1丰富的图形世界知识点及练习

合集下载

七上数学第一章丰富的图形世界练习题及答案

七上数学第一章丰富的图形世界练习题及答案

第一节生活中的立体图形知识点归纳 :圆柱柱知识点一、生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥 圆锥棱锥知识点二、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n 个顶点。

分层练习A 卷1、下列几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱。

其中属于立体图形的是( )A 、③ ⑤ ⑥B 、① ② ③C 、③ ⑥D 、④ ⑤ 2、在下列物体的几何图形中,是四棱锥是( )3、下列四个立体图形中,多面体是( )4、下列图形中不是棱柱的是( )A 、B 、C 、D 、A、B、C、D、5、下列图形中,是柱体的有___ _ ____。

(填序号)①②③④⑤⑥分层练习B卷1、下列图形中,()不是多面体A、(1)(2)(4)B、(2)(4)(5)C、(2)(5)(6)D、(1)(3)(6)2、如果一个物体有七个顶点七个面,那么这个物体一定是()A、五棱锥B、五棱柱C、六棱锥D、七棱锥3、如右图,是一块圆柱体形状的木头,用锯子把这个圆柱体锯成两部分,锯开的这个面不可能是()4、如果一个物体的顶点数与面数相同,并且有八条棱,那么这个物体是_____________。

5、在日常生活中,我们看到的物体:如①易拉罐;②饮水机;③金字塔;④自来水管;⑤八角亭;⑥西红柿;⑦小喇叭;⑧气球;⑨课本等。

你能指出这些物体和什么几何体类似吗?6、将图中的几何体进行分类,并说明理由。

A卷答案1、A 2、B 3、C 4、D 5、②、③、⑥B卷答案1、B2、C3、C4、四棱锥5、类似于圆柱体的有:①易拉罐、④自来水管;类似于圆锥体的有:⑦小喇叭;类似于长方体的有:②饮水机、⑨课本;类似于棱锥体的有:③金字塔、⑤八角亭;类似于球体的有:⑥西红柿、⑧气球。

丰富的图形世界知识点及练习

丰富的图形世界知识点及练习

第一章:丰富的图形世界知识要点:1、常见的几何体分类及其特点:长方体:有_顶点,_条棱,_个面,且各面都是______________________ (正方形是特殊的长方形)正方体是特殊的棱柱:上下两个面称为棱柱的____________ ,其它各面称为 _______ ,长方体是_________ 。

圆柱:有上下两个底面和一个侧面,两个底面是__________________ 的圆。

圆锥:有一个__________ 和一个 _______ ,且侧面展开图是 _________ 。

球:由_____________ 围成的几何体2、.图形是由、、构成。

点动成—,线动成—,面动成—。

面与面相交得到—,线与线相交得到—。

面动成体可以通过平移和旋转实现。

例如:五棱柱、圆柱分别可以看作是由五边形或圆沿着竖直方向平移形成。

圆柱又可以看作是_____________ 绕着一边旋转一周形成。

3、展开与折叠(1).正方体的展开图正方体有___________ ,需要剪______ 刀才能展开成平面图形。

(2)圆柱、圆锥、正三棱锥、正四棱锥、正五棱锥、正三棱柱的展开图:4、截一个几何体(1)用一个截面去截长方体或正方体,截面可能是等腰三角形、等边三角形、但不可能是三角形,也可能是正方形,长方形,梯形,五边形等,最多可截得_边形。

(2)用一个截面去截圆柱,截面可能是正方形,长方形,梯形、圆或椭圆。

(3)用一个截面去截圆锥,截面可能是等腰三角、圆、抛物线形或椭圆。

(4)三棱锥的截面可以是三角形、长方形、四边形。

其中四边形可以是特殊的矩形、梯形。

5、三视图我们从不同方向观察物体时,从正面看到的图形叫做主视图,从左边看到的图形叫做左视图,从上面看到的视图叫做俯视图。

三种视图之间的关系:主俯长对正,主左高平齐,俯左宽相等。

6生活中的平面图形(1)多边形:由不在___________ 直线上的线段 ___________ 相连组成的封闭图形•扇形:由 ________ 和经过这条弧的端点的____________ 组成的图形。

丰富的图形世界知识点及练习

丰富的图形世界知识点及练习

第一章:丰富的图形世界知识要点:1、常见的几何体分类及其特点:披联圉成團形的面”分;乎面加锥[棱台iWfit[園台1.®长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形)正方体是特殊的长方体。

棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。

圆柱:有上下两个底面和一个侧面,两个底面是半径相等的圆。

圆锥:有一个底面和一个顶点,且侧面展开图是扇形。

球:由一个面围成的几何体2、.图形是由点、线、面构成。

点动成线,线动成面,面动成体。

面与面相交得到线,线与线相交得到点。

面动成体可以通过平移和旋转实现。

例如:五棱柱、圆柱分别可以看作是由五边形或圆沿着竖直方向平移形成。

圆柱又可以看作是矩形绕着一边旋转一周形成。

3、展开与折叠(1).正方体的展开图正方体有12条棱,需要剪7刀才能展开成平面图形。

4、截一个几何体(1)用一个截面去截长方体或正方体,截面可能是等腰三角形、等边三角形、但不可能是直角三角形, 也可能是正方形,长方形,梯形,五边形等,最多可截得六边形。

曲面(3)用一个截面去截圆锥,截面可能是等腰三角、圆、抛物线形或椭圆。

(4)三棱锥的截面可以是三角形、长方形、四边形。

其中四边形可以是特殊的矩形、梯形。

5、三视图我们从不同方向观察物体时,从正面看到的图形叫做主视图,从左边看到的图形叫做左视图,从上面看到的视图叫做俯视图。

从上面看三种视图之间的关系:主俯长对正,主左高平齐,俯左宽相等。

6生活中的平面图形(1)多边形:由不在同一条直线上的线段首尾顺次相连组成的封闭图形扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形。

(2)从一个多边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成(n-2 )个三角形,可以得到(n —3)条对角线。

从一个多边形部的任意一点出发,分别连接这个点与其余各顶点,可以把这个多边形分割成n个三角形。

从一个多边形边上除顶点外的任意一点出发,分别连接这个点与其余各顶点,可以把这个多边形分割成(n-1 )个三角形。

【初中数学】丰富的图形世界知识点总结与练习 北师大版

【初中数学】丰富的图形世界知识点总结与练习 北师大版

第一章丰富的图形世界知识点Wanghui徐晓静一、柱体圆柱底面是圆形(平面),侧面是一个曲面。

只有一个侧面,两个底面,并且互相平行棱柱底面是多边形,每个侧面都是平面,多个侧面,,两个底面,并且底面互相平行圆柱与棱柱共同点:都有两个底面立体图形椎体圆锥底面是圆形(平面),侧面是一个曲面,只一侧面一底面棱锥一个底面是多边形,多个侧面,底面与侧面都是平面圆锥与棱锥共同点:都只有一个底面球体只有一个曲面组成立体图形分类两个方法①按柱体、椎体、球体分类②按组成面是曲或平分二、图形是由点、线、面构成的,面可以分为平面和曲面,面与面相交得到线,线与线相交得到点,反过来,点动成线,线动成面,面动成体。

三、展开与折叠1、平面图形围成几何体需满足两点:①上、下底面分别在两侧。

②长方形个数与上、下底面边数必须相等。

此类题如果考类似书上13页的,最好动手折一折。

规律:一个正n棱柱有3n条棱,n条侧棱,2n个顶点,(n+2)个面,2个底面,n个侧面。

2、基本几何体的展开。

圆柱展开是两个圆和一个长方形(侧面)圆锥展开是一个圆和一个扇形(侧面),展开后圆必须在弧上正方体展开共11种 1—4—1 型 6个2—3—1 型 3个一个“探头”2—2—2 型 1个楼梯形3—3 型 1个两个“探头”注意:(1)田字型与凹字型的全错。

(2)正方体展开至少剪开7条棱。

四、截一个几何体正方体的截面:三角形(等腰、等边)、正方形、矩形、梯形、五边形、六边形圆柱的截面:圆、矩形、椭圆、类似于“拱门形”圆锥的截面:三角形、圆、椭圆、类似于“拱门形”五、三视图考点:1、画几何体的三视图,初三还会继续学习会有更具体的要求。

2、给俯视图画主视图和左视图。

(见习题)3、给三种视图数小立体块的个数。

(见习题)4、给主、俯视图数最多、最少立体块数(见习题)六、生活中的平面图形考点:找规律注:第一章不用做得过多过难,中考考的非常简单。

把我总结的知识点保存好,以后复习用得到。

七年级数学上册第一章丰富的图形世界重点知识汇总

七年级数学上册第一章丰富的图形世界重点知识汇总

北师大版七年级上册 第一章 丰富的图形世界一、几何体的分类:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⇒⎪⎩⎪⎨⎧⇒⎩⎨⎧椭球圆球球体锥三棱锥、四棱锥、五棱棱锥圆锥椎体柱三棱柱、四棱柱、五棱斜棱柱直棱柱棱柱圆柱柱体几何体 1.n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n 个顶点,底面是n 边形且大小形状完全相同.2.n 棱椎有一个底面,n 个侧面,共(n+1)个面;2n 条棱,n 条侧棱;( n+1)个顶点,底面是n 边形.3.棱柱的侧棱长均相等,直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形,棱锥的侧面是三角形.4. 点、线、面的关系:点动成线、线动成面、面动成体。

面与面相交得到线,线与线相交得到点.二、展开与折叠1、正方体的展开图形 1-4-1型 共6种2-3-1型 共3种2-2型 1种 3-3型 1种注意:常见的易错图形一线超四型:田凹型:2、圆柱的平面展开图3、三棱锥柱的平面展开图4、圆锥的平面展开图5、三棱柱锥的平面展开图6、长方体的平面展开图7、五棱柱的平面展开图8、四棱锥的平面展开图三、图形的切割1、正方体的切割注意:可能出现的:锐角三角型、等边三角形、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形.不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形2、圆柱的切割3、圆锥的切割四、三视图1、三视图主视图:从正面看到的图形.左视图:从左面看到的图形.俯视图:从上面看到的图形.原则:1.位置:主视图左视图俯视图2.大小:长对正,高平齐,宽相等.3.虚实:在画图时,看得见部分的轮廓通常画成实现,看不见部分的轮廓线通常画成虚线.2、常见几何体的三视图:圆柱主视图左视图俯视图圆锥主视图左视图俯视图正方体主视图左视图俯视图三棱柱主视图左视图俯视图四棱柱主视图左视图俯视图球体主视图左视图俯视图3、小立方块搭成几何体的三视图第一章丰富的图形世界经典练习一、选择题1.下列说法中,正确的个数是().①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.(A)2个(B)3个(C)4个(D)5个2. 下面几何体截面一定是圆的是()( A)圆柱 (B) 圆锥(C)球 (D) 圆台3.如图绕虚线旋转得到的几何体是().4. 某物体的三视图是如图所示的三个图形,那么该物体的形状是()(A)长方体( B)圆锥体(C)立方体(D)圆柱体(D)(B)(C)(A)5.如图,其主视图是( )6.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是()7. ( )(A ) (B ) (C ) (D ) 8.如图是由一些相同的小正方体构成的立体图形的三种视图:构成这个立体图形的小正方体的个数是( ). A .5 B . 6 C .7 D .89.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是( )A B C D10.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是( )(A )235、、π-- (B)235、、π-(C )π、、235- (D)235-、、π二、填空题11.正方体与长方体的相同点是_________________,不同点是_______________。

七年级数学上册丰富的图形世界配套练习及答案

七年级数学上册丰富的图形世界配套练习及答案

第五章走进图形世界5.1丰富的图形世界(一)一、基础训练1.面与面相交成_____,线与线相交得到_______,点动成______,线动成_________,面动成_______.2.在棱柱中,任何相邻的两个面的交线都叫做______,相邻的两个侧面的交线叫做_______.3.如图,将下列图形与对应的图形名称用线连结起来:二、典型例题例1 如图是一个五棱柱,填空:(1)这个棱柱的上下底面是___________边形,有__________个侧面;(2)这个棱柱有_________条侧棱,共有__________条棱;(3)这个棱柱共有________个顶点.例2 用一个平面去截正方体,截面的形状可能是__________.(填序号)①三边形;②长方形;③六边形;④七边形.分析:用一个平面去截正方体,这平面与正方体的一个面相交的线就是截面的一条边,则正方体六个面,最多有六条交线,因此最多是六边形.三、提升拓展由平的面围成的立体图形又叫做多面体,有几个面,就叫做几面体.三棱锥有四个面,所以三棱锥又叫四面体;正方体又叫做______面体,有五条侧棱的棱柱又叫做______面体.(1)探索:如果把一个多面体的顶点数记为V,棱数记为E,面数记为F,填表:多面体V F E V+F-E四面体长方体五棱柱……………四、课后作业1.图形是由________、_________、_________构成的.2.薄薄的硬币在桌面上转动时,看上去像一个球,这说明了______________________.3.正方形是一个立体图形,它是由________个面,_______条棱,________个顶点组成的.4.如果一个六棱柱的侧棱长为5cm,那么所有的侧棱长之和为________________.5.下列图形中为圆柱的是__________,为棱柱的是__________,为棱锥的是__________.6.一只蚂蚁从如图所示的正方体的一顶点A沿着棱爬向B,只能经过三条棱,共有多少种走法?B7.如图,是工厂烟囱,由圆锥和圆柱组成,举出由圆柱和棱柱,圆柱和球,棱柱和球组成的几何体.你还能举出其他图形的组合吗?第五章走进图形世界5.1丰富的图形世界(一)一、基础训练1.线,点,线,面,体2.棱,侧棱3.略二、典型例题例1 (1)五;5(2)5,15;(3)10例2 ①②③三、提升拓展(1)六,七多面体V F E V+F–E 四面体 4 4 6 2长方体8 6 12 2五棱柱10 7 15 2……………四、课后作业1.点、线、面2.面动成体3.6,12,84.305.(4);(2);(5)6.六种7.略5.1丰富的图形世界(二)一、基础训练1.(1)下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.( ) ( ) ( ) ( ) ( ) (2)将这些几何体分类,并写出分类的理由_______________________________________. 2.圆柱,圆锥,球的共同点是_____________________________. 二、典型例题例1 关于棱柱下列说法正确的有___________.(填写序号) ①棱柱侧面的形状可能是一个三角形;②棱柱的每条棱长都相等; ③棱柱的上、下底面的形状相同;④棱柱的棱数等于侧面数的2倍. 例2 推理猜测题:(1)三棱锥有_______条棱,四棱锥有_______条棱,十棱锥有_________条棱; (2)__________棱锥有30条棱; (3)__________棱柱有60条棱;(4)一个多面体的棱数是8,则这个多面体的面数是_________.分析:棱锥的棱数=侧棱+底面的边数,棱柱的棱数=侧棱+上、下底面的边数.三、提升拓展(1)请找出与图②具有相同特征的图形; (2)找出具有相同特征的图形,并说明相同特征.四、课后作业1.篮球、排球、足球、乒乓球都是球形的,不是球形的球是__________. 2.用平行于圆柱的底面的平面去截圆柱,则得到的截面是________形. 3.圆锥是由________个面围成,其中________个平面,_________个曲面. 4.下列说法中,正确的个数有________个.①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形. ①②③④⑤ ⑥⑦⑧5.如图,指出以下各物体是由哪些几何体组成的.6.一个棱柱的底面是五边形,它有几条侧棱,几个顶点?共有几条棱,几个面?底面为n边形的棱柱呢?7.圆柱、圆锥、正方体、长方体、各类棱柱和球,这些几何体中.(1)表面都是平的有______________;(2)表面没有平的有______________;(3)表面只有一个面的有____________;(4)表面有两个面的有______________;(5)表面有三个面的有______________;(6)表面有五个面的有______________;(7)表面有六个面的有______________;(8)表面有七个面的有______________.5.1丰富的图形世界(二)一、基础训练1.(1)球;圆柱;圆锥;长方体;三棱柱(2)①②③都是带曲面的几何体④⑤都是由平面图形围成的几何体或②④⑤都是柱体;③都是锥体;①是球体2.都是带曲面的几何体二、典型例题例1③例2(1)6,8,20;(2)15;(3)20;(4)5三、提升拓展解答:(1)⑧与②都是棱锥;①、④和②都是六面体;⑦⑧②都是锥体;①④⑤⑧②都是平面围成的几何体(2)ⅰ.按柱体、锥体、球体分:①③④⑤是柱体;②⑦⑧为锥体;⑥是球体;ⅱ.按几何体表面有无曲面分:①②④⑤⑧都是平面围成的几何体;③⑥⑦都是带曲面的几何体;ⅲ.按有没顶点分:①②④⑤⑦⑧都是有顶点的几何体;③⑥是无顶点的几何体四、课后作业1.羽毛球等2.圆3.2,1,14.35.(1)圆锥、圆柱、正方体;(2)三棱柱、四棱柱、圆柱;(3)球、五棱柱6.5,10,15,7;n,2n,3n,n+27.(1)正方体、长方体、各类棱柱;(2)球;(3)球;(4)圆锥;(5)圆柱;(6)三棱柱;(7)四棱柱、正方体、长方体;(8)五棱柱。

01 《丰富的图形世界》知识梳理与复习(第一章)

01  《丰富的图形世界》知识梳理与复习(第一章)

《丰富的图形世界》知识梳理与复习(第一章丰富的图形世界)知识要点一:生活中的立体图形1、下列实物中外形类似于棱柱的有()①水桶②一堆谷物③螺母④鹅卵石⑤砖头⑥电视机包装箱⑦水管A、2个 B 、3个C、4个D、5个2、下列图形中有14条棱的是()3、在下面的几何体中:①长方体;②圆柱;③球;④五棱柱;⑤圆锥;⑥正方体;可以看成有两个底面的几何体是()A、①②④⑥B、②③④C、②④⑤⑥D、①②③⑥4、写出下列各立体图形的名称5、观察下图中的棱柱和圆柱;回答下列问题(1)该棱柱和圆柱各是由几个面围成的?它们都是平的吗?(2)该棱柱有几个顶点?经过每个顶点有几条棱?6、将长和宽分别为3cm 和2cm 的长方形分别绕长、宽所在的直线旋转一周得到两个几何体,哪个几何体的体积大?(2V r h π=)知识要点二:展开与折叠7、下列说法中错误的是( )A 、棱柱的侧面数与侧棱数相同B 、棱柱的顶点数一定是偶数C 、棱柱的面数一定是奇数D 、棱柱的棱数一定是3的倍数8、下图中不可能围成正方体的有( )A 、1个B 、2个C 、3个D 、4个9、小红制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图应该为( )10、一个正方体的展开图如图所示,如果这个正方体相对的面上标注的数值相等,那么x = ,y = 。

11、如图所示,是两个立体图形的展开图,请写出这两个立体图形的名称(1):(2):12、如图是一个多面体的展开图,每个面内都标注了字母,请根据要求回答问题:(1)如果面A在多面体的底部,哪一个面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一面会在上面?(3)如果面D在后面,从右面看是面C,那么哪一面会在上面?知识要点三:截一个几何体13、用平面去截一个圆柱,截面的形状不可能是()A、三角形B、正方形C、长方形D、圆14、有下列几何体:①正方体;②长方体;③圆柱;④圆锥;⑤棱柱;⑥球这些几何体中截面可能是圆的有()A、2种B、3种C、4种D、5种15、正方体被一个平面所截,所得边数最多的多边形是A、四边形B、五边形C、六边形D、七边形16、写出下图中截面的形状17、如图所示,有一个正方体,棱长为5cm,如果在它的左上方截去一个长、宽、高分别为5cm,3cm,2cm的长方体,求它的表面积减少了百分之几?知识要点四:从三个方向看物体的形状18、下面四个几何体中,从左面看是四边形的几何体共有()A、1个B、2个C、3个D、4个19、如图所示是从三个方向看到的物体的形状图,对应的直观图是下列选项中的()20、如图所示,是一个几何体从三个方向看到的形状图,根据图中标注的数据可求得这个几何体的体积为()A、24πB、32πC、36πD、48π21、如图所示,把立方体的六个面分别涂上六种不同的颜色(红、黄、紫、蓝,白、绿),现将上述大小相同颜色分布完全一样的四个立方体拼成一个水平放置的长方体,那么立方体绿色面的对面颜色是()A、红色B、紫色C、白色D、蓝色21、如图是由几个立方块所搭成的几何体从上面看到的形状,则该几何体从正面看有列,从左面看有行。

数学七年级上册第一章丰富的图形世界知识点与同步训练讲义(解析版)

数学七年级上册第一章丰富的图形世界知识点与同步训练讲义(解析版)

数学七年级上册第一章丰富的图形世界知识点与同步训练讲义(分析版)丰富的图形世界知识精讲一.点、线、面、体几何图形由点、线、面构成,面与面订交获得线,线与线订交获得点.常有立体图形的平面睁开图圆锥棱锥圆柱长方体直棱锥三点分析一.考点:几何图形.二.重难点:几何图形.三.易错点:1.注意常有立体图形的特色.题模精讲题模一:丰富的图形世界例六棱柱中,棱的条数有()A.6条B.10条C.12条D.18条1/6【答案】D【分析】六棱柱有六条侧棱,12条底棱例以下说法错误的选项是()A.长方体、正方体都是棱柱B.六棱柱有18条棱、6个侧面,12个极点C.三棱柱的侧面是三角形D.圆柱由两个平面和一个曲面围成【答案】C【分析】A.长方体、正方体都是棱柱是正确的,不切合题意;B.六棱柱有18条棱、6个侧面,12个极点是正确的,不切合题意;C.棱柱的侧面是长方形,不行能是三角形,本来的说法是错误的,切合题意;D.圆柱由两个平面和一个曲面围成是正确的,不切合题意.例阅读资料,回答以下问题。

初中生课外阅读状况检查表(1)从表中的数据,我们能够得出这样一个结论:______________________________________________________________________________________________________________________________________________________________(2)看了这一统计结果,你对同学的建议是:______________________________________________________________________________________________________________________________________________________________【答案】(1)多半初中生课外阅读喜爱看卡通画而不喜爱阅读文学名著。

第一章丰富的图形世界

第一章丰富的图形世界

第一章丰富的图形世界一、知识梳理一.几种常见的几何体1.柱体① 棱柱体:〔如图(1)(2)〕,图中上下两个面称棱柱的底面,周围的面称棱柱的侧面,面与面的交线是棱柱的棱.其中侧面与侧面的交线是侧棱,棱与棱的交点是顶点.点拨:正方体和长方体是特殊的棱柱,它们都是四棱柱.正方体是特殊的长方体.② 圆柱:图(3)中上下两个圆面是圆柱的底面,这两个底面是半径相同的圆,周围是圆柱的侧面.点拨:棱柱和圆柱统称柱体.2.锥体① 圆锥:〔如图(4)〕图中的圆面是圆锥的一个底面,中间曲面是圆锥的侧面,圆锥只有一个顶点.② 棱锥:〔如图(5)〕图中下面多边形面是棱锥的一个底面,其余各三角形面是棱锥的侧面.点拨:棱锥和圆锥统称锥体.3.台体1 圆台:〔如图(6)〕图中上下两个大小不同的圆面是圆台的底面,中间曲面是圆台的侧面.2 棱台:〔如图(7)〕图中上下两个大小不同的多边形是棱台的底面,其余四边形是棱台的侧面.4.球体:〔如图(8)〕图中半圆绕其直径旋转而成的几何体,球体表面是曲面.二.几何体的展开图1. 圆柱、圆锥、正三棱锥、正四棱锥、正五棱锥、正三棱柱的展开图:2. 正方体的平面展开图(有11种):三.用平面截一个几何体出现的截面形状1.用一个平面去截正方体,可能出现下面几种情况:三角形正方形长方形梯形五边形六边形点拨:用平面去截几何体,所得的截面就是这个平面与几何体每个面相交的线所围成的图形.正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.2. 几种常见的几何体的截面:几何体截面形状正方体三角形、正方形、长方形、梯形、五边形、六边形圆柱圆、长方形、正方形、……圆锥圆、三角形、……球圆点拨:用平面去截圆柱体,可以与圆柱的三个面(两个底面,一个侧面)同时相交,由于圆柱侧面为曲面,相交得到是曲线,无法截出三角形.四.识别物体的三视图1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看图叫主视图,从左面看图叫左视图,从上面看图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.(2)球体:三视图都是圆.(3)圆柱体:(4)圆锥体:点拨:圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.用若干个小正方体搭成几何体的三视图如图:从正面看2列每列1层;从左面看2列每列1层;从上面看2列左列2层右列1层.则三视图是:点拨:①主视图与俯视图列数相同,俯视图中每列的方框内的最大数字即为主视图本列的层数.②左视图的列数与俯视图的行数相同,俯视图每一横行的方框内的最大数字即为左视图中的列的层数.二、课堂精讲例题例1常见几何体的特征(1)列说法中,正确的个数是().①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤正棱柱的侧面一定是长方形.(A)2个(B)3个(C)4个(D)5个【难度分级】A【试题来源】经典试题【解析】n棱柱的数量特征如下:它有3n条棱,(n+2)个面,侧面一定是长方形.对于完全相同的面则需注意.棱柱的侧棱都是相等的但底面边长不一定相等,因此以底面边长和侧棱为长和宽的侧面的大小不一定相同。

北师大版七年级上册数学第一章丰富的图形世界知识点及对应练习(含答案)

北师大版七年级上册数学第一章丰富的图形世界知识点及对应练习(含答案)

1.1 生活中的立体图形一、情境导入我们生活在多姿多彩的图形世界中,许多美丽的图形装点着我们的生活,下面让我们一起来欣赏.二、知识梳理生活中的立体图形 ⎩⎪⎪⎨⎪⎪⎧几何体⎩⎪⎨⎪⎧柱体⎩⎨⎧圆柱棱柱锥体⎩⎨⎧圆锥棱锥球体图形的构成元素⎩⎨⎧点:点动成线线:线动成面面:面动成体三、考点分类考点一: 识别立体图形【例1】 如图,在给出的实物图中,(1)哪些是你学过的长方体、正方体?(2)请你从图中找出与圆锥、圆柱类似的几何体;(3)你还能发现哪些物体的形状与我们学过的几何体相同或相近?解:(1)物体a,d,h,i,n易使人联想起长方体;物体b,p易使人联想起正方体;(2)物体g,m类似于圆柱;物体l类似于圆锥;(3)物体e类似于棱锥;物体f,k类似于球.方法总结:考查了对现实生活中立体图形的初步认识,结合所学几何体的特征,抽象出几何图形.考点二:立体图形构成的元素【例2】观察图形,回答下列问题:(1)图①是由几个面组成的,这些面有什么特征?(2)图②是由几个面组成的,这些面有什么特征?(3)图①中共有多少条线?这些线都是直的吗?图②呢?(4)图①和图②中各有几个顶点?解析:(1)根据长方体的面的特点解答;(2)根据圆锥的面的特点解答;(3)根据长方体和圆锥的线的特点解答;(4)根据长方体和圆锥的顶点情况解答.解:(1)图①是由6个面组成的,这些面都是平的面;(2)图②是由2个面组成的,1个平的面和1个曲的面;(3)图①中共有12条线,这些线都是直的;图②中有1条线,是曲线;(4)图①中有8个顶点,图②中只有1个顶点.方法总结:解答此类问题要联系实物的形状与面的形状作对比,然后作出判断,平面与平面相交成直线,曲面与平面相交成曲线.考点三:几何体的分类【例3】将如图所示的几何体分类:解析:此题作为一道开放型题,分类的方法非常多,只要能说明分类的理由即可.但要注意:按某一标准分类时,要做到不重不漏,分类标准不同时,分类的结果也就不尽相同.解:本题答案不唯一,如按柱体、锥体、球体分类:(2)(3)(5)和(6)都是柱体,(4)(7)是锥体,(1)是球体.方法总结:生活中常见几何体有两种分类:一种按柱体、锥体、球体分类;一种按平面和曲面分类.考点四:几何体的形成【例4】笔尖画线可以理解为点动成线.使用数学知识解释下列生活中的现象:(1)流星划破夜空,留下美丽的弧线;(2)一条拉直的细线切开了一块豆腐;(3)把一枚硬币立在桌面上用力一转,形成一个球.解析:解释现象关键是看其属于什么运动.解:(1)点动成线;(2)线动成面;(3)面动成体.方法总结:生活中的很多现象都可以用数学知识来解释,关键是要找到生活实例与数学知识的连接点,如第(1)题可将流星看作一个点,则“点动成线”.【例5】如图所示,将平面图形绕轴旋转一周,得到的几何体是( )解析:半圆绕其一条直径所在的直线旋转一周,得到的图形是球.故选A.方法总结:点动成线,线动成面,面动成体,以运动的观点观察静止的点、线、面,就能得到千姿百态的几何图形.解答此题可动手操作,也可以空间想象.同步练习:1,长方体共有()个面.A.8B.6C.5D.42,六棱柱共有()条棱.A.16B.17C.18D.203,下列说法,不正确的是()A.圆锥和圆柱的底面都是圆.B.棱锥底面边数与侧棱数相等.C.棱柱的上、下底面是形状、大小相同的多边形.D.长方体是四棱柱,四棱柱是长方体.4,判断题:(1)棱柱侧面的形状可能是一个三角形()(2)棱柱的每条棱长都相等. ()(3)正方体和长方体是特殊的四棱柱,有是特殊的六面体.()5,正方体有 个面, 个顶点,经过每个顶点有 条棱.这些棱的长度 (填相同或不同).棱长为acm 的正方体的表面积为 cm 2.6,长方体有 个顶点, 条棱, 个面.7,五棱柱是由 个面围成的,它有 个顶点,有 条棱.8,一个六棱柱共有 条棱,如果六棱柱的底面边长都是2cm ,侧棱长都是4cm ,那么它所有棱长的和是 cm.9,如图所示的几何体是由一个正方体截去41后而形成的,这个几何体是由 个面围成的,其中正方形有 个,长方形有 个.10,已知一圆柱内恰好能容纳一个球体,请画出示意图并尽可能多地写出一些你发现的关系式.11,在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?12,如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和.答案:1,B 2,C 3,D 4,(1)×(2)×(3)√5, 6 8 3 相同 6a2 6, 8 12 67, 7 10 15 8, 18 48 9,8 2 410,图略,该圆柱的高与底面直径相等 11,绿蓝黑12,1111.2 展开与折叠一、情境导入喜羊羊现有涂色方式完全相同的四个正方体,每个正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色.喜羊羊把这四个正方体拼成如图所示的长方体,并让美羊羊判断红、黄、白三种颜色的对面分别涂着哪一种颜色.你能帮助美羊羊吗?二、知识点梳理几何体的展开与折叠⎩⎨⎧棱柱的展开图圆柱的展开图圆锥的展开图三、考点分类考点一: 几何体的表面展开图【例1】下列图形中,是正方体表面展开图的是( )解析:选项A 是“田”字型,选项B 是“凹”字型,选项D 是“L ”型,它们都不是正方体的表面展开图;只有选项C 是“一四一”型,符合正方体的展开图形式,故选C.方法总结:方法1:根据正方体的11种表面展开图逐个进行选项核对;方法2:由于正方体的表面展开图不包括“L”型、“田”字型和“凹”字型,故可采用排除法进行判断.【例2】过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( )解析:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去的三角形与另一个剪去的三角形交于一个顶点.故选B.方法总结:考查几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.考点二:正方体的相对面【例3】杭州市将举办2016年G20峰会,为了迎接这一盛会,小威特意制作了一个正方体广告牌,并在各个表面上书写了汉字或符号,其表面展开图如图所示,则原正方体中的“州”字所在面的对面所标的是________.解析:将正方体展开图折叠后可知:“杭”与“您”相对,“州”与“迎”相对,“欢”与“!”相对.故填“迎”.方法总结:将正方体的展开图折叠找到相对的面,再判断相应面上应填的字.考点三:由展开图判断几何体【例4】下面的展开图能拼成如图立体图形的是( )解析:立体图形是三棱柱,展开图应该是:三个长方形,两个三角形,两个三角形位于三个长方形两侧;A答案折叠后两个长方形重合,故排除;C、D折叠后三角形都在一侧,故排除.故选B.方法总结:此题主要考查了展开图折叠成几何体.通过结合立体图形与平面图形的相互转化,理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.考点四:求立体图形的表面积【例5】如图是一张铁皮.(1)计算该铁皮的面积.(2)它能否做成一个长方体盒子?若能,画出它的几何图形,并计算它的体积;若不能,请说明理由.解:(1)该铁皮的面积为(1×3)×2+(2×3)×2+(1×2)×2=22(平方米);(2)能做成一个长方体盒子,如图所示.它的体积为3×1×2=6(立方米).方法总结:能否做成一个长方体盒子,就看相对的面的形状是否相同,大小是否相等.同步练习:1,如图,把左边的图形折叠起来,它会变为()2,下面图形经过折叠不能围成棱柱的是()3,如图,把左边的图形折叠起来,它会变成()4,一个几何体的边面全部展开后铺在平面上,不可能是()A.一个三角形B.一个圆C.三个正方形D.一个小圆和半个大圆5,(1)侧面可以展开成一长方形的几何体有;(2)圆锥的侧面展开后是一个;(3)各个面都是长方形的几何体是;(4)棱柱两底面的形状,大小,所有侧棱长都 .6,用一个边长为4cm的正方形折叠围成一个四棱柱的侧面,若该四棱柱的底面是一个正方形,则此正方形边长为 cm.7,用一个边长为10cm的正方形围成一个圆柱的侧面(接缝略去不计),求该圆柱的体积.8,用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?( 取3.14)9,如图,在一个正方体木块的两个相距最远的顶点外逗留着1只苍蝇和1只蜘蛛,蜘蛛沿哪条路径去捉苍蝇最快?请说明理由.10,如图,正方体a的上、前、右三个面上分别注有A,B,C三个字母,它的展开图如图b所示,请用D,E,F三个字母在展开图上分别标注下、后、左三个面.11,如图,一个长方体的底面是边长为1cm的正方形,侧棱长为2cm,现沿图中粗黑线的棱剪开,请画出展开图。

七年级数学丰富的图形世界知识点专题总结

七年级数学丰富的图形世界知识点专题总结

七年级数学丰富的图形世界知识点专题总结丰富的图形世界(1)一、立体图形的表面展开图:几何体的表面展开图在中考中主要涉及两个方面的内容:一是考查几何体的侧面展开图,以圆锥和圆柱等几何体为主,二是考查几何体的表面展开图,以柱体为主要考查对象;其中难点为利用正方体的表面展开图,找对应面。

例题1(2)解析:利用空间想象或通过动手操作,将展开图还原成立体图形,看能否构成正方体.A,B,D选项的展开图都能折叠成一个正方体,C选项的展开图中含有“凹”的图形,不能折叠成一个正方体.故选C.二、截一个几何体:当用一个平面去截一个几何体时:首先要明确该截面是个平面图形,然后看截面与几何体哪些面相交;通过确定交线的条数来判断截面的边数,最后判断该平面图形的形状。

判断立体图形截面的形状是这类问题的重点和难点。

例题2(3)解:(1)截面与底面平行,可以得到圆形截面;(2)截面沿圆柱的高线切割,可得到长方形截面;(3)截面与底面平行,可以得到三角形截面.综上所述,截面的形状分别是圆形、长方形、三角形.三、从不同方向看物体:从不同方向看物体,主要指的是从正面、左面、上面看到的图形,最为常见的是由小正方体组成的图形从不同方向看到的图形,或根据从三个方向看到的图形判断小正方体的个数。

例题3(4)四、解题方法与技巧:1、分类讨论思想:当被研究的问题包含多种可能情况时,不能一概而论,必须按可能出现的情况来分类讨论,得出各种情况下的对应结果。

例题4(5)解:若按组成几何体的面是平面或曲面来划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面.若按柱、锥、球来划分:(1)(2)(4)(7)是一类,即柱体;(5)(6)是一类,即锥体;(3)是球体。

2、正方体表面展开图的识别技巧:每一个正方体都是由三对相对的面围成的,如果能在展开的平面图形中,找到三对相对无重叠的面,那么就能找到符合实际意义的正方体的表面展开图,在表面展开图中找相对的面是探究正方体表面展开图的关键。

2023年丰富的图形世界知识点总结

2023年丰富的图形世界知识点总结

第一章丰富旳图形世界1.几何图形从实物中抽象出来旳多种图形, 包括立体图形和平面图形。

立体图形:有些几何图形旳各个部分不都在同一平面内, 它们是立体图形。

平面图形:有些几何图形旳各个部分都在同一平面内, 它们是平面图形。

2.点、线、面、体(1)几何图形旳构成点: 线和线相交旳地方是点, 它是几何图形中最基本旳图形。

线:面和面相交旳地方是线, 分为直线和曲线。

面: 包围着体旳是面, 分为平面和曲面。

体: 几何体也简称体。

(2)点动成线, 线动成面, 面动成体。

点、线、面、体都是几何图形。

任何一种几何体都由点、线、面构成, 点无大小, 线有曲直而无粗细, 平面是无限延伸旳, 面有平面和曲面, 面面相交得线, 线线相交得点。

3.生活中旳立体图形圆柱柱生活中旳立体图形球棱柱: 三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4.棱柱及其有关概念:棱: 在棱柱中, 任何相邻两个面旳交线, 都叫做棱。

侧棱: 相邻两个侧面旳交线叫做侧棱。

棱柱旳所有侧棱长都相等。

n棱柱有两个底面, n个侧面, 共(n+2)个面;3n条棱, n条侧棱;2n个顶点。

面: 棱柱旳上、下底面相似。

侧面都是长方形, 棱柱旳名称与底面多边形旳边数有关。

将一种图形折叠后能否变成棱柱, 一要看有无两个底面, 二要看底面旳形状, 三要看两个底面旳位置。

(要学会自己总结规律。

)5.正方体旳平面展开图: 11种一种正方体旳表面沿某些棱剪开, 可得到十一种不一样旳平面图形, 这些平面图形通过折叠后又能围成一种正方体, 圆柱和圆锥旳侧面展开图分别是长方形和扇形。

任何一种立体图形旳表面沿某些棱剪开都可以得到不一样旳平面图形, 必须提高自己旳空间想象力。

一四一型6种二三一型3种二二二型1种三三型 1种6.截一种正方体: 用一种平面去截一种正方体, 若这个平面与这个正方体旳几种面相交, 则截面就是几边形, 依次得到三角形、四边形、五边形、六边形, 不也许得到七边形。

专题1.13 丰富的图形世界(全章知识梳理与考点分类讲解)-2023-2024学年七年级数学上册基础

专题1.13 丰富的图形世界(全章知识梳理与考点分类讲解)-2023-2024学年七年级数学上册基础

专题1.13丰富的图形世界(全章知识梳理与考点分类讲解)一、知识梳理【知识点1】几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。

【知识点2】点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

【知识点3】生活中的立体图形生活中的立体图形:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分)⎡⎡⎢⎢⎣⎢⎢⎡⎢⎢⎢⎣⎣圆柱柱球圆锥锥棱锥球体:由球面围成的(球面是曲面)圆柱:圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

圆锥:圆锥的表面展开图是由一个圆形和一个扇形连成。

【知识点4】棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

棱柱的上、下底面的形状相同,侧面的形状都是长方形根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……长方体和正方体都是四棱柱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

【知识点5】正方体的平面展开图:11种1-4-1型:6种2-3-1型:3种2-2-2型:1种3-3型:1种【知识点6】截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

【知识点7】三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

二、考点分类讲解【题型一】生活中的立体图形【例1】如图,请写出下列立体图形是由哪些几何体组合而成的.【答案】见解析.【分析】根据生活中常见的几何体的特征进行求解即可得到答案.解:图①是由底面完全重合的圆锥和圆柱组合而成的;图②是由底面完全重合的两个圆锥组合而成的;图③是由完全相同的四个正方体组合而成的.【点拨】本题主要考查了立体图形中的几何体,解题的关键在于能够熟练掌握常见的几何体的特征.【例2】十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,回答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体44长方体8612正八面体812正十二面体201230四面体棱数是;正八面体顶点数是.你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)一个多面体的面数比顶点数小8,且有30条棱,则这个多面体的面数是.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点出都有3条棱,设该多面体外表三角形的个数为a个,八边形的个数为b个,求a b 的值.【答案】(1)6;6;V+F-E=2;(2)12(3)a+b=14.【分析】(1)观察可得顶点数+面数-棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为a+b的值.(1)解:四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F-E=2;故答案为:6;6;V+F-E=2;(2)解:∵一个多面体的面数比顶点数小8,∴V=F+8,∵V+F-E=2,且E=30,∴F+8+F-30=2,解得F=12;故答案为:12;(3)解:∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F-36=2,解得F=14,∴a+b=14.【点拨】本题考查了欧拉公式和数学常识,注意多面体的顶点数,面数,棱数之间的关系及灵活运用.【变式】一个六棱柱的顶点个数、棱的条数、面的个数分别是()A .6、12、6B .12、18、8C .18、12、6D .18、18、24【答案】B 【分析】一个六棱柱是由两个六边形的底面和6个长方形的侧面组成,根据其特征进行填空即可.解:一个六棱柱的顶点个数是12,棱的条数是18,面的个数是8.故选B .【点拨】此题主要考查了认识立体图形,利用n 棱柱有2n 个顶点,有(n +2)个面,有3n 条棱得出是解题关键.【例3】探究:有一长6cm ,宽4cm 的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)若将此长方形绕着它的其中一条边所在的直线为轴旋转360°,则得到的圆柱体积为多少?【答案】(1)按方案一方法构造的圆柱体积大;(2)将此长方形绕着它的其中一条边所在的直线为轴旋转360°,则得到的圆柱体积为为144cm 3或96cm 3【分析】(1)分别按方案一,方案二转法,根据体积公式找出半径与高,代入计算即可;(2)分两种情况,按长方形长边所在的直线为轴旋转360°,绕长方形的短边所在的直线为轴旋转360°,确定半径与高代入体积公式计算即可.(1)解:方案一:以较长的一组对边中点所在直线为轴旋转,旋转半径为r =3cm ,体积为:223436r h πππ=⨯⨯=cm 3,方案二:以较短的一组对边中点所在直线为轴旋转,旋转半径为r =2cm ,体积为:222624r h πππ=⨯⨯=cm 3,按方案一方法构造的圆柱体积大;(2)解:分两种情况绕长方形的短边所在的直线为轴旋转360°,得到的圆柱体积为2264144r h πππ=⨯⨯=cm 3;绕长方形绕长边所在的直线为轴旋转360°,则得到的圆柱体积为224696r h πππ=⨯⨯=cm 3,综合将此长方形绕着它的其中一条边所在的直线为轴旋转360°,则得到的圆柱体积为为144cm 3或96cm 3.【点拨】本题考查基本图形旋转得到的体积问题,掌握解决旋转半径与圆柱体的高是解题关键.【变式】下列图形旋转一周,能得到如图几何体的是()A .B .C .D .【答案】A【分析】根据面动成体,判断出各个选项旋转得到的立体图,即可得出结论.解:A .旋转一周可得本题的几何体,故选项正确,符合题意;B .旋转一周为两个圆锥结合体,故选项错误,不符合题意;C .旋转一周为圆锥和圆柱的结合体,故选项错误,不符合题意;D .旋转一周为两个圆锥和一个圆柱的结合体,故选项错误,不符合题意;故选:A .【点拨】此题考查了面动成体,解题的关键是要有空间想象能力,熟悉并判断出旋转后的立体图形.【题型二】展开与折叠【例4】如图是一个长方体纸盒的展开图,如果长方体相对面上的两个数字之和相等,求2x y -的值.【答案】16【分析】分别找到x 与y 相对的数字即可求解.解:因为这是长方体纸盒的展开图,所以“4”与“10”相对,“x ”与“2”相对,“6”与“y ”相对,所以26410x y +=+=+,所以12x =,8y =,所以2212816x y -=⨯-=.【点拨】本题考查了长方体的展开图,正确找出相对面是解题的关键.【变式】如图正方体纸盒,展开图可以得到()A .B .C .D .【答案】A【分析】根据折叠后圆、等于符号及小于符号所在的面的位置进行判断即可.解:A.圆、等于符号及小于符号所在的面折叠后互为邻面,且小于符号的开口与等于符号开口一致,符合题意;B.小于符号与等于符号的面折叠后是对面,不符合题意;C.折叠后,小于符号的开口方向与等于符号开口方向不同,不符合题意;D.折叠后,小于符号开口没有指向圆,不符合题意.故答案选A.【点拨】本题考查了正方体的展开图,熟练掌握正方体的展开图,明白对面相隔不相邻这一原则以及正确区分折叠后图形的相对位置是解题的关键.【例5】如图所示,图1为一个棱长为8的正方体,图2为图1的表面展开图(数字和字母写在外表面上,字母也可以表示数),请根据要求回答问题:(1)如果正方体相对面上的两个数字之和相等,则x =______,y =______.(2)如果面“10”是左面,面“6”在前面,则上面是______(填“x ”或“y ”或“2”)(3)图1中,点M 为所在棱的中点,在图2中找点M 的位置,直接写出图2中△ABM 的面积.【答案】(1)12;8(2)2;(3)16或80【分析】(1)正方体展开图中,相对的两个面之间必然隔着一个正方形,由此知道“2”与“x ”是相对面,“4”与“10”是相对面,“6”与“y ”是相对面,由相对面两个数之和相等,列式计算即可;(2)由相邻面和相对面的关系,分析判断即可得到答案;(3)由点M 所在的棱为两个面共用,可以判断得到点M 的位置,根据三角形面积公式,即可得到答案.解:(1)∵正方体相对面上的两个数字之和相等∴2+410x =+,6410y +=+∴12x =,8y =故答案为:12;8(2)若面“10”是左面,面“6”在前面,则上面是“2”(3)因为点M 所在的棱为两个面共用,所以它的位置有两种情况,第一种情况如下图:设点M 左边的顶点为点D ,则11841622ABM S AB DM ==⨯= △第二种情况如下图:118208022ABM S AB AM ==⨯= △综上所述,ABM的面积为:16或80【点拨】本题考查正方体的展开图,能够准确区分展开图的相对面和相邻面是解题的关键.【变式】图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0B.1C.2D.3【答案】B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点拨】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.【例5】如图是一个立体图形的展开图,每个面上都标注了数字(图示立体图形的面为立体图形的外表面),请根据要求回答问题:(1)如果面1在立体图形的顶部,那么哪一面会在下面?(2)如果面3在前面,从左面看是面2,那么哪一面会在上面?(3)如果面5在后面,从右面看是面4,那么哪一面会在下面?【答案】(1)面3会在下面.(2)面4会在上面.(3)面3会在下面.【分析】把图中所示的展开图折叠成立体图形,标有数字1的面与标有数字3的面相对,标有数字2的面与标有数字5的面相对,标有数字6的面与标有数字4的面相对.解:根据题意和图示:(1)面3会在下面;(2)面4会在上面;(3)面3会在下面.【点拨】本题考查了学生的空间想象能力及推理判断能力.【变式】如图所示的正方体,如果把它展开,可以是下列图形中的()A .B .C .D .【答案】B【分析】根据正方形展开图的特征,判断各个面的对面、邻面的特征即可.解:由“相间Z 端是对面”可知A 、D 不符合题意,而C 折叠后,圆形在前面,正方形在上面,则三角形的面在右面,与原图不符,只有B 折叠后符合,故选:B .【点拨】此题考查的是正方体的展开图,掌握利用正方形展开图的特征判断各个面的对面、邻面的特征是解决此题的关键.【题型三】截一个几何体【例5】将一个长方体的一个角切去,所得的立体图形的棱的数量为______.【答案】15条或14条或12条或13条【分析】根据长方体的特征:长方体有12条棱.在顶点处截去一个角就多出三条棱,但是长方体原本的12条棱少了几条要画图分类讨论.解:①12315+=(条);②1213-+113=+14=(条);③1233-+93=+12=(条);④1223-+103=+13=(条);答:所得立体图形的棱的条数为15条或14条或12条或13条故答案为:15条或14条或12条或13条【点拨】本题考查了长方体的特征和截长方体,明确在顶点处截去一个角就多出3条棱是解题关键.【变式1】如图中几何体的截面分别是________.【答案】长方形,等腰三角形解:①中几何体的截面是长方形,②中几何体的截面是等腰三角形,【变式2】如图①②③是将正方体截去一部分后得到的几何体.(1)根据要求填写表格:图面数(f)顶点数(v)棱数(e)①②③(2)猜想f,v,e三个数量间有何关系;(3)根据猜想计算,若一个几何体有2021个顶点,4035条棱,试求出它的面数.【答案】(1)7;9;14;6;8;12;7;10;15;(2)f+v-e=2;(3)2016【分析】(1)根据图形数出即可.(2)根据(1)中结果得出f+v-e=2.(3)代入f+v-e=2求出即可.解:(1)图①,面数f=7,顶点数v=9,棱数e=14,图②,面数f=6,顶点数v=8,棱数e=12,图③,面数f=7,顶点数v=10,棱数e=15,故答案为:7,9,14.6,8,12,7,10,15.(2)f+v-e=2.(3)∵v=2021,e=4035,f+v-e=2∴f+2021-4035=2,f=2016,即它的面数是2016.【点拨】本题考查了截一个几何体,图形的变化类的应用,关键是能根据(1)中的结果得出规律.【题型四】从三个方向看物体的形状【例6】画出下面由11个小正方体搭成的几何体从不同角度看得到的图形.(1)请画出从正面看、从左面看、从上面看的平面图形.(2)小立方体的棱长为3cm ,现要给该几何体表面涂色(不含底面),求涂上颜色部分的总面积.(3)如果在这个组合体中,再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同,可以有______种添加方法,画出添加正方体后,从上面看这个组合体时看到的一种图形.【答案】(1)见解析;(2)315cm 2;(3)2【分析】(1)根据三视图的画法,画出这个简单组合体的三视图即可;(2)分别求出最上层,中间层和最下面一层需要涂色的面,即可求解;(3)根据再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同,进行求解即可.(1)解:如图所示,即为所求:(2)解:由题意可知,几何体的最上层一共有5个面需要涂色,中间一层一共有12个面需要涂色,最小面一层一共有18个面需要涂色,∴一共用12+18+5=35个面需要涂色,∴涂上颜色部分的总面积2=3335=315cm ⨯⨯(3)解:如图所示,一共有2种添加方法.【点拨】本题主要考查了画简单几何体的三视图,简单组合体的表面积等等,解题的关键在于能够熟练掌握相关知识.【变式1】如图,是由若干个完全相同的小正方体组成的一个几何体,请画出这个几何体的从正面看,从左面看和从上面看的平面图形.(用阴影表示)【分析】画出从正面、左面、上面看到的形状即可.解:如图所示【点拨】本题考查了从不同方向看到的几何体.应注意“长对正、宽相等、高平齐”.【变式2】用小立方块搭一个几何体,如图是从正面和上面看到的几何体的形状图,最少需要___个小立方块,最多需要___个小立方块.【答案】913【分析】易得这个几何体共有3层,从上面看可得第一层正方体的个数,由正面看可得第二层和第三层最少或最多的正方体的个数,相加即可.解:搭这样的几何体最少需要6+2+1=9个小正方体,最多需要6+2+3213+=个小正方体;故答案为:9,13.【点拨】此题主要考查了学生对不同方向观察图形的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“从上面看打地基,从正面看疯狂盖,从左面看拆违章”就更容易得到答案.【变式3】如图,6个边长为1的正方体组成一个几何体,从正面、左面、上面看到的这个几何体的形状图的面积之和是__________.【答案】13【分析】先画出从正面、左面、上面看到的这个几何体的形状图,确定小正方形的和,乘以面积1即可解:∵几何体从三个方向看的几何体的形状图如下:∴从正面、左面、上面看到的这个几何体的形状图的面积之和是(5+4+4)×1×1=13,故答案为:13.【点拨】本题考查了从正面、左面、上面看几何体的形状图,正确画出形状图是解题的关键.。

北师大版初一数学上册第一章丰富多彩的图形知识点+练习题+答案+单元测试

北师大版初一数学上册第一章丰富多彩的图形知识点+练习题+答案+单元测试

第一章丰富的图形世界(一)生活中的立体图形1.几何图形:从实物中抽象出来的各种图形,包括立体图形和几何图形。

2.点、线、面、体(1)几何图形的组成点:线与线相交得到点,它是几何图形中最基本的图形。

线:面与面相交得到线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体简称体。

(2)点动成线,线动成面,面动成体。

面动成体可以通过平移和旋转实现。

例如:五棱柱、圆柱分别可以看作是由五边形或圆沿着竖直方向平移形成。

圆柱又可以看作是长方形绕着一边旋转一周形成。

3.生活中的立体图形4.棱柱及其有关概念棱:在棱柱中,任何相邻两个面的交线,都叫棱。

侧棱:相邻两个侧面的交线叫做侧棱。

棱柱的所有侧棱长都相等;棱柱的上下底面的形状相同,侧面的形状都是平行四边形。

直棱柱的各个侧面都是长方形。

长方体和正方体都是四棱柱。

n棱柱有两个底面,n个侧面,共(n+2)个面,3n条棱,n条侧棱;2n个顶点。

(二)展开与折叠1.正方体的平面展开图:11种1-4-13-2-1 2-2-2 3-3展开图:邻对面:中间四个面,上下各一面;一线不过四;中间三个面,一二隔河见;凹田应弃之;中间两个面,楼梯天天见;同层隔一相对,异层隔二相对,Z端是对面;中间没有面,三三连一线。

间二,拐角邻面知。

2.其他常见图形的展开图:圆柱圆锥正三棱锥、正四棱锥、正五棱锥、正三棱柱展开图侧面张开成长方形的有:圆柱、棱柱;侧面展开成扇形的是:圆锥。

(三)截一个几何体截面:用一个平面去截一个几何体,截出的面叫做截面。

(1)用一个截面去截长方体或正方体,截面可能是等腰三角形、等边三角形、但不可能是三角形,也可能是正方形,长方形,梯形,五边形等,最多可截得边形。

可能出现:锐角三角形,等边、等腰三角形;正方形,长方形,平行四边形,菱形,不等腰梯形,等腰梯形;五边形;六边形,正六边形。

不可能出现:钝角、直角三角形,直角梯形,正五边形,七边形或更多变形(2)用一个截面去截圆柱,截面可能是正方形,长方形,梯形、圆或椭圆。

第一章丰富的图形世界知识点总结

第一章丰富的图形世界知识点总结

第一章丰富的图形世界知识点总结本章可分为三大板块第一大板块常见几何体的性质与分类1、常见几何体:圆柱、棱柱(长方体、正方体)、棱锥、圆锥、球体。

2、性质:底面的个数与形状、侧面的个数与形状、是否含有曲面。

3、分类依据:底面数(柱体、椎体、球体);是否含有曲面;是否含有顶点等。

总结时注意类比与对比。

4、棱体(棱锥)的命名以及N棱柱棱数、面数、顶点数求法(尝试总结N棱锥的棱数、面数、顶点数)。

简单逆向思维应用,根据棱数、面数、顶点数判断是何种几何体(注意数学思想之分类讨论)。

第二大板块常见几何体的组成与形成1、组成:点、线、面。

面与面相交得到线,线与线相交得到点。

点动成线,线动成面,面动成体。

能说出常见几何体中侧面与底面相交得到几条线,分别是什么形状。

顶点处有几条棱,几个面。

2、形成:面的旋转。

常见几何体可以看作哪些平面图形旋转得到。

第三大板块体与面之间的转化关系(体会数学思想之转化化归思想)。

1、展开与折叠:一般几何体的展开与折叠,展开时注重动手操作到空间想象的转变,折叠时注意结合几何体的性质来判断。

正方体的展开与折叠,对展开图的观察总结,掌握对面、邻面以及有共同顶点的几个面在展开图中的关系,并能利用逆向思维还原。

截面:截面的形成(面截体),截面的本质(面截面所得线围成的平面)。

正方体、圆柱、圆锥等所能得到的截面类型并能通过空间想象做出截面,逆向思维通过截面判断是由什么几何体截得。

2、三视图:主视图(长与高)、左视图(宽与高)、俯视图(长与宽)会画单独几何体和简单组合体的三视图(长对正、宽相等、高平齐)。

简单应用之求组合体面积。

根据数字俯视图画出主视图与俯视图(答案唯一),体会三视图之间的联系。

逆向思维根据三视图还原几何体(理解答案不唯一),从而得到简单应用之根据三视图推测组合体中小方块数目。

本章贯穿的几大思维:逆向思维形象思维到抽象思维转化的思维学习方法通过动手操作培养空间想象‘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丰富的图形世界
【知识要点】
1、常见的几何体分类及其特点:
○1、○2、
长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形)正方体是特殊的长方体。

:
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。

圆柱:有上下两个底面和一个侧面,两个底面是半径相等的圆。

圆锥:有一个底面和一个顶点,且侧面展开图是扇形。

球:由一个面围成的几何体
2、.图形是由点、线、面构成。

点动成线,线动成面,面动成体。

面与面相交得到线,线与线相交得到点。


面动成体可以通过平移和旋转实现。

例如:五棱柱、圆柱分别可以看作是由五边形或圆沿着竖直方向平移形成。

圆柱又可以看作是矩形绕着一边旋转一周形成。

3、展开与折叠
(1).正方体的展开图
正方体有12条棱,需要剪7刀才能展开成平面图形。

(2)圆柱、圆锥、正三棱锥、正四棱锥、正五棱锥、正三棱柱的展开图:
?
4、截一个几何体
(1)用一个截面去截长方体或正方体,截面可能是等腰三角形、等边三角形、但不可能是直角三角形,也可能是正方形,长方形,梯形,五边形等,最多可截得六边形。

(2)用一个截面去截圆柱,截面可能是正方形,长方形,梯形、圆或椭圆。

|
(3)用一个截面去截圆锥,截面可能是等腰三角、圆、抛物线形或椭圆。

(4)三棱锥的截面可以是三角形、长方形、四边形。

其中四边形可以是特殊的矩形、梯形。

5、三视图
我们从不同方向观察物体时,从正面看到的图形叫做主视图,从左边看到的图形叫做左视图,从上面看到的视图叫做俯视图。

三种视图之间的关系:主俯长对正,主左高平齐,俯左宽相等。

~
6、生活中的平面图形
(1)多边形:由不在同一条直线上的线段首尾顺次相连组成的封闭图形.
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形。

(2)从一个多边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成(n-2)
个三角形,可以得到(n一3)条对角线。

从一个多边形内部的任意一点出发,分别连接这个点与其余各顶点,可以把这个多边形分割成n个三角形。

从一个多边形边上除顶点外的任意一点出发,分别连接这个点与其余各顶点,可以把这个多边形分割成(n-1)个三角形。

(3)一个n边形一共有
2)3
(
n
n
条对角线。


【典型例题】
例1、观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来( )
例2、一个几何体全部展开后铺在平面上,不可能是()
A、一个三角形
B、一个圆
C、三个正方形
D、一个小圆和半个大圆

例3、有一个正方体的六个面上分别写养1,2,3,4,5,6这6个数,根据图中ABC三个图中所写数字想一想“”处的数字是什么
例4、画出下列立方体的三视图,
例5下图是用小立方块搭成的几何体的俯视图,小正方形的数字表亦该位置的小立方块的个数,请画出它的主视图和左视图。

主视图左视图①~




例6用小立方块搭一个几何体,使得它的主视图和俯视图如图所示。

这样的几何体只有一种吗它最少需要多少个小立方块最多需要多少个小立方块
【巩固练习】
1. 圆柱体是由____个面围成,这些面相交共得_____条线,它们是线.
2. 用一个平面去截某一几何体,若截面是圆,则原来的几何体可能是.。

3. 将半圆绕直径旋转一周,形成的几何体是_______;将直角三角形以一条直角边为轴旋转一周,形成的几何体是________;假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了_______ ___.
4. 如果一个几何体的主视图、左视图、俯视图都完全相同的是.
5. 如果长方体从一顶点出发的三条棱长分别为2,3,4,则该长方体的
表面积为___ ___,体积为____ __.
6.如图,这是一个正方开体的展开图,则“喜”代表的面所相对的面
....的
号码是.
7.平面内有5个点,每两个点都用直线连接起来,则最多可得______条直线,最少可得______条直线。

平面内的三条直线可把平面分割成最少______部分,最多_____部分

8.如下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是.(把下图中正确的立体图形的序号都填在横线上)
<
9.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由_______个这样的正方体组成。

将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长为4cm、宽为3cm的长
方形,分别绕它的长、宽所在的直线旋转一周
.................,得到的圆柱体的体积分别是多少(友情提示:
我喜
欢数
学课
$
6题图
2V r h π=•,其中r 代表圆柱底面半径,h 代表圆柱高)(结果保留π)
)
[
11.正方体是由六个平面图形围成的立体图形,
设想沿着正方体的一些棱将它剪开,就可以 把正方体剪成一个平面图形,但同一个正方 、
体,按不同的方式展开所得的平面展开图是 不一样的,下面的图形是由6个大小一样的 正方形,拼接而成的,请问这些图形中哪些 可以折成正方体试试看
<
&
12.已知正方体的顶点A 处有一只蜘蛛,B 处有一只小虫,如图所示,请你在图上作出一种由A 到B 的最短路径,使得这只小蜘蛛能在最短时间内捉住这只小虫子.
B
A
`
丰富的图形世界的作业
~
姓名:老师评阅:家长签字
一、填空题
1、面与面相交成___,线与线相交得到___,点动成____,线动成_____,面动成____
2、下面是两种立体图形的展开图.请分别写出这两个立体图形的名称:________,___________
3、下图所示的三个几何体的截面分别是:(1)_________;(2)__________;(3)___________.
`
4、已知三棱柱有5个面、6个顶点、9条棱,四棱柱有6个面、8个顶点、
12条棱,五棱柱有7个面、10个顶点、15条棱,……,由此可以推测n棱
柱有_____个面,____个顶点,_____条棱。

5、当下面这个图案被折起来组成一个正方体,数字_______会在
与数字2所在的平面相对的平面上
%
6、从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成10个三角形,则这个多边形的边数为_____。

7、用小正方块搭一个几何体,使它的主视图、俯视图如图所示,这样的几何体只有一种吗最少需几块最多需几块
二、选择题
8、下面几何体的截面图不可能是圆的是()
A、圆柱
B、圆锥
C、球
D、棱柱
9、将左边的正方体展开能得到的图形是()
10、将半圆绕它的直径旋转一周形成的几何体是()
A、圆柱
B、圆锥
C、球
D、正方体
11、用一个平面去截一个正方体,截面可能是()
A、七边形
B、圆
C、长方形
D、圆锥
12、一个直立在水平面上的圆柱体的主视图、俯视图、左视图分别是()
A长方形、圆、长方形B、长方形、长方形、圆
C、圆、长方形、长方形
D、长方形、长主形、圆。

相关文档
最新文档