材料力学习题册1-14概念答案

合集下载

(完整版)材料力学习题集(有答案)汇总,推荐文档

(完整版)材料力学习题集(有答案)汇总,推荐文档
绪论
一、 是非题 1. 材料力学主要研究杆件受力后变形与破坏的规律。 ( ) 2. 内力只能是力。 ( ) 3. 若物体各点均无位移,则该物体必定无变形。 ( ) 4. 截面法是分析应力的基本方法。 ( ) 二、选择题
5. 构件的强度是指( ),刚度是指( ),稳定性是指( )。 A. 在外力作用下构件抵抗变形的能力 B. 在外力作用下构件保持其原有的平衡状态的能力 C. 在外力作用下构件抵抗破坏的能力 1.6 根据均匀性假设,可认为构件的( )在各点处相同。 A. 应力 B. 应变 C. 材料的弹性常数 D. 位移 1.7 下列结论中正确的是( ) A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力 参考答案:1.1 √ 1.2 × 1.3 √ 1.4 × 1.5 C,A,B 1.6 C 1.7 C
5. 杆件某个横截面上,若轴力不为零,则各点的正应力均不为零。 ( )
6. δ、 y 值越大,说明材料的塑性越大。 ( )
7. 研究杆件的应力与变形时,力可按力线平移定理进行移动。 ( )
8. 杆件伸长后,横向会缩短,这是因为杆有横向应力存在。 ( )
9. 线应变 e 的单位是长度。 ( )
10. 轴向拉伸时,横截面上正应力与纵向线应变成正比。 ( )
轴力变化可能有以下四种情况,问哪一种正确?
(A) 两杆轴力均减小;
(B) 两杆轴力均增大; (C) 杆 1 轴力减小,杆 2 轴力增大;
1
2
(D) 杆 1 轴力增大,杆 2 轴力减小。 9. 结构由于温度变化,则:
A aB
a
C
(A) 静定结构中将引起应力,超静定结构中也将引起应力;
F
(B) 静定结构中将引起变形,超静定结构中将引起应力和变形; (C) 无论静定结构或超静定结构,都将引起应力和变形; (D) 静定结构中将引起应力和变形,超静定结构中将引起应力。 10. 单位宽度的薄壁圆环受力如图所示,p 为径向压强,其截

材料力学习题册参考答案

材料力学习题册参考答案

材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。

材料力学习题册答案学习资料

材料力学习题册答案学习资料

练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。

( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。

(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。

( 是 ) (4)应力是内力分布集度。

(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。

(是 ) (6)若物体产生位移,则必定同时产生变形。

(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。

(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。

(是):(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。

(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。

(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。

(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。

,(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。

(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。

根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。

(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。

变形。

(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。

(8)根据小变形条件,可以认为构件的变形远小于其原始尺寸。

1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。

材料力学习题册答案

材料力学习题册答案

练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。

( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。

(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。

( 是 ) (4)应力是内力分布集度。

(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。

(是 ) (6)若物体产生位移,则必定同时产生变形。

(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。

(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。

(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。

(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。

(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。

(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。

(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。

(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。

根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。

(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。

变形。

(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。

(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。

1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。

材料力学习题及答案

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

材力习题册参考答案1

材力习题册参考答案1

材力习题册参考答案(1第一章绪论一、选择题1.根据均匀性假设,可认为构件的在各处相同。

A.应力B.应变 C.材料的弹性系数D.位移2.构件的强度是指,刚度是指,稳定性是指。

A.在外力作用下构件抵抗变形的能力 B.在外力作用下构件保持原有平衡状态的能力 C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则A点剪应变依次为图(a) ,图(b),图(c) 。

A.0 B.2r C.r D. 4.下列结论中( C )是正确的。

A.内力是应力的代数和; B.应力是内力的平均值;C.应力是内力的集度; D.内力必大于应力;5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应力是否相等。

A.不相等; B.相等; C.不能确定;6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指。

A. 认为组成固体的物质不留空隙地充满了固体的体积;B. 认为沿任何方向固体的力学性能都是相同的;C. 认为在固体内到处都有相同的力学性能;D. 认为固体内到处的应力都是相同的。

二、填空题1.材料力学对变形固体的基本假设是连续性假设,均匀性假设,各向同性假设。

2.材料力学的任务是满足强度,刚度,稳定性的要求下,为设计经济安全的构件- 1 -提供必要的理论基础和计算方法。

3.外力按其作用的方式可以分为表面力和体积力,按载荷随时间的变化情况可以分为静载荷和动载荷。

4.度量一点处变形程度的两个基本量是应变ε和切应变γ。

三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。

2.外力就是构件所承受的载荷。

3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。

4.应力是横截面上的平均内力。

5.杆件的基本变形只是拉(压)、剪、扭和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。

6.材料力学只限于研究等截面杆。

四、计算题1.图示三角形薄板因受外力作用而变形,角点B垂直向上的位移为,但AB和BC仍保持为直线。

材料力学习题集--(有答案)

材料力学习题集--(有答案)

绪 论一、 是非题1.1 材料力学主要研究杆件受力后变形与破坏的规律。

〔 〕 1.2 内力只能是力。

〔 〕1.3 假设物体各点均无位移,则该物体必定无变形。

〔 〕 1.4 截面法是分析应力的基本方法。

〔 〕 二、选择题1.5 构件的强度是指〔 〕,刚度是指〔 〕,稳定性是指〔 〕。

A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持其原有的平衡状态的能力C. 在外力作用下构件抵抗破坏的能力1.6 根据均匀性假设,可认为构件的〔 〕在各点处相同。

A. 应力 B. 应变C. 材料的弹性常数D. 位移1.7 以下结论中正确的选项是〔 〕 A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力参考答案:1.1 √ 1.2 × 1.3 √ 1.4 × 1.5 C,A,B 1.6 C 1.7 C轴向拉压一、选择题1. 等截面直杆CD 位于两块夹板之间,如图示。

杆件与夹板间的摩擦力与杆件自重保持平衡。

设杆CD 两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q ,杆CD 的横截面面积为A ,质量密度为ρ,试问以下结论中哪一个是正确的? (A) q gA ρ=;(B) 杆内最大轴力N max F ql =; (C) 杆内各横截面上的轴力N 2gAlF ρ=;(D) 杆内各横截面上的轴力N 0F =。

2. 低碳钢试样拉伸时,横截面上的应力公式N F A σ=适用于以下哪一种情况? (A) 只适用于σ≤p σ; (B) 只适用于σ≤e σ; (C)3. 在A 和B和点B 的距离保持不变,绳索的许用拉应力为[]σ取何值时,绳索的用料最省? (A) 0; (B) 30; (C) 45; (D) 60。

4. 桁架如图示,载荷F 可在横梁〔刚性杆〕DE 为A ,许用应力均为[]σ〔拉和压相同〕。

求载荷F 的许用值。

以下四种答案中哪一种是正确的? (A)[]2A σ; (B) 2[]3Aσ; (C) []A σ; (D) 2[]A σ。

(完整版)材料力学习题集(有答案)汇总,推荐文档

(完整版)材料力学习题集(有答案)汇总,推荐文档
轴向拉压 一、选择题 1. 等截面直杆 CD 位于两块夹板之间,如图示。杆件与夹板间的摩擦力与杆件自重保持平 衡。设杆 CD 两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为 q,杆 CD 的横 截面面积为 A,质量密度为 ,试问下列结论中哪一个是正确的? (A) q gA;
(B) 杆内最大轴力 FNmax ql ;
答:A
பைடு நூலகம்
(B)几何关系导出的; (D)强度条件导出的。
d
h d
F b a
F
b F
b
4. 销钉接头如图所示。销钉的剪切面面积
为 ,挤压面面积

答: 2bh ; bd
5. 木榫接头的剪切面面积为 和 ,挤压面面积为
。 F
a c
答: ab ; bd ; bc
d
6. 图示厚度为 的基础上有一方柱,柱受轴向压力F 作
F
后截面长边和短边的比值为
。另一轴向拉杆,横截面是
长半轴和短半轴分别为 a 和 b 的椭圆形,受轴向载荷作用变形后横
截面的形状为

13. 一长为 l,横截面面积为 A 的等截面直杆,质量密度为 ,弹性模量为 E,该杆铅垂悬
挂时由自重引起的最大应力 max
,杆的总伸长l

14. 图示杆 1 和杆 2 的材料和长度都相同,但横截面面积 1
(A)bh ;
(B)bh tan ;
(C) bh ; (D) bh

h
cos
cos sin
答:C
2. 图示铆钉连接,铆钉的挤压应力 bs有如下四个答案
(A) 2F ; (B) F ;
π d2
2d
F
(C) F ; (D) 4F 。

材料力学习题册1-14概念问题详解

材料力学习题册1-14概念问题详解

第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。

( × ) 1.2 力只作用在杆件截面的形心处。

( × ) 1.3 杆件某截面上的力是该截面上应力的代数和。

( × ) 1.4 确定截面力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。

( ∨ ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。

( ∨ ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。

( ∨ ) 1.7 同一截面上正应力σ与切应力τ必相互垂直。

( ∨ ) 1.8 同一截面上各点的正应力σ必定大小相等,方向相同。

( × ) 1.9 同一截面上各点的切应力τ必相互平行。

( × ) 1.10 应变分为正应变ε和切应变γ。

( ∨ ) 1.11 应变为无量纲量。

( ∨ ) 1.12 若物体各部分均无变形,则物体各点的应变均为零。

( ∨ ) 1.13 若物体各点的应变均为零,则物体无位移。

( × ) 1.14 平衡状态弹性体的任意部分的力都与外力保持平衡。

( ∨ ) 1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。

( ∨ )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。

( × )二、填空题1.1 材料力学主要研究 受力后发生的以及由此产生1.2 拉伸或压缩的受力特征是 ,变形特征是 。

1.3 剪切的受力特征是 ,变形特征B题1.15图题1.16图外力的合力作用线通过杆轴线 杆件 沿杆轴线伸长或缩短 受一对等值,反向,作用线距离很近的力的作用 沿剪切面发生相对错动是 。

1.4 扭转的受力特征是 ,变形特征是 。

1.5 弯曲的受力特征是 ,变形特征是 。

1.6 组合受力与变形是指 。

1.7 构件的承载能力包括 , 和 三个方面。

(完整版)材料力学习题集(有答案)汇总

(完整版)材料力学习题集(有答案)汇总
11. 12. ;椭圆形13. 14.>,=
一、 是非题
2.1使杆件产生轴向拉压变形的外力必须是一对沿杆件轴线的集中力。 ( )
2.2轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。 ( )
2.3内力是指物体受力后其内部产生的相互作用力。 ( )
2.4同一截面上, σ 必定大小相等,方向相同。 ( )
答:
扭转
1.一直径为 的实心轴,另一内径为d,外径为D,内外径之比为 的空心轴,若两轴横截面上的扭矩和最大切应力均分别相等,则两轴的横截面面积之比 有四种答案:
(A) ;(B) ;(C) ;(D) 。
2.圆轴扭转时满足平衡条件,但切应力超过比例极限,有下述四种结论:
(A) (B) (C) (D)
切应力互等定理:成立不成立不成立成立
1.图示木接头,水平杆与斜杆成 角,其挤压面积为 为
(A) ;(B) ;
(C) ;(D) 。
答:C
2.图示铆钉连接,铆钉的挤压应力 有如下四个答案
(A) ;(B) ;
(C) ;(D) 。
答:B
3.切应力互等定理是由单元体
(A)静力平衡关系导出的;(B)几何关系导出的;
(C)物理关系导出的;(D)强度条件导出的。
(A) ; (B) ; (C) ; (D) 。
2.对于没有明显屈服阶段的塑性材料,通常以 表示屈服极限。其定义有以下四个结论,正确的是哪一个?
(A)产生2%的塑性应变所对应的应力值作为屈服极限;
(B)产生0.02%的塑性应变所对应的应力值作为屈服极限;
(C)产生0.2%的塑性应变所对应的应力值作为屈服极限;
(A)外径和壁厚都增大;(B)外径和壁厚都减小;
(C)外径减小,壁厚增大;(D)外径增大,壁厚减小。

工程力学--材料力学(北京科大、东北大学版)第4版习题答案

工程力学--材料力学(北京科大、东北大学版)第4版习题答案

第一章参考答案1-1:解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa ∴σmax=35.3Mpa1-3:解:下端螺孔截面:σ1=19020.065*0.045P S =15.4Mpa上端单螺孔截面:σ2=2PS =8.72MPa上端双螺孔截面:σ3= 3PS =9.15Mpa∴σmax =15.4Mpa1-4:解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:解:F=6PS1=h*t=40*4.5=180mm2S2=(H-d)*t=(65-30)*4.5=157.5mm2∴σmax=2FS =38.1MPa1-6:解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm(2) ∴AB l ∆=-0.02mm1-7:解:31.8127AC AC CB CB P MPa S P MPa S σσ==== AC AC AC L NL EA EA σε===1.59*104, CB CB CB L NL EA EA σε===6.36*1041-8:解:Nll EAl l ε∆=∆= ∴NEA ε=62.54*10N EA N ε∴==1-9:解:208,0.317E GPa ν==1-10:解:[][]max 59.5MPa σσ=<1-11:解:(1)当45oα=,[]11.2σσ=>强度不够 (2)当60oα=,[]9.17σσ=< 强度够 1-12:解:[]360,200200200*1013.3100*150*10Y p kNS P kNS MPa A σσ-==∴=====<∑1-13:解:[]max 200213MPa MPa σ=<1-14:解: 1.78, 1.26d cm d cm ==拉杆链环1-15 解:BC F ==70.7 kN70.70.505140F S FS σσ=∴=== 查表得: 45*45*31-16解:(1)[]2401601.5ss n σσ===MPa[][]24P SP dσσπ≤∴≤24.4D mm∴=(2)2119.51602P P MPa MPa S d σπ===≤⎛⎫ ⎪⎝⎭1-17 解:(1) 2*250*6154402D F P A N π⎛⎫=== ⎪⎝⎭78.4AC F MPa S σ== 300 3.8378.4s n σσ∴===[][]''''60*3.14*15*1542390F S F S Nσσ===='61544014.521542390F n F ===≈1-18 解:P=119kN1-19 解:::3:4:535()44AB BC AB BC S P S S P S P =∴==拉,[][][]112841123484AB AB S A kN S P kN P kN σ=====同理所以最大载荷 84kN1-20 解: P=33.3 kN1-21 解:71,,12123A B C P F F P F P ===1-22 解:10MAX MPa σ=-1-23 解:A B X R R R =∴==∑t r l l ∆=∆ t A B l l tα∆= 21211111223533131.3cd R AC DB CD AC CD CD AF CD MAX Rl Rl l l l l EA EA Rl Rl Rl l EA EA EA EA t EA t R l S MPa A ααασ∆=∆+∆+∆=+=+=∴====第二章习题2-1 一螺栓连接如图所示,已知P=200 kN , =2 cm ,螺栓材料的许用切应力[τ]=80Mpa ,试求螺栓的直径。

昆明理工大学材料力学习题册概念答案

昆明理工大学材料力学习题册概念答案

专业 学号 姓名 日期 评分第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。

( × )1.2 内力只作用在杆件截面的形心处。

( × )1.3 杆件某截面上的内力是该截面上应力的代数和。

( × )1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。

( ∨ )1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。

( ∨ )1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。

( ∨ )1.7 同一截面上正应力σ与切应力τ必相互垂直。

( ∨ )1.8 同一截面上各点的正应力σ必定大小相等,方向相同。

( × )1.9 同一截面上各点的切应力τ必相互平行。

( × )1.10 应变分为正应变ε和切应变γ。

( ∨ )1.11 应变为无量纲量。

( ∨ )1.12 若物体各部分均无变形,则物体内各点的应变均为零。

( ∨ )1.13 若物体内各点的应变均为零,则物体无位移。

( × )1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。

( ∨ )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。

( ∨ )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。

( × )二、填空题 1.1 材料力学主要研究 受力后发生的以及由此产生1.2 拉伸或压缩的受力特征是 ,变形特征B 题1.15图题1.16图 外力的合力作用线通过杆轴线 杆件专业 学号 姓名 日期 评分是 。

1.3 剪切的受力特征是 ,变形特征是 。

1.4 扭转的受力特征是 ,变形特征是 。

1.5 弯曲的受力特征是 ,变形特征是 。

1.6 组合受力与变形是指 。

1.7 构件的承载能力包括 , 和 三个方面。

材料力学习题册 参考答案

材料力学习题册 参考答案

第一章绪论一、选择题1.根据均匀性假设,可认为构件的(C)在各处相同。

A.应力 B.应变C.材料的弹性系数 D.位移2.构件的强度是指(C),刚度是指(A),稳定性是指(B)。

A.在外力作用下构件抵抗变形的能力B.在外力作用下构件保持原有平衡状态的能力C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则A点剪应变依次为图(a) (A),图(b) (C),图(c) (B)。

A.0 B.r2 C.r D.r4.下列结论中( C )是正确的。

A.内力是应力的代数和; B.应力是内力的平均值;C.应力是内力的集度; D.内力必大于应力;5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应力是否相等(B)。

A.不相等; B.相等; C.不能确定;6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指(C)。

A. 认为组成固体的物质不留空隙地充满了固体的体积;B. 认为沿任何方向固体的力学性能都是相同的;C. 认为在固体内到处都有相同的力学性能;D. 认为固体内到处的应力都是相同的。

二、填空题1.材料力学对变形固体的基本假设是连续性假设,均匀性假设,各向同性假设。

2.材料力学的任务是满足强度,刚度,稳定性的要求下,为设计经济安全的构件提供必要的理论基础和计算方法。

3.外力按其作用的方式可以分为表面力和体积力,按载荷随时间的变化情况可以分为静载荷和动载荷。

4.度量一点处变形程度的两个基本量是(正)应变ε和切应变γ。

三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。

(×)2.外力就是构件所承受的载荷。

(×)3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。

(√)4.应力是横截面上的平均内力。

(×)5.杆件的基本变形只是拉(压)、剪、扭和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。

工程力学材料力学第四版习题答案解析

工程力学材料力学第四版习题答案解析

工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。

以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。

解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。

以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。

解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。

已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。

解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:QNllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。

材料力学习题册答案

材料力学习题册答案

练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。

( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。

(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。

( 是 ) (4)应力是内力分布集度。

(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。

(是 ) (6)若物体产生位移,则必定同时产生变形。

(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。

(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。

(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。

(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。

(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。

(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。

(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。

(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。

根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。

(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。

变形。

(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。

(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。

1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。

(完整版)材料力学习题集(有答案)汇总

(完整版)材料力学习题集(有答案)汇总
C. 铝杆的应力和变形都大于钢杆
D. 铝杆的应力和变形都小于钢杆
2.17一般情况下,剪切面与外力的关系是( )。
A. 相互垂直B. 相互平行
C. 相互成 45 度D. 无规律
2.18如图所示,在平板和受拉螺栓之间垫上一个垫圈,可以提高( )强度。
A. 螺栓的拉伸B. 螺栓的剪切
C. 螺栓的挤压D. 平板的挤压
(A) ;
(B) ;
(C) ;
(D) 。
8.图示结构,AC为刚性杆,杆1和杆2的拉压刚度相等。当杆1的温度升高时,两杆的轴力变化可能有以下四种情况,问哪一种正确?
(A)两杆轴力均减小;
(B)两杆轴力均增大;
(C)杆1轴力减小,杆2轴力增大;
(D)杆1轴力增大,杆2轴力减小。
9.结构由于温度变化,则:
(A) ;(B) ;
(C) ;(D) 。
4.桁架如图示,载荷F可在横梁(刚性杆)DE上自由移动。杆1和杆2的横截面面积均为A,许用应力均为 (拉和压相同)。求载荷F
的许用值。以下四种答案中哪一种是正确的?
(A) ;(B) ;
(C) ;(D) 。
5.设受力在弹性范围内,问空心圆杆受轴向拉伸时,外径与壁厚的下列四种变形关系中哪一种是正确的?
(A) ;
(B)杆内最大轴力 ;
(C)杆内各横截面上的轴力 ;
(D)杆内各横截面上的轴力 。
2.低碳钢试样拉伸时,横截面上的应力公式 适用于以下哪一种情况?
(A)只适用于 ≤ ;(B)只适用于 ≤ ;
(C)只适用于 ≤ ;(D)在试样拉断前都适用。
3.在A和B两点连接绳索ACB,绳索上悬挂物重P,如图示。点A和点B的距离保持不变,绳索的许用拉应力为 。试问:当 角取何值时,绳索的用料最省?

材料力学习题册1-14概念答案

材料力学习题册1-14概念答案

材料力学习题册1-14概念答案第一章绪论一、是非判断题1.1材料力学的研究方法与理论力学的研究方法完全相同。

(×)1.2内力只作用在杆件截面的形心处。

(×)1.3杆件某截面上的内力是该截面上应力的代数和。

(×)合变1.4确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组形、横截面或任意截面的普遍情况。

(∨)1.5根据各向同性假设,可认为材料的弹性常数在各方向都相同。

(∨)1.6根据均匀性假设,可认为构件的弹性常数在各点处都相同。

(∨)1.7同一截面上正应力ζ与切应力η必相互垂直。

(∨)1.8同一截面上各点的正应力ζ必定大小相等,方向相同。

(×)1.9同一截面上各点的切应力η必相互平行。

(×)1.10应变分为正应变ε和切应变γ。

(∨)1.11应变为无量纲量。

(∨)1.12若物体各部分均无变形,则物体内各点的应变均为零。

(∨)。

(×)1.13若物体内各点的应变均为零,则物体无位移1.14平衡状态弹性体的任意部分的内力都与外力保持平衡。

(∨)1.15题1.15图所示结构中,AD杆发生的变形为弯曲与压缩的组合变形。

(∨)1.16题1.16图所示结构中,AB杆将发生弯曲与压缩的组合变形。

(×)FFAB ACBCDD题1.16图题1.15图二、填空题杆件变形1.1材料力学主要研究受力后发生的,以及由此产生应力,应变的。

线外力的合力作用线通过杆轴1.2拉伸或压缩的受力特征是,变形特征是。

1沿杆轴线伸长或缩短受一对等值,反向,作用线距离很近的力的作用1.3剪切的受力特征是,变形特征沿剪切面发生相对错动是。

外力偶作用面垂直杆轴线1.4扭转的受力特征是,变形特征任意二横截面发生绕杆轴线的相对转动是。

外力作用线垂直杆轴线,外力偶作用面通过杆轴线1.5弯曲的受力特征是,变形特梁轴线由直线变为曲线征是。

1.6组合受力与变形是指包含两种或两种以上基本变形的组合。

材料力学习题册答案.

材料力学习题册答案.
x
80 kN 60 kN 40 kN
FN 4F
x
F FN
F
x F
F FN/kN
60
2F FN
40
x 20
F
x
a
F
FN
a
q=F/a a
4F
Fl F Fl
l 2F
2F
F x
2F FN
3
2-4、已知 q 10 kN m ,试绘出图示杆件的轴力图
5 kN
15 kN
q
5 kN
1m
1.5 m
FN/kN 15
(6)以下结论中正确的是( B ) (A)杆件某截面上的内力是该截面上应力的代数和; (B)应力是内力的集度; (C)杆件某截面上的应力是该截面上内力的平均值; (D)内力必大于应力。
(7)下列结论中是正确的是( B ) (A)若物体产生位移,则必定同时产生变形; (B)若物体各点均无位移,则该物体必定无变形; (C)若物体无变形,则必定物体内各点均无位移; (D)若物体产生变形,则必定物体内各点均有位移。
(10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。(非 )
1-2 填空题
(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设

各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
40 kN
55 kN 25 kN
20 kN
2-2 试求图示拉杆截面 1-1,2-2,3-3 上的轴力,并作出轴力图。
解: FN1 2F ; FN2 F ; FN3 2F 。

(完整版)材料力学习题册答案..

(完整版)材料力学习题册答案..

练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。

( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。

(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。

( 是 ) (4)应力是内力分布集度。

(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。

(是 ) (6)若物体产生位移,则必定同时产生变形。

(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。

(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。

(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。

(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。

(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。

(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。

(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。

(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。

根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。

(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。

变形。

(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。

(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。

1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论一、是非判断题材料力学的研究方法与理论力学的研究方法完全相同。

( × ) 内力只作用在杆件截面的形心处。

( × )杆件某截面上的内力是该截面上应力的代数和。

( × )确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。

( ∨ )根据各向同性假设,可认为材料的弹性常数在各方向都相同。

( ∨ )根据均匀性假设,可认为构件的弹性常数在各点处都相同。

( ∨ )同一截面上正应力σ与切应力τ必相互垂直。

( ∨ )同一截面上各点的正应力σ必定大小相等,方向相同。

( × )同一截面上各点的切应力τ必相互平行。

( × )应变分为正应变ε和切应变γ。

( ∨ )应变为无量纲量。

( ∨ )若物体各部分均无变形,则物体内各点的应变均为零。

( ∨ )若物体内各点的应变均为零,则物体无位移。

( × )平衡状态弹性体的任意部分的内力都与外力保持平衡。

( ∨ )题图所示结构中,AD杆发生的变形为弯曲与压缩的组合变形。

( ∨ )题图所示结构中,AB杆将发生弯曲与压缩的组合变形。

( × )B题图题图二、填空题材料力学主要研究 受力后发生的,以及由此产生的 。

拉伸或压缩的受力特征是 ,变形特征是 。

剪切的受力特征是 ,变形特征是。

扭转的受力特征是 ,变形特征是 。

弯曲的受力特征是 ,变形特征是 。

组合受力与变形是指 。

构件的承载能力包括 , 和 三个方面。

所谓 ,是指材料或构件抵抗破坏的能力。

所谓 ,是指构件抵抗变形的能力。

所谓 ,是指材料或构件保持其原有平衡形式的能力。

根据固体材料的性能作如下三个基本假设 , , 。

认为固体在其整个几何空间内无间隙地充满了组成该物体的物质,这样的假设称为 。

根据这一假设构件的 、 和 就可以用坐标的连续函数来表示。

填题图所示结构中,杆1发生 变形, 杆2发生 变形,杆3发生 变形。

下图 (a)、(b)、(c)分别为构件内某点处取出的单元体,变形后情况如虚线所示,则单元体(a)的切应变γ= ;单元体(b)的切应变γ= ;单元体(c)的切应变γ=。

αααααβ填题图外力的合力作用线通过杆轴线杆件 变形 应力,应变 沿杆轴线伸长或缩短受一对等值,反向,作用线距离很近的力的作用 沿剪切面发生相对错动 外力偶作用面垂直杆轴线 任意二横截面发生绕杆轴线的相对转动 外力作用线垂直杆轴线,外力偶作用面通过杆轴线 梁轴线由直线变为曲线 包含两种或两种以上基本变形的组合 强度 刚度 稳定性 强度 刚度 稳定性 连续性 均匀性 各向同性 连续性假设 应力 应变 变形等拉伸压缩 弯曲 2α α-β 0三、选择题选题图所示直杆初始位置为ABC ,作用力P 后移至AB ’C ’,但右半段BCDE 的形状不发生变化。

试分析哪一种答案正确。

1、AB 、BC 两段都产生位移。

2、AB 、BC 两段都产生变形。

正确答案是 1 。

选题图所示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。

关于杆中点处截面 A —A 在杆变形后的位置(对于左端,由 A ’ —A ’表示;对于右端,由 A ”—A ”表示),有四种答案,试判断哪一种答案是正确的。

正确答案是 C 。

等截面直杆其支承和受力如图所示。

关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。

正确答案是 C 。

选题图选题图’ 选题图第二章 拉伸、压缩与剪切一、是非判断题因为轴力要按平衡条件求出,所以轴力的正负与坐标轴的指向一致。

( × ) 轴向拉压杆的任意截面上都只有均匀分布的正应力。

( × ) 强度条件是针对杆的危险截面而建立的。

( × ) . 位移是变形的量度。

( × )甲、乙两杆几何尺寸相同,轴向拉力相同,材料不同,则它们的应力和变形均相同。

( × )空心圆杆受轴向拉伸时,在弹性范围内,其外径与壁厚的变形关系是外径增大且壁厚也同时增大。

( × ) 已知低碳钢的σp =200MPa ,E =200GPa ,现测得试件上的应变ε=,则其应力能用胡克定律计算为:σ=Eε=200×103×=400MPa 。

( × )2.9 图示三种情况下的轴力图是不相同的。

( × )图示杆件受轴向力F N 的作用,C 、D 、E 为杆件AB 的三个等分点。

在杆件变形过程中,此三点的位移相等。

( × )对于塑性材料和脆性材料,在确定许用应力时,有相同的考虑。

( × ) 连接件产生的挤压应力与轴向压杆产生的压应力是不相同的。

( ∨ )二、填空题轴力的正负规定为。

拉力为正,压力为负受轴向拉伸或压缩的直杆,其最大正应力位于横截面,计算公式,最大切应力位于450截面,计算公式为。

拉压杆强度条件中的不等号的物理意义是最大工作应力σmax不超过许用应力[σ],强度条件主要解决三个方面的问题是(1)强度校核;(2)截面设计;(3)确定许可载荷。

轴向拉压胡克定理的表示形式有2种,其应用条件是σmax≤σp。

由于安全系数是一个__大于1_____数,因此许用应力总是比极限应力要___小___。

两拉杆中,A1=A2=A;E1=2E2;υ1=2υ2;若ε1′=ε2′(横向应变),则二杆轴力F N1_=__F N2。

低碳钢在拉伸过程中依次表现为弹性、屈服、强化、局部变形四个阶段,其特征点分别是σp,σe,σs,σb。

衡量材料的塑性性质的主要指标是延伸率δ、断面收缩率ψ。

延伸率δ=(L1-L)/L×100%中L1指的是拉断后试件的标距长度。

塑性材料与脆性材料的判别标准是塑性材料:δ≥5%,脆性材料:δ< 5%。

图示销钉连接中,2t2>t1,销钉的切应力τ=2F/πd2,销钉的最大挤压应力σbs= F/dt1。

螺栓受拉力F作用,尺寸如图。

若螺栓材料的拉伸许用应力为[σ],许用切应力为[τ],按拉伸与剪切等强度设计,螺栓杆直径d与螺栓头高度h的比值应取d/ h = 4[τ]/[σ]。

木榫接头尺寸如图示,受轴向拉力F 作用。

接头的剪切面积A = hb ,切应力τ=F/hb ;挤压面积A bs = cb ,挤压应力σbs = F/cb 。

两矩形截面木杆通过钢连接器连接(如图示),在轴向力F 作用下,木杆上下两侧的剪切面积A = 2lb ,切应力τ= F/2lb ;挤压面积A bs =2δb ,挤压应力σbs = F/2δb 。

挤压应力与压杆中的压应力有何不同 挤压应力作用在构件的外表面,一般不是均匀分布;压杆中的压应力作用在杆的横截面上且均匀分布 。

图示两钢板钢号相同,通过铆钉连接,钉与板的钢号不同。

对铆接头的强度计算应包括: 铆钉的剪切、挤压计算;钢板的挤压和拉伸强度计算 。

若将钉的排列由(a )改为(b ),上述计算中发生改变的是。

对于(a )、(b )两种排列,铆接头能承受较大拉力的是(a ) 。

(建议画板的轴力图分析)三、选择题为提高某种钢制拉(压)杆件的刚度,有以下四种措施:(A) 将杆件材料改为高强度合金钢; (B) 将杆件的表面进行强化处理(如淬火等); (C) 增大杆件的横截面面积; (D) 将杆件横截面改为合理的形状。

正确答案是 C 甲、乙两杆,几何尺寸相同,轴向拉力F 相同,材料不同,它们的应力和变形有四种可能: (A )应力σ和变形△l 都相同; (B) 应力σ不同,变形△l 相同; (C )应力σ相同,变形△l 不同; (D) 应力σ不同,变形△l 不同。

正确答案是 C 长度和横截面面积均相同的两杆,一为钢杆,另一为铝杆,在相同的轴向拉力作用下,两杆的应力与变形有四种情况;钢板的拉伸强度计算 2F 4F 43F F F )(+)(+(A )铝杆的应力和钢杆相同,变形大于钢杆; (B) 铝杆的应力和钢杆相同,变形小于钢杆; (C )铝杆的应力和变形均大于钢杆; (D) 铝杆的应力和变形均小于钢杆。

正确答案是 A 在弹性范围内尺寸相同的低碳钢和铸铁拉伸试件,在同样载荷作用下,低碳钢试件的弹性变形为1δ,铸铁的弹性变形为2δ,则1δ与2δ的关系是;(A )1δ>2δ ; (B )1δ <2δ; (C )1δ =2δ ; (D )不能确定。

正确答案是 B等直杆在轴向拉伸或压缩时,横截面上正应力均匀分布是根据何种条件得出的。

(A )静力平衡条件; (B )连续条件;(C )小变形假设; (D 平面假设及材料均匀连续性假设。

正确答案是 D∵ E ms > E ci见P33,表∵ E s > E a第三章 扭转一、是非判断题单元体上同时存在正应力和切应力时,切应力互等定理不成立。

( × ) 空心圆轴的外径为D 、内径为d ,其极惯性矩和扭转截面系数分别为1616,32323344d D W d D I t p ππππ-=-=( × )材料不同而截面和长度相同的二圆轴,在相同外力偶作用下,其扭矩图、切应力及相对扭转角都是相同的。

( × )连接件承受剪切时产生的切应力与杆承受轴向拉伸时在斜截面上产生的切应力是相同的。

( × ) 二、填空题图示微元体,已知右侧截面上存在与z 方向成θ 角的切应力τ,试根据切应力互等定理画出另外五个面上的切应力。

试绘出圆轴横截面和纵截面上的扭转切应力分布图。

填题 填题保持扭矩不变,长度不变,圆轴的直径增大一倍,则最大切应力τmax 是原来的 1/ 8 倍,单位长度扭转角是原来的 1/ 16 倍。

两根不同材料制成的圆轴直径和长度均相同,所受扭矩也相同,两者的最大切应力_________y相等 __,单位长度扭转 _不同___ _______。

公式PI T ρτρ=的适用范围是 等直圆轴; τmax ≤ τp 。

对于实心轴和空心轴,如果二者的材料、长度及横截面的面积相同,则它们的抗扭能 力 空心轴大于实心轴 ;抗拉(压)能力 相同 。

当轴传递的功率一定时,轴的转速愈小,则轴受到的外力偶距愈__大__,当外力偶距一定时,传递的功率愈大,则轴的转速愈 大 。

两根圆轴,一根为实心轴,直径为D 1,另一根为空心轴,内径为d 2,外径为D 2, 8.02==d α,若两轴承受的扭矩和最大切应力均相同,则21D D等截面圆轴上装有四个皮带轮,合理安排应为 D、C 轮位置对调 。

3.10图中T 为横截面上的扭矩,试画出图示各截面上的切应力分布图。

由低碳钢、木材和灰铸铁三种材料制成的扭转圆轴试件,受扭后破坏现象呈现为:图(b ),扭角不大即沿45º螺旋面断裂;图(c ),发生非常大的扭角后沿横截面断开;图(d ),表面出现纵向裂纹。

相关文档
最新文档