程来描述: c=c0exp(-Q/RT) 回复方程:ln(x0/x)=c0texp(-Q/RT) 式中:x0 –原始加工硬化残留率; x-退火时加工硬化残留率; 问题:激活能 Q的确定方法? c0-比例常数;t-加热时间; T-加热温度。 2.动力学曲线特点 a.没有孕育期; b.开始回复速率快,随后变慢; c.长时间回复后,性能趋于一平衡值。温度↑,极限值↓,达到时间↓ d.预变形量↑ ,起始的 回复速率↑ ;晶粒尺寸↓ ,回复过程加快。
五、影响再结晶的因素 1.退火温度:加热温度越高,再结晶速度越快。 2.变形量:冷变形量越大,储存能量越高,再结晶驱动力越大,故 再结晶温度越低,再结晶速度越快;但随变形量增大到一定程度, 再结晶温度则趋于稳定,而变形量低于一定值,再结晶不能进行。 3.原始晶粒尺寸:晶粒越细小,变形抗力越高,再结晶驱动力越大; 晶粒越细小,晶界越多,有利于形核,这都会降低再结晶温度, 从而加快再结晶。 4. 微量溶质元素:阻碍位错和晶界的运动,提高再结晶温度,不 利于再结晶。 5.分散相粒子:取决于第二相粒子的大小和分布。间距和直径都较 大(一般> 1μm)时,使位错在粒子附近塞积,提高畸变能和变 形抗力,并可作为形核核心,促进再结晶 , 如:钢中的 MnO 夹杂物 可作为再结晶 形核核心;直径和间距很小时,虽也提高畸变能和变 形抗力,但阻碍晶界迁移,从而阻碍再结晶(形核和长大),如: 钢中加入Nb、V形成尺寸很小(<100nm)的化合物NbC、VC等,会 抑制再结晶形核。
二、晶粒的异常长大 1.异常长大:少数再结晶晶粒的急剧长大现象(不连续长 大或二次再结晶)。 2.基本条件:正常晶粒长大过程被(第二分散相微粒、织 构等)强烈阻碍。 3.驱动力:界面能变化(不重新形核)。 4.机制:钉扎晶界的第二相溶于 基体;再结晶织构中位 向一致的晶粒的合并; 大晶粒吞并小晶粒。 5.对组织和性能的影响 织构明显:各向异性,优化磁导率; 晶粒大小不均:性能不均; 晶粒粗大:降低强度和塑性、韧性, 提高表面粗糙度。