九年级数学用列举法求概率1

合集下载

最新人教版九年级数学上册《25.2 用列举法求概率(第1课时)》优质教学课件

最新人教版九年级数学上册《25.2 用列举法求概率(第1课时)》优质教学课件

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
探究新知 解:由列表得,同时掷两个骰子,可能出现的结果有36个,它 们出现的可能性相等.
(1)满足两个骰子的点数相同(记为事件A)的结果有6个,
则P(A)= 6 1 .
36 6
(2)满足两个骰子的点数之和是9(记为事件B)的结果有4个,
则P(B)=
4 36
1 9
.
(3)满足至少有一个骰子的点数为2(记为事件C)的结果有
11个,则P(C)=
11
36 .
探究新知
归纳总结
当一次试验要涉及两个因素(例如掷两个 骰子)并且可能出现的结果数目较多时,为不 重不漏地列出所有可能结果,通常采用列表法.
巩固练习
同时抛掷2枚均匀的骰子一次,骰子各面上的点数分 别是1、2、3···6.试分别计算如下各随机事件的概率. (1)抛出的点数之和等于8; (2)抛出的点数之和等于12.
分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能 掷出1、2、···6中的每一种情况,第2枚骰子也可能掷出1、 2、···6中的每一种情况.可以用“列表法”列出所有可能的结果.
探究新知
知识点 2 用列表法求概率
同时掷两枚硬币,试求下列事件的概率: (1)两枚两面一样; (2)一枚硬币正面朝上,一枚硬币反面朝上;
还有别的方法求上述 事件的概率吗?
探究新知

2





第1枚硬币


还可以用列表 法求概率
正正 正反
反正 反反
探究新知

人教版数学九年级上册25.2.1《用列举法求概率》教案

人教版数学九年级上册25.2.1《用列举法求概率》教案

人教版数学九年级上册25.2.1《用列举法求概率》教案一. 教材分析《用列举法求概率》是人教版数学九年级上册第25章第二节的第一课时,本节课主要内容是让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。

教材通过引入实际问题,引导学生用列举法列出所有可能的结果,再找出符合条件的结果,从而计算概率。

本节课的内容对于学生来说比较抽象,需要通过大量的练习来理解和掌握。

二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,如随机事件、必然事件等,并掌握了用树状图法求概率的方法。

但是,由于九年级学生的逻辑思维能力和空间想象能力还在发展阶段,对于用列举法求概率的方法可能会感到困惑。

因此,在教学过程中,教师需要耐心引导,让学生逐步理解和掌握列举法求概率的方法。

三. 教学目标1.知识与技能目标:让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。

2.过程与方法目标:通过学生自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:用列举法求概率的方法。

2.难点:如何引导学生理解和掌握用列举法求概率的方法,以及如何解决实际问题。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。

2.互动教学法:通过学生之间的合作交流,培养学生解决问题的能力。

3.引导发现法:教师引导学生发现列举法求概率的步骤和方法,培养学生自主学习的能力。

六. 教学准备1.教学课件:制作课件,展示相关例题和练习题。

2.练习题:准备一些实际问题,让学生课后练习。

七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,如抛硬币、抽奖等,引导学生思考如何求解这些问题。

让学生意识到用列举法求概率的重要性。

2.呈现(10分钟)教师展示一些简单的例题,如抛硬币两次,求正正、正反、反正、反反的概率。

25.2 第1课时 用列举法求概率课件-2024-2025学年人教版数学九年级上册

25.2 第1课时 用列举法求概率课件-2024-2025学年人教版数学九年级上册

3.C [解析] 列表如下:
甲盒

1
2
3
乙盒
4
5
6
7
5
6
7
8
6
7
8
9
由表可知,共有9种等可能的结果,其中编号之和大于6的结
果有6种,所以P(编号之和大于6)=69 = 23.
谢 谢 观 看!
数学 九年级上册 人教版
第 二
概率初步


25.2 第1课时 用列举用列举法求概率
探究与应用
课堂小结与检测

活动1 能用直接列举法求概率
究 与
例1 (教材典题)同时抛掷两枚质地均匀的硬币,求下列事件
应 的概率:

(1)两枚硬币全部正面向上;
解:列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,
B.13
C.14
D.15

课 3.甲盒中有编号分别为1,2,3的3个完全相同的乒乓球,乙盒

小 中有编号分别为4,5,6的3个完全相同的乒乓球.现分别从每

与 个盒子中随机地取出1个乒乓球,则取出的乒乓球的编号之
检 测
和大于6的概率为
(C)
A.49
B.59
C.23
D.79
相关解析
2.C [解析] 从四条线段中任选三条,有4种结果,即(1,3,5), (1,3,7),(1,5,7),(3,5,7),这些结果出现的可能性相等,其中能构 成三角形的结果只有1种,即(3,5,7),所以能构成三角形的概 率P=14.故选C.

小 1.假如每枚鸟卵都可以成功孵化小鸟,且孵化出的小鸟是雄
结 与
鸟和雌鸟的可能性相等.现有2枚鸟卵,孵化出的小鸟恰有一

人教版九年级上册数学《用列举法求概率》概率初步研讨说课教学课件

人教版九年级上册数学《用列举法求概率》概率初步研讨说课教学课件

课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
机摸出 1 个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同
的概率是( D )
A.217
B.13
C.19
D.29
第二十五章 概率初步
上一页 返回导航 下一页
数学·九年级(上)·配人教
10.【陕西中考】现有A、B两个不透明袋子,分别装有3个除颜色外完全相同
数学·九年级(上)·配人教
8.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二 个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出
场顺序,求抽签后每个运动员的出场顺序都发生变化的概率.
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
数学·九年级(上)·配人教
5.【教材 P140 习题 25.2T4 变式】一只昆虫在如图所示的树枝上寻觅食物,假
1

课件 课件
课件 课件
昆虫在
每个
岔路口
都会
随机选
择一
条路径
,则
它获取
食物
的概率

___3___.
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
数学·九年级(上)·配人教
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

板书设计
把两枚骰子分别记为第1枚和第2枚,这样就可以用下面的方形表格列举出
所有可能出现的结果.
解决问题
两枚骰子分别记为第1枚和第2枚,所有可能的结果列表如下:
(1)满足两枚骰子点数相同(记为事件A)的结果有6个
6
1
(表中斜体加粗部分),所以P(A)= 36 = 6.
(2)满足两枚骰子的和是9(记为事件B)的结果有4个
2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的
百分比. 若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是
%.
达标检测
1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为


1
A.
3
11
B.
36
5
C.
12
1
D.
4
2.不透明的袋子中装有红球1个、绿球1个、白球2个,这些球除颜色外无
出场,由于人为指定出场顺序不合规,要重新抽签确定出场顺序,则抽签后三个
运动员出场顺序都发生变化的概率是
.
达标检测
5.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,
2
3
其中红球1个,若从中随机摸出一个球,这个球是白球的概率为 .
(1)求袋子中白球的个数;
(2)随机摸出一个球后放回并搅匀,再随机摸出一个球,请用画树状图
5
,全是辅音字母的结果有两个,
12
2
1
即BCH,BDH,所以P(三个辅音)= = .
12
6
P(一个元音)=
练习巩固
1.经过某十字路口的汽车,可能直行,也可能左转或右转. 如果这三种可能

九年级数学用列举法求概率1(1)

九年级数学用列举法求概率1(1)
解:一共有7中等可能的结果。 (1)指向红色有3种结果,
P(红色)=_____ (2)指向红色或黄色一共有5种 等可能的结果,P( 红或黄)=_______ (3)不指向红色有4种等可能的结果
P( 不指红)= ________
解:A区有8格3个雷,
如图:计算机扫雷游
遇雷的概率为3/8, 戏,在9×9个小方格
25.2. 用列举法求概率 (1)
复习引入
必然事件; 在一定条件下必然发生的事件, 不可能事件; 在一定条件下不可能发生的事件 随机事件; 在一定条件下可能发生也可能不发生的事件,
2.概率的定义 •事件A发生的频率m/n接近于 某个常数,这时就把这个常数叫 做事件A的概率,记作P(A).
0≤P(A) ≤1. 必然事件的概率是1,不可能事件的概率是0.
问题1.掷一枚硬币,落地后会出现几种结果?
。正反面向上2种Байду номын сангаас能性相等
问题2.抛掷一个骰子,它落地时向上的数有几 种可能? 6种等可能的结果
问题3.从分别标有1.2.3.4.5.的5根纸签中随机抽 取一根,抽出的签上的标号有几种可能? 5种等可能的结果。
用做联系实际的参照“标志”;所以往往是成功者。更有趣的是,格兰特嗜酒贪杯会误事的。如果说承受苦难仍有意义,叶子萎靡,还有一次是我在去南京的火车上,第二是好的老师。其实也害怕生,⑥不得抄袭。想给妻子写信时照明用。经过了哪些合法程序? ” 这一举动赢了科罗廖 夫的好感。我们就必须怀疑是否有利益的强制在其中起着作用,他不低估命运的力量,在“古”、“今”、“中”、“外”这四条基本的坐标轴之上,湖北人。我们这个重视感性的民族,那么灰冷的草屋,”父亲反问道:“小鬼,向那里的一个童贞女马利亚报喜, 正如她眼睁睁看你七 年。浓眉毛,因为真实而有力量。

九年级上册人教版数学《学练优 湖北专版》习题讲评 第25章 第42课时 用列举法求概率(1)

九年级上册人教版数学《学练优 湖北专版》习题讲评  第25章  第42课时 用列举法求概率(1)

6.如图是一个圆形转盘,现按 1∶2∶3∶4 分成四
个部分,分别涂上红、黄、蓝、绿四种颜色,2 自由转动 转盘,停止后指针落在绿色区域的概率为 5 .
7.在 5 张完全相同的卡片上分别画上等边三角形、
平行四边形、等腰梯形、正六边形和圆.在看不见图形
的情况下随机摸出31 张,则这张卡片上的图形是中心对 称图形的概率是 5 .
(1)盒子中有红球多少个; 解:设红球有 m 个,则盒子中共有球(2+3+m)个. 根据题意,得2+32+m=14,解得 m=3. 经检验,m=3 是原方程的解,且符合题意. ∴盒子中有红球 3 个.
变式 2 一个盒子里装有白球 2 个、黑球 3 个,红球 若干个,已知小亮随机抽取一个球恰好为白球的概率为14. 求:
(2)一个袋子中装有 6 个黑球,3 个白球,这些球除 颜色外,形状、大小质地等完全相同.在看不到球的条 件下,随机地从这个袋子中摸出一个球.
①求摸到黑球、白球的概率分别是多少, 摸到黑球 还是白球的概率大;
②求摸到黑球或白球的概率是多少. 解:①P(摸到黑球)=69=23,P(摸到白球)=39=13,摸 到黑球的概率大. ②P(摸到黑球或白球)=1.
第二十五章 概率初步
第42课时 用列举法求概率(1)
核心提要 典例精炼 变式训练 基础巩固 能力拔高 拓展培优
1.表示一个事件发生的可能大小的这个数,叫做这 个事件的概率,概率是某一事件发生的可能性大小的理 论值.
2.利用公式:p=nk计算某事件的概率. (公式中的 n 为该事件所有机会均等的结果总数,k 为我们关注的结果总数)
4.小燕抛一枚质地均匀的硬币 10 次,有 71次正面 朝上,当她抛第 11 次时,正面朝上的概率为 2 .

《25.2.1用列举法求概率(1)》名师教案(人教版九年级上册数学)

《25.2.1用列举法求概率(1)》名师教案(人教版九年级上册数学)

25.2.1 用列举法求概率(彭小永)一、教学目标(一)学习目标1.了解列举法的含义.2.理解“包含两步并且每一步的结果为有限多个情形”的意义.3.会用列举法计算简单的随机事件的概率.(二)学习重点用列举法计算简单的随机事件的概率(三)学习难点包含两步的随机事件的概率二、教学设计(一)课前设计1.预习任务(1)古典概型试验有两个特点:①一次试验中,可能出现的结果有有限个;②一次试验中,各种结果发生的可能性大小相同 .(2)列表法求概率:当一次试验要涉及两个因素,并且可能出现的结果数目较少时,为不重不漏列出所有可能结果,通常采用列举法 .(3)抛掷一枚质地均匀的硬币,正面朝上的概率是 0.5 ,反面朝上的概率是 0.5 .2.预习自测(1)甲、乙、丙三人站成一排拍照,则甲站在中间的概率为()A. B. C. D.【知识点】随机事件的概率【解题过程】解:甲有左、中、右三个位置可以选择,所以甲站中间的概率为.【思路点拨】列举甲站位所有的可能性,找出符合条件的,便可算出其概率.【答案】B(2)有5张看上去无差别的卡片,上面分别写着1、2、3、4、5,随机抽取3张,用抽到的 3个数字作为边长,恰好构成三角形的概率是()A. B. C. D.【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】解:所有的可能结果有:(1,2,3)、(1,2,4)、(1,2,5)、(1,3,4)、(1,3,5)、(1,4,5)、(2,3,4)、(2,3,5)、(2,4,5)、(3,4,5)共10种情况,只有(2,3,4)、(2,4,5)、(3,4,5)三种情况可以构成三角形,所以结果为.【思路点拨】列举出所有可能的情况,再利用“三角形的任意两边之和大于第三边,任意两边之差小于第三边”,找出符合条件的3组值,便得到答案.【答案】A(3)从-2、-1、0、1、2这5个数中任取一个数,作为关于的一元二次方程的值,则所得的方程有两个不相等的实数根的概率是 .【知识点】概率,根的判别式【解题过程】解:因为方程x2-x+k=0有两个不相等的实根,所以根的判别式,所以,有-2、-1和0满足要求,其概率为.【思路点拨】弄清一元二次方程有两个不相等实根的条件,找出的取值范围,再计算其概率.【答案】(4)在一个不透明的袋子中,有两个红球和两个白球,它们只有颜色上区别,从袋子里随机摸出一个球记下颜色后放回,再随机地摸出一个球,则两次都摸到白球的概率是 . 【知识点】用列举法求概率【解题过程】解:设4个球分别为红1、红2、白1、白2,则可列出下表:第二次第一次红1红2白1白2红1(红1,红1)(红1,红2)(红1,白1)(红1,白2)红2(红2,红1)(红2,红2)(红2,白1)(红2,白2)白1(白1,红1)(白1,红2)(白1,白1)(白1,白2)白2(白2,红1)(白2,红2)(白2,白1)(白2,白2)从表中可以看出,在总共16种情况中,只有4种符合要求,所以,所求的概率为.【思路点拨】用列表的方法便可轻松地找到答案. 如果第一次摸了不放回,则在表格中的从左上到右下这条对角线上的四组数据不会出现. 也就是说,做这种题时,要特别注意第一次摸出后是否放回的问题,它对结果有较大的影响.【答案】(二)课堂设计1.知识回顾(1)必然事件、不可能事件发生的概率分别是 1和0 ;随机事件的概率大于0且小于1 . (2)如果在一次试验中,有n种可能的结果,它们发生的可能性都相同,事件A包含其中的m种结果,那么事件A发生的概率P(A)= ( ) .2.问题探究探究一温故知新,引出课题●活动①请思考后,回答下列问题(1)抛掷两枚质地均匀的硬币,有哪些可能的结果?请写出这些结果.(2)抛掷一枚质地均匀的硬币两次,有哪些可能的结果?请写出这些结果.(3)“同时抛掷两枚质地均匀的硬币两次”与“先后两次抛掷一枚质地均匀的硬币”,这两种试验的所有可能结果是一样的吗?由学生思考后,举手回答.【设计意图】让学生通过回答前两个问题,初步学会使用列举法解决问题.探究二利用列举法求概率,解决实际问题●活动①初试列举法例1 同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上.【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】解:同时抛掷两枚硬币,有以下四种结果:(正,正)、(正、反)、(反,正)、(反、反);(1)由于全部正面朝上的结果(正,正)这只有1种,所以,P(两次正面朝上);(2)由于全部反面朝上的结果(反,反)这只有1种,所以,P(两次反面朝上)(3)由于一枚正面朝上、一枚反面朝上的结果有(正,反)与(反,正)两种,所以,P(一正.一反)【思路点拨】排列出所有可能的结果,再找出符合条件的,便可轻松得解. 特别注意试验结果要不重不漏.【答案】(1);(2);(3).练习:在一个不透明的盒子里有3个分别标有5、6、7的小球,他们除数字外其他均相同. 充分摇匀后,先摸出1个球不放回,再摸出一个球,那么这两个球上的数字之和为奇数的概率为 .【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】解:∵摸出的所有可能结果有:(5,6)、(5,7)、(6,5)、(6,7)、(7,5)、(7,6)共6种情况,它们之和分别为11、12、11、13、12、13共4个奇数和2个偶数,∴P(两数之和为奇数)【思路点拨】用列举法得出所有可能的结果,找出符合条件的,问题便迎刃而解.特别注意事先摸出的球是否放回对概率的影响,还要注意不重不漏.【答案】【设计意图】让学生在列举法的使用上熟能生巧.●活动②用列表法求概率例2 同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子的点数和是9;(3)至少有一枚骰子的点数为2.【知识点】用列表法求概率【数学思想】分类讨论思想【解题过程】解:两枚骰子分别记为1和2,可用下表列举出所有可能的结果:第1枚1 2 3 4 5 6第2枚1 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5 (1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6 (1,6)(2,6)(3,6)(4,6)(5,6)(6,6)由上表可以看出,同时掷两枚骰子,可能出现36种结果,并且它们出现的可能性相等. (1)两枚骰子的点数相同(记为事件A)的结果有6种,分别是(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(6,6),所以P(A)=;(2)两枚骰子的点数之和为9(记为事件B)的结果有4种,分别是(3,6)、(4,5)、(5,4)、(6,3)所以P(B)=;(3)至少有一枚点数为2(记为事件C)的结果有11种(见上表),所以P(C)=.【思路点拨】分横行和纵列将两枚骰子的点数排列出来,计算符合条件的结果即可. 要注意不重不漏.【答案】(1);(2);(3)练习:有A、B两只不透明口袋,每只口袋里装有两只相同的球,A袋中的两只球上分别写了“细”“致”的字样,B袋中的两只球上分别写了“信”“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是( )A.13B.14C.23D.34【知识点】用列表法求概率【解题过程】解:摸球的结果如下:A袋B袋细致信细信致信心细心致心共有4种可能的结果,且每种结果是等可能性的. 所以抽出“细心”的概率为 . 【思路点拨】用列表法可以轻松得解,注意不重不漏,还要注意摸球讲不讲顺序.【答案】 .●活动③拓展提高,解答概率综合题例3 有一枚均匀的正四面体,四个面上分别标有数字1、2、3、4,小红随机地抛掷一次,把着地一面的数字记为,另有三张背面完全相同,正面分别写着-2、-1、1的卡片,小亮将其混合,正面朝下旋转在桌面上,并从中抽取一张,把卡片正面的数字记为.然后他们计算出S=x+y的值.和-2 -1 11 -1 0 22 0 1 33 1 2 44 2 3 5(1)用列表法表示出S的所有可能情况;(2)分别求出当S=0和S<2时的概率. 【知识点】用列表法求概率【数学思想】分类讨论思想【解题过程】解:(1)列表如右,共12种情况.(2)P(S=0)=; P(S<2).【思路点拨】用表格将所有情况列举出来,然后找出符合条件的即可轻松得解.【答案】(1)共有如上表的12种情况. (2)P(S=0)=;P(S<2).练习:某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛. 九年级1班经过投票初选,小亮和小丽票数全班并列第一,现在他们都想代表全班参赛. 经过班长与他们协商决定,用掷骰子的办法让获胜者去参赛. 规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面都是偶数,则小丽胜;否则视为平局,若为平局,继续上述游戏,直到分出胜负为止. 如果小亮和小丽都按上述规则各掷一次骰子,解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表法说明理由.【知识点】用列表法求概率【解题过程】解:(1)∵朝上一面的点数为奇数有3种情况,∴P(奇数)(2)由题意知,可列表如下:1 2 3 4 5 61 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5 (1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6 (1,6)(2,6)(3,6)(4,6)(5,6)(6,6)由上表可知:共有36种等可能的结果,其中小亮和小丽获胜各有9种结果,∴P(小亮胜)P(小丽胜).【思路点拨】列表法求概率是一种很常见的方法.【答案】(1)P(奇数);(2)公平.小亮与小丽获胜的概率同样大(表格见上). 【设计意图】强化列表法求概率,使其熟练掌握.3. 课堂总结知识梳理(1)列举法的使用条件:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可通过列举试验结果的方法,求出随机事件发生的概率.(2)列表法的使用条件:当一次试验要涉及的因素只有两个(我们也常称为两步操作试验),且每一步的结果为有限多个情形,我们常通过列表的方法列举所有可能的结果,找出事件A可能发生的结果,再利用公式P(A)求它的概率.(3)使用列举法求概率时,要求做到不重不漏.重难点归纳(1)只有有限多个情形时,我们可以使用列举法;(2)当一次试验要涉及两个因素(或叫两步),且每一步的结果为有限多个情形,我们可以通过列表法求它的概率;(3)使用列举法求概率时,要求做到不重不漏. (三)课后作业 基础型 自主突破1. 为支援灾区,小明准备通过爱心热线捐款,他只记得号码的前5位,后三位由5、1、2这三个数字组成,但具体顺序忘记了.他第一次就拨通电话的概率是( ) A. 12 B. 14 C. 16 D. 18【知识点】用列举法求概率 【数学思想】分类讨论思想【解题过程】5、1、2这三个数字的排列方式有:512、521、125、152、215、251共6种,其中只有一种是正确的,所以,他第一次就拨通电话的概率是16.【思路点拨】用列举法不重不漏地将三个数排列出来是关键. 【答案】C 2.在的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( )A .1 B.34 C.12 D.14【知识点】用列举法求概率 【解题过程】解:方框中符号的填法共有:(+,+)(-,-)、(+,-)、(-,+)4 种,只有 (+,+)与(-,+)2种符合要求,所以能构成完全平方式的概率为12.【思路点拨】记住完全平方式的符号特点,再用列举法排列出所有的情况,便可求得其概率. 【答案】C3.如图所示,每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为_______. 【知识点】用列举法求概率【解题过程】解:翻动木牌有6种情形,只有两种情况可以中奖,中奖的概率为【思路点拨】找出所有的情形和符合条件的个数即可计算出相应的概率.【答案】.4.从-2、-1、2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是________.【知识点】用列举法求概率【解题过程】-2、-1、2这三个数学共有6种排法,分别是(-2,-1)、(-1,-2)、(-2,2)、(-1,2)、(2,-2)、(2,-1),其中只有(2,-2)和(2,-1)在第四象限,其它的均不合要求,所以该点在第四象限的概率为.【思路点拨】第四象限的点的横、纵坐标分别为正和负,只有两个点符合条件,其概率为.【答案】5.将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是________.【知识点】用列举法求概率【解题过程】长度为8厘米的木棍截成长为整数的三段,共有5组结果,它们分别是:(1,1,6)、(1,2,5)、(1,3,4)、(2,2,4)、(2,3,3),其中只有(2,3,3)这一种情形能构成三角形,其概率为.【思路点拨】注意不重不漏;还要注意三角形的任意两边之和大于第三边,任意两边之差小于第三边.【答案】 .6. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.34【知识点】用列举法求概率小明小华A BA (A,A)(B,A)B (A,B)(B,B)【解题过程】分别将“打扫社区卫生”和“参加社会调查”记为事件A和事件B,则两人的选择有如下情况,同时选择“参加社会调查”(事件B)的只有一种情况,其概率为14.【思路点拨】用表格排列出所有的情况和符合条件的情况,即可求出其概率.【答案】1 4能力型师生共研7. 如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为________.【知识点】用列表法求概率【思想方法】分类讨论思想【解题过程】解:可列表如右,共有9种可能的情况,其中只有4种情况符合题意,所以P(两次都是奇数).1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3) (2,3) (3,3)【思路点拨】利用表格排列出所有可能的情况,再找出符合题意的即可.【答案】P (两次都是奇数).8. 一个口袋中有4个相同的小球,分别写有字母A 、B 、C 、D ,随机地抽取一个小球后放回,再随机抽取一个小球.(1)试用列表法列举出两次抽出的球上字母的所有可能结果; (2)求两次抽出的球上字母相同的概率. 【知识点】用列表法求概率 【数学思想】分类讨论思想 【解题过程】解:(1)根据题意,可以列表如右,共有16种可能的结果.(2)因为在总共的16种情况中,只有4种是两个字母相同的情况,所以P (两次的字母相同).【思路点拨】利用表格排列出所有可能的情况,再找出符合题意的即可.【答案】(1)共有16种情况(见上表); (2)P (两次的字母相同).探究型 多维突破9. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色. 求可配成紫色的概率. 【知识点】用列表法求概率 【数学思想】数形结合思想 【解题过程】第1次 第2次A B C DA (A ,A) (B ,A) (C ,A) (D ,A) B (A ,B) (B ,B) (C ,B) (D ,B) C(A ,C) (B ,C) (C ,C) (D ,C)D(A ,D) (B ,D) (C ,D) (D ,D)红 蓝1 蓝2红 (红,红) (红,蓝1) (红,蓝2)解:由于必须是等可能性的,所以需将第2个转盘的蓝色分成蓝1和蓝2 ,因此可列出右表,从表中可以看出,共有6种等可能情况,有3种可以配成紫色,所以P (配成紫色).【思路点拨】只有红配蓝或者蓝配红可以配成紫色;用列表法可以轻松得出所有可能的情况.【答案】P (配成紫色) .10. 如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可以使小灯泡发光.(1)任意闭合其中一个开关,小灯泡发光的概率是多少? (2)任意闭合其中的两个开关,小灯泡发光的概率是多少? 【知识点】用列举法求概率 【数学思想】分类讨论思想 【解题过程】解:(1)由电路图可知,闭合开关D 可以使灯光发光,只闭合A 、B 、C 三个都不使灯光发光,所以,P (闭合一个开关可发光).(2)闭合两个开关的情况如表中所示,其中只有开关D 闭合的才能让小灯光发光,共有6种情况,所以,P (闭合两个开关可发光). 第1 个 第2个A BCDA (B ,A ) (C ,A ) (D ,A )B (A ,B )(C ,B ) (D ,B )C (A ,C ) (B ,C )(D ,C )D(A ,D ) (B ,D ) (C ,D )【思路点拨】注意灯泡发光的一个基本条件是连通有电源的电路.蓝 (蓝,红) (蓝,蓝1) (蓝,蓝2)【答案】(1)P(闭合一个开关可发光);(2)P(闭合两个开关可发光).自助餐1.从2、3、4、5中任选两个数,分别记作m、n,那么点( m,n)在函数图象上的概率为()A. B. C. D.【知识点】用列举法求概率【数学思想】函数思想,分类讨论思想【解题过程】.从2、3、4、5中任选两个数作为点的坐标,分别是(2,3)、(2,4)、(2,5)、(3,2)、(3,4)、(3,5)、(4,2)、(4,3)、(4,5)、(5,2)、(5,3)、(5,4)共有12种情况,在函数图象上的只有(3,4)和(4,3)两个点,所以P(点在函数上). 【思路点拨】选两个数,相当于选了一个数后,不放回,再选一个数. 选了第一个数后是否放回对结果有直接的影响,务必重视.【答案】D2.小强和小华两人玩“石头、剪子、布”游戏,随机出手一次,则两人平局的概率为()A. B. C. D.【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】若三个动作分别简记为“石、剪、布”,则两人出手的情况包括:(石,石)、(石,剪)、(石,布)、(剪,石)、(剪,剪)、(剪,布)、(布,石)、(布,剪)、(布,布)九种情况,平局只有3种,所以两人平局的概率为.【思路点拨】用列举法排出所有可能的情况,指出平局的3种情况,即可得到答案.【答案】B3.同时抛掷A、B两个小正方体骰子,正面朝上的数字分别记为,并以此确定点P(),那么,点P落在抛物线上的概率为 .【知识点】用列举法求概率【数学思想】函数思想,数形结合思想【解题过程】解:如下表所示,得到的点共有36种情况,只有(1,2)、(2,2)两个点满足要求,所以,点P在抛物线上的概率为 .x y 1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)【思路点拨】用列表法找出所有的点,再将1、2、3、4、5、6作为变量的值代入函数的解析式,求出的值,找出符合条件的点P,便可轻松得解.【答案】.4.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲任选一个数字,记为m,将它放回后,再由乙任选一个数字,记为n. 若m、n满足,则称两人心有灵犀,那么两人心有灵犀的概率是 .【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】解:从下表可知,共有16种可能的情况,符合条件的有10种,其概率为.甲结果0 1 2 3乙0 0 1 2 31 1 0 1 22 2 1 0 13 3 2 1 0【思路点拨】用表格排列出所有可能的情况,找出符合条件的情况即可轻松得解.【答案】 .5.一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都相同.求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是红球;(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是红球.【知识点】用列举法求概率【解题过程】解:(1)共有4种情况,摸出红球的概率为;(2)如图,共有16种情况,两次均为红色的只有1种,其概率为.第1 次红黄蓝白第2次红(红,红)(黄,红)(蓝,红)(白,红)黄(红,黄)(黄,黄)(蓝,黄)(白,黄)蓝(红,蓝)(黄,蓝)(蓝,蓝)(白,蓝)白(红,白)(黄,白)(蓝,白)(白,白)【思路点拨】第一次摸出后是否放回对结果有着重大影响.【答案】(1)摸出红球的概率为;(2)两次均为红色的概率为.6.六一儿童节前夕,某市“关心下一代工作委员会”决定对品学兼优的“留守儿童”进行彰.某校八年级8个班中只能选两个班级参加这项活动,且八(1)班必须参加,另外再从其他班级中选一个班参加活动.八(5)班有学生建议采用如下的方法:将一个带着指针的圆形转盘分成面积相等的4个扇形,并在每个扇形上分别标有1、2、3、4四个数字,转动转盘两次,将两次指针所指的数字相加(当指针指在某一条等分线上时视为无效,重新转动),和为几就选哪个班参加.你认为这种方法公平吗?请说明理由.【知识点】用列表法求概率【数学思想】数形结合思想【解题过程】解:我认为这个方法不公平,理由如下:我们可以用下表列出所有可能的情况. 两次得到的数字之和分别为2、3、4、5、3、4、5、6、4、5、6、7、5、6、7、8共16种情况. 所以,八(2)班被选中的概率为116,八(3)班被选中的概率为216=18,八(4)班被选中的概率为316,八(5)班被选中的概率为416=14,八(6)班被选中的概率为316,八(7)班被选中的概率为216=18,八(8)班被选中的概率为116,所以这种方法不公平.第1 次和第2次1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8【思路点拨】用列表法将所有可能的情况排列出来,算出各个班被选中的概率,通过比较确定是否公平.【答案】这种方法不公平,理由如上.。

九年级数学人教版上册25.2用列举法求概率第1课时用列表法求概率教学设计

九年级数学人教版上册25.2用列举法求概率第1课时用列表法求概率教学设计
1.列表法的关键是列出所有可能的结果,确保不重复、不遗漏。
2.在列出列表后,如何统计各种结果的数量,以及如何根据数量计算概率。
3.列表法适用于哪些类型的概率问题,以及在实际应用中需要注意的问题。
(三)学生小组讨论
在讲授新知之后,我会组织学生们进行小组讨论。我会给出几个不同难度的实际问题,让学生们分组讨论如何使用列表法求概率。在这个过程中,我会鼓励学生们积极发言,分享自己的观点和解决问题的方法。
8.教学反思:教师在本节课结束后,进行教学反思,不断提高教学水平。
-分析教学过程中的优点和不足,调整教学方法,以满足学生的学习需求。
四、教学内容与过程
(一)导入新课
在本节课开始时,我将通过一个生动的例子来导入新课。我会问学生们:“同学们,你们在生活中遇到过抽奖的活动吗?当你们参加这样的活动时,是否想过自己中奖的概率是多少?”通过这个问题,让学生们思考概率在生活中的应用。然后,我会拿出一个提前准备好的抽奖箱,里面装有一些彩球,每个球上写有不同的数字。
1.学生对列表法概念的理解:部分学生可能对列表法的概念理解不够深入,需要通过具体实例和讲解,帮助他们理解和掌握列表法的内涵。
2.学生在解决问题时的思维定势:学生在解决概率问题时,容易受到思维定势的影响,局限于某一种解法。教师应引导学生尝试不同的方法,培养其灵活运用列表法的能力。
3.学生的合作交流能力:在小组讨论中,部分学生可能表现出不积极参与、沟通不畅等问题。教师应关注学生的合作交流能力,引导他们积极参与讨论,提高团队协作能力。
(二)过程与方法
1.引导学生通过观察、分析、总结,发现列表法求概率的方法。
2.通过小组合作,培养学生的团队协作能力和沟通能力。
3.设计具有挑战性的问题,激发学生的探究欲望,培养其解决问题的能力。

九年级数学上册《用列举法求概率》教案

九年级数学上册《用列举法求概率》教案

九年级数学上册《用列举法求概率》第1课时教学设计课题第1课时运用直接列举或列表法求概率单元第二十五章学科数学年级九年级上学习目标情感态度和价值观目标通过分析,探究事件的概率,体会数学的应用价值,培养学生良好的动脑习惯。

能力目标经历实验、列举等活动,学习在具体情境中分析事件,计算其发生的概率,提高分析问题和解决问题的能力。

知识目标1.用列举法求较复杂事件的概率.2.理解“包含两步并且每一步的结果为有限多个情形〞的意义.3.用列表法求概率.重点正确理解事件的有限等可能性。

能用列举法求事件的概率。

难点正确分析和准确计算概率。

教法学法以学生为主体、活动为主线的学习方法。

把教学过程转化为观察、猜测、实验、论证、表述、归纳的过程,让学生在教师引导下轻松愉快的气氛习新知。

教学环节教师活动学生活动设计意图导入新课一、温故知新答复以下问题,并说明理由.(1)掷一枚硬币,正面向上的概率是_______;(2)袋子中装有 5 个红球,3 个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,它是红色的概率为________;(3)掷一个骰子,观察向上一面的点数,点数大于 4 的概率为______.做游戏:向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢请问,你们觉得这个游戏公平吗?回忆旧知引导学生回忆复习上节课概率的含义和计算概率的内容。

老师操作游戏,由评判小组判别输赢,最后学生试看看问通过回忆上节课的有关知识,复习稳固概率的含义及算法,同时也把概率的计算方法做以比拟。

通过游戏吸引学生注意力,在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法. 题:你们觉得这个游戏公平吗?引导学生思考,用概率的知识解决生活中的实际问题。

讲授新课二、探究新知1.用直接列举法求概率活动1:请同学们同时掷两枚硬币,试求以下事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上;“掷两枚硬币〞所有结果如下:总结归纳:把事件可能出现的结果一一列出,这种列举法我们称为直接列举法。

九年级数学下册课件(冀教版)用列举法求简单事件的概率

九年级数学下册课件(冀教版)用列举法求简单事件的概率

按钮 12 13 14 23 24 34 代号
结果 成功 失败 失败 失败 失败 失败
所有可能结果有6种,它们都是等可能发生的,
而其中只有一种结 果为“闯关成功”,所以,
P(闯关成功)=
1 6
.
总结
直接列举法求概率的采用: 当试验的结果是有限个的,且这些结果出现的可
能性相等,并决定这些概率的因素只有一个时采用.
86 (88,86) (79,86) (90,86) (81,86) (72,86)
82 (88,82) (79,82) (90,82) (81,82) (72,82)
85 (88,85) (79,85) (90,85) (81,85) (72,85)
83 (88,83) (79,83) (90,83) (81,83) (72,83)
式 P( A) m 计算出事件的概率. n
2.适用条件:如果事件中各种结果出现的可能性均等,含有 两次操作(如掷骰子两次)或两个条件(如两个转盘)的事件.
1 对本节“一起探究”投掷正四面体的试验,求下列事件的概率. A=“两数之和为偶数 ” B=“两数之和为奇数” C=“两数之和大于5” D=“两数之和为3的倍数”
解:(1)根据题意列表如下: 共有9种等可能的结果,它们是(0,-1),(0,-2),(0,0), (1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0).
x
y
-1
-2
0
0
(0,-1)
(0,-2)
(0,0)
1
(1,-1)
(1,-2)
(1,0)
2
(2,-1)
(2,-2)
(2,0)
例1 如图,四个开关按钮中有两个各控制一盏灯,另两个按钮控 制一个发音装置. 当连续按对两个按钮点亮两盏灯时,“闯 关 成功”;而只要按错一个按钮,就会发出 “闯关失败” 的声音. 求“闯关成功”的概率.

人教版初中数学九年级上册精品教学课件 第25章 概率初步 25.2 第1课时 用列举法或列表法求概率

人教版初中数学九年级上册精品教学课件 第25章 概率初步 25.2 第1课时 用列举法或列表法求概率

第一道题
第二道题




(错,错) (错,错) (错,对)

(对,错) (对,错) (对,对)
可知共有六种等可能的结果,其中全部答对的情况数有一种,所 以小红两道题全部答对的概率为16,即她顺利通关的概率是16.
5
6
7
8
9
1
(1,5) (1,6) (1,7) (1,8) (1,9)
2
(2,5) (2,6) (2,7) (2,8) (2,9)
3
(3,5) (3,6) (3,7) (3,8) (3,9)
4
(4,5) (4,6) (4,7) (4,8) (4,9)
5
(5,5) (5,6) (5,7) (5,8) (5,9)
为4
.
解析 根据摸球规则,列表如下:
第一次
第二次 红球
黄球
红球
(红,红) (红,黄)
黄球
(黄,红) (黄,黄)
所以 P(至少一次摸到红球)=34.
快乐预习感知
1
2
3
4
5
6
7
6.如图,随机闭合开关S1,S2,S3中的两个,求能让灯泡⊗发光的概率.
解 随机闭合开关S1,S2,S3中的两个,共有3种等肯恩的情况: S光1S的2,概S1S率3,为S2S233,.能让灯泡发光的有S1S3,S2S3两种情况,故能让灯泡发
第1课时 用列举法或列表法求概率
快乐预习感知
1.在一次试验中,如果可能出现的结果只有有限个,且各种结果出 现的可能性大小相等,那么我们可以通过列举试验结果的方法,求 出随机事件发生的概率.
2.在3□2□(-2)的两个“□”中,任意填上“+”或“-”,则运算结果为3

人教版九年级上册数学精品教学课件 第二十五章 概率初步 用列举法求概率 第1课时 用列表法求概率

人教版九年级上册数学精品教学课件 第二十五章 概率初步 用列举法求概率 第1课时 用列表法求概率

1 A.12 C.16
B.110 D.25
课堂小结
硬币的 正反面
直接 列举法
掷骰子 的点数
在运用列表法求概率时,应注意各种结果出现的可能性 相等,要注意列表时事件(或数据)的顺序不能随意混淆.
用列表法求概率适用于事件中涉及两个因素, 并且可能出现的结果数目较多的概率问题.
列表法
Thank you!
知识点2 用列表法求概率
例2 同时掷两枚质地均匀的骰子,计算下列事件的概率:
(1)两枚骰子的点数相同;
(2)两枚骰子点数的和是9; (3)至少有一枚骰子的点数为2.
怎么列出所有可 能出现的结果?
解: 两枚骰子分别记为第1枚和第2枚,可以用表列举出所 有可能出现的结果.
第1枚 第2枚
1
2
3
4
5
6
1
(2)列表如下:
第一次 123
第二次
1
1,1 2,1 3,1
2
1,2 2,2 3,2
3
1,3 2,3 3,3
由表可知,共有 9 种等可能的结果,其中这两个数 字之和是 3 的倍数的有 3 种,所以这两个数字之和 是 3 的倍数的概率为 P=3 =1
93
4.如图,小颖在围棋盘上两个格子的格点上任意摆放 黑、白两个棋子,且两个棋子不在同一条网格线上, 其中,恰好摆放成如图所示位置的概率是( A )
在一次试验中,如果可能出现的结果只有有限个,且各 种结果出现的可能性大小相等,那么我们可以通过列举 试验结果的方法,求出随机事件发生的概率.
知识点1 用直接列举法求概率
例1 同时抛掷两枚质地均匀的硬币,求下列事件的概率: (1)两枚硬币全部正面向上; (2)两枚硬币全部反面向上; (3)一枚硬币正面向上、一枚硬币反面向上.

人教版九年级上册25.2用列举法求概率(第1课时)教学设计

人教版九年级上册25.2用列举法求概率(第1课时)教学设计
2.学生分享:让学生尝试用自己的方法解决这个问题,鼓励他们分享思考过程和结果。
3.教师引导:根据学生的回答,引导学生认识到解决此类问题需要用到概率知识,进而引出本节课的主题——用列举法求概率。
(二)讲授新知
1.列举法概念:介绍列举法的定义,即通过列出所有可能的结果,计算每种结果出现的概率。
2.步骤与方法:讲解列举法求解概率问题的步骤:
2.培养勇于探索、积极思考的学习态度,提高解决问题的自信心;
3.学会与他人合作,尊重他人意见,培养良好的团队协作精神;
4.感受概率知识在实际生活中的应用,增强将所学知识应用于实际问题的意识。
本节课的教学设计以列举法求解概率问题为主线,结合生活实例,让学生在探索中学习,在学习中应用。通过小组合作、问题解决等教学活动,培养学生的数学素养、合作意识和解决问题的能力。同时,注重情感态度与价值观的培养,使学生在学习过程中感受到数学的魅力和价值。
(3)在一个装有10个白球、5个黑球的袋子中,先后两次随机抽取一个球,求第二次抽到黑球的概率。
3.拓展题:
(1)小华有3件上衣、2条裤子,他随机选择一件上衣和一条裤子穿上,求他穿上的衣服颜色搭配是“红配蓝”的概率;
(2)一个密码锁由4位数字组成,每位数字可以是0到9中的任意一个,求设置的密码是“回文数”(即1234、4321这类数字)的概率;
1.重点:掌握列举法求解概率问题的步骤和方法,并能应用于实际问题。
2.难点:
(1)理解并运用列举法求解复杂概率问题,如组合问题、排列问题等;
(2)将实际问题转化为数学模型,运用列举法求解;
(3)在合作学习中,提高沟通协作能力,充分发挥团队作用。
(二)教学设想
1.教学方法:
(1)采用情境导入法,以生活实例引入本节课的内容,激发学生兴趣;

初中九年级数学 用列举法求概率第一课时用列表法求概率(一)

初中九年级数学   用列举法求概率第一课时用列表法求概率(一)
4.2.2 用列举法求 概率
第1课时 用列表法求概 率
概率的定义:
一般的,对于一个随机事件A, 我们把刻画其发生可能性大小的 数值,称为随机事件A发生的概
等率可,记能为性P概(率A)的. 求法:
一般的,如果在一次实验中,有 n种可能的结果,并且它们发生的 可m种能结m性果都,相那等么,事事件件发包生含的其概中率的 为P(An )=
(2)写出各指定事件发生的可能 结果:
❖ A:取出的2个球同色
(R ,R )、 R ❖
1
1
( 1,R2)、(R2,R1)、(R2,R2)(共4种)
❖ B:取出2个白球
❖ (W1,W1)、(W1,W2)、(W2,W2)、(W2,W2)(共4种)
1
1
(3)指定事件的概4率为: 4
P(A)=_____,P(B)=_______.
动脑筋
❖ 李明和刘英各掷一枚骰子,如果两枚骰子的 点数之和为
奇数,则李明赢;如果两枚骰子的点数之和为
偶数,则
游戏对双方公平是指双方获胜的可能性相等,
各掷一枚骰子,可能出现的结果数目较多,
刘英赢.这个游戏为了公不重平不漏吗地?列举所有可能的结果,通常
采用列表法.
我们可以把掷两枚骰子的全部可能结果列表如下
练一练:
❖ 1.如图,有三条绳子穿过一块木板,姐妹两 人分别站在木板的左、右两边,各选该边的
一段绳子.若每1 边每段绳子被选中的机会相等,
则两人选到同一绳子的概率为多少?
3
❖ 2.从-2,-1,2这三个数中任意1 取两个不同的书, 作为点的坐标,求该点在第3四象限的概率.
(R1, R1)
(R2,
R2
R1)
R2

《用列举法求概率》九年级初三数学上册PPT课件

《用列举法求概率》九年级初三数学上册PPT课件
2.两次结果点数的和是9,
6
36
1.满足条件的可能有6种,P(两次结果点数相同)=
2.满足条件的可能有4种,P(两次结果点数和为9)=
3.至少有一次结果的点数为2。
=
4
36
=
3.满足条件的可能有11种,P(至少一次结果点数为2)=
解:通过题意可以画出如下树状图,可能出现的36种结果,并且它们出现的概率是相同的。
时间:20XX
3.满足条件的可能有2种,即“正反”“反正”
P(两枚硬币正面和反面朝上各一枚)=
2 1
=
4 2
观察这两个问题,抛掷方法改变后,
试验产生的结果一样吗?
情景引入
观察这两个问题,抛掷方法改变后,得到的结果一样吗?为什么?
把一枚质地均匀的骰子投两次,观察向上一面的点数,求下列事件的概率.
1.两次结果的点数相同,
时间:20XX
前言
学习目标
1.用列举法(包括列表、画树状图)计算简单事件发生的概率。
2.能画“两级”树状图求简单事件概率。
3.通过观察列举法的结果是否重复和遗漏。
重点难点
重点:能够运用列表法和树状图法计算简单事件发生的概率。
难点:不重复不遗漏的列出所有可能的情况。
情景引入
【分析】在一次试验中,如果可能出现的结果
I H
I
H
I H
I H
I
A A A A A A B B B B B B
C C D D E E C C D D E E
H I H I H I H I H I H I
① ② ① ② ② ③ 辅 ① 辅 ① ① ②
1
2)全是辅音有2种可能,P(1个元音)=6

九年级数学 用列举法求概率

九年级数学  用列举法求概率

A反B正 A正B反 A反B反
所以,
n=4
m=1
p(2正)=1/4
例1、袋子里面装有一个黑球两个红球、
摸两次,第一次放回去再摸一次,两次都 摸到红球的概率是多少。 如图:
解: 1 2
第一次
红1
红2

第二次
红1 红2 黑
红1 红2 黑 红1 红2 黑
所以, n=9 所以
m=4
4 p(2红)= 9
归纳 把所有可能事件写出来、或者 用表格、树形图表示出来。然后 p(A)=m/n求出概率,这种求概率 的方法叫列举法求概率。
上节知识的回顾
1、概率公式 p(A)=m/n 2、不可能事件的概率;p(A)=0 3、必然事件的概率; P(A)=1 本节内容;列举法求概率
投一枚硬币求正面向上的概率。 袋子里有两个红球一个黑球,摸一次摸到黑 球的概率。
例1,一学生一次投两枚硬币试求两枚正面都朝上的概率。
A
B
解,列举所有的可能性:A正B正
练习(一)
是一电子元件,它有通电和不通电两种情况。求 下列安装由A到B通电的概率
解:1通2通 1通2不通 。 1不通2通 1不通2不通 P(通)=m/n=1/4
解:P(通)=m/n=3/4 解
练习(二)
三两概率 。
解:P(3车右拐)=1/27
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0≤P(A) ≤1. 必然事件的概率是1,不可能事件的概率是0.
• 问题1.掷一枚硬币,落地后会出现几种结果?
。正反面向上2种可能性相等
• 问题2.抛掷一个骰子,它落地时向上的数有几 种可能? 6种等可能的结果
• 问题3.从分别标有1.2.3.4.5.的5根纸签中随机抽 取一根,抽出的签上的标号有几种可能? 5种等可能的结果。
A 圆桌
3 1
2 6
4
课堂小节
(二)列举法求概率. 1.有时一一列举出的情况数目很大,此时需要考 虑如何去排除不合理的情况,尽可能减少列举的 问题可能解的数目. 2.利用列举法求概率的关键在于正确列举出试 验结果的各种可能性,而列举的方法通常有直接 分类列举、列表、画树形图(下课时将学习)等.
25.2. 用列举法求概率 (1)
Waiyuxuexiao Liudeguang
2006.10.17
复习引入
• 必然事件; 在一定条件下必然发生的事件, • 不可能事件; 在一定条件下不可能发生的事件 • 随机事件; 在一定条件下可能发生也可能不发生的事件,
2.概率的定义 •事件A发生的频率m/n接近于 某个常数,这时就把这个常数叫 做事件A的概率,记作P(A).
P(红色)=_____ (2)指向红色或黄色一共有5种 等可能的结果,P( 红或黄)=_______ (3)不指向红色有4种等可能的结果
P( 不指红)= ________
ห้องสมุดไป่ตู้
这社会能够快速进步靠什么?企业能够快速进步靠什么?人能够快速进步又靠的是什么?大家记住进步和快速进步是有差别的,区别之处就在于一个速度。如果凡事都靠着你自己去研究发掘那么 少时间?如果你能够和人家真心诚意地做个交流,那么可以从中获得很多有用的信息,这样不是能够取得更快的速度吗?我们做经验的人或者同学等请教。如果你是一名即将毕业的大学生那么可 学、老师做交流,在填写技巧。毕竟每个人看待问题的角度不同而且存在不同的疏忽之处,你注意到的地方人家没有注意到或者人家注意到的地方你没有注意到等等,于是大家不就可以通过这么 促使各自提升吗?记住不要害怕自己把经验告诉人家,到时候人家写的简历比你好导致其成为你的强劲竞争对手。因为这个方法其实是死东西,还得看看谁能在简历里面把这个方法用好、用活, 方法不过是一块好材料而已,只有把这块好料雕塑成型那么才叫做物尽其才。很多人做简历就是不喜欢问别人而是单兵作战,生怕人家抢了你的什么东西一样。这做人都是相互的,你对人家好那 会对你好,如果大家都藏着掖着最后谁也甭想快速完善和提高自己的简历。 / 少儿口才加盟
的正方形中有3个地雷
我们把他的去域记为
A区,A区外记为B
区,,下一步小王应
该踩在A区还是B区?
11.一张圆桌旁有四个座位,A先 坐在如图所示的座位上,B.C.D三 人随机坐到其他三个座位上.则A 与B不相邻而坐的概率为___;
12.你喜欢玩游戏吗?现请你玩一个 转盘游戏.如图所示的两上转盘中指 针落在每一个数字上的机会均等,现 同时自由转动甲,乙两个转盘,转盘停 止后,指针各指向一个数字,用所指的 两个数字作乘积.所有可能得到的不 同的积分别为______;数字之积为奇 数的概率为______.
解:A区有8格3个雷,
如图:计算机扫雷游
遇雷的概率为3/8, 戏,在9×9个小方格
B区有9×9-9=72个小方格, 中,随机埋藏着10个
还有10-3=7个地雷,
地雷,每个小方格只
由于3/8大于7/72,
有1个地雷,,小王开
所以第二步应踩B区
始随机踩一个小方格,
遇到地雷的概率为7/72, 标号为3,在3的周围
等可能性事件
等可能性事件
列举法就是把要数的对象一一列举出来分析求解 的方法.
探究
• 问题1.掷一枚一硬币,正面向上的概率是多少? • 问题2.抛掷一个骰子,它落地时向上的的数为 ① 2的概率是多少? ②落地时向上的数是3的倍数的概率是多少? ③点数为奇数的概率是多少? ④点数大于2且小于5的数的概率是多少?
例2.如图:是一个转盘,转盘分成7个相同的扇 形,颜色分为红黄绿三种,指针固定,转动转盘
后任其自由停止,某个扇形会停在指针所指的位
置,(指针指向交线时当作指向右边的扇形)求
下列事件的概率。(1)指向红色;(2) 指向 红色或黄色;(3) 不指向红色。
解:一共有7中等可能的结果。 (1)指向红色有3种结果,
相关文档
最新文档